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ABSTRACT

Compliant mechanisms (CMs) are used to modify kinematic and/or kinetic relations by
connecting actuators (inputs) and receptors (outputs) according to design requirements. Unlike
traditional mechanisms, they do not have rigid body connectors (hinges), and their movements
are solely due to elastic deformation, allowing a significant reduction in the number of parts.
Determining the geometry of CMs may be too complex for traditional design methods, specially
for complex modes of actuation. Therefore, optimization techniques are commonly used instead.
The key aspects of using optimization to design compliant mechanisms is the proper definition
of the objective function and functional constraints.

Among the many approaches to use optimization to the design of CMs is the Topology
Optimization (TO). Most works in this field consider static equilibrium, however, many
applications involve CMs subjected to non-static excitation. Thus, this work proposes a new
formulation that takes into account the harmonic behavior in the TO of continuous structures. The
goal is to maximize the harmonic amplitude of output displacements, such that a new objective
function is proposed. The optimization problem also has constraints in the input displacements,
the total amount of material (volume) and local harmonic stresses. An adaptive volume limit,
recently proposed in the literature, is investigated to adjust the volume constraint.

The Augmented Lagrangian (AL) method is used to account for a large number of local stress
constraints. The optimization problem is solved using the Globally Convergent Method of
Method of Moving Assymptotes (GCMMA). The traditional Solid Isotropic Material with
Penalization (SIMP) approach is used as a material model for stiffness, and a modified version is
used to model mass. Singularities in stress parametrization are addressed by the QP relaxation.

Spatial filtering and nonlinear projection are used for complexity control and regulatization.
Analytical sensitivities are obtained using the extended adjoint approach for harmonic problems.
In this work, the design of an inverter mechanism is used to study the proposed formulation. The
results demonstrate that the formulation is capable of generating mechanisms with continuous
material distributions in lower frequencies, satisfying the constraints, minimizing the objective,
and performing the required phase inversion in the inverter problem. Finally, the results present
comparisons among different input parameters (constraints, design variables, and adjustment
factors) and illustrate the sensitivity of the formulation to each defined parameter set.

Keywords: Optimization; Harmonic regime; Compliant mechanisms; Adaptive volume
constraint.



RESUMO

Mecanismos flexíveis (CMs) são usados para modificar relações cinemáticas e/ou cinéticas
conectando atuadores (entradas) e receptores (saídas) de acordo com os requisitos do projeto.
Ao contrário dos mecanismos tradicionais, não possuem conectores de corpo rígido (dobradiças)
e seus movimentos se devem unicamente à deformação elástica, o que permite uma redução
significativa no número de componentes. Determinar a geometria dos CMs pode ser muito
complexo para métodos de projeto tradicionais, especialmente para modos complexos de atuação.
Portanto, técnicas de otimização são comumente usadas. Os principais aspectos do uso da
otimização para projetar CMs são a definição adequada da função objetivo e das restrições.

Dentre as diversas abordagens para utilização da otimização no projeto de CMs está a Otimização
Topológica (TO). A maioria dos trabalhos nesta área considera o equilíbrio estático, porém,
muitas aplicações envolvem CMs submetidos a excitação não estática. Assim, este trabalho
propõe uma nova formulação que leva em consideração o comportamento harmônico no TO
de estruturas contínuas. O objetivo é maximizar a amplitude harmônica dos deslocamentos de
saída, de modo que uma nova função objetivo seja proposta. O problema de otimização também
possui restrições nos deslocamentos de entrada, na quantidade total de material (volume) e nas
tensões harmônicas locais. Um limite de volume adaptativo, recentemente proposto na literatura,
é investigado para ajustar a restrição de volume.

O método Lagrangiano Aumentado (AL) é usado para incluir o grande número de restrições de
tensão locais. O problema de otimização é resolvido usando o Método Globalmente Convergente
do Método de Assíntotas Móveis (GMMA). A abordagem tradicional de Material Isotrópico
Sólido com Penalização (SIMP) é usada como modelo de material para rigidez, e uma versão
modificada é usada para modelar massa. Singularidades na parametrização de tensão são
abordadas pelo relaxamento QP.

Filtragem espacial e projeção não linear são usadas para controle de complexidade. As
sensibilidades analíticas são obtidas usando a abordagem adjunta estendida para equações de
equilíbrio harmônico. O projeto de um mecanismo inversor é utilizado para estudar a formulação
proposta. Os resultados demonstram que a formulação foi capaz de gerar mecanismos com
distribuições contínuas de materiais em frequências mais baixas, satisfazendo as restrições,
minimizando o objetivo e realizando a inversão de fase necessária no problema do inversor.
Finalmente, os resultados apresentam comparações entre diferentes parâmetros de entrada e
ilustram a sensibilidade da formulação a cada conjunto de parâmetros definido.

Palavras-chave: Otimização; Regime harmônico; Mecanismos flexíveis; Restrição de volume
adaptativa.
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1 INTRODUCTION

A mechanism is a device that converts input force and/or motion into output force and/or
motion (HOWELL, 2001). There are two main types of mechanisms: rigid and flexible. Rigid
mechanisms, the most common type, typically include movable components like gears, belts,
cams, and bearings. Compliant mechanisms (CM), have been used by humans for centuries,
predating the use of joints and other mechanical connecting elements. Unlike rigid mechanisms,
compliant mechanisms achieve motion through the deformation of their flexible components
(ZHU et al., 2020). They offer two key advantages over conventional rigid-link counterparts:
the absence of relative motion among the components and the absence of overlapping elements
(GALLEGO; HERDER, 2009).

The lack of relative motion eliminates sliding friction, addressing concerns such as
wear, noise, and vibration, while also eliminating the need for lubrication. This results in lower
maintenance requirements. Additionally, the absence of backlash reduces positioning errors,
enhancing precision. The absence of overlapping elements reduces the number of parts, allowing
single-piece production, simplifying assembly and reducing overall weight.

As a result, these characteristics promote compactness, miniaturization, and economic
efficiency. Therefore, the component is well-suited for implementation in microscale or nanoscale
manipulation systems (ZHU et al., 2020). Overall, these benefits encourage the exploration of
more innovative designs and actuation arrangements, expanding the range of potential solutions
(GALLEGO; HERDER, 2009).

There are various approaches to design CMs, as depicted in Figure 1: kinematic, building
blocks, and structural optimization. Kinematic synthesis, explored in the early 1990s by authors
such as Her and Midha (1987), Murphy, Midha and Howell (1996), and Howell and Midha
(1994), leverages knowledge from Rigid-Body (RB) mechanisms to create CMs. This approach
involves two primary methods: RB replacement and Freedom And Constraints Topologies
(FACT). Rigid-Body replacement entails identifying a rigid body mechanism that fulfills the
desired function and then transforming it into a compliant version (GALLEGO; HERDER, 2009).
FACT is based on mapping a set of geometric entities in the freedom space to a constraint space,
where the solution to the design problem can be found.

Figure 1 – Synthesis of Compliant Mechanisms.

Compliant Mechanisms

Kinematic

RB replacement FACT method

Building blocks

By instant centers Flexible

Structural optimization

Shape Size Topology

Source: Author production.

The building block concept is founded on the notion that a mechanism should consist
of various sub-mechanisms, referred to as building blocks (ZHU et al., 2020). These building
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blocks are designed based on simple functions, and by combining multiple CMs, it becomes
possible to create a mechanism capable of performing more complex functions. The building
blocks by instant centers is a conceptual design procedure that involves finding a mechanism
capable of delivering a specified input displacement to the output with a desired displacement
direction and geometric advantage. In the Flexible building block method, each building block
possesses its characteristic stiffness matrix, formed by assembling the stiffness matrices of all
the elements constituting the building block.

Optimization involves maximizing or minimizing a functional while respecting a set of
constraints, by adjusting a set of design variables. When these variables and functions belong
to structural quantities, the term “structural optimization” is used. This is the third approach to
designing a CM.

Structural optimization can be carried out through three distinct approaches: shape, size,
and topology. Shape optimization involves finding the optimal boundary within a fixed topology
to extremize a given objective and best satisfy the functional constraints. In size or parametric
optimization, the aim is to identify the optimal set of sizing variables (such as thickness, cross-
section, diameters, etc.) in a predefined design that extremizes the objective function and fulfills
the constraints (GALLEGO; HERDER, 2009).

Topology optimization (TO), the main focus of this study, is an approach that identifies
the optimal material distribution within a fixed design domain. This distribution aims to minimize
a given cost function while respecting a set of constraints (ZHU et al., 2020). A key strength
of topology optimization lies in its flexibility to generate unconventional design solutions, as
the consideration of material distribution expands the solution space when compared to both the
shape and the parametric optimizations.

Figure 2 illustrates a simplified flowchart highlighting key aspects of topology
optimization applied to the design of CMs. The objective function, the function undergoing
extremization, is a crucial aspect. In the context of TO for CMs, it is noteworthy that there is no
universally accepted objective function (ZHU et al., 2020). Therefore, each problem must have
its own objective function and for its construction, a series of methodologies have been proposed
over the years.

A comparative study by Deepak, Dinesh and Ananthasuresh (2008) explores five different
formulations for TO of CMs. The approaches outlined in Figure 2 are among the most relevant.
Mutual Strain Energy (MSE) and Strain Energy (SE) are combined to create a mechanism that
is rigid to resist external forces and compliant to allow desired deformations, using a weighted
linear combination. This formulation is employed in the works of (ANANTHASURESH; KOTA;
GIANCHANDANI, 1994; NISHIWAKI et al., 1998).

Other possibility is to create an objective function to maximize the ratio of a parameter
between the two regions of interest of the domain (input and output). This is the main idea for
Geometrical Advantage (GA), a relationship between displacement (LARSEN; SIGMUND;
BOUWSTRA, 1997a); Mechanical Efficiency (ME), relationship between work and Mechanical
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Figure 2 – Topology optimization of compliant mechanisms.

Topology optimization

Objective formulation

MSE / SE Ratio method

GA MA ME

Energy efficiency

Structural model

Truss like structure Continuous structure

Material parametrization

Homogenization SIMP

Source: Author production.

Advantage (MA), relationship between forces (LARSEN; SIGMUND; BOUWSTRA, 1997b).
Another group of studies use the concept of effective energy, addressing the compliant

mechanism as an energy transformation device. The energy efficiency formulation calculates the
ratio of the net energy transferred at the output to the net energy supplied at the input (HETRICK;
KOTA, 1999). This transformation involves converting input force from the external environment
into output deformation. The objective is to maximize effective energy, representing the efficiency
of the mechanism’s energy conversion (MIYAJIMA; NOGUCHI; YAMADA, 2022; DING et al.,
2021; ZHU et al., 2020).

The structural model, in Figure 2, refers to the structural model used. This can be
either discrete (one-dimensional beam or bar)(LARSEN; SIGMUND; BOUWSTRA, 1997b;
FRECKER et al., 1997) or continuous (2D or 3D).

In the design of compliant mechanisms using continuum structures, two highlighted
material parameterization models are the homogenization method and the Solid Isotropic Material
with Penalization (SIMP) method. The homogenization method describe the material property by
using microstructures, or unit cells, where the amount of material and its mechanical properties
are functions of the geometry and the orientating of the unit cell (BENDSØE; KIKUCHI, 1988).
The SIMP method is based on the rule of mixtures of two isotropic materials (base material and
a weak phase) (BENDSØE; SIGMUND, 1999). In the current study, the SIMP approach will
be used, alongside other forms of mass and stiffness parameterization, which will be further
explained in the subsequent chapters.

After outlining various methods for developing compliant mechanisms, it’s crucial to
address the operating conditions of the component. Concerning the type of loading, TO of CMs
has predominantly been applied to static design scenarios. However, few studies acknowledge
that many mechanical applications involve varying loads over time, such as the rotation of
electrical machinery, deformation of aircraft wings during flight, or even the resonance of a
guitar string when played. An instance of dynamic loading is harmonic excitation, characterized
by loading with constant amplitude, modulated by a periodic function of fixed frequency.

Designing a structure using the TO method under harmonic regime requires adjustments
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to mass, stiffness and damping to achieve specific objectives. This adjustment aims to bring the
resonance frequency closer to the fixed excitation frequency when the goal is to increase the
amplitude of the dynamic response (maximization of frequency response), (MONTERO; SILVA;
CARDOSO, 2020), or move the design away from it when the goal is to reduce the amplitudes
(minimization of frequency response, as in (SHU et al., 2011)).

Reducing vibration response aims to prevent structural damage to the system, typically to
avoid structural resonance and minimize vibration levels. Conversely, amplification mechanisms,
achieved by maximizing dynamic response, find application in energy absorption systems or
amplification of small amplitudes, like in piezoelectric actuators. In such systems, the mechanism
amplifies displacement, strains or relative movement to facilitate energy absorption or exploit
geometric advantages arising from motion combinations.

The focus of this study will be on the latter, where a compliant mechanism exposed to
harmonic loading aims to establish the maximization of a displacement relation between two or
more given points in the system for a specified frequency of interest.

While the majority of TO studies in the literature focus on the static regime (KANG;
CHOI; PARK, 2001; JUNG; PARK, 2015; LEE; PARK, 2015; PARK, 2010); there has been a
growing of research on the dynamic regime in recent years (VENINI, 2016; YANG; LI, 2012;
YANG; LI, 2013; ZHU et al., 2017). As highlighted by Montero, Silva and Cardoso (2020), there
is no singular methodology universally employed for TO of dynamic problems, be it modal,
harmonic or transient. Harmonic analysis, the specific focus of this work, is employed when
seeking to obtain the steady-state response of a structure subjected to periodic loading.

The study of topology optimization under harmonic regime began with Ma, Kikuchi and
Hagiwara (1993), where the concept of dynamic compliance was introduced, in contrast to the
widely used concept of static compliance. Min et al. (1999) obtained a minimum average value
of dynamic compliance for different frequencies. Tcherniak (2002) revealed the occurrence of
discontinuity problems when using only dynamic compliance, hence the need for the application
of static compliance as a design constraint. Additionally, this work also introduced an external
damper to prevent disconnection between structures. Olhoff and Du (2009) used the SIMP
method to maximize the natural frequency or the interval between two consecutive natural
frequencies of the structure using modal analysis. Zhang, Kang and Zhang (2016) applied robust
TO concepts to account for uncertainties in harmonic excitation values and minimal dynamic
compliance in their formulation.

