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ABSTRACT

Linear ordinary differential equations (ODEs) appear in many real-world problems, such as
in Engineering and in Applied Mathematics. ODEs and systems of coupled ODEs are usually
difficult and cumbersome to solve, specially if the coefficients are function of the independent
variable. For this reason, even when the coefficients are constant, numerical methods are usually
chosen, despite their computational cost and sources of error. Analytical approaches - like
variation of parameters, undetermined coefficients, Laplace and Fourier transforms - either need
a candidate solution or need complicated algebraic and inverse operations.

To tackle this problem, the Generalized Integrating Factor (GIF) is proposed, which is a
generalization of the Leibniz integrating factor. The new method can solve linear ODEs of n-th
order by a reduction order approach. The method is presented for ODE of general order, although
this work focuses on second order ODEs, with homogeneous and the particular solutions written
as the product of convolutions. Then, the technique is particularized for the case of constant
coefficients and for a set of important continuous and discontinuous excitation functions. The
advantages of exactness and low computational cost are presented with numerical experiments
and complexity analysis of the associated algorithms.

As the particular solution depends on the analytical solution of a convolution, it must be
particularized for some sets of excitations. Also, not all excitations are easy (or even possible) to
convolute analytically. Thus, Heaviside Series (HS) method is proposed as an extension to the
Generalized Integrating Factor. In this new approach, the excitation function is approximated
using a finite series of Heaviside steps multiplied by polynomial terms. The proposed approach
can be seen as a mixed approach, where the homogeneous solution is analytical and the particular
solution is the analytical solution to an approximate excitation. Using numerical experiments, a
high rate of convergence (between 2 and 4) is shown, as well as low computational cost. Thus,
the formulated family of methods prove to be a reliable and cheap way to solve linear ODEs in
real-world problems.

Throughout the derivation of the GIF and the HS methods for systems of coupled linear ODEs
with constant matrix coefficients, the hypothesis of classical normal modes was used to introduce
some simplifications to the solution procedure. It is shown, nonetheless, that this hypothesis
is not necessary for the proposed family of methods to work and, the particularization of the
presented solutions to non-classical normal modes is derived. Most importantly, this work shows
that the computational cost does not increase much when the modes are not classical normal,
thus, enabling the use of the techniques even in this situation.

For this reason, the solutions for the homogeneous solution and the particular solutions due to



Dirac’s delta and due to HS are explicitly provided, so more complicated excitation functions
can be constructed using them. It is proven how the expressions naturally become the formulae
previously derived for classical normal modes, thus, showing the consistency of the approach.
Besides, algorithms are provided to indicate the efficient computer implementation of the
methods.

Keywords: Differential equations; Systems of differential equations; Analytical method; Semi-
analytical method; Generalized integrating factor; Heaviside Series; Non-classical normal
modes.



RESUMO

Equações diferenciais ordinárias (EDOs) lineares aparecem em muitos problemas reais, como em
Engenharia e e em Matemática Aplicada. EDOs e sistems de EDOs acopladas são comumente
difíceis e complicadas de se resolver, especialmente quando os coeficientes são funções da
variável independente. Em virtude disso, mesmo quando os coeficientes são constantes, métodos
numéricos são frequentemente escolhidos, apesar do custo computacional e das fontes de erro.
Abordagens analíticas - como variação de parâmetros, coeficientes indeterminados, transformadas
de Laplace e de Fourier - necessitam de uma solução candidato ou necessitam de complicadas
operações algébricas e de inversão.

Para atacar este problema, o Fator Integrante Generalizado (GIF, do inglês Generalized

Integrating Factor) é proposto, o qual é uma generalização do fator integrante de Leibniz.
O novo método pode solucionar EDOs lineares de ordem n lançando mão de uma abordagem de
redução de ordem. O método é apresentado para EDOs de ordem geral, embora este trabalho
foque em EDOs de segunda ordem, em que as soluções homogênea e particular são o produto
de convoluções. Em seguida, a técnica é particularizada para o caso de coeficientes constantes
e para um conjunto de importantes funções de excitação, tanto contínuas como descontínuas.
As vantagens de exatidão e baixo custo computacional são apresentadas com experimentos
numéricos e com a análise de complexidade dos algoritmos associados.

Como a solução particular depende da solução analítica de uma convolução, esta deve ser
particularizada para alguns conjuntos de excitação. Mesmo assim, nem todas as excitações têm a
convolução facilmente (sequer é possível) solucionada analiticamente. Logo, o método Séries
de Heaviside (HS, do inglês Heaviside Series) é proposto como uma extensão ao GIF. Nesta
nova abordagem, a função de excitação é aproximada usando uma série finita de degraus de
Heaviside multiplicados por funções polinomiais. A abordagem proposta pode ser visualizada
como uma abordagem mista, já que a solução homogênea é analítica e a solução particular é
analítica sobre uma excitação aproximada. Utilizando experimentos numéricos, altas taxas de
convergência foram medidas (entre 2 e 4), assim como um baixo custo computacional. Portanto,
a família de métodos proposta prova a si mesma como confiável e barata na atividade de resolver
EDOs lineares em problemas reais.

No decorrer da dedução dos métodos GIF e HS para a solução de sistemas de EDOs lineares
acopladas com coeficientes matriciais constantes, a hipótese de modos normais clássicos foi
utilizada para introduzir algumas simplificações no processo de solução. Esta hipótese, entretanto,
não é necessária para fazer a família de métodos proposta funcionar, e, em consequência, uma
particularização para a solução quando os modos de de vibrar não são normais clássicos é
apresentada. De forma ainda mais importante, este trabalho mostra que o custo computacional



não aumenta muito quando os modos não são normais clássicos, logo, a aplicação destes métodos
continua interessante mesmo nesta situação.

Por esta razão, as soluções homogênea e particular, no caso de Delta de Dirac e do HS, são
explicitamente fornecidas, tal que funções de excitação mais complexas possam ser construídas
pelo uso destas. É provado também que as expressões naturalmente retornam às expressões
anteriores quando os modos de vibrar são normais clássicos, o que mostra a consistência da
abordagem. Além disso, algoritmos são apresentados para indicar uma forma eficiente de
implementar os métodos.

Palavras-chave: Equações diferenciais; Sistemas de equações diferenciais; Método analítico;
Método semi-analítico; Fator integrante generalizado; Séries de Heaviside; Modos de vibrar não
normais clássicos.
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1 INTRODUCTION

Linear and non-homogeneous ordinary differential equations (ODE) are pervasive in
many areas of applied mathematics. In particular, second-order ordinary differential equations
arise in a variety of practical problems in mathematics, physics, and engineering, such as the
dynamic equilibrium of mechanical systems and viscoelasticity modeling. While the solution for
constant coefficients and periodic forces is well known (RAO, 2017), finding the solution for
general problems can be challenging.

Solving second-order ordinary differential equations is a well-established topic with a
rich history. Numerous techniques and methods have been developed over the years to solve
second-order ODEs, including analytical, numerical, and approximate methods. Each method
presents an intrinsic disadvantage, which can be the need to find particular or candidate solutions;
cumbersome inverse and algebraic operations; increase in dimensionality of the problem and
many more. These disadvantages make the solution and analysis of second order ODEs costly
and not straightforward.

Analytical methods involve finding an exact solution to the ODE in terms of elementary
functions such as polynomials, trigonometric functions, and exponential functions. Analytical
solutions are particularly useful when the ODE has a simple form or when we are interested in
understanding the behavior of the solution explicitly. An example is the use of computational
techniques to solve the ODE symbolically, such as the symbolic integration algorithm
implemented in the Mathematica software (RESEARCH, 2018).

Numerical methods involve approximating the solution to the ODE using numerical
algorithms. An example is the use of high-order methods that achieve high accuracy with fewer
computational resources, such as the spectral collocation method and the spectral deferred
correction method (BOYD, 2001; KARNIADAKIS; SHERWIN, 2013). A very recent approach
is the use of machine learning techniques, such as the neural network method, which can learn
the solution to the ODE directly from data (RAISSI; KARNIADAKIS, 2018; BONNAFFé;
COULSON, 2023).

Approximate methods involve finding an approximate solution to the ODE that satisfies
certain criteria. Examples include the use of asymptotic methods (BENDER; ORSZAG, 1999)
and numerical techniques to construct approximate solutions, such as the generalized polynomial
chaos method, which constructs an approximate solution as a series of orthogonal polynomials
(XIU; KARNIADAKIS, 2002).

Stemming from the vibration and electric circuitry analysis and from control theory,
coupled systems of second order ODEs are quite important (ABELL; BRASELTON, 2023;
KREYSZIG; KREYSZIG; NORMINTON, 2011; BOYCE; DIPRIMA, 2001; ROWELL, a;
ROWELL, b). These systems behave much like ODEs, but the solution lies in a vector space of
dimension n, the number of degrees of freedom (DOF) of the system.

In the particular case of mechanical vibrations, the solution is given by the following
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system of ODEs,

Mÿ(t)+Cẏ(t)+Ky(t) = f(t), (1)

where y(t) is the vector of dependent variables, t is the independent variable, M, C and K are
coefficient matrices, which can be calculated using direct analysis over a discrete mechanical
system or using Finite Element Analysis (FEA). In other engineering applications, such as
electric circuitry, these matrices can also be derived in similar fashion, although they mean
different physical properties of the phenomenon.

In a broad sense, when the matrix coefficients are constant, under some circumstances
regarding C, it may be possible to convert the original coupled problem into n uncoupled
problems (KAWANO et al., 2018). When coefficient matrix C is written as a linear combination
of M and K one can use a change of basis given by the eigenvectors of the generalized eigenvalue
problem (modal problem), resulting in n independent one-dimensional second order ODEs
(RAO, 2017). Extensions to other general viscous coefficient matrix C involve the solution of
a quadratic eigenvalue problem and are discussed by (MA; MORZFELD; IMAM, 2010). This
general procedure is known as Modal Superposition and it is common to consider just a subset of
the n eigenvectors to exclude (usually larger) modes in the response and to avoid the expensive
computation of all the eigenpairs. Nonetheless, each individual equation still needs to be solved
either analytically or numerically.

Another approach to solve these systems of ODEs analytically is to re-write Eq. (1) by
using state variables, converting a coupled second order equation to an extended system of first
order coupled ODEs (CHAHANDE; ARORA, 1994). The main drawback is that the new first
order system of coupled ODEs has twice the dimensionality. Analytical solutions can be derived
by using exponential maps (LOBO; JOHNSON, 2013).

The most common approach to solve the problem defined in Eq. (1) is by using some
sort of numerical procedure, like Central Difference, Newmark-Beta, Wilson-θ , among other
methods (HUGHES, 2000). In general terms, all these methods rely on some type of hypothesis
on the behaviour of the response and its derivatives between two or more discrete times, tm
and tm+1, also known as temporal discretization. The set of hypotheses defines each numerical
method and its solution procedure.

It is worth noticing that such hypotheses introduce approximations to the real responses.
Thus, one can identify some potential error sources for any numerical discrete method. The
first source is known as interpolation error, since each particular method makes assumptions
about the behavior of the solution and/or its derivatives between the discrete times. The order of
accuracy is dependent on the order of the approximations assumed by each method. Other source
of error is due to the time discretization, since a coarse grid can hinder some important aspects
of the problem. The time discretization is also an issue for conditionally stable methods, like
Central Difference. Finally, as the equations are solved by means of some numerical procedure,
there is the possibility of numerical errors.
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To better predict these behaviors in numerical methods, their update rule can be
summarized as

st+1 = Ast +Lt , (2)

where s can contain the response y and its derivatives, A is an amplification matrix and Lt is
associated to loading. Amplification matrix A is a discrete operator depending on matrices M, K,
C, the step size ∆t and the approximations used to construct each method. All the properties like
stability, artificial damping, artificial modification of frequencies, to name a few, can be studied
from A.

Regarding stability, a method can be unconditionally stable when the response st+1

is bounded for any step size ∆t; otherwise, it is conditionally stable. An example of the
later is discussed by (MIMOUNA; TCHELEPI, 2019), while there has been a great effort
in this research field to devise new unconditionally stable methods, such as (NEWMARK,
1959; HOUBOLT, 1950; HILBER; HUGHES; TAYLOR, 1977; WILSON; FARHOOMAND;
BATHE, 1972; WOOD; BOSSAK; ZIENKIEWICZ, 1980; KATONA; ZIENKIEWICZ, 1985;
ZIENKIEWICZ et al., 1984; FAN; FUNG; SHENG, 1997).

Targeting higher order interpolations and higher accuracy with less computational
cost, many new methods have been proposed in the last two decades. Some examples for
explicit methods are (KIM; REDDY, 2020; LIU et al., 2021; MALAKIYEH et al., 2023) and
for implicit methods (LI; YU, 2019; LI; LI; YU, 2020; NOH; BATHE, 2018; WEN et al.,
2017; MALAKIYEH; SHOJAEE; BATHE, 2019; BATHE, 2007; SOARES, 2015; SHOJAEE;
ROSTAMI; ABBASI, 2015).

A rather new approach is to use exponential maps to solve higher order ODEs, since
exponential of matrix form solutions to first order systems of coupled ODEs (GAO; NIE, 2021;
BARUCQ; DURUFLé; N’DIAYE, 2018). Some of these approaches use state variables to lower
the order of the original system of coupled ODEs and, then, integrate it (SONG et al., 2023;
WANG; AU, 2007). The efficient evaluation of the exponential maps rely on approximations,
like Padé and Chebyshev approximations. This approach is meant to be highly accurate and does
not present numerical dissipation without much more computational cost when compared to
Newmark method (SONG et al., 2023).

Due to the intrinsic difficulty in solving such ODEs, that are highly applicable in
Engineering problems, this work proposes a new analytical method, which is a generalization
of the traditional Leibniz integrating factor, thus, it is called the Generalized Integrating Factor
(GIF). The reason for extending the well-established Leibniz integrating factor is due to its
analytical solutions to first order linear ODEs, regardless of the coefficients. The proposed
method can be used for ODEs of general order and results in integrating factors that are functions
of the independent variable only, disregarding the coefficients of the ODE. This contrasts with
integrating factors that depend on both the dependent and independent variables, as in (CHEB-
TERRAB; ROCHE, 1999).
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The proposed integrating factor in this work is a reduction order technique. For each
factor found and the subsequent integration, the order of the original differential equation is
reduced by one. Therefore, the technique can be used recursively until the order is zero, and
the original Leibniz integrating factor turns out to be a particular case. Hence, in contrast to
the original method, that can be used only to first order differential equations, the proposed
generalization can be used to higher orders. Thereby, the main novelty of this work is to propose
a generalization that can systematically find analytical complete solutions of linear ODEs with
or without constant coefficients.

The GIF method can be applied to solve both homogeneous and non homogeneous
differential equations without requiring the knowledge of the homogeneous solution or the
need to propose a candidate solution, as is the case with the variation of parameters and the
method of undetermined coefficients, respectively (BOYCE; DIPRIMA, 2001; LEWIS; ONDER;
PRUDIL, 2022). The complete solution of the differential equation can be obtained as the sum
of the homogeneous and particular solutions, which are obtained simultaneously using nested
convolutions. This approach can be called a systematic method and can be used to solve a wide
range of scientific and engineering problems that would, otherwise, rely on the variation of
parameters or the method of undetermined coefficients, as well as integral transforms like Laplace
and Fourier (BOYCE; DIPRIMA, 2001; LEWIS; ONDER; PRUDIL, 2022; KITTIPOOM,
2019; QUINN; RAI, 2012; NAZMUL; DEVNATH, 2020; MAHMOODI; ZOLFAGHARI;
MINUCHEHR, 2019; ZHAO et al., 2022; KELLY, 2006). Each one of those methods present
a disadvantage, like the need for a candidate solution, the need for the homogeneous solution,
complicated algebraic operations, or the need of an inverse transform.

