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Resumo

Este trabalho apresenta a proposta de um modelo de Algoritmo Cultural (AC) para

realizar Composição Musical Inteligente (CMI) e supervisionada, gerando trechos musi-

cais. O AC é uma meta-heurística evolutiva baseada no processo de evolução cultural

da humanidade. A CMI é uma técnica que utiliza meta-heurísticas para composição de

música automática. Ao �nal do trabalho busca-se com AC uma alternativa à Evolução

Diferencial (ED) para CMI em determinados gêneros musicais fazendo uma análise com-

parativa dos resultados de ambos os métodos. Esses resultados são na forma de linhas

melódicas que consigam possuir características de técnicas composicionais pré-de�nidas.

Palavras-chave: Algoritmos Culturais, Composição Musical Inteligente, Evo-

lução Diferencial



Abstract

This work proposes a model of Cultural Algorithm (CA) to perform Intelligent Music

Composition (IMC) and supervised, generating music sections. The AC is a meta-heuristic

based on evolutionary process of cultural evolution of mankind. The IMC is a technique

using meta-heuristics for automatic music composition. At the end of the work seek

to AC with an alternative to the Di�erential Evolution (DE) to IMC for certain gen-

res doing a comparative analysis of the results of both methods. These results are in the

form of melodic lines that can have characteristics of prede�ned compositional techniques.

Keywords: Cultural Algorithms, Intelligent Musical Composition, Di�erential

Evolution
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1 Introdução

Composição Musical Inteligente (CMI) é um campo de investigação que envolvem

pesquisadores e músicos. A implementação de sistemas que realizam esta tarefa, incorpora

uma parte algorítmica que toma decisões sobre quais sons/notas serão ouvidas, quando

serão ouvidas, por quanto tempo e quão alto (KALIAKATSOS-PAPAKOSTAS et al.,

2013). Na literatura existem três subdivisões da composição musical inteligente:

• Composição inteligente não-supervisionada: Essa forma de composição musical in-

teligente é expressa por meio de regras simples que produzem saídas complexas,

imprevisíveis, mas estruturadas, um comportamento que normalmente se assemelha

a fenômenos naturais;

• Composição inteligente supervisionada: Algoritmos inteligentes são utilizados para

modi�car os parâmetros envolvidos no sistema de composição automática, de modo

que atenda a critérios pré-de�nidos;

• Composição inteligente interativa: O sistema reconhece preferências humanas em

tempo real e torna-se adaptado a ele, utilizando algoritmos inteligentes.

Na literatura existem vários exemplos de trabalhos relacionados com CMI supervisi-

onada. (HORNER; GOLDBERG, 1991), aplicou um Algoritmo Genético (AG) para rea-

lizar composição musical, no que se tornou o primeiro trabalho explorando o uso de uma

abordagem de Computação Evolucionária (CE) em uma tarefa relacionada com música.

Desde então, um grande número de artigos sobre o assunto foram publicados (GRIF-

FITH; TODD, 1999; PAPADOPOULOS; WIGGINS, 1999; MIRANDA; BILES, 2007).

Hoje, a música utilizando CE compreende uma grande variedade de tarefas, incluindo

a composição, harmonização, síntese de som, e improvisação (ÖZCAN; ERÇAL, 2008;

DONNELLY; SHEPPARD, 2011; FORTIER; DYNE, 2011).

No presente trabalho, busca-se encontrar uma alternativa na CMI supervisionada. Realiza-

se uma modelagem de um Algoritmo Cultural (AC), na tentativa de se obter melhores

resultados em relação a CMI supervisionada encontrada na literatura, em que a maioria é

modelada utilizando AGs. Para se ter como mensurar os resultados, ao �nal são realizadas
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sínteses sonoras das composições.

Com o resultado desse trabalho, é possível de encontrar alternativas na composição musi-

cal tradicional. Técnicas evolutivas oferecem potencial para diminuir o esforço no trabalho

do compositor ou engenheiro de som. Busca-se encontrar formas de compor automatica-

mente melodias em diversos gêneros musicais.

1.1 Composição Musical Inteligente Supervisionada

Os sistemas que pertencem a categoria de Composição Musical Inteligente (CMI)

supervisionada utilizam algoritmos inteligentes, a �m de obter a capacidade de compor

música sob algumas orientações que são chamadas de features (características) (MANA-

RIS et al., 2007). Esses sistemas, por serem supervisionados possuem a capacidade de

criar música com uma certa orientação estética e estilística, mas para isso eles incorporam

os seguintes desa�os:

• Criar uma interpretação de objetos matemáticos para a música (de�nição das fun-

ções de adaptação ou �tness);

• Aplicar um algoritmo inteligente para percorrer de forma ideal o espaço de busca

dos objetos matemáticos;

• Selecionar um conjunto apropriado de features que descrevem a música desejada.

A seleção de features adequadas é de vital importância para o desempenho dos sis-

temas supervisionados (KALIAKATSOS-PAPAKOSTAS et al., 2013). Em um sentido

abstrato, essas features devem fornecer marcos para o sistema compor músicas com as

características desejadas, mas ao mesmo tempo permitir que seja possível a introdução

de elementos novos para a música que está sendo composta. A seleção de features é,

portanto, essencial para obter a base da música que será composta, mas não devem de-

terminar exageradamente no resultado da composição.

O AC desenvolvido nesse trabalho é essencial para a seleção das features adequadas para

cada gênero musical composto. Ele foi desenvolvido com base na melhor estratégia encon-

trada para o algoritmo evolutivo Evolução Diferencial, essa é uma de�nição importante.

Conforme é visto durante o trabalho a codi�cação da música gerada envolve um certo nú-
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mero de variáveis inteiras, di�cultando assim a utilização de algoritmos tradicionais como

os Algoritmos Genéticos (AGs), pois necessitam de uma codi�cação binária e extensa.

1.2 Algoritmos Culturais

Os Algoritmos Culturais (ACs) são algoritmos evolucionários baseados no processo

de evolução cultural da humanidade (REYNOLDS, 1994; REYNOLDS; SALEEM, 2001;

REYNOLDS; PENG, 2004; REYNOLDS; PENG, 2005). Os ACs foram propostos por

Robert Reynolds em 1994 como um complemento a metáfora evolutiva utilizada na com-

putação evolutiva, metáfora essa que se concentra nos aspectos genéticos da evolução e na

teoria da seleção natural proposta por Darwin. Em contrapartida, os algoritmos culturais

baseiam-se em teorias sociais e arqueológicas que modelam a evolução cultural dos povos

(BECERRA; COELLO, 2004).

Conforme mostrado na Figura 1.1, os algoritmos culturais são compostos por dois com-

ponentes principais: o espaço populacional e o espaço de crenças.

Figura 1.1: O Framework do Algoritmo Cultural. Fonte:(XUE; GUO, 2007)

No espaço populacional são representadas as características e comportamentos dos

indivíduos (solução candidata). Essa representação pode ser feita por meio de qualquer

técnica que faça uso de uma população de indivíduos, como é o caso dos algoritmos gené-

ticos que são algoritmos estocásticos de busca inspirados no comportamento das espécies

na natureza (COELLO; BECERRA, 2003).



1.3 Objetivos 14

O espaço de crenças é o repositório de símbolos que representam os conhecimentos ad-

quiridos pelo espaço populacional ao longo do processo evolutivo. O espaço de crenças

permite que os indivíduos sejam removidos da população sem que o conhecimento por

eles adquiridos seja perdido. O espaço de crenças foi criado para guiar os indivíduos na

direção das melhores regiões do espaço de busca (XUE; GUO, 2007).

Os protocolos de comunicação ditam as regras sobre quais indivíduos podem contribuir

com conhecimentos para o espaço de crenças (função de aceitação) e como o espaço de

crenças vai in�uenciar a geração de novos indivíduos (função de in�uência).

Na função de aceitação são selecionados indivíduos que irão in�uenciar o espaço de cren-

ças atual. A função de in�uência estabelece como o conhecimento armazenado no espaço

de crenças vai interferir nos operadores do espaço populacional. Geralmente é utilizada

uma função de in�uência para cada tipo de conhecimento armazenado.

Com AC busca-se principalmente encontrar e modelar os conhecimentos necessários para

criação de CMI supervisionada, o que pode ser um grande diferencial ao que é possível

de encontrar na literatura.

1.3 Objetivos

O objetivo geral deste trabalho é encontrar uma solução viável para composição mu-

sical inteligente supervisionada utilizando algoritmo cultural. Para atingi-lo é preciso

cumprir com alguns objetivos especí�cos:

• Compreender os fundamentos teóricos de algoritmos evolutivos;

• Compreender os fundamentos teóricos dos algoritmos culturais;

• Levantamento bibliográ�co sobre as estratégias para composição musical inteligente

e supervisionada utilizando algoritmos evolucionários;

• Levantamento bibliográ�co sobre as estratégias atuais utilizadas para síntese sonora

e escolher uma metodologia e ferramentas;

• Implementar o algoritmo cultural para realização da composição musical inteligente

e supervisionada;

• Realizar testes utilizando evolução diferencial e o algoritmo cultural desenvolvido;
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• Realizar uma análise comparativa entre o resultado de todos os testes.

O trabalho visa atribuir as tarefas que envolvem composição musical e síntese sonora

conforme é mostrado na Figura 1.2.

Figura 1.2: Processos, Entrada e Saídas Envolvidos. Fonte: Autoria Própria

As entradas da composição musical são features de�nidas no trabalho. Essas são na

forma de sequência de notas.

Ex.: A(Lá),B(Si),C(Dó),F(Fá),G(Sol),C(Dó).

A CMI supervisionada é na forma do AC modelado no trabalho, que traduz as entradas

e composições musicais.

A saída da composição musical é na forma de sequência de notas codi�cadas em inteiro

para a entrada do sintetizador conforme o modelo de�nido.

Ex.: 10(Lá),12(Si),1(Dó),6(Fá),8(Sol),1(Dó).

A síntese sonora da composição é realizada por meio de uma ferramenta para síntese

de som escolhida no trabalho que traduz a música codi�cada em som, sendo possível de

escutá-la ao �nal do processo.
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1.4 Estrutura do Trabalho

A base do trabalho a seguir foi obtida por meio de pesquisas bibliográ�cas citadas no

texto. A construção do trabalho é de�nida pelos métodos positivista (COMTE, 1868) e

empírico (LOCKE, 1700).

O trabalho é dividido nas seguintes seções: no segundo capítulo estão os fundamentos

teóricos dos algoritmos evolutivos relacionados com o projeto, no terceiro capítulo estão

os fundamentos teóricos da composição musical inteligente e síntese sonora, no quarto

capítulo está o modelo proposto para o projeto, no quinto capítulo os experimentos,

resultados e análises e no sexto capítulo está a conclusão.
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2 Fundamentos Teóricos - Algoritmos

Evolutivos

O presente capítulo apresenta os fundamentos teóricos de três algoritmos evolucio-

nários, com objetivo de estudar, descrever e comparar. Os algoritmos estudados foram

escolhidos conforme sua importância para o modelo proposto, seja a título de compara-

ção ou para utilização na modelagem do problema. A escolha de descrever os algoritmos

genéticos é a critério de comparação. A evolução diferencial e o algoritmo cultural foram

modelados para o problema. A seguir são descritos os algoritmos: algoritmos genéticos,

evolução diferencial, algoritmos culturais.