Few works address the maximization of the harmonic response. Montero, Silva and
Cardoso (2020) used a weight density norm to formulate the harmonic problem, for both
minimization and maximization of the harmonic response. This norm allows the association
of dynamic measures without considering any energy concept. They also discuss the need to
maintain the static compliance in the formulation (weighted objective function considering the
static compliance) to avoid disconnected structures and to also mitigate the instability of the
derivatives when the harmonic frequency is the close to the resonance. Silva (2017) linked
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dynamic flexibility to input power functions to design resonant structures.
As presented by Ma, Kikuchi and Hagiwara (1993), in the dynamic case, the derivatives

of the objective and constraints may abruptly change sign during the optimization iterations.
This phenomenon was also reported by Silva (2017), who observed intermittent changes in
the sign of the derivatives when the optimized system is located to the left or to the right of
a resonance frequency. The instability of the response near the resonance frequency can be
mitigated through numerical control of the damping factor (VALENTINI; SILVA; CARDOSO,
2021; GIRALDO-LONDOÑO; AGUILÓ; PAULINO, 2021). Another option, presented by
Al-Bazoon and Arora (2022), is to work with a partitioned algorithm: in the initial optimization
cycles, simplifications of the model are made by transforming dynamic loads into equivalent
static loads. After stabilizing the model, dynamic loads return to the formulation.

Compliant Mechanism design methods using TO generally rely on mechanisms with
localized flexibility, causing localized stresses in these regions. Particularly for (near) resonant
structures, stress levels are incorporated into the analysis as constraints during the optimization
process, ensuring that the resulting structure can withstand the specified design loads. This
becomes one of the most important constraints in the design of resonant structures and even
more relevant in the design of a CM, where the objective is to maximize flexibility. One of the
first works to describe the geometric change caused by the inclusion of stress constraints was
Kirsch (1989), for truss-like structures, introducing the concept of stress singularity (degenerate
sub-domains containing the optimal response). This problem was further discussed by Guo and
Cheng (1997), Duysinx and Bendsøe (1998), Bruggi (2008) where it is shown that, as the design
variables approach zero, the stress remains unchanged, thus preventing material removal from
the domain. To allow "cleaning" the domain, some relaxation techniques were proposed, such as
ε relaxation (GUO; CHENG, 1997) and qp relaxation (BRUGGI, 2008).

Furthermore, other specifics such as local stress constraints are also altered when the
harmonic regime is addressed. In this case, the stress constraint should account for a consistent
stress model, as the viscous behavior associated to the proportional damping model (damped
stress, Section 2). Other very relevant issue associated to stress is the large number of local
stress constraints, as stress is a local measure. This problem is usually addressed by aggregation
techniques or by using the Augmented Lagragian approach (PEREIRA; CARDOSO, 2018).

Regardless of the chosen approach, a common and widely debated issue in the design
of CM using TOP is the presence of hinges. In these locations, there is rotation around a small
portion of the domain, detracting from the idea of a compliant mechanism having distributed
flexibility. This fact makes the CM more similar to a rigid mechanism and increases local stresses.
Therefore, an alternative is the inclusion of stress constraints (PEREIRA; CARDOSO, 2018;
MIYAJIMA; NOGUCHI; YAMADA, 2022; STANKIEWICZ; DEV; STEINMANN, 2022). In
addition, filtering is also a resource used in Pereira and Cardoso (2018) and Rodriguez et al.
(2020), where the mechanism is prevented from having very thin regions in its domain, reducing
stress concentration. Another extension in the formulation, aimed at suppressing hinges, involves
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determining minimum dimensions for regions of concentrated flexibility (ZHANG; ZHONG;
GUO, 2014). However, none of the mentioned approaches completely eliminates the presence of
hinges, generating mechanism with distributed compliance. Instead, mechanisms with de facto

hinges may emerge (SELTMANN; HASSE, 2023).
With the aim of eliminating hinges, several robust optimization proposals have been

presented. Cardoso, Silva and Beck (2019) introduced a robust optimization method based on the
variation of stiffness of the output springs, while Sigmund (2009) incorporated manufacturing
uncertainties into their formulation, employing image processing operators (erode and dilate) for
this purpose. Finally, Zhan and Luo (2019) developed a formulation based on minimizing the
variation of output displacement under constraints of mean displacement and volume. The three
methodologies have shown results indicating that increased structural stiffness of the compliant
mechanism is accompanied by the disappearance of de facto hinges.

In most works on CM using TO, the constraint volume during synthesis is limited to a
constant value. Typically, optimization approaches tend to accumulate a large amount of material
in certain areas during the synthesis of Compliant Mechanisms (CMs) to make them nearly
rigid. Compliance is then concentrated in smaller areas. In contrast to the known fixed volume
constraint in CM topology optimization, an adaptive volume constraint is introduced in Seltmann
and Hasse (2023), which aims to eliminate regions of concentrated flexibility. This proposal is
also investigated in the present work.

1.1 CONTRIBUTION

This work concatenate three different topics: design of compliant mechanisms, topology
optimization and harmonic loads. This combination poses several challenges. According to
Zhao and Wang (2023), when it comes to the design of CMs, there are still several important
challenges related to static behavior, such as highly nonlinear behavior, a large number of
local stress constraints as well as singularity phenomena of stress parameterization. Regarding
harmonic behavior, one can also add difficulties associated to the proper definition of the "real"
measures needed to formulate the optimization problem, physical/numerical issues associated to
resonances and mass parameterization (to cite just a few). Although not directly addressed in
this work, the consideration of harmonic behavior and consistent local stress measures allows for
the investigation of fatigue constraints.

The main highlights in this work are:

• design of Compliant Mechanisms under low-frequency harmonic regime;

• use of consistent local harmonic stress constraints;

• investigation of a new harmonic objective function with directional information;

• investigation of the adaptive volume constraint proposed by (SELTMANN; HASSE,
2023).
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1.2 COMPUTATIONAL IMPLEMENTATION

The formulation developed in this work is implemented as a computer code using the
Julia language (BEZANSON et al., 2017). Some parts of the code were implemented by the
author, like the objective function, constraints, Augmented Lagrangian and sensitivity analysis.
Other parts use the following third part libraries:

• Finite element code uses LFEM.jl package (CARDOSO, 2023a);

• Solution of linear systems of equations use the LinearSolve package. Thus, it is possible
to choose among many different solvers (RACKAUCKAS, 2022);

• The Globaly Convergent Moving Asymptote method, GCMMA, Svanberg (2002), is
from the NLopt package (JOHNSON, 2007);

• Filters and projections are from the LFilter.jl package (CARDOSO, 2023b);

• Visualization is performed by using Gmsh post processor (GEUZAINE; REMACLE,
2020).

The computer implementation, in its current form, is not meant to be fast. Nonetheless, it
is possible to optimize some parts (mainly by reusing pre computed matrices) to speed up the
execution.

1.3 THESIS OUTLINE

Chapter 1 offers a comprehensive overview and primary motivation behind the
development of this work. Additionally, it presents a summary of the history of studies pertaining
to the topics under evaluation, emphasizing the most significant methods and findings of the
referenced works.

Chapter 2 begins by introducing the theoretical foundation. It offers an overview of
elastodynamics and general optimization, followed by defining the main concepts of topology
optimization.

The proposed formulation is presented in Chapter 3. This chapter presents the objective
function proposed in this work, the constraints, the optimization approach combining the
GCMMA with the Augmented Lagrangian method and the sensitivity analysis.

The results of the design cases considered in this work are presented and evaluated in
Chapter 4. Finally, the work in concluded and suggestions for future research are presented in
Chapter 5.
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2 THEORETICAL FOUNDATION

This section aims to present a summary of the theoretical foundation used to develop
this work. To this end, this section is divided into three subsections: elastodynamics, general
optimization and topology optimization. These steps are shown in the Figure 3

Figure 3 – Synthesis of Theoretical Foundation.

Theoretical foundation

Elastodynamics

Finite element Harmonic Problem

General Optimization

KKT AL MMA

Topology optimization

Basic concept Parametrization

Mass Stiffness Stress

Source: Author production.

2.1 ELASTODYNAMICS

Applying the conservation of linear momentum over an infinitesimal portion of material
of a continuous body subjected to external and internal loads

∇∇∇ ·σσσ(X, t)+b(X, t) = γ(X)ü(X, t), (1)

where σσσ(X, t) is the Cauchy stress tensor at the point X, time t, b(X, t) is the vector of body
forces at the point/time, γ(X) is the specific mass of the material at the point and ü(X, t) is the
acceleration vector (MARSDEN; HUGHES, 1994).

Adding the contribution of viscous forces, a new term appears on the right side of Eq. (1)

∇∇∇ ·σσσ(X, t)+b(X, t) = γ(X)ü(X, t)+αγ(X)u̇(X, t), (2)

where α is a material constant and u̇(X, t) is the velocity vector at the point. The constant α

represents a portion of the Rayleigh proportional damping.
The Cauchy stress tensor used in this work considers an additional viscous term,

σσσ(X, t) = D(X) : εεε(X, t)+βD(X) : ε̇εε(X, t), (3)

where D is the fourth order constitutive tensor of the linear elastic material, εεε is the infinitesimal
strain tensor at the point, ε̇εε is its rate of change and β is a material coefficient (MONTERO,
2019).
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The dependence with respect to position X and time t will be dropped, whenever possible,
to simplify the notation.

We can relate infinitesimal strain to the displacement field using a linear (differential)
operator L and the infinitesimal strain rate tensor

εεε = L(u) (4)

and

ε̇εε = L(u̇) . (5)

Replacing Eq. (3), (4), (5) into Eq. (2) results in

∇∇∇ · (D : (L(u+β u̇)))+b = γü+αγu̇. (6)

To derive the weak form of Eq. (6), we introduce an approximated vector field ũ, leading
to the formation of a residue r

r = ∇∇∇ · (D : (L(ũ+β ˙̃u)))+b− γ ¨̃u−αγ ˙̃u. (7)

Through the inner product of the residue with a test function vector field, denoted as w,
we establish weak convergence as

∫
Ω

w · rdΩ ⇀ 0 (8)

where Ω is the domain. Substituting Eq. (7) into Eq. (8) results in

∫
Ω

w · [∇ ·
(
D :
(
L
(
ũ+β ˙̃u

)))
]dΩ+

∫
Ω

w ·bdΩ−
∫

Ω

w · γ ¨̃udΩ−
∫

Ω

w ·αγ ˙̃udΩ = 0. (9)

Performing integration by parts on the first term of Eq. (9) yields

∫
Ω

w · [∇ ·
(
D :
(
L
( ˜̃u+β ˙̃u

)))
]dΩ =

∫
Γt

w · tdΓt −
∫

Ω

L(w) : D :
(
L
(
ũ+β ˙̃u

))
dΩ, (10)

where Γt is the boundary of Ω with prescribed Neumann conditions, and t is the vector of the
forces acting on Γt .

After simplifying the last term in Eq. (10) by expressing it in its vector equivalent
quadratic form, Eq. (9) yields a comprehensive expression for the weak form problem. Letting ũ
be written as u to simplify the notation, the weak form is provided as

∫
Ω

L(w) : D :
(
L
(
ũ+β ˙̃u

))
dΩ+

∫
Ω

w · γüdΩ+
∫

Ω

w ·αγu̇dΩ =
∫

Ω

w ·bdΩ

+
∫

Γt

w · tdΓt . (11)
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2.1.1 Finite Element Discretization

Consider a finite element e, a vector field u describes the displacements within the
element via nodal discrete values Ue in the form

u = NUe, (12)

where N is a matrix containing interpolation shape functions, local to element e and zero outside
its domain Ωe. To map the global vector U to its local values Ue, an localization operator He is
used such as

Ue = HeU. (13)

In a similar manner, the vector field w, velocities u̇ and accelerations ü all follow the same
interpolation and discretization, such that

w = NWe, (14)

u̇ = NU̇e, (15)

and

ü = NÜe. (16)

Using Voigt’s notation and substituting the interpolation expressions in Eq. (11), results
in

∑
e

(∫
Ωe

LV (NWe) ·D(LV (NUe))

)
dΩe +

∫
Ωe

NWe · γNdΩeÜe

+
∫

Ωe

NWe ·αγNdΩeU̇e = ∑
e

(∫
Ωe

NWe ·bdΩe +
∫

Γe

NWe · tdΓe

)
, (17)

in which Ωe and Γe are the volume and boundary of an element e. The constitutive tensor D is
now represented as a matrix and the differential operator is now

Lv =


∂

∂x 0
0 ∂

∂y
∂

∂y
∂

∂x

 (18)
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for compatibility with Voigt’s notation (in 2D). Now it is possible to write the inner product w ·u
as wT u, such that Eq. (17) results in

∑
e

(
WT

e

∫
Ωe

LV
(
NT)DLV (N)dΩeUe +WT

e

∫
Ωe

LV
(
NT)DLV (N)dΩeU̇e +

WT
e

∫
Ωe

NT
γNdΩeÜe +WT

e

∫
Ωe

NT
αγNdΩeU̇e

)
=

∑
e

(
WT

e

∫
Ωe

NT bdΩe +WT
e

∫
Γe

NT tdΓe

)
, (19)

where the local matrices of the element are given as

Ke =
∫

Ωe

LV (N)T DLV (N)dΩe, (20)

Me =
∫

Ωe

NT
γNdΩe, (21)

Ce = αMe +βKe, (22)

and

Fe =
∫

Γe

NT tdΓe −
∫

Ωe

NT bdΩe, (23)

where Ke, Me and Ce are respectively the stiffness, mass and damping matrices of the element,
Fe is the force vector of the element and T is the transpose operator. At this point, it becomes clear
that the proportionality constants α and β are actually the constants of the Rayleigh proportional
damping.