The integrating factor itself is found at every reduction order step as a particular solution
of a nonlinear differential equation, eliminating the need to find the complete solution of the
nonlinear equation and to define an initial value problem. This result shows that the GIF builds a
bridge between linear and nonlinear differential equations, enabling a two-sided path between
both. For instance, a linear equation can be solved by finding a particular solution to a nonlinear
equation and vice-versa. It is shown, however, that, for many families of ODEs, the particular
solution to the sister nonlinear ODE is easilly found, as are the cases of Euler-Cauchy, Bessel
and constant coefficients.

Due to already cited applications in real-world problems, second order ODEs with
constant coefficients, both scalar and matrix coefficients, will be the main focus of this work after
presenting the general formulation. The homogeneous and particular solutions are obtained by
double convolutions, which yield a sum of exponential maps when the coefficients are constant.
Exponential maps are essentially exponential of matrices, that particularize for the conventional
exponential function when the matrix is 1×1, i.e. a scalar, (GALLIER, 2011).

Although exponential maps are expensive to evaluate (HIGHAM, 2008), a rich field of
research has been developed around its numerical evaluation in the past decade, hence, it is
another motivation for the analytical solution of higher order linear differential equations, due to
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the advance in exponential integrators and matrix exponentiation. In the past two decades, a lot of
effort has been put on exponential integrators for their accuracy (GAUDREAULT; RAINWATER;
TOKMAN, 2018), hence, a multitude of methods have been developed to reduce computation
cost and maximize the accuracy to cost ratio, thus, enabling the widespread use of exponential
integrators and analytic methods instead of explicit numerical methods. The computational
cost savings are mainly in calculating matrix exponentials, such as (SIDJE, 1998; BOTCHEV;
KNIZHNERMAN, 2020; GAUDREAULT; RAINWATER; TOKMAN, 2018; SASTRE; IBáñEZ;
DEFEZ, 2019), and for sparse matrices as well (VO; SIDJE, 2017). This advance in matrix
exponentiation makes the GIF a practical choice for solving systems of coupled differential
equations exactly.

Distinct useful non-homogeneous terms are studied for the particular solutions, which
have direct application in applied mathematics and engineering, such as periodic, polynomial,
Dirac’s delta and Heaviside excitations. For all these excitation functions, analytical particular
solutions were found using the double convolutions. For the continuous excitation types, like
periodic and polynomial functions, the particular solutions does not depend upon the exponential
maps; while, for the discontinuous excitation functions, like Dirac’s delta and Heaviside step,
they do, much like the homogeneous response.

Nonetheless, when the double convolutions are not practical to evaluate for a specific
excitation function or when simply there is no interest in evaluating them, the original excitation
function can be constructed using the aforementioned functions. To this aid, the Heaviside step
is particularly useful, since it can be multiplied by polynomials and, then, used to approximate
functions locally using polynomial terms.

The newly proposed form of function approximation is called Heaviside Series (HS),
since the representation is carried out using finite sums of Heaviside step functions multiplied
by polynomial coefficients. This technique is worth by itself, since it can make polynomial
approximations of functions that are not tied to a single approximation point and, consequently,
to a single limiting radius of convergence. This technique is used with the GIF to generate
unconditionally stable and accurate solutions to systems of linear ODEs. As shown in C.3 for
Rayleigh proportional damping, when the solution is not stable, it means that the system is
physically unstable, hence, there is no artificial numerical dissipation in the HS method and the
technique does not mask ill-conditioned models.

This approach can be seen as a further generalization of the GIF method to more general
forms of excitation, since it can be used when the convolution is problematic. The resulting
methodology is an hybrid method for the solution is analytical, but the excitation function is
approximated. For this reason, the HS method can be classified as semi-analytical.

The computational implementation of the GIF and of the HS methods was made public
and is available in two GitHub repositories, each dedicated to one of the methods. GIF is available
in <https://github.com/CodeLenz/Giffndof.jl>, while HS in <https://github.com/CodeLenz/
HeavisideSeriesODE>. There, usage examples are provided, as well as the documentation and

https://github.com/CodeLenz/Giffndof.jl
https://github.com/CodeLenz/HeavisideSeriesODE
https://github.com/CodeLenz/HeavisideSeriesODE
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the source files. The Julia programming language, (BEZANSON et al., 2012), was used and it is
fully open-source. Julia is a fast and optimized programming language that was developed in
MIT, it was used to code and execute all the numerical experiments of this work.

The work is organized in 4 main chapters: the formulation of the GIF for linear ODEs
with a single DOF, the extension to systems of coupled linear ODEs, the introduction of the HS
method and the study of the GIF and the HS methods to problems with non-classical normal
modes. Each chapter presents the careful mathematical derivation step by step, along with
numerical examples provided to show and compare the accuracy of the techniques and the
correctness of the computer implementation. As one of the appeals of the proposed family
of methods is the computational efficiency, algorithmic complexity analysis are derived and
numerical experimental are carried out to evaluate and compare the computational effort to
well-established techniques, such as Newmark-beta and State Variables.

The results are sound and corroborate that the GIF and HS methods are indeed accurate
and fast. The tests were performed both for the number of time steps and for the dimensionality
of the problem. To this aid, the Finite Element Analysis (FEA) of a metallic truss is used, since
the dimensionality can be raised by increasing the number of modes. It is experimentally shown
that the proposed methods take lesser computational effort, even when the number of DOFs is
increased. Besides, it is also shown that the HS method, for instance, has a convergence rate
between 2 and 4, against the 1 and 2 of the Newmark-beta approach.

Summing up the results, one can observe that the GIF and the HS methods are reliable and
efficient, which make them a suitable choice to solve practical problems involving linear ODEs
in Engineering, such as vibration analysis, electric circuitry analysis and control. For future
works, a set of research ideas are left, such as: extension to non linear problems, application
to modal analysis, application in Optimization and application in Boundary Element Analysis
(BEA), in acoustics for example.

This work is the binding of 4 papers and they shape the conceptual and textual
organization. A brief description of these individual works is given in the following. Two papers
have already been submitted to a journal and are in revision. These two works contemplate
Chapter 2 and Chapter 3 respectively. There is a third paper that has already been written and
will be submitted right after the publication of the first two. The third paper discusses solely the
HS method and, thus, makes Chapter 4. Finally, Chapter 5, concerned with non-classical normal
modes, will form a fourth paper to be submitted when the third one is published. Chapter 5 is the
least matured work and lacks, above all, numerical experiments.

Each chapter has its own introduction to enumerate shortly what is expected of the chapter.
Each chapter also has a final section of Final remarks, that is effectively a section of conclusions
and will do a summary of the achievements of the chapter. In the end, though, a proper chapter
of Conclusion is presented to conclude the work as a whole. Each chapter has an ensemble of
mathematical ideas and proofs that are left in appendices. These appendices are organized in the
end of the work, past the references.
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Regarding the traditional List of Symbols section, there is no List of Symbols. This
dissertation has more than 700 Equations and plenty of different symbols both in scalar form or
in boldface. There are many different indexes and some symbols (like a) are used in different
contexts. To this end, the author decided to carefully introduce each symbol and its meaning
along the text, depending on the context. Special care was taken to not change symbols when
addressing an Appendix.

1.1 JUSTIFICATION

Ordinary differential equations, both in a single dimension and in n-dimensional spaces,
are fundamental to model a range of natural phenomena with importance in Engineering. Three
main examples are dynamic response of mechanical systems, analysis of electric circuitry, and
control theory. Solving these ODEs is challenging in general application, since different classes
of problems require different methods, thus, there is a lack of a more systematic method to
analytically solve them, especially second order ODEs.

Hence, the aim of this work is to establish a new family of methods to solve ODEs
that can be systematically used to generate analytical solutions, thus improving simulation and
optimization capabilities. Besides, this family of methods must be computationally efficient,
hence, enabling faster and more accurate solutions. This performance allows immediate use in
traditionally computational intensive applications, such as Structural Optimization and BEA, to
name a few.

1.2 OBJECTIVES

1.2.1 General Objective

This dissertation proposes a new family of methods to analytically solve linear ODEs
and systems of coupled linear ODEs. The application and characterization of the technique
towards second order problems with constant coefficients are the main focus, thus, connecting
mathematical formulation with immediate application in, for example, vibration analysis.

1.3 SPECIFIC OBJECTIVES

The following list of specific objectives has been created for the achievement of the
general goal:

• Initial proposal of the method;

• Mathematical formulation of the method for n-th order ODEs;

• Particularization for constant coefficients second order ODEs;
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• Solution for non-homogeneous second order ODEs for different classes of excitation
functions;

• Mathematical formulation of the method for second order systems of coupled ODEs;

• Particularization for constant matrix coefficients second order ODEs and study of
exponential maps;

• Solution for non-homogeneous second order systems of coupled ODEs for different
classes of excitation functions;

• Computer implementation of the proposed formulations;

• Mathematical formulation of Heaviside series, i.e., a series of Heaviside step functions for
representing discrete or hard to convolute excitation functions, both for one-dimensional
and systems of coupled ODEs;

• Numerical experimentation of both accuracy and computational effort for the proposed
methods, comparing them to well-established techniques, such as Newmark-beta and
State Variables;

• Particularization of the GIF and of the HS methods to systems without classical normal
modes.

Other than the above-mentioned topics, two papers with the mathematical formulation
have already been submitted to an international journal and one paper on application to Burgers
material model for an international conference. A paper has been written for the HS method
and is in the final stages before submission to a journal. More works are expected to be written
regarding the above developments.
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2 ORIGINAL FORMULATION AND APPLICATION FOR ODES WITH A SINGLE
DOF

The method that will be proposed in this work is a generalization of the well-established
Leibniz integrating factor for first order linear ODEs. It is a widely used method and it is given
in the beginning of any undergraduate course in Differential Equations. Thus, as this chapter
introduces the proposed technique and its formulation, a brief review of the Leibniz integrating
factor will be given and will introduce the intuitions behind the original method and those used
to generalize it.

The formulation will be first presented for linear ODEs of n order and with coefficients
as function of the independent variable. Thus, the technique will be introduced in the most
general form possible. After the initial presentation of the extension, the focus will lay on the
advantages of the proposed method and will show applications to common second order linear
ODEs that appear in Engineering problems. Some examples are provided, such as Bessel ODE,
Euler-Cauchy ODE and with constant coefficients.

Due to the application of second order ODEs with constant coefficients in problems in
mechanical vibrations, electric circuitry analysis and constitutive modelling, this case will be
particularized for different kinds of excitation functions.

2.1 THE GENERALIZED INTEGRATING FACTOR METHOD

Consider a linear first order ordinary differential equation

a1(t)ẏ(t)+a0(t)y(t) = f (t), (3)

where y is the dependent variable, t is the independent variable, ẏ(t) is the derivative of y with
respect to t and f is a non-homogeneous term, usually known as excitation or source term.

The integrating factor for first order differential equations, introduced by Leibniz, relies
on the relation

p(t)ẏ(t)+ ṗ(t)y(t) =
.

(p(t)y(t)), (4)

where
.
( ) means the derivative, with respect to t, of all the expression inside the parenthesis.
An integrating factor µ(t) is multiplied to Eq. (3) to force the appearance of Eq. (4),

µ(t)a1(t)︸ ︷︷ ︸
p(t)

ẏ(t)+µ(t)a0(t)︸ ︷︷ ︸
ṗ(t)

y(t) =
.

(p(t)y(t)). (5)

It immediately follows that

ṗ(t) = µ(t)a0(t) =
.

(µ(t)a1(t)) = µ̇(t)a1(t)+µ(t)ȧ1(t) (6)
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such that

µ̇(t)
µ(t)

=
a0(t)− ȧ1(t)

a1(t)
, (7)

with solution

µ(t) = exp
(∫ a0(t)− ȧ1(t)

a1(t)
dt
)
, (8)

allowing the use direct integration to solve

.
(µ(t)a1(t)y(t)) = µ(t) f (t), (9)

such that

y(t) =
1

µ(t)a1(t)

(∫
µ(t) f (t)dt +C1

)
, (10)

where C1 is an integration constant.
Relation given by Eq. (4) can be generalized to higher orders

p j(t)
( j)
y (t)+ ṗ j(t)

( j−1)
y (t) = (

˙
p j(t)

( j−1)
y (t)), (11)

where
( j)
y (t) is the j-th derivative of y with respect to t (used for j > 3).
Now consider a linear and non-homogeneous ordinary differential equation of order n

an(t)
(n)
y (t)+an−1(t)

(n−1)
y (t)+ · · ·+a2(t)ÿ(t)+a1(t)ẏ(t)+a0(t)y(t) = f (t). (12)

It can be rewritten in pairs of derivatives of y(t) such that one element is a derivative higher
than the other. This is achieved by partitioning the coefficients multiplying the intermediate
derivatives into two terms

an(t)
(n)
y (t)+ fn,n−1,1(t)

(n−1)
y (t)︸ ︷︷ ︸

πn,n

+ fn,n−1,2(t)
(n−1)

y (t)+ fn,n−2,1(t)
(n−2)

y (t)︸ ︷︷ ︸
πn,n−1

+ . . .

+ fn,3,2(t)
...y(t)+ fn,2,1(t)ÿ(t)︸ ︷︷ ︸

πn,3

+ fn,2,2(t)ÿ(t)+ fn,1,1(t)ẏ(t)︸ ︷︷ ︸
πn,2

+

fn,1,2(t)ẏ(t)+a0(t)y(t)︸ ︷︷ ︸
πn,1

= f (t), (13)

where πn, j is the j-th partition of Eq. (12), which is the key idea for the proposed approach.
Coefficients fn, j,i refer to the order of the differential equation, n, partition j and i = 1 or i = 2
such that

an, j(t) = fn, j,1(t)+ fn, j,2(t), (14)
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and there are Nπn = 2n−2 partitions j.
Multiplying Eq. (13) by a generalized integrating factor µn(t) results in

µn(t)an(t)
(n)
y (t)+µn(t) fn,n−1,1(t)

(n−1)
y (t)︸ ︷︷ ︸.(

pn,n
(n−1)

y (t)
)

+µn(t) fn,n−1,2(t)
(n−1)

y (t)+µn(t) fn,n−2,1(t)
(n−2)

y (t)︸ ︷︷ ︸.(
pn,n−1

(n−2)
y (t)

) + . . .