2.1 Algoritmos Genéticos

Os Algoritmos Genéticos (AGs) são métodos de busca estocástica que se baseiam na

teoria da evolução de Charles Darwin (MITCHELL, 1996). Esses métodos operam com

conjuntos de candidatos, chamados de população, que são constantemente modi�cados

utilizando dois princípios básicos da evolução natural das espécies: seleção e variação.

Estes princípios tentam representar a competição onde os indivíduos mais aptos se repro-

duzem e repassam seu material genético às gerações futuras, e os indivíduos menos aptos

tendem a desaparecer da população (MITCHELL, 1996).

O termo Algoritmo Genético (AG) foi introduzido por John Holland em 1975. Os AGs

possuem: populações de cromossomos, seleção de acordo com a aptidão, cruzamento

para produzir novos descendentes e a mutação aleatória para maior variabilidade genética

(MITCHELL, 1996).

Os cromossomos em AGs normalmente tomam a forma de sequências de bits. Cada locus

(local onde �ca localizado um gene) no cromossomo possui dois alelos (formas alterna-

tivas de um mesmo gene) possíveis: 0 e 1 (MITCHELL, 1996). Cada cromossomo pode

ser pensado como um ponto no espaço de busca de soluções candidatas. O AG processa

populações de cromossomos, substituindo sucessivamente uma população com a outra. O

AG na maioria das vezes requer uma função de �tness que atribui uma pontuação (�t-
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ness) para cada cromossomo na população atual. A aptidão de um cromossomo depende

de quão bem o cromossomo resolve o problema.

Figura 2.1: Fluxograma do Algoritmo Genético. Fonte: Autoria Própria

Na Figura 2.1 é representado o �uxograma de um AG. Nas seções seguintes são des-

critas cada etapa do algoritmo.

• Representação dos Cromossomos: O algoritmo em sua forma mais simples representa

cada cromossomo como uma cadeia de bits. Normalmente, os parâmetros numéricos

podem ser representados por números inteiros, embora seja possível a utilização de

representações contínuas (WHITLEY, 1994).

• Inicialização da População: Inicialmente muitas possíveis soluções são geradas ale-

atoriamente para formar a população inicial. O tamanho da população depende

da natureza do problema. Tradicionalmente a população é gerada randomicamente,

permitindo toda a gama de possíveis soluções. Ocasionalmente, por exemplo, em, as

soluções podem ser estrategicamente colocadas em áreas onde as melhores soluções

possam ser encontradas (WHITLEY, 1994).
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• Avaliação do Fitness: A função �tness é de�nida sobre a representação genética e

mede a qualidade da solução representada. A função de �tness varia conforme o

problema. A adaptação de cada solução na população é avaliada por meio da função

de �tness a cada geração do algoritmo, os melhores indivíduos são selecionados para

a próxima geração (WHITLEY, 1994). A avaliação é o cálculo da função de �tness,

que por sua vez é a minimização ou maximização da chamada função objetivo.

• Seleção: A partir da medição da função de �tness, nessa etapa são selecionados cro-

mossomos na população para a reprodução. Quanto melhor o cromossomo, melhor

são as chances dele ser selecionado para se reproduzir (WHITLEY, 1994).

• Crossover: Este operador escolhe aleatoriamente um locus entre dois cromossomos e

troca os subsequentes antes e depois daquele locus, entre dois cromossomos para criar

dois �lhos (WHITLEY, 1994). Por exemplo, nas cadeias de 10000100 e 11111111 se

for escolhido o terceiro locus irá gerar após o crossover os seguintes �lhos: 10011111

e 11100100. O operador de crossover imita a recombinação biológica entre dois

organismos haploides (cromossomo único).

• Mutação: Este operador vira aleatoriamente alguns dos bits em um cromossomo

(WHITLEY, 1994). Por exemplo, a cadeia 00000100 pode sofrer mutação na sua

segunda posição, para se obter 01000100. A mutação pode ocorrer em cada posição

de bit de uma cadeia com alguma probabilidade, geralmente muito pequeno (por

exemplo, 0.001).

Os algoritmos genéticos são e�cientes quando se manipula codi�cações inteiras trans-

formando para binário. Porém para essa modelagem a codi�cação binária é inviável,

necessitando assim encontrar uma alternativa aos algoritmos genéticos que utilize codi�-

cação com valores reais.

2.2 Evolução Diferencial

A Evolução Diferencial (ED) é um método que otimiza um problema de maneira ite-

rativa tentando melhorar possíveis soluções em relação a uma determinada medida de

qualidade (STORN; PRICE, 1995). No entanto, igualmente aos AGs, a ED não garante

que uma solução ideal seja sempre encontrada. O principal diferencial da ED para os
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AGs é a utilidade em funções multidimensionais com valores reais (ou contínuos), que se

obtém um desempenho muito superior (VESTERSTROM; THOMSEN, 2004).

A ED é um método criado originalmente por Storn e Price em 1995 (STORN; PRICE,

1995). Esse algoritmo trabalha com candidatos a soluções chamados agentes. Esses agen-

tes são vetores com variáveis reais que são movimentados no espaço de busca, utilizando

fórmulas matemáticas para combinar as posições dos agentes existentes na população

(QIN et al., 2009). Se a nova posição de um agente é uma melhoria aceita, ele passa a

fazer parte da população, caso contrário, a nova posição é simplesmente descartada. O

processo é repetido até que se encontre uma solução ao menos satisfatória.

Figura 2.2: Fluxograma da Evolução Diferencial. Fonte: Autoria Própria

Na Figura 2.2 é representado o �uxograma de um ED. Ele se comporta de forma

semelhante aos AGs. Porém existe o diferencial de que os indivíduos (ou agentes) são

vetores, onde cada vetor é uma posição no espaço de busca. Essas posições são afetadas

conforme os indivíduos são substituídos por melhores.

Por consequência do desempenho e�ciente da ED para explorar o espaço de busca e

também por utilizar variáveis reais ao invés da codi�cação binária, no desenvolvimento

do trabalho foi utilizado ED como alternativa aos AGs tradicionais.
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2.3 Algoritmos Culturais

Os Algoritmos Culturais (AC) consistem de uma população social e um espaço de

crenças (REYNOLDS, 1994). Indivíduos selecionados de um espaço populacional contri-

buem com o conhecimento cultural por meio da função de aceitação. O conhecimento

cultural está inserido no espaço de crenças onde é armazenado e atualizado baseado em

experiências individuais e seus sucessos e falhas. Desta forma, o conhecimento cultural

controla a evolução da população por meio da função de in�uência. Um AC assim es-

tabelece um framework que acumula e comunica conhecimento para permitir adaptação

própria quanto ao espaço populacional e ao espaço de crenças.

Figura 2.3: Fluxograma do Algoritmo Cultural. Fonte: Autoria Própria

Na Figura 2.3 é demonstrado o �uxograma do AC tradicional. O AC tradicional é

basicamente um AG com um espaço de crenças que in�uencia (função de in�uência) na

evolução e é in�uenciado (função de aceitação) pela evolução.

Para a criação do espaço de crenças existem conhecimentos que são pré-de�nidos ou

obtidos durante a evolução. Após a criação das crenças elas são armazenadas em um

repositório de crenças que in�uenciam na evolução a cada geração.

Nas seções seguintes são descritos todos os conhecimentos utilizados nos ACs.
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2.3.1 Espaço de Crenças

Para os problemas de otimização, o espaço de crenças é modi�cado para conter diver-

sos tipos de conhecimentos obtidos durante a evolução, que é usado em gerações sucessivas

para criar melhores indivíduos. Existem pelo menos cinco categorias básicas do conheci-

mento cultural que são importantes no espaço de crenças de qualquer modelo de evolução

cultural: normativo, situacional, topográ�co, histórico ou temporal e domínio do conhe-

cimento (SRINIVASAN; RAMAKRISHNAN, 2012b).

2.3.1.1 Conhecimento Normativo

O Conhecimento Normativo (CN) contém os atributos (variáveis do problema) e os

possíveis valores que esses atributos podem tomar. Estas informações são recolhidas a

partir da função de aceitação ou conhecimentos pré-de�nidos. A fonte do conhecimento

normativo é usada para armazenar valores máximos e mínimos para os atributos numé-

ricos. Para cada atributo nominal ou discreto, uma lista separada armazena possíveis

valores que os atributos podem tomar. O conhecimento normativo é atualizado a par-

tir da função de aceitação e utilizado pelos agentes durante a mutação (SRINIVASAN;

RAMAKRISHNAN, 2012b).

2.3.1.2 Conhecimento Situacional

O Conhecimento Situacional (CS) consiste no melhor exemplar encontrado ao longo

do processo evolutivo. Ele representa um líder para os outros indivíduos a seguir. Desta

forma, os agentes usam o exemplo, em vez de um indivíduo escolhido aleatoriamente para

a recombinação. Este conhecimento pode ser atualizado por meio do armazenamento dos

melhores exemplos no �m de cada geração. Então são usados estes exemplos para a esco-

lha de indivíduos para a reprodução. Além disso, o usuário pode especi�car esquemas de

condições para certos atributos que podem ser utilizados para a busca de indivíduos seme-

lhantes ou diferentes que seja de interesse do usuário (SRINIVASAN; RAMAKRISHNAN,

2012b).
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2.3.1.3 Conhecimento Topográ�co

O Conhecimento Topográ�co (CT) é uma estratégia para manter a diversidade, princi-

palmente em sistemas evolutivos multiobjetivos. O CT é utilizado para manter as soluções

distribuídas uniformemente no conjunto ótimo de Pareto (quando não é possível de melho-

rar a situação), em vez de reunir soluções em apenas uma pequena região. Acasalamento

restrito, em que o acasalamento é permitido somente quando a distância entre os dois pais

é grande o su�ciente (SRINIVASAN; RAMAKRISHNAN, 2012c).

2.3.1.4 Domínio do Conhecimento

O domínio do conhecimento (DC) contém o vetor de valores de métricas para cada

conhecimento. Indivíduos produzidos são avaliados no �nal de cada geração e o vetor de

�tness calculado. O DC é atualizado com estes vetores de �tness. Os vetores de �tness

em DC são comparados uns com os outros usando estratégia de otimização de Pareto para

escolher os indivíduos de elite no �m de cada geração. Os indivíduos de elite, assim esco-

lhidos são armazenados no conhecimento histórico (SRINIVASAN; RAMAKRISHNAN,

2012c).