Simplifying Eq. (19) with the local matrices of the element and using the localization
operator results in

∑
e

(
(HeW)T MeHeU̇+(HeW)T CeHeU̇+(HeW)T KeHeU

)
= ∑

e
(HeW)T Fe (24)

or

WT MÜ+WT KU̇+WT KU = WT F, (25)

where
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M = ∑
e

HT
e MeHe, (26)

K = ∑
e

HT
e KeHe, (27)

and

C = ∑
e

HT
e CeHe, (28)

are the global mass, stiffness and damping matrices, respectively, while

F = ∑
e

HT
e Fe, (29)

is the global force vector. Since WT is present in all terms of Eq. (25), it is possible to satisfy the
equilibrium equation with the following condition

WT (MÜ+CU̇+KU−F
)
= WT 0, (30)

resulting in a system of linear equations

MÜ(t)+CU̇(t)+KU(t) = F(t), (31)

with initial conditions

U̇(0) = V0 (32)

e

U(0) = U0. (33)

Damping is an information that is generally estimated or requires a series of experimental
tests to be defined. One usual way to represent damping is through proportional damping or
Rayleigh damping, where the damping matrix is described as the linear combination of the mass
and stiffness matrices,

C = αM+βK, (34)
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where both α and β were introduced in the continuous formulation Eq. (2) and (3). In this
manner, it is possible to define constant values for these two coefficients. However, throughout
the optimization process, the values of these parameters must be altered given that the stiffness
and mass matrices are changed with each iteration. A sub model of this type of damping is
obtained when α = 0 such that

C = βK. (35)

One method of defining β in a non-arbitrary manner was proposed by Silva, Neves and
Lenzi (2019), where the stiffness constant is proportional to the excitation frequency

β =
2
ω
, (36)

where ω is the fixed angular excitation frequency of the problem. Continuing the development,
Montero, Silva and Cardoso (2020) presented the damping value through its relation to a damping
ratio ζ , the stiffness matrix K, and the frequency ω ,

C =
2ζ

ω
K. (37)

In this way, it is possible to enforce an approximate value of ζ during the optimization.

2.1.2 Incompatible four-node quadrilateral isoparametric element

The finite element analysis is performed using the LFEM.jl library. Two dimensional
plane stress elements with four nodes and incompatible "bubble" form functions are used in all
examples. This selection is due to the fact that the simple four-node isoparametric element does
not produce accurate results for bending (parasitic shear) (MARSDEN; HUGHES, 1994).

Since its establishment, the use of incompatible lower-order elements has reduced the
need for reduced integration and the use of very high-order isoparametric elements (BATHE,
1996). The standard four-node quadrilateral isoparametric element has 8 degrees of freedom
(DOFs); however, the incompatible elements incorporate an additional 4 artificial degrees of
freedom. As a result the K matrix shown in Eq. (27) (12x12 size) can be condensed into an 8x8
matrix. This results in a better description of the behavior of "thin" regions under bending without
a high computational cost (MARSDEN; HUGHES, 1994). Details about this finite element can
be found at (PEREIRA, 2017).

2.1.3 Harmonic Problem

Consider a structure with linear response excited by a set of harmonic forces, such that
the amplitude varies over time according to a fixed frequency, in the form

F(t) = F0eiωt , (38)
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where F0 is the force vector containing the amplitudes, ω is the angular frequency of excitation
and i is the complex component

√
−1. Based on the hypothesis of linearity of the system and

considering that the response due to the initial conditions has already been dissipated, the
response of the permanent displacements can be written as

U(t) = U0eiωt , (39)

where U0 is the complex vector of global displacements.
Velocity and acceleration are the first and second time derivatives of Eq.(39), respectively

U̇(t) = iωU0eiωt , (40)

and

Ü(t) =−ω
2U0eiωt . (41)

Substituting these expressions into the global equilibrium equation, Eq. (31), results in

(
−ω

2M+ iωC+K
)

U0eiωt = F0eiωt , (42)

or

KDU0 = F0, (43)

with

KD =−ω
2M+ iωC+K, (44)

known as the dynamic stiffness matrix. Thus, the displacements U0 at a given angular frequency
ω can be obtained by solving the linear system of equations in Eq. (42). This vector is complex,
with the real part representing the amplitude of the displacement and the imaginary part its phase.

The viscous stress, Eq. (3), at a superconvergent point k of a finite element e can be
particularized for the harmonic case as

σσσ e,k = De,kBe,kHe(U0 + iβωU0), (45)

where De,k is the constitutive matrix of the material at point k of the element e, Be,k is the
derivative matrix of the interpolation functions and He is a global-local localization matrix for
the element e.
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2.2 GENERAL OPTIMIZATION

In general, optimization consists in extremizing a functional f (x), dependent on a set of
design variables x while respecting a set of functional constraints g j(x) and h j(x)



min f (x)
S.t.

g j(x)≤ g j for j = 1, ...,mg

h j(x) = h j for j = 1, ...,mh

x ≤ xi ≤ x for i = 1, ...,n

(46)

where mg is the number of inequality constraints g j, mh the number of equality constraints h j, n

is the number of design variables and a and a are the upper and lower bounds of a given variable
or function a.

The function being minimized is called the objective function, the variables in the function
are called the design variables and the domain of the design variables is called the search space.

2.2.1 Karush-Kuhn-Tucker Conditions

The essential conditions for finding a stationary point in an optimization problem are
referred to as the Karush-Kuhn-Tucker (KKT) conditions. These conditions are derived by
taking the partial derivatives of the Lagrangian function with respect to the design variables,
Lagrange and Kuhn-Tucker multipliers. As stated by Arora (2007), the Lagrangian function for
the optimization problem in Eq. (46) is

L (x,λλλ L,µµµ) = f (x)+
mh

∑
j=1

λL jh j(x)+
mg

∑
j=1

µ jg j (x) (47)

where λλλ L is the vector of Lagrange multipliers associated with each equality constraint h j, and µµµ

is the vector containing the Kuhn-Tucker multipliers corresponding to each inequality constraint
g j.

The problem is considered solved when a stationary point is identified, meeting the
Karush-Kuhn-Tucker (KKT) conditions. Assuming f (x), h j(x), and g j(x) are twice differentiable
at the local optimum point

(
x∗,λλλ ∗

L,µµµ
∗), the KKT conditions are fulfilled when the following

conditions are met:

• Stationarity

d f (x∗)
dxm

+
nh

∑
j=1

λ
∗
L j

dh j(x∗)
dxm

+
ng

∑
j=1

µ
∗
j
dg j(x∗)

dxm
= 0, ∀m = 1..n (48)
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• Primal feasibility

h j(x∗) = h j, ∀ j = 1..mh (49)

and

g j(x∗) = g j, ∀ j = 1..mg (50)

• Dual feasibility

µ
∗
j ≥ 0, ∀ j = 1..mg (51)

• Complementary Slackness

µ
∗
j g j(x∗) = 0, ∀ j = 1..mg (52)

• Regular point: The gradients of the active constraints are linearly independent at x∗.

If these conditions are satisfied, x∗ is a local optimum.

2.2.2 Method of Moving Asymptotes (MMA) and its Globally Convergent version
(GCMMA)

Equation (46) is usually comprised of non-linear and implicit functions of the design
variables x, making the direct use of the KKT conditions nearly impractical for general
optimization problems. On the other hand, it is known that some specific optimization
problems have closed or easier to compute solutions. Examples with known solutions are linear
programming, where the functions are linear and quadratic programming, where the objective
function is quadratic and the constraints are linear. Due to this fact, it is common to approximate
the original problem given by Eq. (46) by a sequence of approximate problems with the desired
mathematical structure. Theses approximations are known as sequential programming. In this
regard, it is known that sequential convex approximations (like linear and quadratic) can be
formulated as special cases of a more general form of approximations. One of the main used
convex and separable approximations is the Method of Moving Asymptotes, or MMA, first
presented in Svanberg (1987). The convex approximations are controlled by the movement of
asymptotes L and U, giving the method some flexibility when compared to fixed approximations
(like the purely linear). Consider the general optimization problem of Eq. (46), but written with
the same notation of Svanberg (1987)

P


min f0(x)
S.t.

fi(x)≤ f i for i = 1, ...,m
x ≤ x j ≤ x̄ for j = 1, ...,n

. (53)
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At each iteration, functions fi are approximated by

f̃i(x) = rk
i +

n

∑
j=1

(
pk

i j

Uk
j − x j

+
qk

i j

x j −Lk
j

)
(54)

where

pk
i j =


(

Uk
i j − xk

j

)2
∂ fi
∂x j

i f ∂ fi
∂x j

> 0

0 i f ∂ fi
∂x j

≤ 0
, (55)

qk
i j =

 0 i f ∂ fi
∂x j

≥ 0

−
(

xk
j −Lk

i j

)2
∂ fi
∂x j

i f ∂ fi
∂x j

< 0
(56)

and

rk
i = fi(xk)−

n

∑
j=1

(
pk

i j

Uk
j − xk

j
+

qk
i j

xk
j −Lk

j

)
. (57)

With such convex and separable approximations, problem P given by Eq. (53) is
approximated by

Pk
MMA


min f̃0(x)
S.t.

f̃i(x)≤ f i for i = 1, ...,m
x ≤ x j ≤ x̄ for j = 1, ...,n

. (58)

Application of first order stationary conditions given by Eq. (48) leads to an explicit relation
between primal variables x and dual variables µµµ such that it is possible to solve an equivalent
dual problem

Dk


max l(µµµ)

S.t.

µ j ≥ 0 j = 1, ...,n

, (59)

which can be efficiently solved when the number of constraints (dual variables) is not large.
This iterative method can be summarized as

• Step 0: Choose an initial point x0 and set the iteration index k=0.

• Step 1: Given an iteration point xk, calculate fi(xk) and the gradients ∇∇∇x fi(xk) for
i = 0,1, ...,m.

• Step 2: Generate a sub problem Pk
MMA by using, in P, the approximated functions f̃i,

based on the calculations from step 1.
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• Step 3: Solve Pk
MMA by means of the dual problem, Eq. (59), and let the optimal solution

of this sub problem be the next iteration point xk+1. Let k = k+1 and go to step 1.

This method is widely employed due to its flexibility in representing non-linear equations.
The original version of MMA performed adequately in practice but lacked global convergence
and occasionally failed on certain problems (SVANBERG, 2002). Consequently, a modified
(conservative) version of MMA, known as GCMMA (Globally Convergent MMA), is proposed.
This new version ensures global convergence and demonstrates superior speed compared to
previous versions, outperforming them both theoretically and practically. The GCMMA method
for solving problems comprises "outer" and "inner" iterations, where each generated iteration
point is a feasible solution with a lower objective value than the preceding one. The index k is
employed to represent the outer iteration number, whereas the index l is utilized to denote the
inner iteration.

This method utilizes the first three steps identical to those presented previously; however,
if f̃ (k,l)i (xk)≥ f0(xk) is violated, inner iterations are executed. This means that a new sub problem
is generated and solved, with new approximation functions f̃ (k,l+1)

i (xk), still aiming to satisfy
f̃ (k,l+1)
i (xk)≥ f0(xk), but being more conservative than f̃ (k,l)i (xk) for those indices for which the

above inequality was violated. These inner iterations are repeated until f̃ (k,l)i (xk)≥ f0(xk) for all
i−0,1, ...m, which always occurs after a finite number of inner iterations (SVANBERG, 2002).

Nonetheless, both MMA and GCMMA tend to perform sub optimally when the number
of constraints approaches the number of design variables. In these scenarios, the inclusion of
alternative methods in the formulation can be considered, such as the Augmented Lagrangian
(AL).

2.2.3 Augmented Lagrangian (LA)

Topology optimization problems with local stress constraints are known to have a
very large number of non-linear constraints (MIYAJIMA; NOGUCHI; YAMADA, 2022).
One common approach to address this kind of problem is to use the Augmented Lagrangian
Approach (STANKIEWICZ; DEV; STEINMANN, 2022; VALENTINI; SILVA; CARDOSO,
2021). Although not unique, the concept of the AL can be described through

Lk(x) = f (x)+
mLA

∑
j=1

Lk
g j
(x) (60)

where Lk(x) is a joint function of the original objective function f (x) and of a functional
comprising a set of constraints. This functional is a linear combination of functions

Lk
g j
(x) =

ck
j

2

〈
µk

j

c
+

g j(x)
ḡ j

−1

〉2

(61)
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where ⟨a⟩= max(a,0), ck
j are penalizations and µk

j is multipliers associated to each constraint j

at outer iteration k and mLA is the number of constraints used to build the functional.
The AL method employs two loops, internal and external. Within the internal loop, the

problem is tackled while keeping µk
j and ck

j constant until the optimal solution is reached. Upon
reaching this point, updates to the penalty parameters and multipliers are executed following the
approach outlined in Birgin and Martínez (2014). In their study, the authors highlight the lack
of consensus within the Augmented Lagrangian framework regarding whether updates at each
external iteration should target the multipliers, the penalty parameters, or both. Consequently,
this work adopts the recommendation proposed in Birgin and Martínez (2014) to update both
simultaneously.

The penalty update depends on a test between the constraint values and penalties from
the previous iteration with the current iteration. Defining

V k
j = max

(
gk

j(x),−
µk

j

ck
j

)
, j = 1...mLA, (62)

if the value of V k
j is greater than the value of the same variable in the previous iteration (V k

j >

V k−1
j ), the penalty is updated as

ck+1
j = rcck

j, j = 1...mLA, (63)

where rc is the penalty increase rate. Otherwise, penalization ck+1
j = ck

j.
The update of the Lagrange multipliers is performed at the end of each iteration,

µ
k+1
j =

〈
µ

k
j + ck

jg
k
j(x)
〉
, j = 1...mLA. (64)

2.3 TOPOLOGY OPTIMIZATION

There are three main types of structural optimization: shape, size, and topology. Each
employs its own method to maximize or minimize the objective function. However, topology
optimization is the one that offers the greatest flexibility in generating non-conventional solutions.

Topology optimization (TO) is used to obtain the best material distribution in a fixed
design domain Ω minimizing or maximizing an objective function while respecting a set of
constraints and boundary conditions, Figure 4.