+µn(t) fn,3,2(t)
...y(t)+µn(t) fn,2,1(t)ÿ(t)︸ ︷︷ ︸.
(pn,3

..
y(t))

+µn(t) fn,2,2(t)ÿ(t)+µn(t) fn,1,1(t)ẏ(t)︸ ︷︷ ︸.
(pn,2

.
y(t))

+

µn(t) fn,1,2(t)ẏ(t)+µn(t)a0(t)y(t)︸ ︷︷ ︸.
(pn,1y(t))

= µn(t) f (t), (15)

such that
.(

pn,n
(n−1)

y (t)
)
+

.(
pn,n−1

(n−2)
y (t)

)
+ . . .+

.
(pn,1y(t)) = µn(t) f (t) (16)

can be exactly integrated to

pn,n
(n−1)

y (t)+ pn,n−1
(n−2)

y (t)+ . . .+ pn,1y(t) =
∫

µn(t) f (t)dt +Cn (17)

an ordinary differential equation of order n−1, where Cn is an integration constant.
Coefficients fn, j,i can be found by solving(
µ̇n

µn

)
n
=

(
µ̇n

µn

)
n−1

= · · ·=
(

µ̇n

µn

)
3
=

(
µ̇n

µn

)
2
=

(
µ̇n

µn

)
1
. (18)

where

πn, j =⇒
(

µ̇n(t)
µn(t)

)
j
=

fn, j−1,1(t)− ḟn, j,2(t)
fn, j,2(t)

; fn,0,1(t) = a0(t), fn,n,2(t) = an(t). (19)

It follows that there are n(n−1)
2 combinations of these pair-wise equations, along with the n−1

equations relating each pair of partitions with their coefficient. Thus, the number of equations
available to evaluate coefficients fn, j,i, Neq, is

Neqn =
n(n−1)

2
+n−1 =

n2 +n−2
2

≥ Nπn; n ≥ 2, (20)

being always bigger or equal than the number of partitions, Nπn , such that there are enough
equations to solve the problem (actually, not all equations must be used). After finding all
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coefficients fn, j,i, it is possible to find µn(t) by using Eq. (19) for just one partition ĵ (any
partition can be used)(

µ̇n(t)
µn(t)

)
ĵ
=

fn, ĵ−1,1(t)− ḟn, ĵ,2(t)

fn, ĵ,2(t)
, (21)

such that

µn(t) = exp

(∫ fn, ĵ−1,1(t)− ḟn, ĵ,2(t)

fn, ĵ,2(t)
dt

)
. (22)

The same procedure depicted above can be carried out successively until reaching a first
order equation, where the traditional integrating factor µ1(t) can be used.

The main shortcoming of the proposed procedure is the evaluation of Equations (18).
The larger the order of the differential equation, the harder is to find the coefficients fn, j,i at each
step of the procedure to decrease the order. For general coefficients a j(t), Eqs. (18) result in a
system of Riccati-like differential equations and for constant coefficients a system of quadratic
equations.

Nonetheless, for linear second order equations the procedure can lead to very interesting
and practical results, as it will be discussed in the rest of this manuscript. In special, for second
order ODEs with constant coefficients, the Riccati equation turns into a simple second order
algebraic equation.

2.2 LINEAR SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

Consider a linear second order ordinary differential equation

m(t)ÿ(t)+ c(t)ẏ(t)+ k(t)y(t) = f (t), (23)

with initial conditions ẏ(0) = v0 and y(0) = u0, where y(t) and f (t) are functions of t over
R. This equation is of great interest in physical problems, like for example the vibration of a
mass-spring-damper subjected to a force. Thus, independent variable t is also referred to time in
the rest of this work.

For physical reasons, it is assumed that both m(t) and k(t) ∈ R>0 and that c(t) ∈ R+,
∀t. The explicit dependency on t will be suppressed in the following equations to simplify the
notation.

Let start by splitting c as

π2,1 =⇒ c = f2,1,1 + f2,1,2, (24)

where f2,1,1 and f2,1,2 are also function of time, but over C, such that

mÿ+ f2,1,1ẏ︸ ︷︷ ︸
π2,2

+ f2,1,2ẏ+ ky︸ ︷︷ ︸
π2,1

= f . (25)
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Multiplying the ODE by integrating factor µ2(t) results in

µ2m︸︷︷︸
p2,2

ÿ+µ2 f2,1,1︸ ︷︷ ︸
ṗ2,2

ẏ+µ2 f2,1,2︸ ︷︷ ︸
p2,1

ẏ+ µ2k︸︷︷︸
ṗ2,1

y = µ2 f , (26)

or

p2,2ÿ+ ṗ2,2ẏ+ p2,1ẏ+ ṗ2,1y = µ2 f . (27)

Analysing the term

ṗ2,2 = µ2 f2,1,1 =
.

(µ2m) = µ̇2m+µ2ṁ, (28)

it is possible to state that

µ̇2

µ2
=

f2,1,1 − ṁ
m

. (29)

Following the same procedure,

ṗ2,1 = µ2k =
.

(µ2 f2,1,2) = µ̇2 f2,1,2 +µ2 ḟ2,1,2 (30)

such that

µ̇2

µ2
=

k− f2,1,2

f2,1,2
. (31)

Thus, by relating Eqs. (29) and (31), one obtain the particular form of Eq. (18)

f2,1,1 − ṁ
m

=
k− f2,1,2

f2,1,2
. (32)

Since c = f2,1,1 + f2,1,2 it is possible to state that f2,1,1 = c− f2,1,2. Using Eq. (32)

(c− f2,1,2 − ṁ) f2,1,2 =
(
k− ḟ2,1,2

)
m (33)

such that

f 2
2,1,2 = ḟ2,1,2m− km+(c− ṁ) f2,1,2, (34)

is a Riccati differential equation 1.
1 Conversely, it is also possible to define f2,1,2 = c− f2,1,1 such that

f2,1,1 − ṁ
m

=
k− ċ+ ḟ2,1,1

c− f2,1,1
(35)

or

f 2
2,1,1 =− ḟ2,1,1m+(ṁ+ c) f2,1,1 − ṁc+(ċ− k)m, (36)

also a Riccati differential equation.
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Equation (31) is a first order ODE with known solution

µ2 = exp
∫ k− ḟ2,1,2

f2,1,2
dt, (37)

where f2,1,2 is obtained from Eq. (34). It is important to stress that only the particular solution of
the Riccati equation is needed.

By knowing µ2 it is possible to re-write Eq. (27) as
.

(p2,2ẏ) +
.

(p2,1y) = µ2 f , (38)

such that integrating with respect to t results in

(p2,2ẏ)+(p2,1y) =
∫

µ2 f dt +C2︸ ︷︷ ︸
h

, (39)

a first order ODE. Using another integrating factor µ1 such that

µ1 p2,2︸ ︷︷ ︸
p1,1

ẏ+µ1 p2,1︸ ︷︷ ︸
ṗ1,1

y = µ1h (40)

or

p1,1ẏ+ ṗ1,1y = µ1h. (41)

Following the same procedure

ṗ1,1 = µ1 p2,1 =
.

(µ1 p2,2) = µ̇1 p2,2 +µ1 ṗ2,2, (42)

such that

µ̇1

µ1
=

p2,1 − ṗ2,2

p2,2
, (43)

with known solution

µ1 = exp
∫ p2,1 − ṗ2,2

p2,2
dt. (44)

Equation (41) can be written as

.
(p1,1y) = µ1h, (45)

and, integrating with respect to time, results in

p1,1y =
∫

µ1hdt +C1, (46)

such that

y =
1

p1,1

∫
µ1hdt +

1
p1,1

C1. (47)
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Thus, by using the definition of both p1,1 and h

y(t) =
1

µ1(t)µ2(t)m(t)

(∫
µ1(t)

(∫
µ2(t) f (t)dt

)
dt +

∫
µ1(t)C2 dt +C1

)
(48)

is the general solution for the second order ordinary differential equation stated in Eq. (23). This
general solution can be split into its particular, yp(t), and homogeneous, yh(t) parts

yp(t) =
1

µ1(t)µ2(t)m(t)

∫
µ1(t)

∫
µ2(t) f (t)dt dt (49)

and

yh(t) =
1

µ1(t)µ2(t)m(t)

(∫
µ1(t)C2 dt +C1

)
, (50)

such that y(t) = yp(t)+ yh(t). Constants C1 and C2 can be found by considering the solution at
known t values.

Thus, the proposed solution depends on the solution of a Riccati equation and always
results in integrating factors µ1(t) and µ2(t) function of t only, disregarding the form of the
coefficients m(t), c(t) and k(t).

Solution of Eq. (34) is fundamental for the success of the proposed formulation. Indeed,
the solution of the Riccati equation is not an easy task if general coefficients m(t), c(t) and k(t)

are considered. Nonetheless, only the particular solution is needed. Various analytical solutions
can be found in the literature for specific forms of coefficients (HARKO; LOBO; MAK, 2014),
as well as numerical methods (FILE; AGA, 2016). Riccati equations with polynomial coefficients
also present interesting solution properties (CAMPBELL; GOLOMB, 1954; NAVICKAS et al.,
2017). The Kudryashov method and its versions can be used to derive analytical solutions to
many nonlinear differential equations starting with the Riccati equation (KUDRYASHOV, 2003;
KILICMAN; SILAMBARASAN, 2018; GABER et al., 2019; KAPLAN; BEKIR; AKBULUT,
2016). A more detailed discussion on the solution of the Riccati equation is out of the scope
of this text, since the main focus in on the solution of linear second order ODEs with constant
coefficients, where the Riccati equation turns into a simple algebraic equation with direct solution.
Nonetheless, some particular solutions are developed in A.1 to aid in the solution of the following
examples. Other interesting conditions to obtain the particular solution for the Riccati equation
are developed in Appendix A.2.

Appendix A.2 can be used to derive particular solutions to many different and difficult
problems, which might have poles and singular points. Thus, the solution of the Riccati
differential equation can be easily found and, consequently, enables the generalized integrating
factor to overcome linear second order differential equations with singular points, that would
be a major drawback for numerical methods and for series methods, due to limited radius of
convergence, (BOYCE; DIPRIMA, 2001). Intuitions in Appendix A.2 might also help developing
new numerical and approximate methods to solve Riccati differential equations and, hence, linear
second order equations due to the generalized integrating factor.
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Example I - Cauchy-Euler equation
Consider the second order ODE

t2ÿ(t)−2tẏ(t)+2y(t) = 6t2 +4ln(t), (51)

such that the coefficients are m(t) = t2, c(t) = −2t and k(t) = 2 and the excitation is f (t) =

6t2 +4ln(t).
The Riccati equation, Eq. (34), can be written as

f 2
2,1,2 = t2 ḟ2,1,2 −2t2 −4t f2,1,2, (52)

which is case Eq. (618) in Appendix A.2, resulting in the particular solution f2,1,2 =−t. Using
Eq. (37)

µ2 = exp
∫ 2+1

−t
dt =

1
t3 . (53)

Thus, p2,2 = µ2m = t−1 and p2,1 = µ2 f1,2 =−t−2. Using Eq. (44)

µ1 = exp
∫ −t−1 + t−2

t−1 dt = 1. (54)

Complete solution is given by Eq. (48)

y(t) =
1

1t−3t2

(∫ t

0
1
{∫ t

0
t−3 (6t2 +4ln(t)

)
dt
}

dt +
∫ t

0
1C2 dt +C1

)
(55)

such that

y(t) = (6t2 +2) ln(t)−6t2 +3+C2t2 +C1t, (56)

the correct analytical solution.
Example II - Bessel equation
Consider ODE

t2ÿ(t)+ tẏ(t)+
(

t2 − 1
4

)
y(t) = f (t) = t

3
2 , (57)

with known values y(t0) = u0 = 0 and ẏ(t0) = v0 = 0 at t0 = 0.1. It is known that solution to this
equation is singular at t = 0.

The corresponding Riccati equation, Eq. (34), is

f 2
2,1,2 = t2 ḟ2,1,2 − t f2,1,2 +

t2

4
− t4, (58)

whose candidate particular solution is a second order polynomial
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f̃2,1,2 = z0 + z1t + z2t2. (59)

Applying this polynomial into Eq. (58) yields

z2
0+2z0z1t+

(
2z0z2 + z2

1
)

t2+2z1z2t3+z2
2t4 = z1t2+2z2t3−z0t−z1t2−z2t3+

t2

4
− t4, (60)

that simplifies to

z2
0 +2z0z1t +

(
2z0z2 + z2

1
)

t2 +2z1z2t3 + z2
2t4 =−z0t +

t2

4
+ z2t3 − t4, (61)

whose solution is z0 = 0, z1 =
1
2 and z2 = i, which is the case of Eq. (618) in Appendix A.2.

Thus, the integrating factor, Eq. (37), is

µ2 = exp

(∫ t2 − 1
4 −

1
2 −2it

t
2 + it2 dt

)
= exp

(∫ t2 −2it − 3
4

t
2 + it2 dt

)
. (62)

The polynomials in the integrand can be factored and simplified to

µ2 = exp

(∫ (t − i
2

)(
t − 3i

2

)
it
(
t − i

2

) dt

)
= exp

(∫
−idt − 3

2

∫ 1
t

dt
)
, (63)

such that

µ2 = exp
(
−it − 3

2
ln |t|

)
= t−

3
2 exp(−it) . (64)

The integrating factor to integrate the differential equation from first order to an algebraic
equation is evaluated using Eq. (44),

µ1 = t
1
2 exp(it) . (65)

Solution is then given by Eq. (48)

y(t) = t−
1
2 exp(−it)

∫
exp(2it)

∫
t−

3
2 exp(−t) f (t)dt dt +

C1t−
1
2 exp(it)+C2t−

1
2 exp(−it) , (66)

and replacing the expression for f (t)
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y(t) = t−
1
2 +C1t−

1
2 exp(it)+C2t−

1
2 exp(−it) . (67)

Constants, C1 and C2, can be obtained by solving a system of linear equations

 t
− 1

2
0 exp(it0) t

− 1
2

0 exp(−it0)(
it
− 1

2
0 − t

− 3
2

0
2

)
exp(it0) −

(
it
− 1

2
0 +

t
− 3

2
0
2

)
exp(−it0)


{

C1

C2

}
=

u0 − t
− 1

2
0

v0 +
t
− 3

2
0
2

 . (68)

Using values at t0 = 0.1 results in

y(t) = t−
1
2 +(−0.4975+0.04992i) t−

1
2 exp(it)− (0.4975+0.04992i) t−

1
2 exp(−it) , (69)

or, by using the Euler identity2,

y(t) =
(1−0.995cos(t)−0.09984sin(t))√

t
. (71)

Figure 1 compares the real part of the solution obtained by the proposed approach, Eq.
(71), with the solution obtained by using the Tsitouras 5/4 Runge-Kutta method (TSITOURAS,
2011) with adaptive time step. The numerical solution starts at t = 0.1 (dark dotted line) due to
the singularity but the analytical solution properly captures the singularity at t → 0 (solid blue
curve).

2

sin(ωt +φ) =
i
2

(
e−i(ωt+φ)− ei(ωt+φ)

)
. (70)
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Figure 1 – Analytical response y(t) obtained for the Bessel equation, Eq. (57), and the solution
obtained by using a numerical method, yT sit5(t).