2.3.1.5 Conhecimento Histórico

O Conhecimento Histórico (CH) registra em uma lista os melhores indivíduos, e são

atualizados no �nal de cada geração. Algoritmos evolutivos são conhecidos por utilizar

menos memória, uma vez que não retém memória das gerações anteriores. No entanto

tentativas foram feitas para manter os indivíduos de elite em cada geração como uma

população elite separada, tendo-se o máximo de memória possível para os algoritmos

evolucionários. O algoritmo cultural utiliza a memória para a estratégia evolutiva de uma

forma sistemática, utilizando as diferentes fontes de conhecimento. CH pode ser usado

para armazenar os indivíduos de elite de cada geração, mantendo assim a memória por

meio das gerações (SRINIVASAN; RAMAKRISHNAN, 2012c).
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2.3.2 Função de In�uência

A Função de In�uência (FI) decide quais fontes de conhecimento vão in�uenciar os in-

divíduos (SRINIVASAN; RAMAKRISHNAN, 2012b). A seleção é feita, por exemplo, pela

roleta com base no desempenho das fontes de conhecimento nas gerações anteriormente

usadas.

2.3.3 Função de Aceitação

A Função de Aceitação (FA) determina o que os indivíduos e seus comportamentos

podem afetar no espaço de crenças (SRINIVASAN; RAMAKRISHNAN, 2012c). Com base

em parâmetros selecionados, por exemplo, uma porcentagem dos melhores desempenhos

são aceitos.

2.3.4 Levantamento Bibliográ�co

Foram levantados alguns trabalhos sobre ACs. Não foi possível encontrar na litera-

tura nenhum AC aplicado na geração de composição musical inteligente. Porém foram

selecionados 14 que tinham informações pertinentes para auxílio em futuras decisões. No

caso, foi realizada uma comparação entre os conhecimentos utilizados em cada um dos

trabalhos. Na tabela a seguir são descritos os conhecimentos na seguinte ordem: Co-

nhecimento Normativo (CN), Conhecimento Situacional (CS), Conhecimento Topográ�co

(CT), Domínio do Conhecimento (DC) e Conhecimento Histórico (CH).

Conforme veri�cado na Tabela 2.1 é possível perceber uma tendência em se utilizar

apenas o CN e o CS, isso ocorre provavelmente por serem os principais conhecimentos

dentro do espaço de crenças de um AC. E dentre todos os trabalhos levantados apenas

o trabalho de Becerra e Coello (2004) possuía uma pesquisa aprofundada na parte dos

conhecimentos, tendo comprovada e demonstrada toda a modelagem matemática dos

cinco conhecimentos. Este por sua vez é estudado mais a fundo e aproveitado para guiar

nas decisões deste trabalho.
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Tabela 2.1: Conhecimentos Encontrados nos Artigos sobre Algoritmo Cultural

Artigos CN CS CT DC CH

(BECERRA; COELLO, 2004) X X X X X

(HO; TAY, 2004) - - - X -

(BECERRA; COELLO, 2005) - X - X -

(XUE; GUO, 2007) X X X X X

(RODRIGUES, 2007) X X - - -

(COELHO et al., 2009) X X - - -

(GUO; LIU, 2011) X X - - -

(MATHIYALAGAN et al., 2011) X X - - -

(HE; XU, 2011) X X - - -

(BHATTACHARYA et al., 2012) X X - - -

(SRINIVASAN; RAMAKRISHNAN, 2012a) X X X X X

(SRINIVASAN; RAMAKRISHNAN, 2012b) X X X X X

(HOCHREITER; WALDHAUSER, 2014) X X - - -

(KHAN et al., 2014) X X - - -
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3 Fundamentos Teóricos - Composição Musical

Inteligente

O presente capítulo apresenta a fundamentação teórica sobre a Composição Musical

Inteligente (CMI).

3.1 Composição Musical Inteligente

Para introduzir o assunto da CMI, se fazem necessários conhecimentos básicos de

notação musical e de teoria musical. As seções seguintes descrevem brevemente esses fun-

damentos musicais.

Melodia, ritmo e harmonia são considerados na literatura como os três elementos funda-

mentais da música (WHITE, 1976).

Melodia é uma sucessão de sons e silêncios coerentes, que se desenvolve em uma sequência

linear (RANDEL, 2003). Pode ser considerada também o primeiro plano de uma música.

Ritmo é um movimento marcado pela sucessão regulada de elementos fortes ou fracos

(RANDEL, 2003). Pode ser considerado na música como a batida ou marcação do tempo

musical.

Harmonia é o uso de notas, ou acordes (combinação de três ou mais notas) simultâneos. O

estudo da harmonia envolve a construção de acordes, progressões de acordes e seus prin-

cípios (RANDEL, 2003). Diz-se que harmonia é o aspecto vertical da música, enquanto a

melodia é o aspecto horizontal (RANDEL, 2003).

A pesquisa visa realizar composição musical de melodia, deixando ritmo e harmonia para

trabalhos futuros.

3.1.0.1 Notas Musicais

Na música ocidental as notas musicais são nomeadas da seguinte forma: Dó (C),

Ré (D), Mi (E), Fá (F), Sol (G), Lá (A) e Si (B). Cada nota representa uma faixa de

frequências, sendo que as frequência baixas realizam sons graves e as frequências altas
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realizam sons agudos.

3.1.0.2 Acidentes Musicais

Além das notas musicais básicas, podem ser criadas notas intermediárias que são

necessárias para se completar todo o conjunto de notas. Para a notação dessas notas

intermediárias são utilizados os acidentes musicais (descrito na Figura 3.1). A distância

padrão entre duas notas é chamada de tom e a menor distância entre duas notas é chamado

de semitom, logo, dois semitons fazem um tom. Um tempo sem som é chamado de pausa.

Notas e pausas tem um tamanho (uma duração no tempo).

Figura 3.1: Acidentes Musicais. Fonte:(HEUSSENSTAMM, 1987)

3.1.0.3 Durações Musicais

Conforme descrito na Figura 3.2, existem sete durações de tempo diferentes (de 1, que

corresponde ao maior tempo, até 1/64), cada duração tem o dobro do tempo da seguinte.

Seus nomes: semibreve, mínima, semínima, colcheia, semicolcheia, fusa, semifusa.

Figura 3.2: Durações Musicais. Fonte:(HEUSSENSTAMM, 1987)
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3.1.0.4 Representações Musicais

Uma peça de música pode ser representada de várias formas: por partituras, por

tablaturas, por cifras (A-G), por números (1-88) correspondendo as notas de um piano,

por frequências das notas. Além de sistemas de codi�cação para se gravar ou reproduzir

uma música em um computador, tais como, MIDI, WAVE, MP3, entre outros.

3.2 Composição Musical Inteligente Supervisionada

Composição Musical Inteligente (CMI) supervisionada é realizada por meio de um mo-

delo que é construído por um programador compositor (KALIAKATSOS-PAPAKOSTAS

et al., 2013). Esse modelo pode incorporar um conjunto de parâmetros que de�nem o estilo

da composição. Nesse modelo é importante que a combinação correta desses parâmetros

seja de�nida para a criação automática da música, então poderá exibir certas característi-

cas (features) e valores estéticos. Conforme a pesquisa realizada em CMI supervisionada,

pôde-se dividir os trabalhos relacionados em dois grupos: Algoritmos Genéticos (AG) e

Programação Genética (PG). Pois foram encontrados apenas esses dois tipos de algoritmos

para CMI supervisionada.

3.2.0.5 Algoritmos Genéticos Aplicados na Composição Musical Inteligente

A utilização de AGs é uma das formas de providenciar valores adequados para os pa-

râmetros musicais, dando uma medida qualitativa do que se busca na música produzida.

Assim, os problemas do programador compositor estão relacionados não somente com a

formulação de um modelo paramétrico adequado, mas também para a formalização de

medidas que descrevem com precisão o estilo de música alvo.

O AG por ser inspirado na evolução natural e atuar de forma iterativa é classi�cado por

inicialmente tentar adivinhar um conjunto de soluções aleatórias para posteriormente en-

contrar uma solução adequada após várias gerações. A noção fundamental no AG é a

descrição precisa e informativa do que é uma solução ótima. No caso das CMI supervisi-

onadas é preciso indicar corretamente quais atributos a música composta deve abranger.

Entre os primeiros trabalhos para CMI supervisionada utilizando critérios musicais obje-

tivos para atribuição das avaliações de aptidão está o trabalho de Papadopoulos e Wiggins
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(1999). Nesse trabalho, foi desenvolvido um sistema que compunha solos de jazz durante

uma determinada progressão de acordes. As soluções para o problema eram as melodias

em si, especi�camente pares de altura/duração, e após uma inicialização aleatória, no

AG foram aplicados alguns operadores genéticos com sentidos musicais, sendo possível

assim novas gerações com melodias soluções (PAPADOPOULOS; WIGGINS, 1999). O

processo de avaliação da solução de cada candidato foi baseado em oito indicadores de

avaliação, emprestado da teoria musical. Após este primeiro trabalho, tiveram diversos

outros projetos que se utilizaram AGs para criação de CMI supervisionada (GRIFFITH;

TODD, 1999; ALFONSECA et al., 2006; MIRANDA; BILES, 2007; ÖZCAN; ERÇAL,

2008; DONNELLY; SHEPPARD, 2011; FORTIER; DYNE, 2011).

3.2.0.6 Programação Genética Aplicada na Composição Musical Inteligente

A Programação Genética (PG) funciona sob o mesmo princípio evolutivo do AG,

tendo inicialmente soluções aleatória evoluindo até chegar na solução ótima. A diferença

entre PG e AG está na formulação do problema. No AG, as metas estão no processo de

otimização de parâmetros do modelo, enquanto que no PG é possível de otimizar o modelo

em si, uma vez que as populações de possíveis soluções incorporam programas inteiros

que realmente formam o modelo. Ou seja, enquanto nos AGs são otimizadas as variáveis

para o problema nas PGs são otimizados os algoritmos que resolvem o problema.

Embora o PG oferece um aspecto totalmente novo em relação à formulação do problema, a

avaliação da aptidão desses programas continua a ser uma questão importante. Em Spec-

tor e Alpern (1994), um esquema de PG que atuou em uma melodia inicial, realizando

várias operações musicais, como retrógrado e de transposição, produzindo novas melo-

dias (SPECTOR; ALPERN, 1994). Após este primeiro trabalho, tiveram alguns outros

projetos que utilizaram PGs para criação de CMI supervisionada (SPECTOR; ALPERN,

1995; PHON-AMNUAISUK et al., 2007; MANARIS et al., 2007)

3.3 Síntese Sonora

Síntese sonora é a técnica de geração de som usando equipamentos eletrônicos ou

de software, a partir do zero (ROADS, 1996). O uso mais comum de síntese é musical,

quando os instrumentos eletrônicos chamados sintetizadores são usados na execução e
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gravação de música. Síntese de som tem muitas aplicações, tanto acadêmicas ou artísticas,

e geralmente são utilizados sintetizadores e métodos de síntese para:

• Gerar timbres interessantes incapazes de serem produzidos acusticamente;

• Recriar ou modelar sons de instrumentos acústicos ou sons do mundo real;

• Facilitar a automação de sistemas e processos (exemplo, softwares text-to-speech).

Com o objetivo de facilitar a síntese sonora, foram desenvolvidos hardwares especí�cos

para este �m, chamados sintetizadores (ROADS, 1996). Na Figura 3.3 tem um exemplo

de um hardware totalmente dedicado a síntese de som.