Its designation as "structural" stems from the fact that the optimized structure is
achieved under the condition that the problem satisfies the governing equations describing
the physical phenomena and the objective functions and/or constraints have some physical
meaning (MIYAJIMA; NOGUCHI; YAMADA, 2022).
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Figure 4 – Design domain.

Source: Author production.

2.3.1 Material parameterization

One of the key aspects to any TO formulation is the material parameterization, i.e., how
the material distribution is considered as design variables in the optimization problem. The
literature in topology optimization is rich in many different material parameterizations, such
homogenization (BENDSØE; KIKUCHI, 1988), level set (JUNIOR; FANCELLO; SILVA, 2020)
and SIMP (BENDSØE; SIGMUND, 1999).

This work uses the Solid Isotropic Material with Penalization (SIMP) parameterization,
where the material distribution is represented by a simplified rule of mixtures between an isotropic
base material and void. This rule of mixture is parameterized by using a relative material density
(or just relative density) ρ at each point of Ω. When using finite elements to discretize Ω, one
can assume that element e has effective constitutive tensor for the elastic properties De given by

De = ρ
p
e D0

e , (65)

where ρe is the relative density at element e, p is a penalty exponent and D0
e the constitutive

matrix for the elastic properties of the base material.
The SIMP parameterization is largely employed in static problems, since the only material

properties of interest are the Young’s modulus and the Poisson’s ratio (used to build D0). In
harmonic problems, other very important material property is the mass. Nonetheless, it is known
that the simple extension of Eq. (65) to the mass parameterization is not the best approach.

During topology optimization of modal/harmonic/transient problems, some elements
may present low relative densities even for large exponent p in the SIMP parameterization. These
regions may suffer artificial vibration modes and frequencies (spurious or void modes), and it is
known that those vibration modes appear due to the high mass/stiffness ratio of the elements
when the naive mass parameterization is used (NEVES; RODRIGUES; GUEDES, 1995).

Olhoff and Du (2009) proposed an alternative parameterization to alleviate this problem.
The modified mass parameterization is given by



35

Figure 5 – Mass parameterization function proposed by Olhoff and Du (2009).

Me =

{
(ρl +(1−ρl)ρe)M0

e , if ρl < ρe ≤ 1.0
(ρl +(C1ρ6

e +C2ρ7
e ))M0

e , if ρe ≤ ρl
, (66)

where Me is the effective mass matrix of element e, M0
e is the mass matrix of the base material,

ρl is a cutoff relative density used to change the behavior of the mass/stiffness ratio. Constants
C1 and C2 are given by

C1 =−6ρl −6
ρl

5 (67)

and

C2 =
5ρl −5

ρl
6 , (68)

and a cutoff value of ρl = 0.1 is used in this work (SILVA, 2017). The behavior of this
parametrization is shown in Fig. 5.

2.3.2 Filter and projection

Mesh dependence is both a physical and mathematical problem, as it is known that the
optimal solution for the distribution of an isotropic material consists of creating infinitesimal
reinforcements (structures of the rank type). Therefore, the more refined the finite element
discretization, for example, the greater the number of design variables and the smaller the
size of the reinforcements in the optimized topology. In these cases, spatial filters are used to
approximately impose a scale control to prevent the optimization from creating reinforcements
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smaller than the filtering radius. In general, we can indicate this operation as a mapping between
a set of design variables x (also called mathematical variables) to a set of filtered variables ρ̃ρρ

x Filter→ ρ̃ρρ. (69)

The spatial filter used in this work is based on the weighted average between the
mathematical variables x of neighboring elements of e as

ρ̃e =

∑
i∈ΩNe

we,ixi

∑
i∈ΩNe

we,i
, (70)

where we,i are the weights and ΩNe is the set of neighbors of the element e. This neighborhood
is determined by a radius R, such that

ΩNe = {i | di,e ≤ R} (71)

where di,e is the distance between the centroids of elements e and i and

we,i = 1−
di,e

R
. (72)

However, the fact that we use filters and also a continuous material parameterization
means that the optimal solution contains many filtered variables with intermediate values. The
most used solution in the literature consists of performing some smooth approximation for the
Heaviside operator, such that the variables assume values close to 0 or 1. This operation is
generally called projection and is performed after the filtering step, such that

x Filter→ ρ̃ρρ
Pro jection→ ρρρ (73)

where ρρρ are the relative densities that will be used to describe the distribution of the material
(evaluate equilibrium, objective and constraints).

The projection used in this work is the smooth approximation of the translated Heaviside
function

ρe = H(ρ̃e −η)≈
tanhβpη + tanhβp(p̃e −η)

tanhβpη + tanhβp(1−η)
(74)

where η = 0.5 is the value where the transition between 0 and 1 must occur and βp is an
adjustment factor for the Heaviside approximation (the higher the value of βp, the closer to the
real Heaviside) (WANG; LAZAROV; SIGMUND, 2011).
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2.3.3 Stress Constraints

Stress analysis is essential for any structural design, as it avoids designing a structure
that cannot withstand the applied loads. However, its application presents two difficulties: the
fact that stress is a local measure (dimension problem) and may generate irregular feasible
spaces (singularity problem). Furthermore, the imposition of stress constraints generally leads
to the presence of multiple local minima within the feasible set. This introduces a significant
dependency of the solution on the initial starting point provided to the minimization algorithm
(BRUGGI, 2008).

The high number of constraints (dimension problem) makes it difficult to use local
constraints in traditional optimizers, as it involves high computational time and increased
instability in the solution (PEREIRA; CARDOSO, 2018). This problem can be addressed
through the use of aggregation strategies (such as regional norms), targeting a small number
of constraint (BRUGGI, 2008; LE et al., 2010). As shown by Pereira and Cardoso (2018), the
local constraint, using the Augmented Lagrangian Approach, yields superior results in hinge
elimination and thus will be the strategy employed in this study.

The stress-constrained TO is highly nonlinear with respect to the design variables. Also,
it is known that degenerate (singular) solutions with dimension smaller than the original problem
may be the true optimal point (KIRSCH, 1989). To reverse this situation it is necessary to
use some sort of relaxation (GUO; CHENG, 1997; BRUGGI, 2008). Again, a SIMP like
parameterization for the effective stress can be written as

σσσ e = ρ
p
e σσσ

0
e , (75)

where σσσ0
e is the nominal stress at element e. This parameterization is shown to lead to the

singularity problem by Duysinx and Bendsøe (1998), Guo and Cheng (1997), Bruggi (2008)
such that Bruggi (2008) proposed an alternative (relaxed) form as

σσσ e = ρ
p−q
e σσσ

0
e , (76)

where q < p is an additional exponent. This is the approach used in this work.

2.3.4 Localized (lumpled) compliance

The design of compliant mechanisms is performed by the suitable placement of regions
with proper compliances. Thus, some regions will be stiffer (as, for example, next to the output
ports and forces) and some regions will be more flexible. Nonetheless, regions with lumped
compliance are not desired, since they usually have large stresses.

Figure 6 presents the three ways in which localized compliance can be presented in a
CM.
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Figure 6(a) shows an artificial and pathological solution usually found in many references.
This single node connection between two adjacent elements is known as hinge, since elasticity
does not have rotational degrees of freedom and, therefore, this type of connection has no
rotational stiffness. Those hinges are undesired since an ideal compliant mechanism should be a
continuous part (PEREIRA; CARDOSO, 2018).

The second form, de facto hinges, has a slightly less lumped compliance, in which the
edges of the elements are in contact but a region of defined compliance can still be determined,
as shown in Figure 6(b). Regions with distributed compliance are shown in Figure 6(c).

Figure 6 – Different forms of lumped compliance: (a) one-node connected hinges; (b) de facto
hinges; (c) distributed compliance.

Source: Seltmann and Hasse (2023)

The literature presents different approaches to avoid the appearance of hinges. One
of the proposed alternatives are geometric approaches such as the use of filters (SIGMUND,
2007) or constraints on minimum dimensions for compliance regions (ZHANG; ZHONG; GUO,
2014) and (LIANG; SUN; CHENG, 2020). Another commonly used method addresses hinges
connected to a single node by applying local or global stress constraints. These constraints can be
implemented directly or incorporated into the objective function (PEREIRA; CARDOSO, 2018).
Stankiewicz, Dev and Steinmann (2022) presents a solution to this issue, combining the AL
approach with MMA to introduce local stress constraints, which proves to be the most efficient
option among the methods analyzed.

All previously described approaches may, in some cases, prevent one-node connected
hinges. However, none of them are suitable for designing mechanisms with distributed
compliance. According to Seltmann and Hasse (2023), there is limited literature addressing
distributed compliance. Existing approaches in this area typically involve weighting various
requirements within the objective function, resulting in arbitrary outcomes. A different approach
is proposed by Cardoso and Fonseca (2004), based on energy balance between inputs, outputs
and elastic energy stored in the compliant parts.

Recently, Seltmann and Hasse (2023) proposed the use of an adaptive volume constraint.
The idea is quite simple, where the upper bound of the volume constraint is changed (reduced) if
the stress constraints are not satisfied. This reduction in the upper limit of the volume fraction
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is performed alongside the moving limits used in the sequential linear programming approach
used by the authors. Although the proposal lacks mathematical development, the results in this
reference motivated the use of similar approach in the present work. The implementation of the
adaptive volume constraint is developed in Section 3.



40

3 PROBLEM FORMULATION

This section aims to present the formulation proposed and developed in this work.
Sigmund (2009), Zhu et al. (2020), Senne, Gomes and Santos (2022) present some common
benchmark problems for CM design using topology optimization. Figure 7 shows two common
benchmarks: the inverter and the gripper. The inverter mechanism is used as a case study in
this work, since the phase (direction) between the input and the output presents a challenge
for harmonic problems. However, once the formulation is validated, it can be applied to any
compliant mechanism.

Figure 7 – Design domain of topology optimization mechanisms: (a) inverter and (b) gripper.

(a) (b)
Source: Based on Zhu et al. (2020)

Figure 8 illustrates the classical boundary conditions for an inverter mechanism. In this
configuration, there is an assigned input region for external forces and an output region where
a specific behavior is expected. Typically, a point load is applied at the input, and a spring,
representing the stiffness of the external environment, is present at the output. The domain is
modeled through symmetry in the horizontal plane.

According to Deepak, Dinesh and Ananthasuresh (2008), the design of compliant
mechanisms is intrinsically linked to applications where an output is known. In the absence
of an output spring or load, the topology optimization algorithm lacks motivation to establish
a material connection to the output point. As it will be discussed in this chapter, the material
connection is a major issue in modal, harmonic and transient problems, due to the frequency
response being highly dependent on stiffness and mass distribution.

Although the representation depicted in Figure 8 is one of the most simplified for a
compliant mechanism, the harmonic formulation allows for various additions to the boundary
conditions, such as springs, dampers, masses, forces and imposed displacements or velocities at
different nodes in the domain.

There are many optimization problems developed for the design of CMs in static regime.
Based on the formulation presented by Pereira and Cardoso (2018)
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Figure 8 – Inverter mechanism.

Source: Author production.



min −uout(x),
S.t.

K(x)U(x) = F(x)

uin(x)≤ ūin

V (x)≤ v̄

σe(x)≤ σ̄ for e = 1, ...,n
x ≤ x ≤ x̄

(77)

where uout is the output displacement, uin the input displacement, ūin the upper bound in the
input displacement, V is the volume, v̄ the upper bound in volume constraint, σe is the equivalent
von-Mises stress for element e, σ̄ is the yield limit for the base material, n is the number of finite
elements, x is a design variables with it is lower limits x and upper limits x̄. This formulation
uses a simple objective function, which aims to maximize the displacement magnitude of an
inverter mechanism, in other words, to minimize the negative of this value.

As previously mentioned, Eq. (77) intends to represent a static problem. However, when
our objective is to propose a formulation for the harmonic regime, a series of modifications
need to be made, as presented in the theoretical foundation section. Next, the steps necessary to
convert this formulation to the harmonic regime will be discussed.

3.1 EQUILIBRIUM EQUATIONS

The first modification is the change from the static equilibrium equation to the complex
valued harmonic equilibrium equation, Eq. (43) and Eq. (44)

KDU0 = F0, (78)
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with

KD =−ω
2M+ iωC+K. (79)

This change makes the problem dependent on the frequency, the damping and the mass,
along with the stiffness, such that there are more material properties involved in the optimization
procedure. Thus, the change from static to harmonic equilibrium is not direct, since characteristics
like inertia, damping and driven frequency are now relevant to the optimization.

3.2 CONSTRAINTS

After determining the objective function, this section presents the equations used to
calculate volume, displacement and local stress constraints.

3.2.1 Volume constraint

The volume constraint does not have variables that are modified by the change from static
to harmonic regime. This constraint is given by

gv(x) =
V (x)

v̄
−1. (80)

where V = ∑
n
j ρ jv0

j is the sum of the effective element volumes.

3.2.2 Input displacement constraint

When considering harmonic problems, the input displacement uin is now a complex
valued function of the design variables. Thus, the harmonic constraint can be written as

gin(x) =
|uin|
ūin

−1 (81)

where |uin| is the absolute value of the complex input displacement and uin its upper value. This
simple modification makes the harmonic constraint much like the static one.

3.2.3 Local stress constraints

For the stress constraint, the expression remains the same as the static case, being the
ratio between the equivalent stress of the element e at the superconvergent point k by its limit
value σ

gσ (x) =
σe,k

σ
−1. (82)

However, the stress calculation is updated for the harmonic regime, as shown in Eq. (45)
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σσσ e,k = De,kBe,kHe(U0 + iβωU0), (83)

such that it depends on the solution of the harmonic equilibrium problem, along with the direct
dependence of the damping factor β and the angular frequency. Also, the stress in harmonic
regime is a complex-valued function.

Assuming ductile and isotropic material, one can obtain the local, real valued, von-Mises
stress of Eq. (77) by using (SURHONE; TIMPLEDON; MARSEKEN, 2010)

σe,k =
√

σσσH
e,kVσσσ e,k (84)

where σσσ e,k is the stress, σσσH
e,k denotes its complex conjugate and V is the Voigt matrix. Other

issues like the singularity and the large number of local stress constraints are addressed by using
the QP-relaxation and the Augmented Lagrangian approach.