2.3 SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS

Previous equations are much simpler when coefficients m, c and k are constant since ṁ,
ċ, ḟ2,1,2 and k̇ are zero. As m > 0, it is possible to normalize the equation by m such that

ÿ(t)+ c̄ẏ(t)+ k̄y(t) = f̄ (t), (72)

where c̄ = c/m, k̄ = k/m and f̄ = f/m. It follows that Eq. (34) for the constant coefficients case
falls into Eq. (608), thus, it reduces to an algebraic quadratic equation

f 2
2,1,2 =−k̄+ c̄ f2,1,2 (73)

with direct solution

f2,1,2 =
c̄±
√

c̄2 −4k̄
2

, (74)

a complex number when c̄2 −4k̄ < 0 (under damped problems). Any one of the two roots can be
used. Equation (37) reduces to

µ2 = exp
(
k̂t
)

(75)

where

k̂ =
k̄

f2,1,2
(76)



37

and Eq. (44) to

µ1 =
exp( f2,1,2t)

exp
(
k̂t
) = exp

((
f2,1,2 − k̂

)
t
)
. (77)

Thus, the complete solution is

y(t) =
1

µ1(t)µ2(t)

(∫
exp
((

f2,1,2 − k̂
)

t
)(∫

exp
(
k̂t
)

f̄ (t)dt +C2

)
dt +C1

)
(78)

where the term
1

µ1(t)µ2(t)
= exp(− f2,1,2t) (79)

such that

y(t) = exp(− f2,1,2t)
(∫

exp
((

f2,1,2 − k̂
)

t
)(∫

exp
(
k̂t
)

f̄ (t)dt +C2

)
dt +C1

)
, (80)

is the complete solution. Additionally, it is possible to split the solution in its particular

yp(t) = exp(− f2,1,2t)
(∫

exp
((

f2,1,2 − k̂
)

t
)(∫

exp
(
k̂t
)

f̄ (t)dt
)

dt
)
, (81)

and homogeneous parts

yh(t) = exp(− f2,1,2t)
(∫

exp
((

f2,1,2 − k̂
)

t
)

C2 dt +C1

)
. (82)

If k̄ ̸= 0, which is a fair and physical assumption, there are two cases: if f2,1,2 − k̂ = 0
and otherwise. From Eq. (74), one realizes that the first case occurs when damping is critical.
When f2,1,2 − k̂ = 0, Equation (82) simplifies to

yh(t) =C2t exp(− f2,1,2t)+C1 exp(− f2,1,2t) . (83)

This result is what one would expect for critical damping (BOYCE; DIPRIMA, 2001). However,
no solution assumption was made, nor the Wronskian was used to prove the linear independence
of the new solution multiplied by t, as it is done in (BOYCE; DIPRIMA, 2001). In contrast, if
f2,1,2 − k̂ ̸= 0, Equation (82) is further simplified to

yh(t) = exp(− f2,1,2t)C1 +C2 exp
(
−k̂t
)
. (84)

Particular solution for the constant coefficient case, Eq. (81), can be further developed if
some particular form for f̄ (t) is assumed. The following sections are devoted to investigate two
situations: Continuous excitation (periodic and polynomial) and discontinuous (unitary impulse
and Heaviside). The case of a general function multiplied by Heavisides is used to obtain the
analytical solution to complicate loading scenarios. One might conclude that Eq. (81) will also
have different treatment when f2,1,2 − k̂ = 0, but that is not necessarily true. Thus, for each one
of the excitation functions explored below, a comment on the need and reason for different cases
of integration will be pointed out.
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2.4 SECOND ORDER ODES WITH CONSTANT COEFFICIENTS - CONTINUOUS
EXCITATION FUNCTIONS

2.4.1 Periodic excitation

Lets consider a further hypothesis: excitation f (t) is periodic or its Fourier series is
convergent. Thus, normalized excitation f̄ (t) can be represented as a series of exponentials

f̄ (t) =
nk

∑
k=1

ck exp(βkt +φk) , (85)

where nk is the number of terms, ck ∈ R is an amplitude, βk = iωk ∈ C is a complex angular
frequency and φk ∈ C is a complex phase.

Previously, it was seen that the integrating factor is an exponential by definition, and that
the particular solution, i.e., the solution corresponding to the excitation function, naturally appears
through the successive integrations. These integrations are convolutions over the integrating
factor, thus, if the excitation can be expressed in terms of exponentials, these convolutions can
be trivially calculated. Applying Eq. (85) into Eq. (81) yields

yp(t) = exp(− f2,1,2t)
∫

exp
((

f2,1,2 − k̂
)

t
)(∫

exp
(
k̂t
) nk

∑
k=1

ck exp(βkt +φk)dt

)
dt, (86)

using the multiplication property between exponentials

yp(t) = exp(− f2,1,2t)
∫

exp
((

f2,1,2 − k̂
)

t
)(∫ nk

∑
k=1

ck exp
((

βk + k̂
)

t +φk
)

dt

)
dt, (87)

whose inner integral is trivial and results in

yp(t) = exp(− f2,1,2t)
∫

exp
((

f2,1,2 − k̂
)

t
) nk

∑
k=1

ck

βk + k̂
exp
((

βk + k̂
)

t +φk
)

dt. (88)

If f2,1,2− k̂ = 0, there is no need to integrate in different fashion, since the function that multiplies
the exponential with the null exponent is also an exponential function, hence, they can simply
have their exponents summed up. Again, rearranging the multiplication of exponentials, yields

yp(t) = exp(− f2,1,2t)
∫ nk

∑
k=1

ck

βk + k̂
exp((βk + f2,1,2) t +φk)dt, (89)

which is again trivially integrated to

yp(t) = exp(− f2,1,2t)
nk

∑
k=1

ck(
βk + k̂

)
(βk + f2,1,2)

exp((βk + f2,1,2) t +φk) , (90)
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such that

yp(t) =
nk

∑
k=1

ck exp(βkt +φk)(
βk + k̂

)
(βk + f2,1,2)

. (91)

Equation (91) gives a closed-form and analytic particular solution for any periodic
excitation or an excitation represented through its Fourier series expansion. It is worth noticing
that all constants given by the two integrations at time t0 = 0 were omitted for they can
be coupled to the constants C1 and C2, which are by definition constants of these very integrations.

Example with periodic excitation
Consider a mechanical system, made out of elements of stiffness, mass and damping,

subjected to periodic loads. Despite the quantity of those elements, if all the movements can be
kinetically determined in terms of a single movement, the whole phenomenon is described by a
single degree of freedom second order differential equation. In most applications of vibration
problems, the load is periodic, like in support excitation and in unbalanced or electromagnetic
machines.

Consider a mechanical system with an equivalent mass of 1 kg, an equivalent damping
coefficient of 2 Ns/m, and an equivalent stiffness of 10 N/m. The ODE representing the dynamic
equilibrium of this system is given by

ÿ(t)+2ẏ(t)+10y(t) = f̄ (t), (92)

and non-homogeneous initial conditions u0 = 0.2 and v0 = 0.0 at t0 = 0 are assumed. The
periodic excitation force is given by

f̄ (t) =−cos(0.5t)+ sin(t)+ cos(1.5t −1.5)−2sin(2t)+2sin(10t) (93)

the superposition of many different signals, like it would be expected in real world problems.
This loading can be written as an exponential series by using the Euler identity

f̄ (t) =−1
2

e0.5it − 1
2

e−0.5it − i
2

eit +
i
2

e−it +
1
2

e1.5i(t−1)+
1
2

e1.5i(1−t)+

ie2it − ie−2it − ie10it + ie−10it =
10

∑
j=1

c jeβ jt+φ j . (94)

For this example, one gets

k̄ = 10, (95)

f2,1,2 = 1+3i, (96)

k̂ = 1−3i, (97)
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Particular solution can be found using Eq. (91)

yp(t) =
−78+8i

1537
e0.5it − 78+8i

1537
e−0.5it − 2+9i

170
eit +

−2+9i
170

eit+

62−24i
1105

e1.5i(t−1)+
62+24i

1105
e1.5i(1−t)+

2+3i
26

e2it+

2−3i
26

e−2it +
−2+9i

850
e10it − 2+9i

850
e−10it , (98)

and, since f2,1,2 − k̂ ̸= 0, the homogeneous solution is given by Eq. (84)

yh(t) =C2e(−1+3i)t +C1e−(1+3i)t . (99)

Evaluation of integration constants C1 and C2 is straightforward. Using Eq. (98) and Eq.
(99) at t = 0, results in the complex conjugates, C2 ≈ 0.10564−0.11980i and C1 ≈ 0.10564+
0.11980i.

Figure 2 shows the real part of the homogeneous solution, yh(t) (solid blue line), the
real part of the permanent solution (solid read line) and the real part of the complete solution
(solid green line) obtained using the proposed approach. The complete solution obtained with
the Newmark-beta method, ỹ(t), with ∆t = 0.001s is shown as the dark dotted line. It is possible
to infer that the numerical solution matches the complete solution obtained with the proposed
approach.

It is worth mentioning that although y(t) is complex, the maximum amplitude of the
complex part of the response was 8.3267×10−17 in the analysed time interval, which is zero
when compared to the real part. The same pattern was observed in all examples studied in this
chapter.

Since it is known that the response to this problem is real it is worth showing that this is
indeed just a matter of representation. To this end, Eqs. (98) and (99) can be transformed to a
real-valued form by applying the Euler identity in reverse, resulting in

yp(t) =− 156
1537

cos(0.5t)− 16
1537

sin(0.5t)− 2
85

cos(t)+
9
85

sin(t)+

124
1105

cos(1.5(t −1))+
48

1105
sin(1.5(t −1))+

2
13

cos(2t)−
3

13
sin(2t)− 2

425
cos(10t)− 9

425
sin(10t) , (100)

and

yh(t) =C2e−tcos(3t)+C1e−tsin(3t) , (101)

with C2 ≈ 0.2107 and C1 ≈ 0.0702. Complete solution y(t) = yp(t)+yh(t) is correct and satisfies
Eq. (92) for all t.
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Figure 2 – Homogeneous solution, yh(t) (solid blue line), permanent solution yp(t) (solid red
line) and complete solution y(t) (solid green line) obtained with the proposed
approach for periodic loading, Eq. (93). Complete solution obtained using the
Newmark-beta method for ∆t = 0.001 s, ỹ(t), is shown as a dark dotted line.

2.4.2 Polynomial excitation

Polynomial excitations can be used, for example, to model strain in a viscoelastic testing
sample, since polynomials are smooth functions and can be tailored to match specific shapes and
paths. Thus, finding analytical solutions to this type of excitation can be useful for determining
properties of the viscoelastic medium using such kind of experiments. Polynomial excitations
are also commonly found in RCL circuits.

Assuming a polynomial excitation in the form

f̄ (t) =
np

∑
k=0

ck (t − ts)
k , (102)

where ck ∈ R are coefficients, np is the number of terms and ts ∈ R a time shift.
Applying Eq. (102) into Eq. (81) yields

yp(t) = exp(− f2,1,2t)
∫

exp
((

f2,1,2 − k̂
)

t
)(∫

exp
(
k̂t
) np

∑
k=0

ck (t − ts)
k dt

)
dt, (103)

as integration is a linear operator, the summation can be transferred to the whole integration and
the coefficient of each power of t can also be put out of the integral,
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yp(t) = exp(− f2,1,2t)
np

∑
k=0

ck

∫
exp
((

f2,1,2 − k̂
)

t
)(∫

exp
(
k̂t
)
(t − ts)

k dt
)

dt. (104)

The convolution of a polynomial over an exponential is recursively evaluated using
integration by parts. For it, let the power of t be a positive integer α . The first integration by
parts is

∫ t

0
exp(β t)(t − ts)

α dt =
∫ t

0

.(
1
β

exp(β t)
)
(t − ts)

α dt =

1
β

exp(β t)(t − ts)
α

∣∣∣∣∣
t

0

− 1
β

α

∫
exp(β t)(t − ts)

α−1 dt, (105)

such that another convolution with a smaller power appeares in the RHS of Eq. (105). This
procedure can be used recursively until the null power, where the integral is over the exponential
only,

∫ t

0
exp(β t)(t − ts)

α dt =
1
β
(t − ts)

α exp(β t)

∣∣∣∣∣
t

0

−
(

1
β

)2

α (t − ts)
α−1 exp(β t)

∣∣∣∣∣
t

0

+

(
1
β

)3

α (α −1)(t − ts)
α−2 exp(β t)

∣∣∣∣∣
t

0

−
(

1
β

)4

α (α −1)(α −2)(t − ts)
α−3 exp(β t)

∣∣∣∣∣
t

0

. . .

+(−1)α

(
1
β

)α

α!
∫

exp(β t)(t − ts)
α−α dt. (106)

Rarranging the terms,

∫ t

0
exp(β t)(t − ts)

α dt =

α

∑
l=1

(−1)l+1
(

1
β

)l
α!

(α − l +1)!
(t − ts)

α−l+1 exp(β t)

∣∣∣∣∣
t

0

+(−1)α

(
1
β

)α

α! exp(β t)
(

1
β

)
, (107)

which can be further simplified to

∫ t

0
exp(β t)(t − ts)

α dt =

α+1

∑
l=1

(−1)l+1
(

1
β

)l
α!

(α − l +1)!
(t − ts)

α−l+1 exp(β t)

∣∣∣∣∣
t

0

. (108)
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Applying this result to Eq. (104) and neglecting the evaluation of this integral at t = 0,
since it can be summed with constant C1, yields

yp(t) = exp(− f2,1,2t)
np

∑
k=0

ck

∫ t

0
exp
((

f2,1,2 − k̂
)

t
) k+1

∑
l=1

(−1)l+1 (k̂)−l

k!
(k− l +1)!

(t − ts)
k−l+1 exp

(
k̂t
)

dt. (109)

Again, for the same reason as for the periodic excitation case, if f2,1,2 − k̂ = 0, it can be
convoluted just as it is. Thus, rearranging terms, using the linearity of the integration operator
and defining r = k− l +1

yp(t) = exp(− f2,1,2t)
np

∑
k=0

ck

k+1

∑
l=1

(−1)l+1 (k̂)−l k!
r!

∫ t

0
exp( f2,1,2t)(t − ts)

r dt. (110)

Using the result from Eq. (108),

yp(t) = exp(− f2,1,2t)
np

∑
k=0

ck

k+1

∑
l=1

(−1)l+1 (k̂)−l k!
(r)!

r+1

∑
p=1

(−1)p+1 f−p
2,1,2

r!
(r+1− p)!

(t − ts)
r+1−p exp( f2,1,2t) , (111)

that can be further simplified to

yp(t) =
np

∑
k=0

ck

k+1

∑
l=1

(−1)l+1 (k̂)−l k!
r!

r+1

∑
p=1

(−1)p+1 f−p
2,1,2

r!
(r+1− p)!

(t − ts)
r+1−p , (112)

which is itself another polynomial.

Example with polynomial excitation
RLC circuits consist of resistors, inductors and capacitors, and are present in many

electrical and electronic applications, such as filters, control and even health-purposed circuits like
pacemakers (AGARWAL; LANG, 2005; IRWIN; NELMS, 2006). Various excitation functions
in electric circuitry problems can be modelled by polynomials, at least locally, and the ramp
function is a traditional example (a first order polynomial).

In this example, the ramp function has unitary slope,

f̄ (t) = t, (113)

and the circuit has resistance of 0.5 Ω, capacitance of 1 F , and inductance of 0.1 H. Thus, the
circuit differential equation is
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ÿ(t)+2ẏ(t)+10y(t) = t, (114)

with t ∈ [0,4], and homogeneous initial conditions u0 = 0 and v0 = 0 at t0 = 0.
Steps used to solve Eq. (112), yp(t), are depicted in an algorithm form in Alg. 2, resulting

in yp(t) = 0.1t − 0.02. Since c̄− 4k̄ = −36 =⇒ f2,1,2 − k̂ ̸= 0, the homogeneous solution is
given by Eq. (84), yielding a linear system of equations for its integration constants, C1 and C2,

[
exp(0) exp(0)

− f2,1,2 exp(0) −k̂ exp(0)

]{
C1

C2

}
=

{
u0 − yp(0)
v0 − ẏp(0)

}
, (115)

which simplifies to

[
1 1

−1−3i −1+3i

]{
C1

C2

}
=

{
0.02
−0.1

}
, (116)

whose solution is C1 = 0.0100−0.0133i and C2 = 0.0100+0.0133i. Thus, the complete solution
is

y(t) = 0.1t −0.02+(0.0100−0.0133i)exp(−(1+3i) t)+

(0.0100+0.0133i)exp(−(1−3i) t) , (117)

or, by using the Euler identity,

y(t) = 0.1t −0.0266exp(−t)sin(3t)+0.02exp(−t)cos(3t)−0.02. (118)

Figure 3 shows (the real part) of the homogeneous solution yh(t) (solid blue line), the
permanent solution yp(t) (solid red line) and the complete solution y(t) (solid green line) obtained
with the proposed approach for the polynomial excitation (linear ramp). The complete solution
obtained with the Newmark-beta method ỹ(t) (dotted line) for ∆t = 0.001s matches the complete
solutions obtained with the proposed approach. The complex part of the solution is negligible
when compared to the real part (numerically zero) for all t.
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Algorithm 1: Evaluation of Eq. (112)
k = 0

c0 = 0
k = 1

c1 = 1
l = 1 =⇒ (−1)l+1 (k̂)−l k!

r! = 0.1+0.3i
p = 1 =⇒ (−1)p+1 f−p

2,1,2
r!