Figura 3.3: Sintetizador Roland Jupiter-80. Fonte:(ROLAND. . . , 2014)

3.3.1 Ondas Sonoras

A de�nição de métrica (acústica) do som é a variação em ondas de pressão e densidade

causada pela propagação das ondas através de um meio (BALLORA, 2008). Entre cerca

de 25 Hz e 18 kHz, os sistemas auditivos humanos sentem essas ondas, pois fazem o

tímpano se mover. Este movimento mecânico é traduzido em sinais eletroquímicos na

cóclea (parte auditiva do ouvido interno) como impulsos nervosos, e enviado para a região

auditiva do cérebro para análise. As ondas sonoras, sendo a variação na pressão de ar

ao longo de um tempo, pode ser representada como uma voltagem variável ou um �uxo

de dados ao longo de um tempo. Esta é uma representação de 'tempo/amplitude' do

som, também conhecida como a linha de tempo da amplitude. A amplitude representa o

deslocamento molecular causada pelas mudanças na pressão do ar. No domínio digital, a

amplitude é tipicamente representado por um valor entre 1 e -1 em que 1 e -1 representam

amplitudes máximas positivas e negativas do sinal, e 0 representa a amplitude zero.
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3.3.1.1 Aparência das Ondas Sonoras

A forma de onda na Figura 3.4 é chamada de onda senoidal. Ondas senoidais podem

ser consideradas blocos de construção fundamentais do som (BALLORA, 2008). A �gura

demonstra que a amplitude varia ao longo do tempo, mas que o padrão de variação se

repete periodicamente. A forma de onda na Figura 3.5 é mais complexa do que a senoidal.

Figura 3.4: Onda Senoidal Simples. Fonte:(BALLORA, 2008)

Há altos e baixos de diferentes amplitudes, e, embora o padrão se repete ao longo do tempo

é mais difícil de detectar (BALLORA, 2008). Da mesma maneira que uma onda senoidal

se comporta de uma maneira simples e soa simples, essa comporta-se de maneira que o

som possui uma maior complexidade. Por esta razão, sons complexos, detalhados, que

mudam ao longo do tempo, muitas vezes não têm características discerníveis quando se

avalia, não há nenhum padrão de repetição ou comportamento que se pode usar para nos

dizer algo sobre o som. Na Figura 3.6 é dada uma visão de um som ao longo de cerca

de 2 segundos. A partir dessa perspectiva, pode-se perceber a forma geral as mudanças

de amplitude de som ao longo do tempo; em particular, as partes com alta amplitude

podem facilmente ser percebidos, por exemplo, como batidas de tambor, pois aparecem

de repente e caem em amplitude muito rapidamente (BALLORA, 2008). Pode ser muito

difícil dizer qual tipo de instrumento está sendo utilizado, se esse som foi visto ao longo

do intervalo de poucos milissegundos. A partir disso, pode-se concluir que a perspectivas

do intervalo curto ou longo mostram diferentes tipos de informações e que a seleção da

perspectiva correta pode ser crucial para atender as necessidades corretamente.
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Figura 3.5: Onda Senoidal Complexa. Fonte:(BALLORA, 2008)

Figura 3.6: Onda Senoidal ao Longo de 2 Segundos. Fonte:(BALLORA, 2008)

3.3.1.2 Senoides, Frequência e Altura

A onda senoidal tem uma forma periódica que se repete a cada T segundos, o qual é

conhecido como período, ciclo (BALLORA, 2008). A onda também tem uma amplitude

positiva máxima, A, e uma amplitude máxima negativa, −A. A frequência, f , de uma

onda senoidal é o número de ciclos por segundo e é medida em Hertz (Hz). Podemos

obter a frequência do comprimento de onda a partir da seguinte equação:

f =
1

T
. (3.1)

Além disso, pode-se expressar uma onda senoidal com a seguinte forma matemática (com

ângulos em radianos):

p(t) = A sin

(
2πt

T

)
= A sin(2πft). (3.2)
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Sendo psicométrico, frequências mais elevadas (por exemplo, acima de 1,5 kHz) são fre-

quentemente associados com palavras como 'brilho', enquanto que as frequências mais

baixas (por exemplo, abaixo de 200 Hz) são frequentemente associados com "profundi-

dade"ou "baixo". A faixa intermédia pode ser associado com o termo "calor"(BALLORA,

2008). Por exemplo, um instrumento como uma guitarra elétrica tocada limpa pode ser

chamado de "claro"ou "agudo"enquanto um contrabaixo acústico pode ser referido como

"escuro"ou "grave". Termos como estes não são quantidades objetivas que podemos me-

dir com precisão, mas são muitas vezes utilizados para descrever o timbre, ou cor de

tom de um som particular. As várias amplitudes de frequências presentes em um som, e

sua evolução ao longo do tempo são os principais fatores associados ao timbre, e existem

in�nitos tons de timbre que pode ser alcançado por meio de combinações de diferentes

frequências que compõem um som. Na Tabela 3.1 tem uma relação entre tamanho de

onda, frequência e notas na escala padrão ocidental:

Tabela 3.1: Relação entre Tamanho de Onda, Frequência e Notas

Tamanho de Onda(t) Frequência (Hz) Nota

156.82 cm 220.0 A3

139.71 cm 246.94 B3

131.87 cm 261.63 C4

117.48 cm 293.66 D4

104.66 cm 329.63 E4

98.79 cm 349.23 F4

88.01 cm 392.0 G4

78.41 cm 440.0 A4

3.3.1.3 Construção de Senoides

Utilizando a análise de Fourier, ondas senoidais podem ser consideradas as componen-

tes fundamentais do som, uma vez que uma única onda senoidal é uma única frequência

(BALLORA, 2008). Na análise Fourier, combinando senoides de diferentes frequência, ap-
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tidão e fase, pode-se recriar o espectro de frequência de qualquer som. Da mesma forma,

os sons complexos podem ser analisados em termos de frequência, amplitude e fase.

A Figura 3.7 demonstra a soma de duas ondas senoidais. As características de ambas as

ondas são combinadas na forma de onda resultante. Da mesma forma que o som é cons-

truído, é possível �ltrar as duas frequências dos componentes do conjunto. Isso geralmente

é feito por meio da análise da forma de onda no domínio da frequência.

Figura 3.7: Soma de Duas Ondas Senoidais. Fonte:(BALLORA, 2008)

Um algoritmo comumente utilizado para a �nalidade da síntese sonora, mais especi�-

camente na técnica de síntese aditiva (onde são adicionadas ondas sonoras para geração de

timbre) é a chamada FFT (Fast Fourier Transform ou Transformada Rápida de Fourier)

(LOAN, 1992). Esse algoritmo consiste em calcular a Transformada Discreta de Fourier

(DFT) e o seu inverso. A análise Fourier transforma o tempo (ou espaço) em frequên-

cia, uma FFT calcula rapidamente tais transformações fatorando a matriz DFT em uma

matriz esparsa.

3.3.2 Ambientes de Desenvolvimento para Síntese Sonora

A síntese sonora é essencial para se ter um feedback dos resultados obtidos por meio da

CMI. Para que seja possível essa síntese de uma forma prática é necessário um ambiente

de desenvolvimento com certas características.

Ambientes de desenvolvimento para síntese sonora consistem de uma linguagem de progra-

mação de áudio e um ambiente de usuário para projetar e executar a linguagem. Embora

muitos desses ambientes são comparáveis em suas habilidades de produzir áudio, as suas
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diferenças e especialidades são o que pode ou não atrair um usuário.

3.3.2.1 Comparativo entre Ambientes de Desenvolvimento para Síntese So-

nora

Realiza-se uma breve análise comprativa entre os principais ambientes de desenvolvi-

mento livres para síntese sonora.

Tabela 3.2: Relação entre Tamanho de Onda, Frequência e Notas

Ambientes de Desenvolvi-

mento em Síntese Sonora

Desenvolvimento do Sistema Linguagens da API Tipo do Sistema

ChucK Instável (2004) - Estático

Csound Estável (1986) C, C++ Estático

Nsound Instável (2003) C, C++ Dinâmico

Pure Data Estável (1996) C, C++ Estático

SuperCollider Estável (1996) C, C++ Dinâmico

Byond Beta (2013) - Estático

Conforme veri�cado na Tabela 3.2 é possível perceber uma pequena vantagem no am-

biente de desenvolvimento SuperCollider.

O SuperCollider é um dos sistemas livres mais estáveis na área de síntese sonora, foi de-

senvolvido por James McCartney em 1996 (SUPERCOLLIDER. . . , 2014). Em 2002 foi

atualizado sob a licença GNU General Public License (GPL). Possui aplicações na sín-

tese em tempo real, live coding, composição algorítmica, pesquisa acústica, entre outras

utilidades.

A partir da versão 3, o ambiente SuperCollider foi dividido em dois componentes: um

servidor, scsynth; e um cliente, sclang. Esses componentes se comunicam usando OSC

(protocolo para sintetizadores de som, computadores e outros dispositivos multimídia em

rede) (SUPERCOLLIDER. . . , 2014).

A linguagem SC combina estrutura orientada a objetos de Smalltalk e características de

programação funcional, com uma sintaxe familiar a C (SUPERCOLLIDER. . . , 2014). A

aplicação do servidor SC suporta simples plug-in API em C, tornando mais fácil a escrita
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de algoritmos e�cientes de som. Além de que, devido a todo o controle externo no servidor

acontecer via OSC, é possível de usá-lo com outras linguagens ou aplicações.

O ambiente de desenvolvimento SuperCollider é a escolha para realização da implemen-

tação do modelo a seguir. Nele é possível de realizar o passo da síntese sonora da saída

da CMI supervisionada.
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4 Modelo Desenvolvido

O presente capítulo apresenta a modelagem encontrada para a resolução do problema.

O modelo consiste em descrever um Algoritmo Cultural (AC) que é aplicado no desen-

volvimento da CMI supervisionada. E consiste também da modelagem musical: função

�tness e representação dos indivíduos (possíveis soluções).

4.1 Modelagem do Algoritmo Cultural com Evolução

Diferencial

O AC tradicional utiliza Algoritmos Genéticos (AGs) como base, porém nessa abor-

dagem é utilizado Evolução Diferencial (ED). Conforme o descrito no Capítulo 2 utilizar

o ED como base para o modelo será mais e�caz do que com AG.

As motivações para utilização de ED no lugar de AG são diversas. Porém em relação a

codi�cação do indivíduo do problema, apesar de ele possuir uma codi�cação inteira faz

mais sentido utilizar essa estratégia, pois possibilita a utilização de indivíduos de tamanho

maiores do que seria possível com AGs binários. Teria também a opção de se utilizar AGs

para problemas contínuos, porém já se provou que o ED é um algoritmo superior aos AGs

para problemas contínuos, além de ser mais e�ciente ao percorrer o espaço de busca de

um problema complexo (VESTERSTROM; THOMSEN, 2004).

A Figura 4.1 demonstra como funciona o �uxograma do algoritmo.