3.3 OBJECTIVE FUNCTION

In a harmonic system, the output displacement value is represented by a complex number.
The complex nature of the displacements encodes both amplitude (real part) and phase (imaginary
part),

uout = ℜ(uout)+ iℑ(uout) = uoutR + iuoutI , (85)

such that one cannot simply state that the minimization of the negative output displacement results
in an inverter mechanism. For example, for excitation frequencies below the first resonance
frequency the input displacement is in phase with the input force and one can assume that
making the output displacement negative is a good objective function for an inverter mechanism
(assuming a positive input force). Nonetheless, in harmonic problems one must cope with the
complex nature of displacement (real and imaginary parts) as well as phase inversions. Thus,
one cannot simply extend the formulation presented in Eq. (77) by using only the absolute value
of the output displacement, since information about relative phase (between input and output) is
necessary to ensure the inverter behavior.

An alternative investigated in the early stages of this work was to maintain the objective
function presented in Eq. (77) while adding a phase constraint between the input and output
displacements. This formulation was shown to be unsatisfactory due to discontinuity problems.
However, as it was one of the first formulations tested and served as the basis for the formulation
developed in the following comments, it is presented in Appendix A for reference.

After discarding the feasibility of phase control through a constraint, the research turned to
the development of a formulation that encompasses an objective function capable of incorporation
both information: the magnitude of the output displacement and the relative phase between the
displacements of interest.
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3.3.1 Geometric advantage for harmonic problems

The first approach adopted for the objective function was the ratio between the input and
the output displacement. This operation brings the relative phase information to the formulation.
Such operation can also be interpreted as an extension of the geometric advantage concept to the
harmonic case. The optimization problem is



min GAH

S.t.

KD(x)U(x) = F(x)
gin(x)≤ 0
gv(x)≤ 0

gσe,k(x)≤ 0
x ≤ x ≤ x̄

(86)

where GAH is the objective function.
The concept of geometrical advantage is the ratio of the output by the input displacements.

The original definition is straightforward for static problems, since both quantities are real
numbers. A natural extension of this measure for harmonic (complex valued) problems, is

GAH = ℜ

(
uout

uin

)
= ℜ

(
uoutR + iuoutI

uinR + iuinI

)
=

uinRuoutR +uinI uoutI

|uin|2
. (87)

It is important to stress that the direct ratio of the real part of both the input and the output
displacements caries no information about the phase. For this reason, we first evaluate the ratio
and then extract the real part.

This objective function was tested for different frequencies. Figure 9 depicts the input and
output displacements for the 500 Hz configuration. It can be seen that the largest absolute values
in both input and output displacements are at the resonance frequency, 388 Hz. Nonetheless, as
depicted in Fig. 10, the proposed objective function (GaH) has, indeed, a minimum value at 500
Hz (the desired, or the excitation frequency).

Analyzing the objective function presented earlier and shown in Figure 10, it quantifies
the geometric advantage through the ratio between output and input displacement. Since the
optimizer was constrained by the input displacement, the only way to increase the objective
function would be to increase the (negative of the) absolute value of the output displacement,
thus ensuring the optimized geometric advantage. This is the intended behavior.

However, the optimizer adopted a different path: instead of increasing the output
displacement, it reduced the input displacement (it is possible observe from the graph presented
in Figure 9 that the input displacement at the frequency of 500 Hz is much lower than in other
regions). The culprit is the term 1

|uin|2
.



45

Figure 9 – Dynamical behavior for the optimized topology obtained using Eq. (87) and
excitation at 500 Hz.

Source: Author production.

Figure 10 – Behavior of the objective function given by Eq. (87) and excitation at 500 Hz.

Source: Author production.

If the objective function were altered, removing the denominator from the previous
expression, we would have the desired response. Nonetheless, such modification changes the
original definition and, thus, its physical meaning must be investigated.
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3.3.2 Time average product

The definition of the current proposal came from the observation of the results of the
previous formulation. The new objective function is given by

f (x) = uinRuoutR +uinI uoutI , (88)

the numerator of Eq. (87). Figure 11 shows the behavior of this objective function when used
with the same data of Figure 10. Now, the peak is exactly at the resonance, as intended.

Figure 11 – Objective value for the new objective function defined in Eq. (88).

Source: Author production.

To understand the physical meaning of this expression, we define two harmonic quantities
with period T and real parts

XR = |X0|cos(ωt +φX) = ℜ(X0 expi(ωt+φX )) (89)

and

YR = |Y0|cos(ωt +φY ) = ℜ(Y0 expi(ωt+φY )) (90)

where X̄ and Ȳ are complex amplitudes of the quantities, φ the phase and ω the angular frequency.
In nature, the real part of a measure represented in the harmonic form is what really "exists". The
time average in the interval t ∈ [t0, t0 +T ], the effective value of the product (XY), is given by

(XRYR)av =
1
T

∫ t0+T

t0
XRYRdt, (91)
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or

(XRYR)av =
1
T

∫ t0+T

t0
|X0|cos(ωt +φX)|Y0|cos(ωt +φY )dt. (92)

The following trigonometric rule is useful in this case

cos(α)cos(β ) =
1
2

cos(α −β )+
1
2

cos(α +β ), (93)

such that

(XRYR)av =
1
T

∫ t0+T

t0
|X0||Y0|

(
1
2

cos(2ωt +φx +φy)+
1
2

cos(φx −φy)

)
dt. (94)

The first cosine in Eq. (94) vanishes after integration, such that

(XRYR)av = |X0||Y0|
1
2

cos(φx −φy) =
1
2

ℜ

(
X0Y0ei(φx−φy)

)
(95)

rewriting,

(XRYR)av =
1
2

ℜ

(
X0ei(φx)Y0ei(−φy)

)
(96)

such that,

(XRYR)av =
1
2

ℜ(XY ∗) , (97)

in which the symbol ∗ represents complex conjugate of a number. Equation (97) represents the
effective value of the product of two real-time-varying measures X and Y .

In this context, the proposed objective function

f (x) = uinRuoutR +uinI uoutI (98)

can be related to

(uinuout)av =
1
2

ℜ{uinu∗out}=
1
2

ℜ{(uinR + iuinI)(uoutR − iuoutI)}, (99)

(uinuout)av =
1
2

ℜ{uinRuoutR − iuinRuoutI + iuinI uoutR +uinI uoutI}. (100)

or

(uinuout)av =
1
2
(uinRuoutR +uinI uoutI) =

1
2

f (x). (101)

Therefore, the objective function used for the topologies presented in this work is given
by twice the time average of the product for uin and uout

f (x) = uinRuoutR +uinI uoutI = 2(uinuout)av. (102)
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3.4 COMPUTER IMPLEMENTATION

After establishing the objective function and constraints, this section will present
the steps that will constitute the optimization algorithm. The flowchart of the optimization
procedure used in this work is shown in Figure 12. The first step consists of defining the initial
parameters of: design domain, boundary conditions, material properties, excitation frequency,
AL parameters, GCMMA parameters, damping, constraint limits and initial design variables.
The initial parameters used will be presented in the results section.

With all the initial information obtained, the optimization process begins. There is one
main loop (external), represented by k. The first iteration of the loop starts with µµµ = 0, given
x0 (initial point) and c (initial penalties) as well as a "large" damping ratio ζ = ζini. The LA
procedure depicted in the theory section is used, with both ck and µµµk being updated at the end of
each external loop.

The damping continuation is performed during the first ndamping external iterations, until
ζ = ζtar. The decrease in ζ is assumed as linear. The adaptive volume constraint starts to be
employed for k > ndamping. At each iteration, the upper limit is decreased as

vk+1 = max
(

v̄min,vk − rv

)
(103)

in which rv is the rate of decrease in fraction and v̄min is the lower bound on v̄, if at least one
stress constraint is violated.

The outer loop may exits in two ways: either the number of iterations exceeds the
threshold value nmax or it satisfies the convergence criterion

Convergence


k > ndamping

max(gσ (x))≤ gσ

max(gin(x))≤ gin

norm(xk −xk−1)≤ norm

(104)

where gσ and gin are the limit value for stress and displacement input constraint, and norm(xk −
xk−1) represents the variation between the variables of the last two iterations, so the optimizer
only exits the loop after a constant result between the last two steps. The norm value was
determined by the author and represents the variation of no more than 10% in the design
variables of 5% of the elements in the mesh.

3.4.1 Optimization problem

As stated in the theoretical foundation section, the GCMMA method employs an iterative
approach that approximates a non-linear problem to convex functions, bounded by the positions
of two set of moving asymptotes and moving limits. In this work we use the GCMMA presented
by Gomes-Ruggiero, Sachine and Santos (2011) and implemented through the NLopt.jl package.
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Figure 12 – Optimization algorithm flowchart.

Source: Author production.

The solution of the GCMMA sub-problem is iterative and, although it is not explicit in the
computer code developed in this work, represents another internal loop to the main algorithm.

The GCMMA method is employed with the objective function already modified by the
AL function. This objective function encapsulates the relationship between input and output
displacements in Eq. (88) and the stress constraint outlined in Eq. (82) as shown in

Pk



min Lk(x) = r f f k(x)+Lk
σ (x)

S.t. KD(x)U(x) = F(x)
gk

in(x)≤ ḡin

gk
v(x)≤ ḡv

x ≤ xk ≤ x̄

(105)

where r f is a scaling factor to equalize the magnitude of the two terms and



50

Lk
σ (x) =

n

∑
j

ck
j(x)
2

〈
µk

j (x)
ck

j(x)
+

gk
σ j
(x)

gσ

−1

〉2

(106)

where n is the number of design variables.
By examining Eq. (88) and noting that the input displacement constraint is usually on

the order of mm, we determine that the value of f (x) is approximately 10−6 m. Adding to
this consideration the possibility of the stress constraint exceeding a unit value, we observe
a significant discrepancy in magnitudes between the two terms of L k(x). In such scenarios,
normalizing f (x) by its initial value, f 0(x), could serve as a method to normalize the first
term. However, this adjustment primarily affects the initial iterations. In the case of an inverter
mechanism, as iterations progress, f (x) tends towards zero during the inversion process. Hence,
alongside the initial normalization, incorporating the scaling factor r f becomes imperative.

To employ the GCMMA method, as shown in Eq. (54), it is necessary to calculate the
functions, AL and constraint functions, at the point of interest and their respective derivatives.
The derivatives of the functions intuitively should be with respect to their independent variable
x. However, as shown in Eq. 73, this formulation use filtering and projection. Thus, the design
variables x are related to the filtered variables ρ̃ρρ , which in turn are related to the relative density
variables ρρρ . In this way, we can develop the sensitivity analysis of a function fi with respect to
xl as

d fi(x)
dxl

=
∂ ρ̃o

∂xl

∂ρm

∂ ρ̃o

d fi(x)
dρm

(107)

with implicit sum in m and o. As the derivatives ∂ρρρ

∂ ρ̃ρρ
and ∂ ρ̃ρρ

∂xxx are constants matrices, we will

present only the derivatives with respect to the relative densities d fi(x)
dρm

.
The sensitivity analyses is presented separately for the objective function of the GCMMA,

represented by the LA function (Lk(x)), and for the GCMMA constraints (gk
in(x) and gk

v(x)).
Both analyses need the derivative of displacement with respect to relative density dU

dρm
, which is

computationally expensive. Therefore, in both analyses, the adjoint method is used.

3.4.2 Sensitivity analysis of the AL function

For quantify the sensitivity of the objective function in relation to the design variables,
two equilibrium equations will be added to the AL function

Φ(x) = L(x)+
1
2

λλλ
T
1 (KD(x)UD(x)−F)+

1
2

λλλ
T
2 (K

∗
D(x)U

∗
D(x)−F∗) . (108)

As demonstrated in Appendix B
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dΦ

dρm
=

∂L
∂ρm

+ℜ

(
λλλ

T dKD

dρm
U+λλλ

T dF∗

dρm

)
(109)

where λλλ is obtained by solving the adjoint problem

KDλλλ =

(
i

∂L
∂UI

− ∂L
∂UR

)
. (110)

In this way, the adjoint problem is evaluated by grouping all partial derivatives. In the
next subsections, the components of the adjoint problem of the objective function f (x) and the
stress constraint Lk

σ (x) will be presented.

3.4.2.1 Objective function

The partial derivative of the objective function presented in Eq. (88) can be expressed as

d f (x)
dρm

=
d

dρm
(uinR(x)uoutR(x)+uinI(x)uoutI(x)) , (111)

or

d f (x)
dρm

=
duinR

dρm
uoutR +uinR

duoutR

dρm
+

duinI

dρm
uoutI +uinI

duoutI

dρm
. (112)

Using localization vectors uin = LT
inU and uout = LT

outU

d f (x)
dρm

= LT
in

dUR

dρm
uoutR +uinRLT

out
dUR

dρm
+LT

in
dUI

dρm
uoutI +uinI L

T
out

dUI

dρm
(113)

such that

d f (x)
dρm

=
(
uoutRLT

in +uinRLT
out
)︸ ︷︷ ︸

∂ f
∂UR

T

dUR

dρm
+
(
uoutI L

T
in +uinI L

T
out
)︸ ︷︷ ︸

∂ f
∂UI

T

dUI

dρm
. (114)

Substituting the terms of Eq. (114) into Eq. (110) results in

KDλλλ f = i
(
uoutI L

T
in +uinI L

T
out
)
−
(
uoutRLT

in +uinRLT
out
)

(115)

or

KDλλλ f =−u∗inLT
out −u∗outL

T
in (116)

where λλλ f is adjoint vector associated to the objective function.
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3.4.2.2 Stress constraint

Rewriting Eq. (106) with terms related to the stress variables

Lσ = ∑
e

ce

2ne

〈
µe

ce
+

σe

σ̄
−1
〉2

, (117)

where it is assumed that each element has an associated stress constraint.
The sensitivity of Lσ with respect to a design variable ρm is

dLσ

dρm
= ∑

e

ce

4n

〈
µe

ce
+

σe

σ
−1
〉

1
σ̄

dσe

dρm
. (118)

The stress state at a point, in Voigt notation, is given by

σσσ e = fe(1+ iωβ )Se (UR + iUI) (119)

where

Se = CeBeAeHe. (120)

The relaxation function fe is given, in the QP relaxation, by

fe = ρ
p−q
e , (121)

with q < p.
Expanding the stress into its real and imaginary components

σσσ e = feSe (UR −βωUI)+ i feSek(UI+βωUR) (122)

with

σσσ e = σσσ eR + iσσσ eI. (123)

As the equivalent stress is

σe =
√

σσσH
e Vσσσ e (124)

and the stress is complex, we observe that

σ =
√

σσσT
RVσσσR +σσσT

I Vσσσ I (125)

and the indices e are dropped to simplify the notation. Thus, the equivalent stress is denoted by
σ (without bold) and the stress state by σσσ .