(r+1−p)! (t − ts)
r+1−p = (0.1−0.3i) t

p = 2 =⇒ (−1)p+1 f−p
2,1,2

r!
(r+1−p)! (t − ts)

r+1−p = 0.08+0.06i

l = 2 =⇒ (−1)l+1 (k̂)−l k!
r! = 0.08−0.06i

p = 1 =⇒ (−1)p+1 f−p
2,1,2

r!
(r+1−p)! (t − ts)

r+1−p = 0.1−0.3i

yp = (1(0.1+0.3i)(0.1−0.3i) t)+(1(0.1+0.3i)(0.08+0.06i))+
(1(0.08−0.06i)(0.1−0.3i))
yp = 0.1t −0.02

Figure 3 – Homogeneous solution yh(t) (solid blue line), permanent solution yp(t) (solid red
line) and complete solution y(t) (solid green line) obtained with the proposed

approach for the polynomial excitation (linear ramp). The complete solution obtained
with the Newmark-beta method ỹ(t) is shown as a dark dotted line.
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2.5 SECOND ORDER ODES WITH CONSTANT COEFFICIENTS - DISCONTINUOUS
EXCITATIONS

Dirac’s delta excitation (or unitary impulse) can be used, for example, to model impact
loading in mechanical systems and it is fundamental for real applications in machinery
and infrastructure submitted to such type of loads, like hammers, pistons, shock absorbers,
suspensions and landing gears, to name a few. Its a not trivial loading to model since it is not
even a function. Thus, its modelling in numerical models is usually approximated to equivalent
continuous functions with unitary integral withing a very small time span around the time of
impact (EFTEKHARI, 2015).

Other important discontinuous excitation is the unitary step (Heaviside). Step functions
can be used to parameterize various discontinuous excitations in engineering, especially in
mechanical and electrical engineering, since mechanical force and electrical current can be
switch on and off and have its amplitude modulated in a non-smooth way, (AGARWAL; LANG,
2005; IRWIN; NELMS, 2006; HUMAR, 2005; KELLY, 2006; KANWAL, 2011). In most
applications, the solution of the differential equation with this type of excitation is given by
Laplace Transform, (AGARWAL; LANG, 2005; IRWIN; NELMS, 2006; BOYCE; DIPRIMA,
2001; HUMAR, 2005), whose task of finding its inverse rapidly gains complexity as the excitation
function becomes more complicated. Thus, the generalized integrating factor brings a systematic
way of finding solutions for these important excitation class of functions without the need of
resorting to inverse operations or inverse tables and partial fractions.

2.5.1 Particular solution due to step functions - Heaviside

Let the excitation be defined as a sum of functions fk(t) multiplied by a step functions,

f̄ (t) =
nk

∑
k=1

fk(t)H (t − tk), (119)

where

H (t − tk) =

{
0 t < tk
1 t ≥ tk

(120)

is the Heaviside, or unitary step at tk. Inserting Eq. (119) into Eq. (81) yields

yp(t) = exp(− f2,1,2t)
∫ t

0
exp
((

f2,1,2 − k̂
)

t
)∫ t

0
exp
(
k̂t
) nk

∑
k=1

fk(t)H (t − tk)dt dt, (121)

as integration is a linear operator,
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yp(t) =
nk

∑
k=1

exp(− f2,1,2t)
∫ t

0
exp
((

f2,1,2 − k̂
)

t
)∫ t

0
exp
(
k̂t
)

fk(t)H (t − tk)dt dt. (122)

Using Eq. (360) in Eq. (122) for the inner integral results in

yp(t) =
nk

∑
k=1

exp(− f2,1,2t)
∫ t

0
exp
((

f2,1,2 − k̂
)

t
)∫ t

tk
exp
(
k̂t
)

fk(t)dt H (t − tk)dt, (123)

and for the outer integral

yp(t) =
nk

∑
k=1

exp(− f2,1,2t)
∫ t

tk
exp
((

f2,1,2 − k̂
)

t
)∫ t

tk
exp
(
k̂t
)

fk(t)dt dt H (t − tk). (124)

2.5.1.1 Initial conditions and the Heaviside

Let a second order ordinary differential equation have a function f̄ (t) multiplied by a
Heaviside step as excitation,

ÿ(t)+ c̄ẏ(t)+ k̄y(t) = f̄ (t)H (t − tH) , (125)

which is the same as solving two differential equations,

ÿ1(t)+ c̄ẏ1(t)+ k̄y1(t) = 0, if t < tH

ÿ2(t)+ c̄ẏ2(t)+ k̄y2(t) = f̄ (t). otherwise
, (126)

At tH , assuming continuity, the initial conditions of y2 must be equal to the values of y1 and
its derivative at this point, i.e., y1 (tH) = y2 (tH) and ẏ1 (tH) = ẏ2 (tH). As there is no excitation
before tH and a purely particular solution is sought after, the solution between t = 0 and t = tH is
y1(t) = 0 and, consequently ẏ1(t) = 0. Thus, it follows that y2(tH) = 0 and ẏ2(tH) = 0.

It is straightforward that this holds true even when tH → 0. Therefore, all solutions
given by Eq. (124), i.e. using Heaviside as excitation, have yp(t) = 0 and ẏp(t) = 0 as fixed
initial conditions. Thus, the imposition of non-homogeneous initial conditions, y(t0) = u0 and
ẏ(t0) = v0, at t0 ≤ tH gets even simpler, through the following system of linear equations if
f2,1,2 − k̂ ̸= 0,

[
exp(− f2,1,2t0) exp

(
−k̂t0

)
− f2,1,2 exp(− f2,1,2t0) −k̂ exp

(
−k̂t0

)]{C1

C2

}
=

{
u0

v0

}
, (127)

which, particularized for t0 = 0, simplifies to
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[
1 1

− f2,1,2 −k̂

]{
C1

C2

}
=

{
u0

v0

}
, (128)

whose solution is

C2 =
v0 + f2,1,2u0

f2,1,2 − k̂
, (129)

C1 = u0 −C2. (130)

Otherwise, if f2,1,2 − k̂ = 0, one must use Eq. (83) to assemble the system of equations,

[
exp(− f2,1,2t0) t0 exp(− f2,1,2t0)

− f2,1,2 exp(− f2,1,2t0) exp(− f2,1,2t0)− t0 f2,1,2 exp(− f2,1,2t0)

]{
C1

C2

}
=

{
u0

v0

}
,

(131)

which can be multiplied by exp( f2,1,2t0),

[
1 t0

− f2,1,2 1− t0 f2,1,2

]{
C1

C2

}
= exp( f2,1,2t0)

{
u0

v0

}
, (132)

and, then pivoted to

[
1 t0
0 1

]{
C1

C2

}
= exp( f2,1,2t0)

{
u0

v0 + f2,1,2u0

}
. (133)

If t0 = 0, it is further simplified to

[
1 0
0 1

]{
C1

C2

}
=

{
u0

v0 + f2,1,2u0

}
, (134)

whose solution is

C2 = v0 + f2,1,2u0, (135)

C1 = u0. (136)

Thus, the constants C1 and C2 can be evaluated without any knowledge about the
derivative of the particular response.

Example with Heaviside function
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Consider the problem from (BOYCE; DIPRIMA, 2001)

ÿ(t)+4y(t) = f̄ (t) =


0, 0 ≤ t < 5
t−5

5 , 5 ≤ t < 10

1, t ≥ 10

with homogeneous initial conditions u0 = v0 = 0 at t0 = 0. The excitation function can be written
as

f̄ (t) =
t −5

5
H (t −5)− t −10

5
H (t −10). (137)

Using Eq. (74)

f2,1,2 =
0+

√
0−16
2

= 2i, (138)

and using Eq. (124)

yp(t) = e−2it
(∫ t

5
e4it
∫ t

5
e−2it

(
t −5

5

)
dt dtH (t −5)+∫ t

10
e4it
∫ t

10
e−2it

(
10− t

5

)
dt dtH (t −10)

)
(139)

such that

yp(t) =

(
ie4it +

(
4e10it −20e10i)e2it − ie20i)e−2it−10i

80
H (t −5)+

−
(
ie4it +

(
4e20it −40e20i)e2it − ie40i)e−2it−20i

80
H (t −10). (140)

The complete analytical solution given in (BOYCE; DIPRIMA, 2001) (using Laplace Transform)
is

y(t) =
[

t −5
4

− sin(2t −10)
8

]
H (t −5)

5
−
[

t −10
4

− sin(2t −20)
8

]
H (t −10)

5
, (141)

the same result of Eq. (140) after using the Euler identity (as the homogeneous response is zero
in this example).

Figure 4 shows the (real part of) the homogeneous solution (solid blue line), the permanent
solution, Eq. (140), (solid red line) and the complete response (solid green line). As the initial
conditions are null, the homogeneous solution is always zero and the green line overlaps the red
line for all t. The reference solution, Eq. (141) is shown as a dark dotted line. The maximum
complex part of the complete solution has a magnitude of 1×10−18, negligible when compared
to the real part.
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Figure 4 – Homogeneous solution (solid blue line), particular solution (solid red line) and
complete response (solid green line) due to an unitary impulse at t = 5s. Reference

solution given by (BOYCE; DIPRIMA, 2001) is shown as a dark dotted line.

2.5.2 Particularizing fk(t) as a polynomial

Analytical functions can be approximated using polynomials, the intuition behind Taylor
series and polynomial regression. Thus, polynomial functions play an important role in analysis,
applied mathematics and engineering, which makes them an interesting particularization for
fk(t) in Eq. (119). Let the excitation function f̄ (t) be given by

f̄ (t) =
nk

∑
k=1

nlk

∑
l=0

ck,lt lH (t − tk) , (142)

a series of polynomials of order nlk multiplied by Heavisides at times tk. As an example, consider
the loading shown in Figure 5. This complicate loading can be written using Eq. (142) as

f̄ (t) = (2t)H (t−0)+
(
−1+2t − t2)H (t−1)+

(
3−4t + t2)H (t−3)+(−2)H (t−5),

(143)

such that nk = 4.
The particular solution for such general loading can be obtained in closed form. Applying

Eq. (142) in Eq. (124) and using the linearity of the integration operator yields
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Figure 5 – Loading comprised of a linear ramp (0 < t < 1), a quadratic equation (1 < t < 3) a
constant value (3 < t < 5) and a sudden change to 0 for t > 5.

yp(t) =
nk

∑
k=1

nlk

∑
l=0

exp(− f2,1,2t)
∫ t

tk
exp
((

f2,1,2 − k̂
)

t
)∫ t

tk
exp
(
k̂t
)

ck,lt l dt dt H (t − tk). (144)

The inner convolution is evaluated by using Eq. (108)

yp(t) =
nk

∑
k=1

nlk

∑
l=0

ck,l exp(− f2,1,2t)
∫ t

tk
exp
((

f2,1,2 − k̂
)

t
)( l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts exp
(
k̂t
)

−
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts
k exp

(
k̂tk
))

dt H (t − tk), (145)

where s = l − p+ 1. To further evaluate this integral, two cases will be separately addressed
- f2,1,2 − k̂ ̸= 0 and the opposite, respectively. Thus, for the first case, the integral of the outer
convolution is split among its integrands,

yp(t) =
nk

∑
k=1

nlk

∑
l=0

ck,l exp(− f2,1,2t)

(∫ t

tk
exp( f2,1,2t)

l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts dt

−
∫ t

tk
exp
(

f2,1,2t + k̂ (tk − t)
) l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts
k dt

)
H (t − tk). (146)
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Taking the constant terms out of the integrals

yp(t) =
nk

∑
k=1

nlk

∑
l=0

ck,l exp(− f2,1,2t)

(
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

∫ t

tk
exp( f2,1,2t) ts dt

−
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts
k

∫ t

tk
exp
(

f2,1,2t + k̂ (tk − t)
)

dt

)
H (t − tk), (147)

which has, then, the first convolution evaluated again using Eq. (108), and the second convolution
evaluated by simple integration,

yp(t) =
nk

∑
k=1

H (t − tk)
nlk

∑
l=0

ck,l exp(− f2,1,2t)

{
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

{
s+1

∑
q=1

(−1)q+1

(
1

f2,1,2

)q (s)!
(s+1−q)!

ts+1−q exp( f2,1,2t)−
s+1

∑
q=1

(−1)q+1
(

1
f2,1,2

)q

s!
(s+1−q)!

ts+1−q
k exp( f2,1,2tk)

}
−

l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts
kexp

(
f2,1,2t + k̂ (tk − t)

)
− exp

 f2,1,2tk + k̂ (tk − tk)︸ ︷︷ ︸
0

 1
f2,1,2 − k̂

 . (148)

Rearranging the terms

yp(t) =
nk

∑
k=1

H (t − tk)
nlk

∑
l=0

ck,l

{{
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

s+1

∑
q=1

(−1)q+1
(

1
f2,1,2

)q

s!
(s+1−q)!

ts+1−q
}
+ exp( f2,1,2 (tk − t))

{
1

f2,1,2 − k̂

l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts
k

−
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

s+1

∑
q=1

(−1)q+1
(

1
f2,1,2

)q s!
(s+1−q)!

ts+1−q
k

}

−exp
(
k̂ (tk − t)

)( 1
f2,1,2 − k̂

)
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts
k

}
, (149)

which, with further simplification, can be written as



53

yp(t) =
nk

∑
k=1

H (t − tk)
nlk

∑
l=0

ck,l

{{
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

s+1

∑
q=1

(−1)q+1
(

1
f2,1,2

)q

s!
(s+1−q)!

ts+1−q
}
+ exp( f2,1,2 (tk − t))

{
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

{
ts
k

f2,1,2 − k̂

−
s+1

∑
q=1

(−1)q+1
(

1
f2,1,2

)q s!
(s+1−q)!

ts+1−q
k

}}

−exp
(
k̂ (tk − t)

)( 1
f2,1,2 − k̂

)
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts
k

}
. (150)

Now, for the second case, i.e. f2,1,2 − k̂ = 0, Equation (145) can have the integrand split
in two parcels, one that is dependent upon t and, hence, can be integrated just like in the first
case, and the one parcel that is constant, to which the condition f2,1,2 − k̂ = 0 must be applied,

yp(t) =
nk

∑
k=1

nlk

∑
l=0

ck,l exp(− f2,1,2t)

[∫ t

tk
exp
((

f2,1,2 − k̂
)

t
) l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts exp
(
k̂t
)

dt

−
∫ t

tk
exp
((

f2,1,2 − k̂
)

t
) l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts
k exp

(
k̂tk
)

dt

]
H (t − tk) .

(151)

Applying f2,1,2 − k̂ = 0 and that the integral is a linear operator, terms can be rearranged to

yp(t) =
nk

∑
k=1

nlk

∑
l=0

ck,l exp(− f2,1,2t)

[
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

∫ t

tk
exp( f2,1,2t) ts dt

−
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts
k exp

(
k̂tk
)∫ t

tk
1dt

]
H (t − tk) . (152)

The first convolution in previous equation can be evaluated using Eq. (108),

yp(t) =
nk

∑
k=1

nlk

∑
l=0

ck,l exp(− f2,1,2t)

[
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

[
s+1

∑
q=1

(−1)q+1
(

1
f2,1,2

)q

(
s!