Nos passos iniciais do algoritmo, uma população de indivíduos (pop) é criada (no

formato que é representado na seção 4.2.3), assim como um espaço de crenças (variáveis

utilizadas nos conhecimentos que são modelados na seção 4.1.1). Em seguida, para a gera-

ção dos �lhos, o operador de variação do ED é in�uenciado pelo espaço de crenças. Então

a cada geração esses �lhos gerados são comparados com os já existentes. O algoritmo

então segue o ciclo de comparações até alcançar o critério de parada. Para se determinar

se um �lho é melhor do que seu pai, e pode substituí-lo, usam-se as seguintes regras:

• Um indivíduo viável (quando cumpre todas as regras) é sempre melhor do que um
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Figura 4.1: Fluxograma do Algoritmo Cultural com Evolução Diferencial.

Fonte:(BECERRA; COELLO, 2004)

inviável;

• Se os dois são viáveis, o indivíduo com o melhor valor de função objetivo é melhor;

• Se ambos forem inviáveis, o indivíduo com menor quantidade de violações de regras

é melhor.

4.1.1 Espaço de Crenças

No modelo proposto busca-se o maior número possível de conhecimentos para in�u-

enciar os indivíduos, com o objetivo de buscar saber quais os conhecimentos que são mais
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ou menos importantes em um espaço de crenças.

Nessa abordagem o espaço de crenças é dividido em quatro fontes de conhecimento (BE-

CERRA; COELLO, 2004): Conhecimento Situacional (CS), Conhecimento Normativo

(CN), Conhecimento Topográ�co (CT) e Conhecimento Histórico (CH).

4.1.1.1 Conhecimento Situacional

O CS consiste em encontrar o melhor exemplar ao longo do processo evolutivo. Ele

representa um líder para os outros indivíduos (BECERRA; COELLO, 2004). Os operado-

res de variação de evolução diferencial são in�uenciados da seguinte forma (BECERRA;

COELLO, 2004)

x′i,j = Ei + F × (xi,r1 − xi,r2), (4.1)

onde x′i,j é o operador de variação da ED (indivíduo gerado), Ei é o i-ésimo componente

do indivíduo armazenado no conhecimento situacional, F é o peso diferencial (um valor

de�nido pelo usuário entre 0 e 2), xi,r1 e xi,r2 são dois indivíduos escolhidos aleatoria-

mente. Desta forma, usa-se o líder, em vez de um indivíduo escolhido aleatoriamente

para a recombinação, recebendo os �lhos para mais perto do melhor ponto encontrado. A

atualização do conhecimento situacional é realizada por meio da substituição do indivíduo

armazenado, E, pelo melhor indivíduo encontrado na população atual, xmelhor, apenas se

xmelhor for melhor do que E.

4.1.1.2 Conhecimento Normativo

O CN contém os intervalos para as variáveis de decisão onde as boas soluções têm sido

encontradas, a �m de alcançar novas soluções em relação a esses intervalos (BECERRA;

COELLO, 2004). Assim, o conhecimento normativo tem a estrutura mostrada na Figura

4.2. Na Figura 4.2, li e ui são os limites inferior e superior, respectivamente, para a

Figura 4.2: Estrutura do Conhecimento Normativo

i-ésima variável de decisão, e Li e Ui são os valores da função de �tness associada com

aquele intervalo. Além disso, o conhecimento normativo inclui um fator de escala, dmi,
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para in�uenciar o operador de mutação adotado na evolução diferencial. A expressão a

seguir mostra a in�uência do conhecimento normativo sobre os operadores de variação

(BECERRA; COELLO, 2004):

x′i,j =



xi,r3 + F × |xi,r1 − xi,r2| se xi,r3 < li

xi,r3 − F × |xi,r1 − xi,r2| se xi,r3 > ui

xi,r3 + ui−li
dmi
× F × (xi,r1 − xi,r2) senão

onde x′i,j é o operador de variação da ED (indivíduo gerado), F é o peso diferencial (um

valor de�nido pelo usuário entre 0 e 2), xi,r1, xi,r2 e xi,r3 são três indivíduos escolhidos

aleatoriamente. A atualização do conhecimento normativo pode reduzir ou ampliar os

intervalos armazenados nele. Uma expansão ocorre quando os indivíduos aceitos não

encaixam no intervalo atual, enquanto que a redução ocorre quando todos os indivíduos

aceitos estão dentro do intervalo atual e os valores extremos têm uma aptidão melhor e

são viáveis. Os valores dmi são atualizados com a maior diferença |xi,r1−xi,r2| encontrada

durante a aplicação dos operadores de variação da geração inferior.

4.1.1.3 Conhecimento Topográ�co

A utilidade do CT é criar um mapa da paisagem do �tness do problema durante o

processo evolutivo (BECERRA; COELLO, 2004). O CT é composto por um conjunto de

células, e o melhor indivíduo encontrado em cada célula. O conhecimento topográ�co,

também, tem uma lista ordenada das melhores b células, com base no valor da aptidão do

melhor indivíduo em cada uma delas. Por causa de um gerenciamento de memória mais

e�ciente, na presença de alta dimensionalidade (ou seja, muitas variáveis de decisão), usa-

se uma estrutura espacial de dados, chamada árvore k-d, ou árvore binária k-dimensional.

Em árvores k-d, cada nó pode ter apenas dois �lhos (ou nenhum, se é um nó folha),

e representa uma divisão ao meio de qualquer uma das dimensões (ver Figura 4.3). A

função de in�uência tenta mover os �lhos para qualquer das b células na lista (BECERRA;

COELLO, 2004):
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x′i,j =



xi,r3 + F × |xi,r1 − xi,r2| se xi,r3 < li,c

xi,r3 − F × |xi,r1 − xi,r2| se xi,r3 > ui,c

xi,r3 + F × (xi,r1 − xi,r2) senão

onde li,c e ui,c são os limites inferior e superior da célula, escolhidos aleatoriamente

a partir da lista das melhores células, x′i,j é o operador de variação da ED (indivíduo

gerado), F é o peso diferencial (um valor de�nido pelo usuário entre 0 e 2), xi,r1, xi,r2

e xi,r3 são três indivíduos escolhidos aleatoriamente. A função de atualização divide um

nó se não for encontrada uma solução melhor na célula, e se a árvore não atingiu a sua

profundidade máxima. A dimensão em que a divisão é feita, é aquela que tem uma maior

diferença entre a solução armazenada e a nova solução de referência (isto é, a nova solução

considerada como a "melhor"encontrada até agora).

Figura 4.3: Exemplo de Partição de dois Espaços Dimensionais por Árvore k-d

4.1.1.4 Conhecimento Histórico

Essa fonte de conhecimento foi originalmente proposta para funções objetivo dinâ-

micas (BECERRA; COELLO, 2004). O CH armazena o conhecimento em uma lista, a

localização do melhor indivíduo encontrado antes de cada mudança. Essa lista tem um

tamanho máximo. A estrutura do CH é mostrada na Figura 4.4, onde ei é o melhor indi-

víduo encontrado antes da i-ésima geração mudar, dsi é a distância média das alterações

de parâmetros, i, e dri é a direção média se houver mudanças de parâmetros, i. Se uma

solução permanecer como a melhor durante as últimas gerações, sabe-se que está preso
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em um ótimo local.

Figura 4.4: Estrutura do Conhecimento Histórico

A expressão da função de in�uência do CH é a seguinte (BECERRA; COELLO, 2004):

x′i,j =



xi,ew + dri × F × |xi,r1 − xi,r2| se rand(0, 1) < α

xi,ew + 1.5×dsi
dmi

× (xi,r1 − xi,r2) se rand(0, 1) < β

rand(lbi, ubi) senão

onde x′i,j é o operador de variação da ED (indivíduo gerado), F é o peso diferencial

(um valor de�nido pelo usuário entre 0 e 2), xi,r1 e xi,r2 são dois indivíduos escolhidos

aleatoriamente, xi,e é a i-ésima variável de decisão dos melhores ew anteriores armaze-

nados na lista do conhecimento histórico, dmi é a diferença máxima da i-ésima variável,

armazenada no CN, lbi e ubi são os limites inferior e superior da variável xi, dada como

entrada para o problema, rand(a, b) é um número aleatório entre a e b. α e β são valores

entre 0 e 1 de�nido pelo usuário.

Para atualizar o CH, pode-se adicionar à lista quaisquer ótimos locais encontrados du-

rante o processo evolutivo. Se a lista alcançou o seu comprimento máximo w, o elemento

mais antigo é descartado. As distâncias médias e direções de variação são calculadas por

(BECERRA; COELLO, 2004)

dsi =

∑w−1
k=1 |xi,ek+1−xi,ek

|

w − 1
, (4.2)

dri = sgn

(
w−1∑
k=1

sgn(xi,ek+1
− xi,ek)

)
, (4.3)

onde dsi é a distância média e dri é a direção de variação.
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4.1.2 Função de Aceitação

O número de indivíduos aceitos para a atualização do espaço de crença é calculado de

acordo com o desenho de uma função dinâmica. O número de indivíduos aceitos diminui,

enquanto aumenta o número da geração (BECERRA; COELLO, 2004). Na função de

aceitação é preciso rede�nir o número de indivíduos aceitos quando a melhor não mudou

nas últimas p gerações. Obtém-se o número de indivíduos aceitos, naceito, com a seguinte

expressão (BECERRA; COELLO, 2004)

naceitos = pc× pop+
(1− pc)× pop

g
, (4.4)

onde pc é um parâmetro dado pelo usuário, entre (0,1). Recomenda-se usar 0,2. pop é

o tamanho da população e g é o contador de geração, mas é rede�nida para 1 quando a

melhor solução não mudou nas últimas p gerações.

4.1.3 Função de In�uência Principal

A função de in�uência principal é responsável por escolher a fonte de conhecimento

para ser aplicada ao operador de variação do ED (BECERRA; COELLO, 2004). No início,

todas as fontes de conhecimento tem a mesma probabilidade de de ser aplicada, pcks = 1
4
,

pois são 4 fontes de conhecimento. Mas durante o processo evolucionário, a probabilidade

da fonte de conhecimento ks é aplicada como (BECERRA; COELLO, 2004)

pcks = 0.1 + 0.6
vks
v
, (4.5)

onde vks são as vezes que um indivíduo gerado pela fonte de conhecimento ks substitui

seu pai na geração atual, e v são as vezes que um indivíduo gerado (por uma fonte de

conhecimento) substitui seu pai na geração atual. O limite inferior do valor pc é de 0.1,

para garantir que qualquer fonte de conhecimento tenha sempre probabilidade > 0 em ser

aplicada. Se v = 0 durante uma geração, pcks = 1
4
,como no início.

4.2 Modelagem da Composição Musical Inteligente

A modelagem da CMI supervisionada é realizada da seguinte forma:
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• De�nir a base matemática utilizada para a função de objetivo (adaptação);

• De�nir a função de objetivo e todos os atributos que a envolvem;

• De�nir a representação genética dos indivíduos.

Essas de�nições são realizadas a seguir.