Proceeding with the derivative of the equivalent stress
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dσ

dρm
=

1
σ

(
σσσ

T
RV

dσσσR

dρm
+σσσ

T
I V

dσσσ I

dρm

)
, (126)

since V is symmetric. The derivatives of the components of the stress state, Eq. (122), are

dσσσR

dρm
=

d fe

dρm
S(UR −βωUI)+ feS

(
dUR

dρm
−βω

dUI

dρm

)
(127)

and

dσσσ I

dρm
=

d fe

dρm
S(UI +βωUR)+ feS

(
dUI

dρm
+βω

dUR

dρm

)
. (128)

So, we obtain

dLσ

dρm
= ∑

e

ce

4n

〈
µe

ce
+

σe

σ
−1
〉

1
σ

1
σe

d fe

dρm

(
σσσ

T
RVSUR−

βωσσσ
T
RVSUI +σσσ

T
I VSUI +ωβσσσ

T
I VSUI

)
, (129)

which can be simplified to

dLσ

dρm
= ∑

e

ce

4n

〈
µe

ce
+

σe

σ
−1
〉

1
σ

d fe

dρm

1
fe

σe. (130)

The partial derivatives with respect to displacement are

dLσ

∂UR

T
= ∑

e

ce

4n

〈
µe

ce
+

σe

σ
−1
〉

1
σ

1
σe

fe
(
σσσ

T
RVS+βωσσσ

T
I VS

)T
(131)

and

∂Lσ

∂UI

T

= ∑
e

ce

4n

〈
µe

ce
+

σe

σ
−1
〉

1
σ

1
σe

fe
(
σσσ

T
I VS−βωσσσ

T
RVS

)T
. (132)

After some simplifications,

KDλλλ σ =−∑
e

ce

4n

〈
µe

ce
+

σek

σ
−1
〉

1
σ

1
σe

fe(1+ iωβ )σσσH
e VSe. (133)

The part related to stress constraints can be grouped into adjoint problem of the LA
function of the GCMMA through the Eq. (110) since the adjoint problem is linear.
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3.4.3 Sensitivity analysis of the GCMMA constraints

In this study, GCMMA incorporates constraints on input displacement and volume
presented in Eq. (80) and (81).

3.4.3.1 Volume constraint

The derivative of the volume constraint can be defined through

dgv(x)
dρm

=
∂gv(x)

∂ρm
+

∂gT
v (x)

∂UR

dUR

dρm
+

∂gT
v (x)

∂UI

dUI

dρm
. (134)

as the volume is independent of displacements, and the volume of each element depends only on
the relative density variable of the element

dgv(x)
dρm

=
∑e

dρe
dρm

ve

v̄
=

vm

v̄
. (135)

3.4.3.2 Displacement constraint

The derivative of the input displacement constraint can be defined through

dgin(x)
dρm

=
1

ū|uin|

(
uinR

duinR

dρm
+uinI

duinI

dρm

)
. (136)

Using a localization vector LT
in

dgin(x)
dρm

=
1

ū|uin|

(
uinRLT

in
dUR

dxm
+uinI L

T
in

dUI

dxm

)
(137)

such that
∂gin(x)

∂UR
=

1
ū|uin|

uinRLT
in, (138)

∂gin(x)
∂UI

=
1

ū|uin|
uinI L

T
in (139)

and
∂gin(x)

∂ρm
= 0. (140)

Using the same formulation presented in Eq. (110), we obtain the expression for the
adjoint problem of the constraints of GCMMA

KDλλλ gin =

(
i

1
ū|uin|

uinI L
T
in −

1
ū|uin|

uinRLT
in

)
(141)

or

KDλλλ gin =
−u∗in
ū|uin|

LT
in. (142)
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4 RESULTS AND DISCUSSIONS

In this section, the results of the proposed formulation will be presented. The test case of
the design of an inverter mechanism is used to assess the formulation, specially the inversion
between inputs and outputs. Figure 8 presents the classic inverter mechanism, with the input and
output regions, as well as symmetry and boundary conditions. The force and output springs are
distributed to better represent the interactions with the external media. The domain Ω has n f non
design elements with fixed relative densities of ρ = 1 (solid). The regions around the input force,
output and the upper left boundary conditions are not considered in the evaluation of the local
stress constraints, since these regions may present artificial stress concentration. Thus, the color
maps showing the stress constraints present null values in these regions.

Figure 13 – Boundary conditions of the inverter mechanism.

Source: Author production.

The parameters defining the domain, material and boundary conditions are shown in
Table 1. Table 2 outlines the constraint limit values, relaxation and damping parameters. Table
3 lists the initial parameters regarding the optimization (some different values can be used for
specific examples and are presented along the text).

The notation a1 is used in this chapter to represent a vector with all entries equal to a.
A series of analyses were conducted to assess the behavior of proposed formulation under

different conditions. These will be presented in the respective order:

• analysis of the inclusion of adaptive volume constraint in the formulation,

• evaluation of the behavior of the formulation regarding different starting points,

• comparison of results for different frequencies, and

• evaluation of behavior upon relaxation of constraints.

A common procedure when evaluating the performance of topology optimization
formulations and computer implementations is to show the convergence plots for the objective
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Table 1 – Geometry and mesh parameters.

Variable Value Description
nx 180 Divisions along the length
ny 90 Divisions along the height
Lx 1.0×10−1 m Domain length
Ly 5.0×10−2 m Domain height
Lz 5.0×10−3 m Thickness
ne 1.62×104 Number of elements in domain
n f 7 Number of fixed elements (filled) in the domain
E 3.0×109Pa Young’s modulus
ν 0.4 Poisson coefficient
Fin 2.0×102 N Total input force
Kout 1.0×105 N/m Total output stiffness

Table 2 – Fixed and initial parameters.

Variable Value Description
ūin 2.0×10−3 m Limit input displacement
v̄initial 3.0×10−1 Initial limit volume fraction
v̄min 1.5×10−1 Minimum limit volume fraction
σ 40.0 MPa Yield (limit) stress
ζini 3.0×10−1 Initial value for the damping ratio (ζ )
ζtar 2.0×10−2 Target value for ζ

p 3.0 SIMP exponent
q 1.5 Stress relaxation exponent
βp 1.0 Adjust factor for the Heaviside projection

Table 3 – Parameters used in the optimization.

Variable Value Description
R 0.0025 Spatial filter’s radius
xinitial v̄initial1 Vector of initial design variables
ndamping 15 Number of iterations for continuation of damping
nmax 2.0×102 Number of external iterations in the LA
nGCMMA 1.0×103 Number of internal iterations in the optimizer
cinitial (1.0×101)1 AL initial penalty vector
cmax (1.0×103)1 AL maximum penalty vector
µµµ initial (0.0)1 AL initial multipliers vector
rc 1.1 Penalty increase rate
r f 1.0×103 Objective function adjustment factor
rv 5.0×10−3 Rate of decrease in volume fraction
gσ 1.0×10−3 Limit value for stress constraint
gin 1.0×10−3 Limit value for input displacement constraint
norm 6.36×10−1 Limit value for norm between the design variables

functions and/or the constraints along the iterations of the optimization. This is hard to show in
the formulation used in this work, since there are external iterations (associated to the Augmented
Lagrangian Method) and internal iterations (associated to the GCMMA). To make things worst,
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the mathematical nature of the joint objective function Lk changes between two external iterations
(LA), since the penalties and the Lagrange multipliers are changed to account for the constraint
violation. Thus, there is no guarantee of a steady decrease in the joint objective function Lk

associated to the LA. Also, as the internal optimization problem (GCMMA) is solved by using
an external library, we have no access to its internal iteration history. Thus, the convergence
graphs are not shown herein.

4.1 ADAPTIVE VOLUME CONSTRAINT

The first analysis presented aims to analyze the behavior of the adaptive volume constraint
in the formulation presented in Eq. (105). An excitation frequency of 300 Hz is used to
compare the traditional fixed volume constraint and the proposed approach. The results for
other frequencies are shown in Appendix C.

4.1.1 Fixed volume constraint

Table 4 shows the distributions of design variables and stress constraint values in some
selected iterations. It can be seen a smooth change in the material distribution throughout the
iterations. In all these topologies, the material is concentrated in the "arm" that connects the
mechanism to the output port. There are two regions of lumped compliance in the extremities of
this "arm", with higher stresses than the surrounding. This material concentration in the stiffer
"arm" is used by the optimizer to distribute the "excess" of material without compromising the
CM.

Table 4 – Topologies and distribution of stress constrains for 300 Hz without volume fraction
variation.

Iteration k = 15 kS = 30 k = 68

Distribution of
ρρρ in domain

Distribution
of gσ

Scale
Source: Author production.

The optimization process generates changes in the material distribution at each iteration
to satisfy all constraints and minimize the objective function. Iterations 15 and 30, presented
in Table 4, show mechanisms that have the volume and displacement constraints satisfied
(constraints directed applied in GCMMA), but with the stress constraint violated (constraints
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included in the formulation using the LA). Iteration 68 presents a mechanism satisfying all
imposed constraints, with objective function of −2.97×10−6m2. However, it is evident that the
two regions of lumped stress persisted throughout the optimization process.

One of the known issues in topology optimization with fixed volume constraint is the
fact that the designer does not know the ideal limit v̄ in advance. Thus, some trial and error are
commonly used to assess a proper value. The topology depicted in the last column of Tab. 4
has large amount of material in regions with low stress levels (negative values of gσ ), attesting
that the upper limit used in this case may be excessive. The use of these stiff regions allows the
optimizer to use some regions with lumped compliance, maximizing the output displacement but
hindering the design of a fully compliant mechanism.

4.1.2 Adaptive volume constraint

Table 5 presents the material distribution and stress constraint for the same frequency of
300 Hz used in the previous example, but using the adaptive volume constraint.

The results in the first column (k = 15) of Tab. 4 and Tab. 5 are the same, since the
adaptivity starts after iteration 15. From iteration ndamping onward, only the stress constraint had
not been satisfied, prompting the optimizer to gradually reduce the threshold volume fraction v̄

until convergence at iteration 33, with v̄ = 0.235.

Table 5 – Topologies and distribution of stress constrains with excitation frequency of 300 Hz
and adaptive volume constraint.

Iteration k = 15 k = 30 k = 33

Distribution of
ρρρ in domain

Distribution
of element gσ

Scale
Source: Author production.

The optimized objective function value is −2.74×10−6m2, very close to the one obtained
in the previous analysis. Despite the close objectives, one can observe a significant change in the
material distribution and the consequent distribution of compliance as the limit volume fraction
decreases. Other consequence is the smoother stress distribution.

Furthermore, a result with significant computational gains was obtained, as in 33 iterations
the optimizer was already able to meet all its stopping criteria, while the previous analysis
required 68 iterations. It is possible to highlight that the region of concentrated compliance still
exists and represents the region with the highest stress value, as it reflects a characteristic of
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the proposed objective function. However, this modification provided a much more uniform
distribution of strain energy and, consequently, stress.

The same analysis carried out in this section was performed for frequencies of: 0, 100,
200, 400, 500Hz and 600 Hz and are presented in the Appendix C, where it is possible to observe
the behavior of the 300 Hz test case.

4.2 NON-CONVEX PROBLEM

Topology optimization typically exhibits a non-convex nature, implying that there may
exist more than one viable solution or what we refer to as local minima. Therefore, depending
on the chosen initial values, xinitial , different final topologies can be obtained (SILVA, 2017).
Additionally, another source of non-convexity for our formulation is the local stress constraint
(SELTMANN; HASSE, 2023). Therefore, the formulation proposed in this work may encounter
different local minima depending on the initial design variables.

The results presented in the previous sections used the initial values presented in Table
3, where xinitial = 1v̄initial . To evaluate non-convexity, the optimization process will be carried
out for the vector of design variables starting at 1 and 1v̄initial . Additionally, we will present the
results separately for fixed and variable volume constraints to ensure that volume adaptivity does
not influence our evaluation.

Tables 6 and 7 present the CMs obtained for 100 Hz. Table 6 shows the results for fixed
volume fraction and Tab. 7 the results using the adaptive volume constraint. Both mechanisms
satisfy the input displacement constraint (|uin|= ūin).

Table 6 – Topologies with excitation frequency of 100 Hz and initial design variables without
adaptive volume constraint.

xinitial f (x)[m2] max(gσ )
Distribution of
ρρρ in domain

1 −2.76×10−6 2.80×10−1

1v̄initial −2.80×10−6 1.23×10−1

Source: Author production.

Table 6 shows two mechanisms that reached the maximum number of iterations nmax

while satisfying the volume constraint but violating the stress constraint. Despite having different
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Table 7 – Topologies with excitation frequency of 100 Hz and initial design variables with
adaptive volume constraint.

xinitial f (x)[m2] max(gσ ) v̄ f inal
Distribution of
ρρρ in domain

1 −2.57×10−6 gσ < 0 0.235

1v̄initial −2.63×10−6 gσ < 0 0.240
Source: Author production.

stress constraint violation values, they present the same regions with lumped compliance (and
stress).

Table 7 shows two different designs that successfully met the volume and stress
constraints. Both designs show a much improved compliance distribution, obtained due to
the reduction in v̄ when compared to the results obtained without the adaptive constraint.