(s+1−q)!
ts+1−q exp( f2,1,2t)

)
−

s+1

∑
q=1

(−1)q+1
(

1
f2,1,2

)q s!
(s+1−q)!

ts+1−q
k exp( f2,1,2tk)

]
−

l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts
k exp

(
k̂tk
)
(t − tk)

]
H (t − tk) , (153)

which can be finally simplified to
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yp(t) =
nk

∑
k=1

nlk

∑
l=0

ck,l

[
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

[
s+1

∑
q=1

(−1)q+1
(

1
f2,1,2

)q

s!
(s+1−q)!

(
ts+1−q − ts+1−q

k exp( f2,1,2 (tk − t))
)]

−
l+1

∑
p=1

(−1)p+1 (k̂)−p l!
s!

ts
k exp

(
k̂tk − f2,1,2t

)
(t − tk)

]
H (t − tk) . (154)

Thus, two expressions were derived for the particular response due to Heaviside steps
multiplied by polynomials - one for critical damping, Eq. (154), and another for any other
damping, Eq. (150).

Example
Consider a mechanical system described by

ÿ(t)+ ẏ(t)+4y(t) = f̄ (t) (155)

with non-homogeneous initial conditions u0 =−0.2 and v0 = 0.1 at t0 = 0. The loading is given
by

f̄ (t) = (2t)H (t−0)+
(
−1+2t − t2)H (t−1)+

(
3−4t + t2)H (t−3)+(−2)H (t−5),

(156)

shown in Figure 5.
Hence, c̄2 − 4k̄ = −15

4 =⇒ f2,1,2 − k̂ ̸= 0, and Equation (150) can be used. Figure 6
shows the solution obtained for this example. The homogeneous response is shown as a solid
blue line, the particular response as a solid red line and the complete response as a solid green
line. The numerical solution obtained using the Newmark-beta method with ∆t = 0.001 s is
shown as a dark dotted line.

2.5.3 Particular solution due to unitary impulses - Dirac’s deltas

Consider that the normalized excitation f̄ (t) is given by nδ Dirac’s deltas at times tk

f̄ (t) =
nδ

∑
k=1

ckδ (t − tk), (157)

with coefficients ck ∈ R. Particular solution given by Eq. (81) can be written as

yp(t) = exp(− f2,1,2t)
∫ t

0
exp
((

f2,1,2 − k̂
)

t
)(∫ t

0
exp
(
k̂t
) nδ

∑
k=1

ckδ (t − tk)dt

)
dt, (158)
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Figure 6 – Homogeneous response (solid blue line), particular response (solid red line) and
complete response (solid green line) for the loading f̄ (t) given in Fig. 5 and

non-homogeneous initial conditions. The complete solution obtained using the
Newmark-beta method is shown as a dark dotted line.

or, using the linearity of the integral

yp(t) =
nδ

∑
k=1

ck exp(− f2,1,2t)
∫ t

0
exp
((

f2,1,2 − k̂
)

t
)(∫ t

0
exp
(
k̂t
)

δ (t − tk)dt
)

dt. (159)

The inner integral can be found by using the Filtering property of the Dirac’s delta
(Appendix A.3, Eq. (633)), such that

∫ t

0
exp
(
k̂t
)

δ (t − tk)dt = exp
(
k̂tk
)
H (t − tk) (160)

where H (t − tk) is the Heaviside function at tk. Thus,

yp(t) =
nδ

∑
k=1

ck exp(− f2,1,2t)
∫ t

0
exp
((

f2,1,2 − k̂
)

t
)

exp
(
k̂tk
)
H (t − tk)dt, (161)

or

yp(t) =
nδ

∑
k=1

ck exp(− f2,1,2t)exp
(
k̂tk
)∫ t

0
exp
((

f2,1,2 − k̂
)

t
)
H (t − tk)dt. (162)

This convolution over a function multiplied by the Heaviside function can be evaluated
splitting the integration domain according to the step function, thus, resulting in a change of
integration limits,
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∫ t

0
exp(β t) fk(t)H (t−tk)dt =

∫ tk

0
exp(β t) fk(t)H (t − tk)dt︸ ︷︷ ︸

=0

+
∫ t

tk
exp(β t) fk(t)H (t−tk)dt,

(163)

where β is a generic coefficient, such that∫ t

0
exp(β t) fk(t)H (t − tk)dt =

(∫ t

tk
exp(β t) fk(t)dt

)
H (t − tk). (164)

Thus, Eq. (162) can be written as

yp(t) =
nδ

∑
k=1

ck exp(− f2,1,2t)exp
(
k̂tk
)∫ t

tk
exp
((

f2,1,2 − k̂
)

t
)

dt H (t − tk). (165)

As in Eq. (145), Equation (165) also must be treated in two different cases. For the first one,
when f2,1,2 − k̂ = 0,, the particular solution is given by

yp(t) =
nδ

∑
k=1

ck

f2,1,2 − k̂

(
exp
(
k̂(tk − t)

)
− exp( f2,1,2(tk − t))

)
H (t − tk). (166)

For the opposite case, when damping is critical, the particular solution is given by

yp(t) =
nδ

∑
k=1

ck exp
(
k̂tk − f2,1,2t

)
(t − tk)H (t − tk). (167)

It must be observed that the particular solution contains a Heaviside such that the results
obtained in Appendix C.2 are also valid for unitary impulse as excitation.

Additionally, for under damped problems, f2,1,2 is complex and k̂ = k̄
f2,1,2

= f ∗2,1,2 (where
∗ stands for complex-conjugate). Thus

yp(t) =
nδ

∑
k=1

ck

2iℑ( f2,1,2)

(
e f ∗2,1,2(tk−t)− e f2,1,2(tk−t)

)
H (t − tk), (168)

or

yp(t) =
nδ

∑
k=1

ck

2iℑ( f2,1,2)
eℜ( f2,1,2)(tk−t)

(
e−iℑ( f2,1,2)(tk−t)− eiℑ( f2,1,2)(tk−t)

)
H (t − tk) (169)

and user Euler’s identity for sin

yp(t) =
nδ

∑
k=1

ck

2ℑ( f2,1,2)
eℜ( f2,1,2)(tk−t) sin(ℑ( f2,1,2)(t − tk))H (t − tk). (170)

First example with unitary impulse
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Consider a mechanical system described by the following ODE

2ÿ(t)+ ẏ(t)+2y(t) = δ (t −5), (171)

with homogeneous initial conditions u0 = 0 and v0 = 0 for t0 = 0. The analytical solution is
(BOYCE; DIPRIMA, 2001)

yp(t) =

{
0 t < 5

2√
15

e
5−t

4 sin
(√

15
4 (t −5)

)
t ≥ 5

. (172)

From the data, c̄ = 1/2, k̄ = 1, nδ = 1 and t1 = 5. Hence, c̄2 − 4k̄ = −15
4 =⇒ f2,1,2 − k̂ ̸= 0.

Constant f2,1,2 can be found by solving Eq. (74) such that f2,1,2 = 0.25+0.96824i. Equation
(166) reduces to

yp(t) =
1

2(0.96824)i

(
e(0.25−0.9682i)(5−t)− e(0.25+0.96824i)(5−t)

)
H (t −5) (173)

and, although complex, has negligible complex values, matching the analytical solution.
Alternatively, using Eq. (170)

yp(t) =
1

2(0.96824)
e0.25(5−t) sin(0.96824(t −5))H (t −5) (174)

which is also identical to the analytical solution provided by (BOYCE; DIPRIMA, 2001). Figure
7 shows that the homogeneous solution (solid blue line) is always zero, as expected (due to
the homogeneous initial conditions of this example). The complete solution (solid green line)
obtained with the proposed approach overlaps the solid red line of the particular response, since
they are always equal in this example. The analytical reference solution, (BOYCE; DIPRIMA,
2001), is shown as a dark dotted line.

Second example with unitary impulse
Consider a mechanical system subjected to two opposite impacts at t = 1 and t = 5s

ÿ(t)+ ẏ(t)+4y(t) = δ (t −1)−δ (t −5), (175)

with non-homogeneous initial conditions u0 =−0.2 and v0 = 0.1 for t0 = 0.
From the data, c̄ = 1, k̄ = 4 and nδ = 2, with t1 = 1, c1 = 1.0, t2 = 5 and c2 =−1. Hence,

c̄2 −4k̄ = −15 =⇒ f2,1,2 − k̂ ̸= 0. Constant f2,1,2 can be found by solving Eq. (74) such that
f2,1,2 = 0.5+1.93649i, an under damped problem.

Figure 8 shows the (real part of) homogeneous solution yh(t) (solid blue line), the
permanent solution yp(t) (solid red line) and the complete solution y(t) (solid green line)
obtained with the proposed approach for the two opposite unitary impulses at t = 1 and t = 5s. It
is worth noticing that the complete solution is equal to yh(t) for t < 1 s (before the first unitary
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Figure 7 – Homogeneous solution yh(t) (solid blue line), permanent solution yp(t) (solid red
line) and complete solution y(t) (solid green line) obtained with the proposed

approach for unitary impulse at 5s. The analytical reference solution yre f (t) is shown
as a dotted line. The red line cannot be seen in this image since the green line

(complete solution) is over the red line (particular solution) for all t.

impulse), as expected. The complex part of the solution is negligible when compared to the real
part (numerically zero) for all t.

Regarding the numerical solution, each impulse was approximated by (EFTEKHARI,
2015)

δ (t − t0)≈
1

2ε

(
1+ cos

(
π(t − t0)

ε

))
t0 − ε ≤ t ≤ t0 + ε. (176)

with ε = ∆t (the proposed methodology does not need such approximation). The complete
solution obtained with the Newmark-beta method ỹ(t) (dotted line) matches the complete
solutions obtained with the proposed approach when a small time step of ∆t = 0.001s is used.



59

Figure 8 – Homogeneous solution yh(t) (solid blue line), permanent solution yp(t) (solid red
line) and complete solution y(t) (solid green line) obtained with the proposed

approach for two opposite unitary impulses at t = 1 and t = 5. The complete solution
obtained with the Newmark-beta method ỹ(t) is shown as a dark dotted line.

2.6 FINAL REMARKS OF THE CHAPTER

This chapter presented the formulation for the generalization of the Leibniz integrating
factor to linear ODEs with order m ≥ 2. The new method, Generalized integrating Factor or GIF,
is a systematic approach to reduce order of the original ODE by applying integrating factors
dependent upon the independent variable only. The technique was applied to important ODEs
and the case of constant coefficients was thoroughly studied due to its application in Engineering.

Various excitation functions yielded analytical solutions in closed form, like periodic and
polynomial functions. Closed form solutions were also obtained for discontinuous excitation, as
for Dirac’s delta impulse and Heaviside step function. The Heaviside case was particularized for
steps multiplied by polynomials, enlarging the range of applications with analytical solutions.

In contrast to previous and well established methods, like undetermined coefficients,
variation of parameters and Laplace transform, no knowledge of a candidate solution, nor of
the homogeneous solution, nor of the calculation of a inverse transformation was needed. The
solution was instead analytically derived by means of double convolutions. Table 1 shows
a summary of the main drawbacks of some well-established methods when compared to the
proposed approach. It is worth noting that, unlike most of the traditional approaches, the proposed
method can be used for time-dependent coefficients. As it will be discussed in the next chapter,
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these drawbacks make it hard to use most well-established methods to solve coupled systems of
ODEs, unlike the proposed approach.

Table 1 – Main drawbacks of well-established methods when compared to the proposed
approach

Method Drawback when compared to the proposed approach
Integral transforms 1 Need complicated algebraic operations and inverse transforms

State variables Doubles the dimensionality of the problem
Undetermined coefficients Needs a candidate particular solution

Variation of parameters Needs to know the homogeneous solution beforehand
Characteristic polynomial Needs a candidate homogeneous solution

[1] An example of integral transform is the Laplace transform.

Other interesting characteristic of the proposed approach is the fact that the solution
procedure does not make any assumption about the level of damping (coefficient c) and can be
used to sub, critically or super dampened problems without modifications.

For differential equations with general coefficients, the integrating factor depends on a
particular solution of a Riccati differential equation. It was shown that the coefficients themselves
might help finding a particular solution rather easily. Thus, the Riccati differential equation poses
no strictly direct barrier to the wide application of the method, capable of giving accurate results
and requiring no assumptions of solution candidates. Nonetheless, since this chapter focuses on
the constant coefficient case, a more profound study of the solution of the Riccati equation is not
carried out and is left for future works.
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3 EXTENSION OF THE GENERALIZED INTEGRATING FACTOR TO SYSTEMS
OF LINEAR ODES

Following from the applications in vibration analysis and electric circuitry simulation,
which were discussed in Chapter 2, it is clear that solving systems of coupled linear ODEs is
paramount. One such example is vibrations in discrete mechanical systems, like in automobile
suspension systems, and another is vibrations in continuum systems discretized by FEM or BEM
(Boundary Element Method).

Given the importance of systems of linear ODEs in Engineering, this chapter will extend
the Generalized Integrating Factor to these systems. Also stemming from the applications, the
formulation will be particularized for constant matrix coefficients. The homogeneous and the
particular solutions will also be given in separate. The particular solution, for instance, will be
studied for different kinds of excitation, both continuous and discontinuous.

It will be shown that the solution of the system of ODEs with constant matrix coefficients
is linked to the solution of a matrix quadratic equation, whose solution is affected by damping.
In particular, it will be shown that the matrix quadratic equation has closed-form solution when
proportional damping is used, i.e. when the system has classical normal modes.

Running time experiments were carried out to assess the computational effort required
by the technique to solve such systems of ODEs. Then, the Generalized Integrating Factor was
compared to the Newmark-beta method and to the State Variables method. It was observed that
the proposed technique delivered exact solutions in the smallest time when compared to those
methods. Thus, the GIF method presents a clear advantage in both accuracy and in computational
effort.

3.1 THE GENERALIZED INTEGRATING FACTOR FOR SECOND ORDER COUPLED
SYSTEMS OF ODES

Consider the coupled system of n second order ODEs presented in Eq. (1), where M,
C and K are time-dependent n×n matrices, f is a general vector also depending on time t and
vector y is the solution. For easy of notation, explicit dependency on time t, (t), will not be
carried out in the following equations. Also, M is invertible and, consequently, Eq. (1) can be
multiplied by M−1 to the left, such that

Iÿ+ C̄ẏ+ K̄y = f̄. (177)

To solve this equation one start by splitting C̄ as

C̄ = F2,1,1 +F2,1,2 (178)

where both F2,1,1 and F2,1,2 are also n×n time dependent matrices, not necessarily real. Thus,

Iÿ+F2,1,1ẏ︸ ︷︷ ︸
π2,2

+F2,1,2ẏ+ K̄y︸ ︷︷ ︸
π2,1

= f̄. (179)
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Next step is to multiply Eq. (179) by an invertible n×n matrix µµµ2 (generalized integrating factor)
such that

µµµ2I︸︷︷︸
P2,2

ÿ+µµµ2F2,1,1︸ ︷︷ ︸
Ṗ2,2

ẏ+µµµ2F2,1,2︸ ︷︷ ︸
P2,1

ẏ+µµµ2K̄︸︷︷︸
Ṗ2,1

y = µµµ2f̄. (180)

Using the definition of P2,2 and its time derivative

Ṗ2,2 = µµµ2F2,1,1 =
.

(µµµ2I) = µ̇µµ2 (181)

and multiplying by µµµ
−1
2 results in

µµµ
−1
2 µ̇µµ2 = F2,1,1 (182)

such that it is fair to assume, when F2,1,1 and its integral commute,

µµµ2 = exp
(∫

F2,1,1 dt
)
. (183)

The same procedure can be applied to P2,1 and its time derivative

Ṗ2,1 = µµµ2K̄ =
.