4.2.1 Distância da Compressão Normalizada

A procura por uma métrica universal tem sido realizada a muito tempo, um dos ob-

jetivos principais das teorias que envolvem clustering (ALFONSECA et al., 2006). Com

a avaliabilidade de tal métrica seria possível de se aplicar o mesmo algoritmo em diversos

problemas relacionados com clustering, tais como, classi�cação de música, textos, sequên-

cia de genes, entre outros.

Em particular, algoritmos evolucionários precisam de�nir funções de �tness para com-

parar indivíduos diferentes, para simular a evolução, e classi�car eles de acordo com seu

grau de adaptação no ambiente (ALFONSECA et al., 2007).

Em diversos casos, as funções �tness computam a distância entre cada indivíduo ao ob-

jetivo desejado (CILIBRASI et al., 2003). Supondo que se quer gerar uma composição

que se assemelhe a uma sinfonia de Mozart ; nessa situação, pode-se medir um �tness

natural: um indivíduo tem um alto �tness se compartilha muitas características com um

(ou mais) das sinfonias de Mozart. O problema é como selecionar essas características e

suas respectivas métricas.

Existe uma métrica de semelhança universal que resume todas as possíveis característi-

cas: distância da compressão normalizada. Ela é universal no sentido que, quando alguma

métrica mede uma pequena distância entre dois objetos dados, a distância da compressão

normalizada também mede uma pequena distância entre os mesmos dois objetos; dessa

forma, essa se torna uma métrica tão boa quanto qualquer outra métrica computável

(DALHOUM et al., 2008). A distância da informação normalizada é matematicamente

de�nida como

d(x, y) =
max{K(x|y), K(y|x)}
max{k(x), K(y)}

, (4.6)

onde K(x|y) é a condicional da complexidade de Kolmogorov da string x dada a string

y, cujo valor seria o comprimento do programa mais curto, no qual quando rodasse como

entrada a string y, tivesse como saída a string x. K(x) é o caso degenerado K(x|λ),



4.2 Modelagem da Composição Musical Inteligente 45

onde λ é a string vazia. Infelizmente, ambas as complexidades condicionais e incondicio-

nais são funções incomputáveis. Uma estimativa computável da distância da informação

normalizada é apresentada como

d̂(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}
, (4.7)

onde C(x) é o tamanho obtido por x comprimido pelo compressor C, e xy é a concate-

nação de x e y. Sendo que o compressor C foi implementado utilizando o algoritmo de

compressão LZ77.

4.2.2 Função Objetivo

O esquema do algoritmo proposto inclui um passo de pré-processamento feito da

seguinte forma (ALFONSECA et al., 2006):

• Uma ou mais peças musicais são selecionadas como alvos ou guias para a geração

musical: Ω = {ωi}N1 ;

• Os indivíduos na população são codi�cados da mesma forma que o conjunto guia;

• A seguinte função objetivo é usada

f(x) =

∑N
i=1 d̂(x, ωi)

N
, (4.8)

onde d̂(x, y) foi de�nido na equação (4.7). Maximizando f(x) (minimizando a soma

das distâncias), é esperado que maximize o número de características compartilhadas

pelo indivíduos envolvidos com o conjunto guia. Por exemplo, se Ω fosse um conjunto

de sinfonias de Mozart, um indivíduo com o menor valor de função objetivo deve se

assemelhar com uma sinfonia de Mozart.

4.2.3 Representação Genética

Uma melodia pode ser vista como uma sequência de notas individuais e pausas. Essas

notas individuais têm propriedades que de�nem como uma determinada nota deve ser

tocada. As seguintes propriedades são usadas nessa representação:

• Altura: A altura determina quais notas serão tocadas. Possíveis valores são C, D,

E, F, G, A, B e todas as possíveis variantes usando sustenidos (#) e bemóis (b);
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• Oitava: A oitava determina em qual oitava certa nota é tocada. Um piano tem sete

oitavas;

• Duração: A duração determina por quanto tempo uma certa nota é tocada. Possíveis

valores são nota inteira, 1
2
de nota, 1

4
de, 1

8
de nota, 1

16
de nota, 1

32
de nota ou 1

64
de

nota.

As notas possuem outras propriedades além dessas. Velocidade, por exemplo, indica

quão forte a nota é tocada. Porém, essas propriedades não serão consideradas.

Uma solução no espaço de busca para geração de melodia consiste de notas individuais.

Uma solução é representada por um cromossomo com número �xo de genes. Os genes

no cromossomo representam as notas individuais e pausas, cada um com suas próprias

características. Uma nota pode ser representada por um gene composto de um ou três

inteiros. Quando for representado por apenas um inteiro, este inteiro corresponde a altura

da nota, quando for representado por três inteiros eles correspondem a altura, oitava e

duração. Cada gene é descrito em maiores detalhes.

4.2.3.1 Altura

A altura pode ser representada como um número de 1 ao 12. Como existem doze

semitons em uma oitava, cada semitom pode ser representado por um número entre 1 e

12. Na Tabela 4.1 são mapeadas as notas.

4.2.3.2 Oitava

Uma oitava pode ser representada por um número no qual um certa nota é tocada.

A oitava é indicada do número 1 ao 7, onde 1 representa a oitava mais baixa no teclado

do piano e 7 a mais alta.

4.2.3.3 Duração

A duração pode ser representada por um número entre 1 e 7. Na Tabela 4.2 são

mapeadas as durações.
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Tabela 4.1: Mapeamento da Altura das Notas

Valor Altura da Nota

1 C (Dó)

2 C# ou Db

3 D (Ré)

4 D# ou Eb

5 E (Mi)

6 F (Fá)

7 F# ou Gb

8 G (Sol)

9 G# ou Ab

10 A (Lá)

11 A# ou Bb

12 B (Si)

0 pausa

4.2.3.4 Representação de Percussão

Da mesma forma que a melodia, a percussão é composta por notas individuais e

pausas, porém essa notação é feita de um modo diferenciado. Utilizando a notação da

partitura de bateria, a percussão possui apenas duas propriedades: duração (cuja notação

é a mesma que na melodia) e peça da bateria (consiste em qual peça será tocada). Na

Tabela 4.3 são mapeadas as peças de bateria, sendo elas do número 1 ao 13:

Nessa modelagem conforme será visto no Capítulo 5, foi realizado testes apenas com

a codi�cação da altura das notas, deixando a questão de adicionar os outros elementos

para trabalhos futuros.
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Tabela 4.2: Mapeamento da Duração das Notas

Valor Duração da Nota

1 Nota inteira

2 1
2
da nota

3 1
4
da nota

4 1
8
da nota

5 1
16

da nota

6 1
32

da nota

7 1
64

da nota
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Tabela 4.3: Mapeamento das Peças de Bateria

Valor Peça de Bateria

1 Caixa

2 Bumbo

3 Chimbal com baqueta

4 Prato de condução

5 Prato de ataque

6 Tom-tom médio

7 Tom-tom menor

8 Surdo

9 Segundo bumbo

10 Aro da caixa

11 Campana

12 Chimbal com pedal

13 Prato chinês
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5 Experimentos, Resultados e Análises

Nesta seção são realizados diversos experimentos em algumas condições pré-de�nidas,

com objetivo de validar o modelo desenvolvido. Para cada teste existe duas formas de

análise: pelo grá�co de convergência e pelo melhor indivíduo gerado. O grá�co de conver-

gência que consiste dos valores dos melhores e da média de cada geração, é obtido após o

término de um determinado número de execuções do algoritmo, ao �nal de cada execução

é gerado um indivíduo melhor.

Todos os experimentos foram realizados em um computador com processador Intel Core

2 Duo 2.00 GHz e 4 GB de memória RAM, rodando no sistema operacional Microsoft

Windows 7. A aplicação foi desenvolvida utilizando a linguagem de programação C. Os

algoritmos utilizados nos testes são: Evolução Diferencial (ED) e o Algoritmo Cultural

(AC) modelado.

5.1 Evolução Diferencial

A ED conforme descrita no Capítulo 2 é um algoritmo que cria novos indivíduos

a partir dos já existentes utilizando de diversas estratégias matemáticas. Existe uma

convenção para nomeação de suas estratégias dado o seguinte modelo: ED/x/y/z. Onde

x indica uma cadeia de caracteres de um vetor (indivíduo) que será alterado. O y é o

número de novos vetores que serão formados a partir de um indivíduo da geração anterior.

E o z é o método de crossover, se ele será exponencial (exp) ou binomial (bin).

Os parâmetros de entrada para o ED são F e CR. O F é uma constante utilizada para

a criação do novo indivíduo, nela é atribuída normalmente um valor entre 0,5 e 1, nos

testes foram utilizados o valor de 0,75 conforme recomendado na literatura. O segundo

parâmetro é a fator de crossover (CR), esse parâmetro in�uencia diretamente no número

de novos indivíduos que serão gerados em uma geração, são atribuídos valores entre 0

e 1, nos testes foram utilizados o valor 0,5 conforme recomendado na literatura. Foram

realizados testes com as duas estratégias de ED mais comuns na literatura, a rand/1/bin

e a best/1/bin, e uma terceira estratégia, a rand − to − best/1/exp, a qual foi possível

obter o melhor resultado entre os EDs (STORN; PRICE, 1995).
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5.2 Algoritmo Cultural Modelado

O AC desenvolvido conforme detalhado no Capítulo 4, utiliza o ED como base para

seu desenvolvimento, logo ele utiliza os mesmos valores para F e CR. Ele é implementado

em cima da estratégia de ED que obteve melhor desempenho nos testes (conforme será

mostrado a seguir), a ED/rand − to − best/1/exp. No entanto o AC possui espaços de

crenças que irão ajudar a guiar a evolução melhorando assim a convergência e o desem-

penho do ED.

Os parâmetros de entrada adicionais do AC estão diretamente ligados ao espaço de crenças

e as funções de aceitação e in�uência descritos no capítulo 4. O primeiro parâmetro é o

fator de aceitação (pc), é o atributo que está diretamente ligado ao número de indivíduos

que serão aceitos a cada geração do algoritmo, esse parâmetro tem valor 0,2. O segundo

parâmetro é o contador de geração para zerar a contagem de geração (g) que está inclusa

na função de aceitação, foi de�nido através de testes um valor de 5 para esse parâmetro.

O terceiro parâmetro é o tamanho da lista do conhecimento histórico, de�nido através de

testes como 10. Os quarto e quinto parâmetros são os valores α e β são utilizados para

para escolhas aleatórias do o conhecimento histórico, de�nidos na literatura como 0,45

(BECERRA; COELLO, 2004).

Durante a implementação do AC foi veri�cado que apenas três dos quatro conhecimentos

descritos na modelagem faziam sentido para a evolução do problema. O conhecimento

topográ�co sugere um conhecimento a mais sobre o espaço de busca quando não se tem ele

bem de�nido. Porém no problema de Composição Musical Inteligente (CMI) esse espaço

de busca está bem de�nido e não sofre alterações. Com isso os testes se resumem aos

conhecimentos situacional, normativo e histórico.