Harmonic analyses were performed to assess the dynamic behavior of the results
presented in Table 7. These analyses spanned frequencies from 0 to 1000 Hz, using the parameters
in Table 1 and 2. Figure 14 illustrates the objective function, Eq. (98), computed for each
harmonic analysis (frequency). Figure 14 depicts overlapping behaviors of the two mechanisms,
indicating that despite presenting different designs, they manifest the same objective function
behavior.

The results show that despite the non-convex formulation, the variation of the initial
design variables did not present significant variations in the objective function obtained by the
mechanisms. Therefore, the other topologies presented will be developed from the initial variable
vector

xinitial = 1v̄initial. (143)

However, as shown previously, the present work uses a non-convex formulation and the
variation of the initial design variable vector may be a necessary resource for the design of CM.
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Figure 14 – Harmonic response graph of the objective function applied to the mechanisms
presented in Table 7 with the design variable vectors (xinitial): A equal to 1 and B

equal to 1v̄initial .

Source: Author production.

4.3 COMPARISON AMONG FREQUENCIES

This work aims to present a formulation for the design of CMs subject to harmonic
regimes. Based on this premise, the set of frequencies at which it will be evaluated is relevant
information. To define the range of analysis, we use TO for static case as a reference.

This optimization utilized the parameters presented in Table 1, 2 and 3, and the excitation
frequency of the input force is 0 Hz. Table 8 presents the compilation of this result, which show
the satisfaction of constraints with volume adaptive and objective function minimization.

Table 8 – Topology optimization results for the static case.

f (x)[m2] |uin|[m] v̄ f inal max(gσ )
Distribution of
ρρρ in domain

−2.67×10−6 2.00×10−3 0.225 gσ (x)< 0
Source: Author production.

The first vibration modes and frequencies of this mechanism were obtained through a
modal analysis. The first vibration mode of the mechanisms manifests the movement reversal
behavior, which constitutes the focus of this study. Figure 15 shows the undeformed and
deformed mechanism for the first vibration frequency of 693.8 Hz. As the initial objective
of the formulation, we chose to study ’low frequencies’, a term that in this work will be defined
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as frequencies below the first natural frequency of the reference mechanism. Therefore, this
study will focus its evaluation on excitation frequencies ranging from 0 to 600 Hz. The analysis
will be performed in 100 Hz intervals, as illustrated in Table 9.

Figure 15 – Inverter mechanism for the static case: (a) undeformed and (b) deformation mode of
the first natural frequency.

(a) (b)
Source: Author production.

All presented results use adaptive volume fraction constraint and satisfy the input
displacement, the volume and the stress constraints. Also, the first mode for all designs show the
inversion behavior between the input and the output.

The CMs presented in Table 9 were obtained with the standard parameters (Tables 1, 2
and 3) with the exception of the 400 and 600 Hz cases, which will be analyzed separately in the
next subsection.

One can observe that despite different excitation frequencies, Table 9 shown highly
similar topologies and, furthermore, very close objective functions. This fact becomes even more
evident when analyzing Figure 16, which illustrates the behavior of the mechanisms through
harmonic analysis over a wide range of frequencies.

As the main goal when designing a CM is to maximize the displacement, one obvious
consequence in harmonic problems would be to closely match the excitation frequency with one
of the resonance frequencies of the optimized topology. Nonetheless, when designing an inverter,
the optimizer must also use some vibration mode with the intended inversion between the input
and the output. This condition, alone, restricts the set of modes that the optimizer can use during
the optimization. Another important question when matching the excitation frequency with some
of the resonance frequencies of the optimized system is the fact that the input displacements and
the stresses can also be amplified, thus violating the constraints. This is specially important in
low frequencies, since the vibration modes tend to be more global when compared to higher
frequencies. Thus, the resonance will amplify both the output and the input displacement, as
well as the stresses, at the same time (Fig. 9).

This behavior can be observed in the sweep shown in Fig. 16. The objective function for
each design of Tab. 9 is evaluated in the frequency range from 0 to 1000 Hz. It can be seen that
all the designs are far away from the first resonance frequency (the first natural frequency for
each design is shown alongside the excitation frequency). Also, the mechanisms exhibit very
small objective functions compared to values near their resonance frequencies. The reason why
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Table 9 – Comparison of topology optimization results for different frequencies.

Freq. (Hz) f (x)[m2] v̄ f inal r f cinitial
Distribution of
ρρρ in domain

0 (static) −2.48×10−6 0.225 1×103 (1×101)1

100 −2.57×10−6 0.235 1×103 (1×101)1

200 −2.67×10−6 0.240 1×103 (1×101)1

300 −2.74×10−6 0.235 1×103 (1×101)1

400 −2.45×10−6 0.195 1×100 (1×101)1

500 −3.05×10−6 0.235 1×103 (1×101)1

600∗ −2.38×10−6 0.185 1×103 (5×101)1
∗The results presented for a frequency of 600 Hz were obtained with xinitial = 1.

Source: Author production.

all the designs are not close to the first resonance is due to the constraint satisfaction, since all
constraints are active at the optimum.

Figure 17 illustrates the input and output displacement curves for the mechanism obtained
for 200 Hz. The limit imposed by the input displacement constraint is clearly discernible.

In addition to the displacement constraint, the volume and stress constraints were also
active at the optimum in all cases. This fact is corroborated by the values of the final volume
fraction and the maximum stresses of the mechanism, both equal to or very close to their defined
limits.
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Figure 16 – Objective function resulting from the harmonic analysis of the mechanisms in Table
9 in the frequency range from 0 to 1000 Hz. The natural frequency of the design is

shown alongside each excitation frequency.

Source: Author production.

The results for 400Hz and 600Hz were obtained with some modified initial parameters.
The investigation performed to obtain these parameters is explained in the following.

4.3.1 Parameter tuning for 400Hz and 600Hz

It is common for some adjustments to be necessary in formulations that have constants
arbitrarily chosen by the user.

Analysis at 400 Hz required modifications to the value of r f to achieve a continuous
topology. The results of this analysis with standard and modified values are presented in Table 10,
were each row corresponds to a different value of r f . The first result (row 1), obtained with the
default values, showed apparently different behavior from the subsequent two. The parameters
in the last row lead to the successful design.

Interestingly, the first three designs shown similar material distributions in the first
iterations.

The result in the first row was initially driven by the stress constraints and, consequently,
the volume adaptive constraint was activated. Thus, the first topology had its volume fraction
reduced to the minimum value vmin without being able to form a continuous mechanism.

The second and third rows show a very small value of the objective function, since
the output displacement is close to zero. Interestingly, the design satisfies the constraints and
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Figure 17 – Harmonic displacements for the mechanisms obtained for an excitation frequency
of 200 Hz.

Source: Author production.

converge in few iterations (k = ndamping).
The value r f is used in the Augmented Lagrangian, Equation (105), where it acts as the

weight of the objective function when summed to the stress constraint terms. Its value can change
the relative importance of the objective function and the stress constraints. Thus, different values
can lead to different behaviors regarding the optimization. In the second and in the third rows,
the optimizer gave more importance to the objective function, but the initial point and the driving
frequency lead to very small displacements in the first iterations. The stresses are also satisfied
in the first iteration, such that the second term of the LA is zero. Thus, the optimizer gave a large
weight to a zero function and the optimization converged to a local minima.

The result in the fourth row has the smallest value of r f , thus giving less importance to
the initial displacements.

Table 11 presents two valid mechanisms for the frequency of 400 Hz. The first is the
same as previously presented in Table 10, while the second is a new result obtained by modifying
the initial starting point (vector of design variables). Both designs are feasible, with very similar
shapes.

Table 12 presents the results for 600 Hz. The first row of Table 12 showcases the outcomes
obtained with the parameters used in previous analyses (Tables 1, 2, and 3). It can be observed
that the distribution formed a continuous mechanism, respecting the input displacement and
volume constraints but violating the stress constraint.
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Table 10 – Results of topology optimization for the 400 Hz frequency varying the adjustment
factor (r f ).

f (x)[m2] v f inal r f max(gσ )
Distribution of
ρρρ in domain

−2.20×10−6 0.150 1×103 1.25×101

−2.60×10−14 0.300 1×102 gσ (x)< 0

−4.39×10−15 0.300 1×101 gσ (x)< 0

−2.45×10−6 0.190 1×100 gσ (x)< 0
Source: Author production.

Table 11 – Valid topology optimization results for 400 Hz.

f (x)[m2] xinitial v f inal r f
Distribution of
ρρρ in domain

−2.45×10−6 1vinitial 0.190 1×100

−2.43×10−6 1 0.185 1×103

Source: Author production.

To enhance the importance of the stress constraint, the employed strategy was to increase
the initial penalization value cinicial . However, this action resulted in discontinuous structures
when using the adaptive volume reduction.

Therefore, a variation in the initial optimization point xinitial became necessary. These
two modifications generated a continuous structure that satisfied all constraints and is highlighted
in Table 12 (fourth row).
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Table 12 – Results of topology optimization for the 600 Hz frequency varying the initial design
variables (xinitial) and penalty vector (cinitial).

f (x)[m2] xinitial v f inal cinitial max(gσ )
Distribution of
ρρρ in domain

−1.95×10−6 1vinitial 0.150 (1.0×101)1 1.71×100

−8.24×10−6 1 0.150 (1.0×101)1 2.20×101

−5.14×10−6 1vinitial 0.150 (5.0×101)1 1.20×101

−2.38×10−6 1 0.185 (5.0×101)1 gσ (x)< 0

−7.45×10−6 1vinitial 0.150 (1.0×102)1 5.87×100

Source: Author production.

4.4 RELAXATION OF CONSTRAINTS

The previous results shown that the designs were far from the first resonance due to the
fact that all the constraints were active. Thus, this section will present the results obtained from
the relaxation of the constraints.

The first results section has already addressed the impact of the volume fraction on the
formulation. Therefore, this section will focus on the input displacement and stress constraints.

4.4.1 Relaxation of the input displacement constraint

This section aims to present the behavior of the formulation considering two conditions
of input displacement constraint. The first is the standard constraint used in previous cases,
|uin|= 2.0×10−3 m, and the second is |uin|= 5.0×10−3 m. The remaining parameters used in
this section are presented in Tables 1, 2, and 3. An excitation frequency of 200 Hz is used.

Table 13 presents some results obtained through topology optimization for the case with
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the standard constraint and for the case with the relaxed constraint. Upon examining the final
volume fraction values, it can be inferred that the case with the relaxed constraint maintained its
stress constraint violated until reaching the minimum determined value for this magnitude (vmin).

Table 13 – Results of the topology optimization for the excitation frequency of 200 Hz with the
relaxation of input displacement constraint limits.

f (x) |uin| v̄ f inal max(gσ )
Distribution of
ρρρ in domain

−2.67×10−6 2.00×10−3 0.24 gσ (x)< 0

−1.07×10−5 5.00×10−3 0.15 6.39×10−1

Source: Author production.

An alternative for this situation could be to reduce the minimum volume fraction limit,
vmin, from 0.15 to 0.10. Through Table 14, it can be observed that this change in the volume
limit was significant for reducing the violation of the stress constraint, but not sufficient for its
satisfaction. In support of this assertion, Table 15 displays the distribution of stress constraints,
illustrating how the third case exhibits a much more evenly distributed compliance than the
others.

Table 14 – Results of the topological optimization for the excitation frequency of 200 Hz with
the variation of the minimum limit volume fraction.

f (x) |uin| v̄ f inal max(gσ )
Distribution of
ρρρ in domain

−1.07×10−5 5.00×10−3 0.15 6.39×10−1

−7.06×10−6 5.00×10−3 0.10 9.74×10−2

Source: Author production.

The value of the objective function is typically a crucial aspect of analysis; however, this
can be a biased result since the objective function presented in Equation (98) is composed of
the multiplication of input displacement by output displacement. Therefore, increasing the input
displacement constraint is expected to increase the objective function. A more objective metric is
the evaluation of this value across frequencies to observe the relationship between the excitation
frequency and the natural frequency of the mechanism.
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Table 15 – Results of the topology optimization for the excitation frequency of 200 Hz with the
variation of the minimum limit volume fraction and input displacement constraint

limits.

|uin| v̄ f inal
Distribution of
ρρρ in domain

Distribution
of element

stress constraint

2.00×10−3 0.24

5.00×10−3 0.15

5.00×10−3 0.10
Source: Author production.

Figure 18 illustrates the objective function value of the mechanisms presented in Table 13
that have variations in the input displacement constraint. As shown in Table 13, the mechanisms
with relaxed constraints do not represent valid mechanisms as their stress constraint is violated.
Figure 18 displays the objective function curves and the values of the first natural frequency of
the mechanism. Additionally, the deformed image of the first mode is presented, which in both
cases presents inversion.

Figure 19 depicts the behavior of the mechanism presented in the last row of Table 14.
Similar to the second mechanism, this one also continued to violate the stress constraint. Through
a comparison among the three mechanisms, the third one exhibits the most evenly distributed
compliance. However, this distribution did not result in an improvement in the objective function.
In this case, however, the violation is present in a significant portion of its elements, as indicated
in Table 15. This distributed compliance alters the vibration modes. In Figure 19, the first two
vibration modes are local modes which, despite being closer to the excitation frequency, do not
represent an increase in the objective function. The third vibration mode (998 Hz) corresponds
to the motion reversal mode and thus, embodies the highest amplitude of the objective function.

4.4.2 Relaxation of the stress constraint

As observed in Table 15, the stress constraint is a crucial measure in determining the
feasibility of a structure, rendering the two mechanisms obtained with relaxed input displacement
constraint unfeasible. The analysis of stress constraint relaxation is presented in Table 16 and
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Figure 18 – Displacements obtained through harmonic analysis for the mechanisms obtained
with an excitation frequency of 200 Hz with the relaxation of the input displacement

constraint limits.

Source: Author production.

Figure 19 – Displacements obtained through a harmonic analysis for the mechanisms obtained
with an excitation frequency of 200 Hz with a 2 mm input displacement constraint

|uin| and a 0.10 limit on volume fraction vmin.

Source: Author production.

was conducted using the same frequency and parameters as in the previous subsection. It can
be noted that this relaxation in the stress constraint rendered the reduction of volume fraction
unnecessary, and consequently, the compliance remained more concentrated at the hinges. Unlike



71

the previous results, these mechanisms have all their constraints satisfied and active.