(µµµ2F2,1,2) = µ̇µµ2F2,1,2 +µµµ2Ḟ2,1,2 (184)

and multiplying by µµµ
−1
2 to the left

K̄ = µµµ
−1
2 µ̇µµ2F2,1,2 + Ḟ2,1,2 (185)

such that

µµµ
−1
2 µ̇µµ2 =

(
K̄− Ḟ2,1,2

)
F−1

2,1,2 (186)

with solution

µµµ2 = exp
(∫ (

K̄− Ḟ2,1,2
)

F−1
2,1,2 dt

)
. (187)

Equating Eqs. (182) and (186)

F2,1,1 =
(
K̄− Ḟ2,1,2

)
F−1

2,1,2 (188)

such that

F2,1,1F2,1,2 =
(
K̄− Ḟ2,1,2

)
(189)

and using Eq. (178)

F2,1,1
(
C̄−F2,1,1

)
=
(

K̄− ˙̄C+ Ḟ2,1,1

)
(190)

such that

F2
2,1,1 =

˙̄C+F2,1,1C̄− K̄− Ḟ2,1,1 (191)
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is a coupled system of Riccati differential equations. Thus, by solving Eq. (191) it is possible to
find µµµ2 using Eq. (183). As both P2,2 and P2,1 depend on known µµµ2, it is possible to re-write Eq.
(180) as

.
(P2,2ẏ) +

.
(P2,1y) = µµµ2f̄ (192)

and integrating w.r.t time

(P2,2ẏ)+(P2,1y) =
∫

µµµ2f̄dt +C2 (193)

where C2 is a constant vector. Multiplying by another invertible time dependent matrix µµµ1

(generalized integrating factor)

µµµ1P2,2︸ ︷︷ ︸
P1,1

ẏ+µµµ1P2,1︸ ︷︷ ︸
Ṗ1,1

y = µµµ1

(∫
µµµ2f̄dt +C2

)
︸ ︷︷ ︸

h

(194)

such that

Ṗ1,1 = µµµ1P2,1 =
.(

µµµ1P2,2
)
= µ̇µµ1P2,2 +µµµ1Ṗ2,2 (195)

and by multiplying by µµµ
−1
1 to the left

µµµ
−1
1 µ̇µµ1 =

(
P2,1 − Ṗ2,2

)
P−1

2,2 (196)

with solution

µµµ1 = exp
(∫ (

P2,1 − Ṗ2,2
)

P−1
2,2 dt

)
. (197)

Again, P1,1 is known after evaluating µµµ1 and Eq. (194) can be written as
.

(P1,1y) = µµµ1h (198)

with solution

y = P−1
1,1

(∫
µµµ1

{∫
µµµ2f̄dt +C2

}
dt +C1

)
, (199)

where C2 is a constant vector. Complete solution can be split into its particular and homogeneous
counterparts as

yp = P−1
1,1

∫
µµµ1

∫
µµµ2f̄dt dt, (200)

and

yh = P−1
1,1

(∫
µµµ1C2 dt +C1

)
. (201)

This procedure can be time consuming depending on how matrices M, C and K vary
with time. Other issue is the solution of Eq. (191).
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It is worth to mention that the proposed procedure does not depend on a time discretization
and, despite being solved by using a computer, is analytical. For example, one can evaluate
the response y(t) at any given time without knowing the solution of previous times. Numerical
methods, like the well established Newmark-beta method, work in a total different way, building
the solution from time step to time step. Approximation errors associated to the interpolation
hypothesis of each particular numerical method are sensitive to "large" time steps, such that
approximation errors (as well as numerical errors) are expected when using methods relying on
approximations.

In the following, the special case of constant coefficients is addressed.

3.2 CONSTANT COEFFICIENTS

Consider a discrete system of n coupled ODEs with constant coefficients. Recalling Eq.
(180)

µµµ2I︸︷︷︸
P2,2

ÿ+µµµ2F2,1,1︸ ︷︷ ︸
Ṗ2,2

ẏ+µµµ2F2,1,2︸ ︷︷ ︸
P2,1

ẏ+µµµ2K̄︸︷︷︸
Ṗ2,1

y = µµµ2f̄. (202)

For the following steps, the time-derivatives of F2,1,1 and F2,1,2 are considered null, since these
partitions are constant just like matrix C̄. Thus,

Ṗ2,2 = µ̇µµ2 = µµµ2F2,1,1. (203)

Multiplying to the left by the inverse of the integrating factor yields

µµµ
−1
2 µ̇µµ2 = F2,1,1. (204)

The same procedure can be performed to P2,1,

Ṗ2,1 = µµµ2K̄ = µ̇µµ2F2,1,2, (205)

which, with further simplifications, yields

µµµ
−1
2 µ̇µµ2 = K̄F−1

2,1,2. (206)

Equating Eq. (204) to Eq. (208), and multiplying to the right by F2,1,2 = C̄−F2,1,1 results
in

F2,1,1
[
C̄−F2,1,1

]
= K̄, (207)
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further simplifying this equation yields

F2
2,1,1 −F2,1,1C̄+ K̄ = 0, (208)

where 0 is the null n×n matrix. The analytical solution procedure for this matrix polynomial
equation is discussed in Subsec. 3.2.1.

The first generalized integrating factor, µµµ2, is found by means of Eq. (204)

µµµ2 = exp
(∫

F2,1,1 dt
)
= exp(F2,1,1t) . (209)

Equation (202) can be written as
.

(P2,2ẏ) +
.

(P2,1y)= µµµ2f̄ (210)

which can be integrated w.r.t time, yielding

µµµ2ẏ+µµµ2F2,1,2y =
∫

µµµ2f̄dt +C2, (211)

where C2 is a constant vector. This is a system of first order ordinary differential equations. Thus,
by multiplying the equation to the left by µµµ

−1
2 and by another generalized integrating factor µµµ1,

and using F2,1,2 = C̄−F2,1,1, yields

µµµ1I︸︷︷︸
P1,1

ẏ+µµµ1
[
C̄−F2,1,1

]︸ ︷︷ ︸
Ṗ1,1

y = µµµ1µµµ
−1
2

∫
µµµ2f̄dt +µµµ1µµµ

−1
2 C2. (212)

Repeating the same procedure for the second integrating factor,

Ṗ1,1 = µ̇µµ1 = µµµ1
[
C̄−F2,1,1

]
, (213)

or

µµµ
−1
1 µ̇µµ1 = C̄−F2,1,1, (214)

such that

µµµ1 = exp
(∫ [

C̄−F2,1,1
]

dt
)
= exp

([
C̄−F2,1,1

]
t
)
. (215)

Equation (212) can be written as
.

(P1,1y)= µµµ1µµµ
−1
2

∫
µµµ2f̄dt +µµµ1µµµ

−1
2 C2, (216)

such that by integrating and multiplying to left by µµµ
−1
1 yields
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y = µµµ
−1
1

∫
µµµ1µµµ

−1
2

∫
µµµ2f̄dt dt +µµµ

−1
1

∫
µµµ1µµµ

−1
2 C2 dt +µµµ

−1
1 C1, (217)

where C1 is another constant vector. As the integrating factors are already known for this case,
they can be substituted in previous equation, resulting in

y = exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)
∫

exp(F2,1,1t) f̄dt dt

+exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)C2 dt

+exp
(
−
[
C̄−F2,1,1

]
t
)

C1. (218)

According to (GALLIER, 2011), exp(At) is an exponential map and, for such map,
the property exp(A)exp(B) = exp(A+B) holds true if AB = BA (A and B commute).
Consequently, if C̄ and F2,1,1 commute the exponential multiplications in Eq. (513) can be
grouped together as

y = exp
([

F2,1,1 − C̄
]

t
)∫

exp
([

C̄−2F2,1,1
]

t
)∫

exp(F2,1,1t) f̄dt dt +

exp
([

F2,1,1 − C̄
]

t
)∫

exp
([

C̄−2F2,1,1
]

t
)

C2 dt + exp
([

F2,1,1 − C̄
]

t
)

C1. (219)

If C̄−2F2,1,1 is non-singular, the time-derivative of the exponential map can be used to
evaluate the integral with the C1 term in Eq. (219),

y = exp
([

F2,1,1 − C̄
]

t
)∫

exp
([

C̄−2F2,1,1
]

t
)∫

exp(F2,1,1t) f̄dt dt +

exp(−F2,1,1t)
[
C̄−2F2,1,1

]−1 C2 + exp
([

F2,1,1 − C̄
]

t
)

C1, (220)

where, again, there is a particular solution,

yp = exp
([

F2,1,1 − C̄
]

t
)∫

exp
([

C̄−2F2,1,1
]

t
)∫

exp(F2,1,1t) f̄dt dt, (221)

and a homogeneous solution,

yh = exp(−F2,1,1t)
[
C̄−2F2,1,1

]−1 C2 + exp
([

F2,1,1 − C̄
]

t
)

C1, (222)

which can be further simplified if C2 absorbs the matrices multiplication, i.e.,

yh = exp(−F2,1,1t)C2 + exp
([

F2,1,1 − C̄
]

t
)

C1, (223)
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both valid if

C̄F2,1,1 = F2,1,1C̄ (224)

commute. Complete expressions to evaluate constants C1 and C2 are developed in Appendix B.1
and an efficient approach to evaluate Eq. (223) is discussed in Appendix B.5.

Commutativity of matrices F2,1,1 and C̄ is studied in the following.

3.2.1 Solving the quadratic equation, Eq. (208)

Assume that the damping matrix, C, is given by Rayleigh damping model, i.e.,
proportional damping. Thus

C = αM+βK, (225)

normalizing by the mass matrix, one gets

C̄ = αM−1M+βM−1K = αI+β K̄, (226)

therefore,

C̄K̄ = αIK̄+β K̄2 = αK̄I+β K̄2 = K̄C̄, (227)

such that C̄ and K̄ commute.
As stated before, F2,1,1 is given by the following matrix quadratic equation

F2
2,1,1 −F2,1,1C̄+ K̄ = 0. (228)

According to (HIGHAM, 2008), a quadratic equation of the form

X2 +BX+D = 0, (229)

has a solution given by

X =−1
2

B+
1
2
[
B2 −4D

] 1
2 , (230)

if B and D commute. When a matrix solves a matrix polynomial equation it is called a solvent.
In Eq. (228), the unknown matrix variable is at the left of the coefficient, F2,1,1C̄, hence, it is
called a left solvent (HIGHAM; KIM, 2001), while in Eq. (230) the unknown variable is at the
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right, BX, thus, a right solvent. The question is whether solvent given by Eq. (230) solves Eq.
(228), since Eq. (228) has the first coefficient equal to I and C̄ and K̄ commute. To validate it, let
the candidate of solvent, F̃2,1,1, be calculated by Eq. (230) and be substituted into Eq. (228).

F̃2,1,1 =
1
2

C̄+
1
2
[
C̄2 −4K̄

] 1
2 , (231)

applyied to Eq. 228,

1
4

C̄2 +
1
4

C̄
[
C̄2 −4K̄

] 1
2 +

1
4
[
C̄2 −4K̄

] 1
2 C̄+

1
4
[
C̄2 −4K̄

]
− (232)

1
2

C̄2 − 1
2
[
C̄2 −4K̄

] 1
2 C̄+ K̄. (233)

The terms without the square roots are cancelled such that

1
4

C̄
[
C̄2 −4K̄

] 1
2 +

1
4
[
C̄2 −4K̄

] 1
2 C̄− 1

2
[
C̄2 −4K̄

] 1
2 C̄. (234)

From Corollary 1.34 of (HIGHAM, 2008), a special case of function defined on the spectra of
the multiplication of two matrices is the square root function, that gives

[AB]
1
2 A = A [BA]

1
2 . (235)

Let A = C̄ and B = C̄−4C̄−1K̄, thus,

[
C̄2 −4K̄

] 1
2 C̄ = C̄

[
C̄2 −4C̄−1K̄C̄

] 1
2 ; (236)

as C̄ and K̄ commute,

[
C̄2 −4K̄

] 1
2 C̄ = C̄

[
C̄2 −4C̄−1C̄K̄

] 1
2 = C̄

[
C̄2 −4K̄

] 1
2 , (237)

hence,

1
4

C̄
[
C̄2 −4K̄

] 1
2 +

1
4
[
C̄2 −4K̄

] 1
2 C̄− 1

2
[
C̄2 −4K̄

] 1
2 C̄ = 0, (238)

therefore Eq. (231) is a solvent to Eq. (228) and

F2,1,1 =
1
2

C̄+
1
2
[
C̄2 −4K̄

] 1
2 . (239)
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Another interesting fact is that, as Eq. (231) was derived for a right solvent and satisfies a
left solvent as well, such that

F2
2,1,1 −F2,1,1C̄+ K̄ = F2

2,1,1 − C̄F2,1,1 + K̄ = 0, (240)

thus, by inspection, one can realize that C̄ and F2,1,1 also commute and Eq. (220) is consistent
when Rayleigh damping is used.

Other useful relations valid for Rayleigh damping are

C̄F2,1,1 =
(
αI+β K̄

)
F2,1,1 = αF2,1,1 +β K̄F2,1,1 (241)

and

F2,1,1C̄ = F2,1,1
(
αI+β K̄

)
= αF2,1,1 +βF2,1,1K̄, (242)

thus, as C̄ and F2,1,1 commute, by comparing the last two equations if follows that K̄ and F2,1,1

also commute, i.e., F2,1,1K̄ = K̄F2,1,1.
Other form of damping leading to commutativity between C̄ and F2,1,2 is

C̄ = αI+∑
j

β jK̄ j, (243)

for example, where the Rayleigh damping turns out to be a particular case. Equation (243) is
known as the Caughey series and is also known to be the condition for a system to have normal
modes (ADHIKARI, 2006).

A numerical method shall be used to find F2,1,1 when other models of constant damping
fail to keep commutativity between the damping and the stiffness matrices (HIGHAM, 2008).

3.2.2 Under damped problems

Equations (442) and (223) depend on

exp
([

F2,1,1 − C̄
])

(244)

and

exp(−F2,1,1) . (245)

For under-damped problems, it is possible to show that

exp
(
F2,1,1 − C̄

)∗
= exp(−F2,1,1) . (246)

First, as exp(A∗) = exp(A)∗ it is possible to write

F∗
2,1,1 − C̄∗ =−F2,1,1 (247)
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and as C̄ is strictly real

F∗
2,1,1 =−F2,1,1 + C̄ (248)

such that

ℜ(F2,1,1) =−ℜ(F2,1,1)+ C̄ =⇒ ℜ(F2,1,1) =
1
2

C̄ (249)

and

−ℑ(F2,1,1) =−ℑ(F2,1,1) . (250)

Thus, for under-damped problems the imaginary part of F2,1,1 should be only related to the
second term in the RHS of Eq (239)

ℑ(F2,1,1) =
1
2
[
C̄2 −4K̄

] 1
2 (251)

and this is true iff the matrix inside the square root is strictly real and has only real negative
eigenvalues. The first condition is always fulfilled since both C̄ and K̄ are real matrices.
Additionally, the term C̄−2F2,1,1 in Eq. (223) reduces to

C̄−2F2,1,1 =−2ℑ(F2,1,1) i (252)

a purely imaginary matrix.
In the following, conditions necessary to satisfy are investigated that

C̄2 −4K̄ (253)

has only real negative eigenvalues.