5.3 Composição Musical Inteligente

Nos testes são realizados cinco execuções dos algoritmos com aproximadamente um

milhão de avaliações da função em cada execução. Para se chegar a esse número de

avaliações foi necessário um número de dez mil gerações utilizando o padrão da literatura

de cem indivíduos em cada geração. Os dois últimos parâmetros do algoritmo são o

número de variáveis e as quantidades de guias musicais incluídas na função objetivo para

a evolução dos indivíduos. Foram realizados testes com dois e cinco guias.
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A escolha de realizar testes com dois guias foi de exatamente conseguir encontrar de forma

simples os padrões dos indivíduos que foram gerados ao �nal do algoritmo. Com dois guias

o tamanho deles e dos indivíduos são de 50 variáveis, sendo que cada variável corresponde

a altura de uma nota musical conforme a codi�cação de�nida na modelagem no Capítulo

4. A escolha de cinco guias é exatamente para testar como a função objetivo se comporta

ao se ampliar a complexidade de comparação dos indivíduos com os guias.

Se a codi�cação for apenas da altura da nota, para que seja possível que duas ou mais

peças sejam guias na evolução é necessário que ao menos elas sejam da mesma escala

musical, isso para que as notas geradas ao �nal dos algoritmo não sejam dissonantes. Se a

codi�cação for a tripla de altura, oitava e duração além das peças serem da mesma escala,

devem estar também na mesma fórmula de compasso para que as durações (ritmo) façam

sentido ao �nal da evolução.

5.4 Estudo de Caso

Este estudo de caso aborda conceitos estilísticos e de técnicas composicionais da mú-

sica erudita minimalista (CERVO, 1999). O Minimalismo musical surgiu na década de 60

nos Estados Unidos por meio de seus quatro pais fundadores: La Monte Young (1935-),

Terry Riley (1935-), Steve Reich (1936-) e Philip Glass (1937-), é um dos movimentos

estéticos mais signi�cativos dos últimos quarenta anos. Esse estilo musical in�uenciou

grande parte da música pós-moderna e da música pop recente como por exemplo o new

age e o world music, principalmente por causa de sua simplicidade em comparação com

outros estilos eruditos. O minimalismo possui as seguintes características marcantes:

• Estrutura formal contínua: nas obras minimalistas não existem mudanças abruptas

melódicas ou rítmicas. As linhas melódicas se sofrem mudanças, são mudanças

graduais praticamente imperceptíveis, criando um sentido de continuidade ou de

ciclo.

• Repetições de padrões rítmicos e melódicos: devido a estrutura formal contínua,

não existem linhas melódicas que criam sentido de início e �m. Tanto a melodia

quando o ritmo sugerem repetições de padrões.
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Como guia para a evolução, são utilizadas duas peças de natureza minimalista: Struggle

for Pleasure do compositor Wim Mertens e Truman Sleeps do compositor Philip Glass.

Nesse estudo ambas as peças se encontram na escala de Fá menor (Fm) com a fórmula

de compasso 4/4. Foram retiradas melodias com cinquenta notas em ambas as peças, a

decisão de utilizar esse número de notas foi de forma comparativa com outros trabalhos

relacionados. Na peça Struggle for Pleasure foi retirada a melodia presente do compasso

1 ao 12, na peça Truman Sleeps foi retirada a melodia presente do compasso 1 ao 7. Os

trechos melódicos de ambas as músicas sugerem as duas características tanto no sentido de

continuidade, quanto a repetição de padrões. Ao �nal da evolução, buscam-se indivíduos

que se enquadrem nessas mesmas características.

5.4.1 Melodias Codi�cadas

• Guia 1 - Partitura:

Figura 5.1: Wim Mertens - Struggle for Pleasure
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• Guia 1 - Codi�cação Musical:

C,F,Ab,F,F,Db,F,Ab,C,F,Ab,Bb,Eb,G,Eb,Eb,Eb,Ab,Db,F,C,C,

F,Ab,F,F,Db,F,Ab,C,F,Ab,Bb,Eb,G,Eb,Eb,Eb,Bb,F,Ab,F,F,F,Bb,Eb,G,Eb,Eb,Eb

• Guia 1 - Codi�cação Inteira:

1,6,9,6,6,2,6,9,1,6,9,11,4,8,4,4,4,9,2,6,1,1,6,9,6,6,

2,6,9,1,6,9,11,4,8,4,4,4,11,6,9,6,6,6,11,4,8,4,4,4

• Guia 2 - Partitura:

Figura 5.2: Philip Glass - Truman Sleeps

• Guia 2 - Codi�cação Musical:

F,Ab,C,F,Ab,C,F,Ab,F,Ab,Db,F,Ab,Db,F,Ab,Eb,Ab,C,Eb,Ab,C,

Eb,Ab,E,G,C,E,G,C,E,G,F,Ab,C,F,Ab,C,F,Ab,F,Ab,Db,F,Ab,Db,F,Ab,Eb,Ab

• Guia 2 - Codi�cação Inteira:

6,9,1,6,9,1,6,9,6,9,2,6,9,2,6,9,4,9,1,4,9,1,4,9,5,8,1,

5,8,1,5,8,6,9,1,6,9,1,6,9,6,9,2,6,9,2,6,9,4,9
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Para os testes com 5 guias foi codi�cado mais três melodias de cinquenta notas. Duas

melodias da Struggle for Pleasure que estão localizadas do compasso 27 ao 30. E o último

guia é um melodia da música Truman Sleeps que se encontra do compasso 9 ao 34.

• Guia 3 - Codi�cação Inteira:

9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,2,9,2,9,2,9,2,9,1,9,

1,9,1,9,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,6,1

• Guia 4 - Codi�cação Inteira:

6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,2,6,2,6,2,6,2,6,1,6,

1,6,1,6,1,4,11,4,11,4,11,4,11,4,11,4,11,4,11,4,11,2,9

• Guia 5 - Codi�cação Inteira:

6,8,9,11,1,2,1,1,6,8,9,11,1,2,4,5,9,8,6,6,4,5,9,8,6,6,1,

1,6,8,9,11,1,2,1,1,6,8,9,11,1,2,4,5,6,6,6,6,5,5

5.5 Experimentos

As análises dos experimentos são realizadas com base nos grá�cos de convergência,

em que é veri�cado o comportamento de cada algoritmo ou estratégia através do melhor

indivíduo e da média de indivíduos a cada geração, quanto menor o valor da função ob-

jetivo melhor o indivíduo.

Primeiramente, antes de realizar qualquer análise dos algoritmos foi realizado um teste de

validação da função objetivo, utilizando o AC modelado. Utilizando apenas um guia de

50 variáveis com apenas uma nota C(1), deveria ser possível se chegar ao �nal da execução

com o melhor indivíduo igual ao guia. Na Figura 5.3 está o grá�co de convergência desse

teste.

Algo que é possível de perceber claramente com esse grá�co é que não é necessário que

a função objetivo chegue ao 0 para que encontre o valor ótimo da função. Nesse caso o

valor ótimo foi de 0,176471. Gerando então o indivíduo igual ao guia com 50 variáveis de

valor 1, validando assim a função objetivo.
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Figura 5.3: Teste de Validação da Função Objetivo

5.5.1 Estratégias da Evolução Diferencial

Foi realizado comparações entre três estratégias de EDs para se encontrar a melhor

estratégia que será usada como parâmetro de comparação com o AC desenvolvido neste

trabalho. A seguir na Figura 5.4 é mostrado o grá�co de convergência de uma execução

da estratégia ED/best/1/bin.

Figura 5.4: Grá�co de Convergência do ED/best/1/bin

Claramente pode-se perceber que nessa estratégia o algoritmo teve di�culdade para

evoluir, estagnando-se no mesmo valor de função objetivo do melhor indivíduo de 0,770833

a partir da geração 6213. Essa é uma função objetivo muito aquém do que se busca como

resultado para o problema. Ao �nal da evolução, foi gerado o seguinte indivíduo em co-
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di�cação inteira:

9;6;4;8;10;2;11;8;4;4;4;9;1;6;10;6;4;8;10;2;2;9;5;

8;1;5;8;1;2;3;8;6;9;4;9;1;4;9;1;6;9;6;6;2;1;1;4;2;3;8

Pode-se perceber que nesse indivíduo que foi gerado, existem notas que não fazem parte

das guias e que estão fora da escala de Fá menor (Fm), por exemplo, A(10), D(3). Além

de que não é possível perceber qualquer característica estilística da música minimalista

nessa melodia.

Um segundo teste foi realizado com a estratégia ED/rand/1/bin. Na Figura 5.5 é mos-

trado o seu grá�co de convergência para uma execução.

Figura 5.5: Grá�co de Convergência do ED/rand/1/bin - 2 Guias

Com essa estratégia se obteve uma evolução de forma mais contínua do que a anterior,

porém o resultado foi pior do que a anterior. O melhor indivíduo encontrado alcançou a

função objetivo de 0,789474, gerando a seguinte melodia:

4;1;11;4;8;11;3;1;11;3;0;0;8;6;0;6;9;1;6;9;6;9;2;

10;0;11;4;8;4;4;1;11;4;8;11;3;1;11;3;0;0;8;6;9;2;6;0;6;9;1

Esse indivíduo gerado tem características interessantes, pois ele possui repetições conforme

característica da música minimalista. Mas existem as mesmas duas notas que não fazem

parte da escala de Fm, D(3) e A(10).

Então foi realizado o teste com uma terceira estratégia, ED/rand − to − best/1/exp. A

seguir a Figura 5.6 está grá�co de convergência para cinco execuções dessa estratégia.

Conforme veri�cado no grá�co, com essa estratégia a evolução foi muito interessante,

pode-se perceber uma evolução contínua até praticamente o �nal das gerações. Nessas
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Figura 5.6: Grá�co de Convergência do ED/rand− to− best/1/exp

cinco execuções, o melhor indivíduo encontrado possui a função objetivo de 0,511905,

sendo que a média dos melhores indivíduos gerados foi de 0,5240894 e o desvio padrão

de 0,0079342033. Por esse ótimo desempenho que essa foi a estratégia escolhida para ser

o ED base para o AC desenvolvido. O melhor indivíduo gerado após as cinco execuções

possui a seguinte característica:

11;6;9;6;6;6;9;4;9;1;4;11;4;8;4;4;4;9;2;6;9;1;6;9;

6;6;2;6;9;1;6;9;6;9;2;6;9;2;6;9;4;9;1;4;9;5;8;1;5;8

Esse indivíduo gerado possui padrões de repetições curtas típicas da música minimalista,

mesmo que com notas diferentes. Por exemplo o padrão melódico da nota 2 até a 6 é o

mesmo que o da 13 até a 17, além de que todas as notas pertencem a escala de Fm ou

estão nos guias.

5.5.2 Conhecimentos do Algoritmo Cultural Modelado

Foram realizados quatro testes para o AC desenvolvido. O primeiro deles é apenas

utilizando o conhecimento Situacional. A Figura 5.7 mostra o grá�co de convergência

desse teste.