Table 16 – Results of the topology optimization for the excitation frequency of 200 Hz with the
variation of stress constraint limit.

Iteration (k) f (x) [m2] |uin|[m] v̄ f inal σ [MPa]
Distribution of
ρρρ in domain

33 −2.67×10−6 2.0×10−3 0.24 40.0

16 −2.87×10−6 2.0×10−3 0.30 60.0
Source: Author production.

As depicted in the algorithm flowchart (Figure 12 and Eq. (104)), the constraint serves
as a stopping criterion for the optimization. Thus, upon observing Table 16, it is evident that
the number of iterations required for optimization with the relaxation of the stress constraint is
reduced.

Table 17 presents three viable mechanisms, each satisfying design constraints, derived
from variations in input displacement and stress constraints. Figure 20 illustrates the behavior
of these mechanisms through the objective function across a frequency range. It is evident that
the relaxation of constraints allowed for the approximation between the first natural vibration
frequencies and the excitation frequency. In essence, when allowed by their constraints, the
mechanisms are optimized for configurations nearer to their resonance.

Table 17 – Results of the topological optimization for the excitation frequency of 200 Hz with
the variation of stress constraint limit.

Condition f (x) [m2] |uin|[m] v̄ f inal σ [MPa]
Distribution of
ρρρ in domain

A −2.67×10−6 2.0×10−3 0.24 40.0

B −2.87×10−6 2.0×10−3 0.30 60.0

C −1.15×10−5 5.0×10−3 0.190 60.0
Source: Author production.
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Figure 20 – Displacements obtained through a harmonic analysis for the mechanisms obtained
with an excitation frequency of 200 Hz with the variation of the input displacement

and stress constraint limits.

Source: Author production.
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5 CONCLUSION

The purpose of this study is to present a formulation aimed at designing a compliant
mechanism under harmonic regime, operating at low frequencies. This formulation is subject
to constraints on input displacement, volume and local stresses. The constraints on input
displacement and volume are integrated into the formulation through the Globally Convergent
Method of Method of Moving Assymptotes (GCMMA), while the stress constraint is incorporated
through the Augmented Lagrangian (AL) function. The AL function is a tool used to facilitate
the inclusion of a large number of local stress constraints.

The objective function employed in this formulation is based on the time-averaged value
to relate the real and imaginary parts of input and output displacements. Developed to meet the
specificity of an inverter mechanism design, this function, along with the input displacement
constraint, achieves its purpose by incorporating information regarding the output displacement
amplitude and the relative phase between input and output displacements into the formulation.

An adaptability approach of the volume fraction limit is incorporated, linked to the
stress constraint. This approach has proven effective, designing mechanisms that satisfy the
stress constraints by utilizing a smaller portion of the available volume within the domain. The
results indicate that, under the analyzed conditions, the violation of the stress constraint was
associated with the concentration of compliance, particularly in regions of material narrowing
(hinges). Thus, the reduction in the volume fraction contributed to enhancing the distribution of
compliance throughout the domain, thereby satisfying the stress constraints.

Results are presented for the formulation over a frequency range from 0 to 600 Hz,
all satisfying constraints, minimizing the objective function and demonstrating a motion
inversion behavior. Some mechanisms required adjustments in the parameters: objective function
adjustment factor (r f ), AL initial penalty vector (cinitial) and vector of initial design variables
(xinitial). This need for adjustments represents an opportunity for refinement of the formulation,
as these parameters, when employed in topology optimization methods, necessitate careful
adjustments with physical significance.

Overall, the evaluation of the formulation across the excitation frequencies proved
satisfactory for the only test case analyzed in this work, the inverter mechanism. However, it
did not result in the outcome of resonant structures that would have further maximized the
output displacement. This can be attributed to the constraints which are active in the optimized
solutions.

The impact of relaxing the constraints on input displacement and stress was analyzed and
validated. The relaxation of the upper limits of these two measures facilitated the maximization
of the output displacement and, furthermore, the approximation of the natural vibration frequency
to the excitation frequency used in the formulation.
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5.1 FUTURE WORK

The following items have been identified as potential areas for improvement in future
work:

• Study other examples of flexible mechanisms;

• Developing an adjustable model for the parameters r f and xinitial , thereby achieving a
formulation less sensitive to the input parameters;

• Improving the computational code to reduce the cost associated with each analysis;

• Study of this formulation applied to frequencies above the first natural frequency, referred
to as "high frequencies";

• Study algorithms to enforce material continuity, specially in higher frequencies.
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APPENDIX A – PHASE CONSTRAINT

Starting from Eq. (77), the value of the output displacement can be represented by
its magnitude, which is given by its absolute value. However, applying the absolute value to
the output displacement would eliminate the directional information from the movement. If
this option is chosen, to align with an inverter mechanism, it becomes necessary to include a
constraint that carries the directional information for the formulation



min −|uout(x)|,
S.t.

KD(x)U(x) = F(x)
gin(x)≤ 0
gv(x)≤ 0

gσe,k(x)≤ 0
gφ (x)≤ 0
x ≤ x ≤ x̄

(144)

where

gφ (x) =
cosφ(x)− cφ∣∣cφ

∣∣ (145)

is the proposed phase constraint. The (cosine of the) phase angle φ between the input and the
output displacements is given by the definition of the inner product

⟨uin,uout⟩= cos(φ) |uin| |uout | (146)

such that

cosφ =
uoutRuinR +uoutI uinI

|uout ||uin|
, (147)

and cφ is the cosine of the limit angle for the phase constraint.
Although the definition given in Eq. (146) gives φ in the continuous range [0,2π) the input

and the output displacements in Fig. 8 are co-linear. This fact makes this measure discontinuous
since both vectors can only be either in the same direction (cosφ = 1) or in the opposite directions
(cosφ =−1).
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APPENDIX B – DEFINITION OF THE AJOINT PROBLEM

Let Φ(U(ρ),ρ) be a function

Φ(U(ρ),ρ) =L (U(ρ),ρ)+
λλλ

T
1

2
(KD(ρ)U(ρ)−F(ρ))+

λλλ
T
2

2
(K∗

D(ρ)U
∗(ρ)−F∗(ρ)) . (148)

Assuming that KD does not depend on U and U is a vector of complex numbers,

U = UR + iUI, (149)

the derivative of Φ with respect to ρm is given by

dΦ

dρm
=

∂L

∂ρm
+

∂L

∂UR

T dUR

dρm
+

∂L

∂UI

T dUI

dρm
+

λλλ
T
1

2

(
dKD

dρm
UR + i

dKD

dρm
UI +KD

dUR

dρm
+ iKD

dUI

dρm
− dF

dρm

)
+

λλλ
T
2

2

(
dK∗

D
dρm

UR − i
dK∗

D
dρm

UI +K∗
D

dUR

dρm
− iK∗

D
dUI

dρm
− dF∗

dρm

)
. (150)

Grouping by common terms

dΦ

dρm
=

∂L

∂ρm
+

[
∂L

∂UR

T

+
λλλ

T
1

2
KD +

λλλ
T
2

2
K∗

D

]
dUR

dρm
+[

∂L

∂UI

T

+ i
λλλ

T
1

2
KD − i

λλλ
T
2

2
K∗

D

]
dUI

dρm
+

λλλ
T
1

2

(
dKD

dρm
UR + i

dKD

dρm
UI −

dF
dρm

)
+

λλλ
T
2

2

(
dK∗

D
dρm

UR − i
dK∗

D
dρm

UI −
dF∗

dρm

)
. (151)

The main advantage of using the adjoint problem is to avoid computing the derivative of dU
dρm

at
each iteration, which would significantly increase computational cost. Thus, we set the terms
multiplying the derivatives of dUR

dρm
and dUI

dρm
to zero, resulting in two coupled adjoint problems

∂L

∂UR

T

+
λλλ

T
1

2
KD +

λλλ
T
2

2
K∗

D = 0T ,

∂L

∂UI

T

+ i
λλλ

T
1

2
KD − i

λλλ
T
2

2
K∗

D = 0T . (152)

Isolating 1
2λλλ

T
1 KD in the first line

1
2

λλλ
T
1 KD =− ∂L

∂UR

T

− 1
2

λλλ
T
2 K∗

D (153)
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and substituting in the second equation

i

(
− ∂L

∂UR

T

− 1
2

λλλ
T
2 K∗

D

)
− i

1
2

λλλ
T
2 K∗

D =−∂L

∂UI

T

. (154)

Multiplying by i

i2
(
− ∂L

∂UR

T

− 1
2

λλλ
T
2 K∗

D

)
− i2

1
2

λλλ
T
2 K∗

D =−i
∂L

∂UI

T

(155)

rearranging we have

λλλ
T
2 K∗

D =−i
∂L

∂UI

T

− ∂L

∂UR

T

. (156)

Substituting this expression into Eq. 153

1
2

λλλ
T
1 KD =− ∂L

∂UR

T

− 1
2

(
−i

∂L

∂UI

T

− ∂L

∂UR

T
)

(157)

such that

λλλ
T
1 KD = i

∂L

∂UI

T

− ∂L

∂UR

T

. (158)

Using the fact that KD is Hermitian (conjugate transpose is equal to the matrix itself) and
comparing Eqs. (156) and (153)

KDλλλ 1 =−A∗ (159)

and

K∗
Dλλλ 2 =−A. (160)

Thus, solving each of the equations we obtain

λλλ 1 =−K−1
D A∗ (161)

and

λλλ 2 =−KH
DA (162)

which shows us that λλλ 1 and λλλ 2 are conjugates. Another way to show would be isolating A∗ in
the first equation

A∗ =−KDλλλ 1 (163)
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such that, applying the adjoint operator on both sides

(A∗)∗ = A =−K∗
Dλλλ

∗
1 (164)

and if we insert this expression into the second equation

λλλ 2 = KH
DK∗

Dλλλ
∗
1 = Iλλλ

∗
1. (165)

In this way, we can only solve the following expression

KDλλλ 1 = i
∂L

∂UI
− ∂L

∂UR
. (166)

Returning to the Eq. (167)

dΦ

dρm
=

∂L

∂ρm
+

λλλ
T
1

2

(
dKD

dρm
UR + i

dKD

dρm
UI −

dF
dρm

)
+

λλλ
T
2

2

(
dK∗

D
dρm

UR − i
dK∗

D
dρm

UI −
dF∗

dρm

)
.

(167)

It is interesting to expand all terms (except the partial derivative of L with respect to ρm,
which is real) into their real and complex parts.

For the remaining terms (which depend on the adjoint) and using

λλλ
T
1 = λλλ

T = λλλ
T
R + iλλλ T

I , (168)

λλλ
T
2 = (λλλ T

1 )
∗ = λλλ

T
R − iλλλ T

I , (169)

we have

1
2

(
λλλ

T
R

dKDR

dρm
UR + iλλλ T

R
dKDI

dρm
UR + iλλλ T

I
dKDR

dρm
UR −λλλ

T
I

dKDI

dρm
UR+

iλλλ T
R

dKDR

dρm
UI −λλλ

T
R

dKDI

dρm
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T
I

dKDR

dρm
UI − iλλλ T

I
dKDI

dρm
UI−

λλλ
T
R

dFR

dρm
− iλλλ T

R
dFI

dρm
− iλλλ T

I
dFR

dρm
+λλλ

T
I

dFI

dρm
+

λλλ
T
R

dKDR

dρm
UR − iλλλ T

R
dKDI

dρm
UR − iλλλ T

I
dKDR

dρm
UR −λλλ

T
I

dKDI

dρm
UR−

iλλλ T
R

dKDR

dρm
UI −λλλ

T
R

dKDI

dρm
UI −λλλ

T
I

dKDR

dρm
UI +λλλ

T
I

dKDI

dρm
UI−

λλλ
T
R

dFR

dρm
+ iλλλ T

R
dFI

dρm
+ iλλλ T

I
dFR

dρm
+λλλ

T
I

dFI

dρm

)
, (170)
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. (171)

hence, we observe that the terms containing i cancel each other out (resulting purely in real
values). The remaining terms are

λλλ
T
R

dKDR

dρm
UR −λλλ

T
I

dKDI

dρm
UR −λλλ

T
R

dKDI

dρm
UI −λλλ

T
I

dKDR

dρm
UI +λλλ

T
R

dFR

dρm
+λλλ

T
I

dFI

dρm
, (172)

that is equivalent to the operation

ℜ

(
λλλ

T dKD

dρm
U+λλλ

T dF∗

dρm

)
. (173)

Thus, we obtain

dΦ

dρm
=

∂L

∂ρm
+ℜ

(
λλλ

T dKD

dρm
U+λλλ

T dF∗

dρm

)
. (174)
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APPENDIX C – TOPOLOGIES AND DISTRIBUTION OF STRESS CONSTRAINTS
WITH ADAPTIVE VOLUME CONSTRAINT

Table 18 – Topologies and distribution of stress constrains with excitation frequency of 0 Hz.

Iteration k = 15 k = 30 k = 32 (last iteration)

Shapes

Distribution
of element

stress constraint

Scale for stress
constraint plot

Table 19 – Topologies and distribution of stress constrains with excitation frequency of 100 Hz.

Iteration k = 15 k = 30 k = 34 (last iteration)

Shapes

Distribution
of element

stress constraint

Scale

Table 20 – Topologies and distribution of stress constrains with excitation frequency of 200 Hz.

Iteration k = 15 k = 30 k = 33 (last iteration)

Shapes

Distribution
of element

stress constraint

Scale
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Table 21 – Topologies and distribution of stress constrains with excitation frequency of 300 Hz.

Iteration k = 15 k = 30 k = 33 (last iteration)

Shapes

Distribution
of element

stress constraint

Scale

Table 22 – Topologies and distribution of stress constrains with excitation frequency of 400 Hz.

Iteration k = 15 k = 30 k = 38 (last iteration)

Shapes

Distribution
of element

stress constraint

Scale

Table 23 – Topologies and distribution of stress constrains with excitation frequency of 500 Hz
and different volume constraints.

Iteration k = 15 k = 30 k = 33 (last iteration)

Shapes

Distribution
of element

stress constraint

Scale
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