Somente com o conhecimento Situacional, foi possível de obter um resultado bom, porém

ainda inferior ao melhor ED, o melhor indivíduo gerado possui a função objetivo de 0,5125,

com média dos melhores indivíduos de 0,5330502 e um desvio padrão de 0,0309965324. O

melhor indivíduo gerado foi:

9;2;6;9;1;6;9;6;6;6;11;4;8;4;4;4;9;2;6;9;4;9;1;4;9;
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Figura 5.7: Grá�co de Convergência do AC Situacional

2;6;9;2;6;9;4;9;1;4;1;5;8;6;9;4;9;1;4;9;5;8;1;5;8

O segundo teste foi apenas utilizando o conhecimento Normativo. A Figura 5.8 mostra o

grá�co de convergência desse teste.

Figura 5.8: Grá�co de Convergência do AC Normativo

Somente com o conhecimento Normativo, foi possível de obter um resultado muito bom,

e superior ao melhor ED, o melhor indivíduo gerado possui a função objetivo de 0,486842,

com média dos melhores indivíduos de 0,5148256 e um desvio padrão de 0,0225761724. O

melhor indivíduo gerado foi:

6;11;4;8;4;4;4;9;2;6;9;1;6;9;6;9;1;6;9;1;6;9;6;9;

1;6;9;1;4;9;5;8;1;5;8;1;5;8;4;4;4;9;2;6;9;4;9;1;6;9

O terceiro teste foi apenas utilizando o conhecimento Histórico. A Figura 5.9 mostra o

grá�co de convergência desse teste.
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Figura 5.9: Grá�co de Convergência do AC Histórico

Somente com o conhecimento Histórico, foi possível de obter um resultado ligeiramente

superior ao melhor ED, o melhor indivíduo gerado possui a função objetivo de 0,5, com

média dos melhores indivíduos de 0,5151436 e um desvio padrão de 0,0110832144. O

melhor indivíduo gerado foi:

4;8;4;4;4;9;2;6;9;4;9;1;4;9;5;8;1;5;8;1;5;8;6;11;

4;8;4;4;4;9;2;6;9;1;6;9;6;9;1;6;6;9;1;6;9;6;9;2;6;9

E o teste �nal do AC desenvolvido, com os três conhecimentos implementados. A Figura

5.10 mostra o grá�co de convergência desse teste.

Com o AC desenvolvido foi possível de obter os melhores indivíduos e a melhor média,

Figura 5.10: Grá�co de Convergência do AC Modelado - 2 Guias

apesar de que o desvio padrão dele ainda é inferior a melhor estratégia do ED. O melhor

indivíduo encontrado foi de valor 0,472973, com média de 0,5068178 e desvio padrão de
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0,0305867758. O melhor indivíduo encontrado, possui a seguinte melodia:

9;2;6;9;1;6;9;1;6;9;1;6;9;6;6;6;11;4;8;4;4;4;9;2;6;

9;1;6;9;1;6;9;1;6;9;6;9;2;6;9;4;9;5;8;1;5;8;1;5;8

É possível de perceber claramente nesse indivíduo as características de ambos os guias,

repetições melódicas curtas e bem de�nidas formando um estilo de composição minima-

lista totalmente dentro da escala de�nida de Fá menor (Fm).

Foram realizados também dois testes com 5 guias. O primeiro utilizando o a melhor es-

tratégia do ED, conforme mostra a Figura 5.11.

O melhor indivíduo encontrado foi de valor 0,768421, com média de 0,783166 e desvio

Figura 5.11: Grá�co de Convergência do ED/rand/1/bin - 5 Guias

padrão de 0,0111958602. O melhor indivíduo encontrado, possui a seguinte melodia:

1;6;2;6;9;4;9;1;4;9;5;8;1;1;6;9;6;6;6;9;1;6;9;

6;6;6;11;4;8;4;4;4;9;2;6;9;1;6;9;6;6;6;11;4;8;4;4;8;1;1

E o segundo teste utilizando o AC desenvolvido nesse trabalho. A grá�co de convergência

está na Figura 5.12.

Com o AC desenvolvido foi possível de obter os melhores resultados do que com o ED,

o desvio padrão encontrado . O melhor indivíduo encontrado foi de valor 0,761111, com

média de 0,7663956 e desvio padrão de 0,0052408163, foi o melhor desvio padrão entre

todos os testes realizados. O melhor indivíduo encontrado, possui a seguinte melodia:

6;9;8;1;1;6;1;6;2;6;9;1;6;9;8;1;1;6;9;6;6;2;6;9;

1;6;9;8;1;1;6;1;6;1;6;2;6;9;4;9;1;4;9;1;4;9;5;8;1;1;

Os testes realizados com cinco guias demonstram que quanto maior o número de guias,

mais difícil é de se encontrar um um indivíduo ótimo, devido a complexidade em encontrar
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Figura 5.12: Grá�co de Convergência do AC Modelado - 5 Guias

um padrão comum a todos os guias.

5.6 Análise de Resultados

Na Tabela 5.1 são estão sumarizados todos os resultados dos testes que forma rele-

vantes:

Tabela 5.1: Comparativo de Resultados

Algoritmo Melhor Indivíduo Média Desvio Padrão

ED/rand− to− best/1/exp - 2 Guias 0,511905 0,5240894 0,0079342033

AC (Situacional) - 2 Guias 0,5125 0,5330502 0,0309965324

AC (Normativo) - 2 Guias 0,486842 0,5148256 0,0225761724

AC (Histórico) - 2 Guias 0,5 0,5151436 0,0110832144

AC Modelado - 2 Guias 0,472973 0,5068178 0,0305867758

ED/rand− to− best/1/exp- 5 Guias 0,768421 0,783166 0,0111958602

AC Modelado - 5 Guias 0,761111 0,7663956 0,0052408163

Com base na tabela comparativa é possível perceber claramente que o AC desenvol-

vido é melhor do que o melhor resultado de ED encontrado para esse problema de CMI.
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Pois tanto com 2 ou 5 guias é possível de obter um melhor indivíduo e uma melhor média

de indivíduos.

A seguir nas Figuras 5.13 e 5.14 estão dois grá�cos de caixa comparando os melhores

resultados de AC e ED.

Figura 5.13: Grá�co de Caixa para Comparação entre AC e ED - 2 Guias

Para a con�guração de 2 guias o AC obteve resultados ligeiramente melhores do que

o ED, em média e a maioria dos indivíduos gerados no AC conseguem ser melhores do

que o ED.

Para a con�guração de 5 guias o AC obteve melhores resultados do que o ED em pra-

Figura 5.14: Grá�co de Caixa para Comparação entre AC e ED - 5 Guias

ticamente todos os testes realizados, mostrando assim que quanto mais a complexidade

maior é a diferença de desempenho entre os algoritmos.
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Nas Figuras 5.15 e 5.16 estão na notação de partitura as melodias dos melhores indivíduos

dos dois algoritmos com 2 guias (do compasso 1 ao 7) e com 5 guias (do compasso 8 ao

14). Esses melodias foram escritas dentro de uma mesma oitava e todas as notas com a

mesma duração, para que fosse possível analisar melhor a melodia.

Figura 5.15: Indivíduos Gerados pelo ED - 2 e 5 Guias

Pode-se perceber em ambos os trechos melódicos as características da música mini-

malista, principalmente nas melodias geradas por 2 guias. A estrutura formal contínua

e melodias repetidas é percebida claramente nos 5 primeiros compassos do melodia ge-

rado pelo AC desenvolvido. A sequência da linha melódica sofre pequenas alterações no

compasso, a melodia presente no compasso 1 e 2 são repetidos da mesma forma nos com-

passos 3, 4 e 5. Porém se for analisar as melodias presentes no compasso 2 e 3, percebe-se

a mesma lógica de sequência de notas, porém com notas diferentes.
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Figura 5.16: Indivíduos Gerados pelo AC Modelado - 2 e 5 Guias
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6 Conclusão

Na pesquisa relacionada com Algoritmos Culturais (ACs), pôde-se veri�car uma ten-

dência em se utilizar apenas os Conhecimentos Normativos (CN) e Situacionais (CS). A

justi�cativa para isso ocorrer é de que são considerados pela maior parte dos pesquisadores

os conhecimentos mais importantes no espaço de crenças. Na pesquisa sobre Composição

Musical Inteligente (CMI) supervisionada, pôde-se perceber uma di�culdade em encontrar

modelos bem embasados matematicamente, a maioria dos trabalhos tentam modelar as

equações com base na teoria musical, o que demonstra não ser tão e�caz quando se quer

de�nir um modelo geral de composição inteligente.

Na modelagem, foi encontrado um AC integrado com Evolução Diferencial (ED) com o

objetivo de buscar novas alternativas ao AC tradicional, que utiliza Algoritmo Genético.

Na parte musical, foi modelado uma função objetivo com base na equação da distância da

compressão normalizada, sendo possível encontrar métricas genéricas para a composição

inteligente. Sendo possível a compor estilos melódicos bem de�nidos através das guias da

evolução.

Esse trabalho foi apenas um primeiro passo na utilização de algoritmos culturais para

geração de música inteligente e supervisionada. Pôde-se validar nos testes que ele é um

algoritmo evolutivo interessante para essa aplicação. Sendo que o principal diferencial é

o conhecimento normativo e o conhecimento histórico.

No normativo, com o ajuste dos limites laterais, diminui a perda de recursos com variáveis

que não nunca serão um bom resultado, olhando para a questão musical isso é de grande

importância, dado que certas notas jamais serão tocadas em uma determinada escala mu-

sical. Conseguindo encontrar resultados melhores de forma mais rápida.

Com o histórico de índices dos melhores indivíduos da geração, a evolução segue um ritmo

visionário, o algoritmo consegue prever onde é possível encontrar um bom indivíduo, fa-

zendo com que quando o algoritmo produz um novo indivíduo, faça sempre as melhores

escolhas para crossover.

A escolha da evolução diferencial também foi importante nesse trabalho, pois se tratando

de indivíduos que são trechos melódicos uma alteração ou mudança de ordem das notas

pode estar criando um indivíduo melhor ou pior do que o anterior. Percebe-se que o ED é
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uma implementação típica para problemas contínuos e o problema descrito nesse trabalho

é facilmente codi�cado de forma discreta, porém a forma de codi�cação do indivíduo é

totalmente problemática em algoritmos evolutivos discretos, pois os indivíduos possuem

uma quantidade considerável de variáveis e transformar essas variáveis para binário é in-

viável comprometendo a aplicação. Logo a escolha do ED foi a melhor opção obtida.

Os resultados obtidos pelo AC proposto foram plausíveis para a evolução de melodias se-

paradamente. O algoritmo conseguiu encontrar os padrões das guias gerando um melodia

totalmente nova e com o mesmo estilo das guias. Trabalhos futuros naturais a esse é de

tentar evoluir juntamente com a melodia, o ritmo e a harmonia das músicas. A inclusão

desses elementos envolve um estudo aprofundado de teoria e harmonia musical. Outros

trabalhos que poderiam ser feitos é de testar novos algoritmos evolutivos para a mesma

função objetivo e compará-los com a modelagem realizada nesse trabalho.
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