Structural damping

The simpler form of proportional damping is given by C = βK. In this case, the matrix
inside the square root is

C̄2 −4K̄ = β
2K̄2 −4K̄. (254)

It is worth noticing that the traditional eigenvalue problem is

(K−λM)x = 0 (255)

where λ is a strictly real positive eigenvalue and x is the associated eigenvector. Pre-multiplying
by M−1

(
K̄−λ I

)
x = 0, (256)
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and multiplying by K̄

K̄2x = λ K̄x = λλx = λ
2x. (257)

Thus, Eq. (254) can also be written as

β
2XΛΛΛ

2X−1 −4XΛΛΛX−1 (258)

where ΛΛΛ is a diagonal matrix containing the eigenvalues of K̄ and X a matrix with its
corresponding eigenvectors. Arranging

X
(

β
2
ΛΛΛ

2 −4ΛΛΛ

)
X−1 (259)

such that

β
2
λ

2
i −4λi < 0 ∀i = 1..n (260)

and β must satisfy

β <

√
4
λi

∀i = 1..n. (261)

Proportional Damping

Considering

C̄ = αI+β K̄. (262)

The square of C̄ is

C̄2 = α
2I+2βαK̄+β

2K̄2, (263)

such that the term inside the square root is

C̄2 −4K̄ = α
2I+2βαK̄+β

2K̄2 −4K̄. (264)

Using the change of basis

X
(

α
2I+2βαΛΛΛ+β

2
ΛΛΛ

2 −4ΛΛΛ

)
X−1 (265)

such that

α
2 +2βαλi +β

2
λ

2
i −4λi < 0 ∀i = 1..n. (266)

There are many possibilities to find suitable values of α and β in the previous equation. On can
notice that the last two terms should be negative or zero if β satisfies Eq. (261). If

β
2
λ

2
i −4λi =−εi (267)
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then

β̄ =

√
−εi +4λi

λ 2
i

. (268)

Thus,

α
2 +
(
2β̄λi

)
α − εi < 0 ∀i = 1..n, (269)

such that

ᾱ <−
(
β̄λi
)
±
√(

β̄λi
)2

+ εi. (270)

3.3 COMPARISON WITH OTHER SOLUTION PROCEDURES

The proposed approach can be compared with other solution procedures to solve coupled
systems of second order ODEs. Among the many options found in the literature, the most used
approaches to solve coupled systems of linear ODEs are numerical, like the Newmark-beta
method (NOH; BATHE, 2019) and analytical approaches, like the Laplace Transform (WORDU;
OJONG; OKPARANMA, 2022) and state variables as a order reduction approach (CHAHANDE;
ARORA, 1994). One can also use a mix of reduction order approaches, like the State Variable,
and numerical solutions for first order ODEs. The numerical approaches are the most used, since
they are generic (do not assume a particular form for the excitation) and are easy to implement.
Nonetheless, every numerical method is based on some assumptions on the behavior of the
response between discrete time points and, therefore, is prone to different types of errors.

Well established analytical methods, like the Laplace Transform, are hard to use for large
dimensions, since the symbolic inverse operations are very complex to perform, even when using
modern Computer Algebra Softwares (CAS) like (MAPLESOFT, ; KARJANTO; HUSAIN,
2021). Other well known analytical procedures, like the Variation of Parameters Method depends
on the previous knowledge of the homogeneous solution. Also, the authors could only find
references addressing its use for first order coupled systems of ODEs (ABELL; BRASELTON,
2023; NAGLE; SAFF; SNIDER, 2000) but not for second-order problems.

3.3.1 Solution using the matrix Laplace transform

According to (NAGLE; SAFF; SNIDER, 2000), the Laplace transform L can be naturally
extended for systems of coupled ODEs by applying the original definition of the transform
element-wise. Thus, Equation (177) with constant coefficients becomes

L
(
Iÿ+ C̄ẏ+ K̄y

)
= s2L (y)− su0 −v0 + C̄ [sL (y)−u0]+ K̄L (y) =[

s2I+ sC̄+ K̄
]
L (y)−

[
sI+ C̄

]
u0 −v0 = L

(
f̄
)
, (271)
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where s is the independent variable in the transformation domain, and u0 and v0 are initial
conditions. Hence, Equation (271) can be further simplified to

L (y) =
[
s2I+ sC̄+ K̄

]−1 (
L
(
f̄
)
+
[
sI+ C̄

]
u0 +v0

)
. (272)

Using matrix inverse properties, the analytical solution is written as

y(t) = L −1
([

s2M+ sC+K
]−1

(L (f)+ [sM+C]u0 +Mv0)
)
. (273)

From Eq. (273), one can observe that the use of Laplace transform to obtain analytical solutions
to systems of ODEs is rather complicated, since a symbolic inverse of a matrix of the same
dimensionality of the original problem must be calculated and, beyond that, the multiplication
of this inverse to the Laplace transform of the excitation vector must be also carried out. Then,
algebraic operations are needed to make Eq. (273) suitable for the inverse operation of the
Laplace transform. All that said, it is clear that this integral transform method is not suitable
for problems with high dimensionality and it is even more cumbersome to find closed-form
particular solutions like the ones discussed in the rest of this text.

3.3.2 Solution using order reduction by state variables

Consider the linear coupled systems of second order ODEs given by Eq. (177). Defining
a new variable

q(t) =

{
y(t)
ẏ(t)

}
, (274)

it is possible to re-write the original system as (PALM, 2020),

[
I 0
0 M

]
︸ ︷︷ ︸

A

q̇(t)+

[
0 −I
K C

]
︸ ︷︷ ︸

D

q(t) =

[
0
I

]
︸︷︷︸

B

f(t), (275)

a first order ODE with twice the original dimension. By normalizing Eq. (275) by matrix A, it
becomes

Iq̇(t)+ D̄q(t) = B̄f(t), (276)

where D̄ = A−1D and B̄ = A−1B. Analytical solution to Eq. (276) is given by (ABELL;
BRASELTON, 2023)
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q(t) = exp
(
−D̄t

)∫
exp
(
D̄t
)

B̄f(t)dt + exp
(
−D̄t

)
C1, (277)

in which C1 is a constant vector.
The main issue with state variables is the doubled dimensionality, which is a particularly

big downside of the technique when large problems are to be solved, since the time to evaluate
matrix exponentials and matrix products increases non-linearly with the dimensionality. This
technique is used as the reference analytical solution to validate the proposed approach and is
simply referred as State Variables (SV) in the rest of this text.

3.4 PARTICULAR SOLUTIONS OBTAINED BY CONSIDERING SPECIFIC EXCITATION
FUNCTIONS

So far, conditions for obtaining the solution of systems of coupled second order
differential equations were discussed. To this end, considering constant coefficients, it was
shown that permanent solution is given by Eq. (442). Conditions to solve the quadratic equation
associated to F2,1,1 were also discussed in details for proportional damping. Next sections are
devoted to discuss further analytical solutions that can be obtained for some particular forms of
excitations.

The analytical solutions derived in this work are correct in the sense that they satisfy Eq.
(1) for any time t, with no assumption about the behavior of the solution at any other given time.
The only assumptions used in the rest of this text are: constant coefficients (linear problems) and
proportional damping. The analytical solutions are carefully derived to guarantee the correctness
of the solutions and also to help the reader to follow each step.

A common benchmark problem is proposed to evaluate the different formulations
obtained in the next sections and to validate the computer implementation. The problem is
a 3 DOFs system described by

M =

2.0 0.0 0.0
0.0 2.0 0.0
0.0 0.0 1.0

 , (278)

K =

 6.0 −4.0 0.0
−4.0 6.0 −2.0
0.0 −2.0 6.0

×102 (279)

and

C = βK, (280)
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with

y(0) = .y(0) =


0
0
0

 , (281)

where the damping parameter β is specified in each example. This small problem was chosen
since it makes easy to visualize the response. Nonetheless, it is a coupled system of ODEs and is
able to show all the intended characteristics of the proposed approach.

The analytical solution using the Laplace Transform, Eq. (273), could not be obtained for
this problem in closed form using the CAS Maxima (KARJANTO; HUSAIN, 2021) and a simple
senoidal excitation. Thus, the order reduction by State variables is used to asses the solutions
obtained with the proposed approach. The Newmark-beta method, a reference method in the
literature, is also used as reference in one of the examples. The idea is not to use the numerical
method to validate the analytical response, but the computer implementation and also to compare
the execution times.

3.4.1 Periodic excitations

Let the excitation vector be defined as

f(t) = g1(t)e1 +g2(t)e2 + . . .+gn(t)en, (282)

where n is the dimension of the problem, i.e., the problem has n degrees of freedom, and g j(t) is
a function of time multiplying unitary vector e j. Normalizing by the mass matrix

f̄ = g1(t)M−1e1 + . . .+gn(t)M−1en = g1(t)v1 + . . .+gn(t)vn. (283)

Assuming

g j(t) =
nk

∑
k=1

c jk exp
(
β jkt +φ jk

)
, (284)

where nk is the number of terms, c jk ∈ R is an amplitude, β jk = iω jk ∈ C a complex angular
frequency and φ jk ∈ C a complex phase.

Substituting this excitation vector into the inner convolution of the particular solution in
Eq. (442), one gets

∫
exp(F2,1,1t) f̄dt =

∫
exp(F2,1,1t)

n

∑
j=1

nk

∑
k=1

c jk exp
(
β jkt +φ jk

)
v j dt, (285)

as the vectors v j are independent of time, they can be left out of the integral to the right side
and as the exponentials c jk exp

(
β jkt +φ jk

)
are not matrices, they can be commuted with the

exponential of matrices,
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∫
exp(F2,1,1t) f̄dt =

n

∑
j=1

nk

∑
k=1

∫
c jk exp

(
β jkt +φ jk

)
exp(F2,1,1t)dtv j. (286)

Each one of these integrals can be evaluated by parts

∫
c jk exp

(
β jkt +φ jk

)
exp(F2,1,1t)dt =

∫ [ c jk

β jk

.(
exp
(
β jkt +φ jk

))]
exp(F2,1,1t)dt =

c jk

β jk
exp
(
β jkt +φ jk

)
exp(F2,1,1t)

∣∣∣∣∣
t

t0

−
∫ c jk

β jk
exp
(
β jkt +φ jk

)
exp(F2,1,1t)F2,1,1 dt, (287)

where it is possible to neglect the limit value at t0 as it is implicit in the integration constant C2.
Grouping common terms and letting F2,1,1 out of the integral at the right side for it being

constant∫
c jk exp

(
β jkt +φ jk

)
exp(F2,1,1t)dt

[
I+

1
β jk

F2,1,1

]
=

c jk

β jk
exp
(
β jkt +φ jk

)
exp(F2,1,1t) , (288)

such that∫
c jk exp

(
β jkt +φ jk

)
exp(F2,1,1) t dt =

c jk

β jk
exp
(
β jkt +φ jk

)
exp(F2,1,1t)

[
I+

1
β jk

F2,1,1

]−1

.(289)

Substituting Eq. (289) into Eq. (286),

∫
exp(F2,1,1t) f̄dt =

n

∑
j=1

nk

∑
k=1

c jk

β jk
exp
(
β jkt +φ jk

)
exp(F2,1,1t)

[
I+

1
β jk

F2,1,1

]−1

v j. (290)

For the second convolution in Eq. (442),

∫
exp
([

C̄−2F2,1,1
]

t
)∫

exp(F2,1,1t) f̄dt dt =
∫

exp
([

C̄−2F2,1,1
]

t
)

n

∑
j=1

nk

∑
k=1

c jk

β jk
exp
(
β jkt +φ jk

)
exp(F2,1,1t)

[
I+

1
β jk

F2,1,1

]−1

v j dt, (291)

as F2,1,1 and C̄ commute,

∫
exp
([

C̄−2F2,1,1
]

t
)∫

exp(F2,1,1t) f̄dt dt =∫ n

∑
j=1

nk

∑
k=1

c jk

β jk
exp
(
β jkt +φ jk

)
exp
([

C̄−F2,1,1
]

t
)[

I+
1

β jk
F2,1,1

]−1

v j dt. (292)

This equation can also be integrated by parts such that
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∫
exp
([

C̄−2F2,1,1
]

t
)∫

exp(F2,1,1t) f̄dt dt =
n

∑
j=1

nk

∑
k=1

c jk

β 2
jk

exp
(
β jkt +φ jk

)
exp
([

C̄−F2,1,1
]

t
)[

I+
1

β jk

[
C̄−F2,1,1

]]−1[
I+

1
β jk

F2,1,1

]−1

v j, (293)

again, as C̄ and F2,1,1 commute, the particular solution, Eq. (442), is given by

yp =
n

∑
j=1

nk

∑
k=1

c jk

β 2
j

exp
(
β jkt +φ jk

)[
I+

1
ω ji

[
C̄−F2,1,1

]]−1[
I+

1
β jk

F2,1,1

]−1

v j, (294)

as A−1B−1 = (BA)−1,

yp =
n

∑
j=1

nk

∑
k=1

c jk

β 2
jk

exp
(
β jkt +φ jk

)[[
I+

1
β jk

F2,1,1

][
I+

1
β jk

[
C̄−F2,1,1

]]]−1

v j, (295)

which simplifies to

yp =
n

∑
j=1

nk

∑
k=1

c jk

β 2
jk

exp
(
β jkt +φ jk

)[
I+

1
β jk

C̄− 1
β 2

jk
F2,1,1

[
C̄−F2,1,1

]]−1

v j, (296)

and, using Eq. (207), reduces to

yp =
n

∑
j=1

nk

∑
k=1

c jk

β 2
jk

exp
(
β jkt +φ jk

)[I+
1

β jk
C̄− 1

β 2
jk

K̄

]−1

v j

 , (297)

It is worth noticing that previous expression can be further simplified. First, recall that
v j = M−1e j. Also, as A−1B−1 = (BA)−1

[
I+

1
β jk

C̄+
1

β 2
jk

K̄

]−1

M−1 =

(
M

[
I+

1
β jk

C̄+
1

β 2
jk

K̄

])−1

(298)

such that

yp =
n

∑
j=1

nk

∑
k=1

c jk

β 2
jk

exp
(
β jkt +φ jk

)[
M+

1
β jk

C+
1

β 2
jk

K

]−1

e j. (299)

It is also possible to manipulate the term 1/β 2
j,k by inserting it into the matrix

yp =
n

∑
j=1

nk

∑
k=1

c jk exp
(
β jkt +φ jk

)[
β

2
jkM+β jkC+K

]−1
e j (300)
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and, as β jk = iω jk,

yp =
n

∑
j=1

nk

∑
k=1

c jk exp
(
β jkt +φ jk

)[
K+ iω jkC−ω

2
jkM
]−1

e j (301)

or

yp(t) =
n

∑
j=1

nk

∑
k=1

c jk exp
(
β jkt +φ jk

)
KD

−1
jk e j, (302)

where

KD jk =
[
K+ iω jkC−ω

2
jkM
]

(303)

is the Dynamic Stiffness Matrix for jk. It is worth noticing that particular solution given by Eq.
(302), a superposition of harmonic responses, can be computed directly using M, C and K with
no need to compute F2,1,1. Solution of Eq. (302) can be written as a linear combination of pre
processed vectors k jk

KD jkk jk = e j, (304)

since these operations do not depend on t. Thus, yp(t) can be efficiently evaluated as

yp(t) =
n

∑
j=1

nk

∑
k=1

c jk exp
(
β jkt +φ jk

)
k jk, (305)

for a given time t.
The first derivative of Eq. (302) with respect to time t

ẏp(t) =
n

∑
j=1

nk

∑
k=1

c jkβ jk exp
(
β jkt +φ jk

)
k jk, (306)

is needed to evaluate the constant vectors C1 and C2 (Appendix B.1).
When there are complex-conjugate pairs in the β coefficients, an interesting

implementation optimization can be made for Eq. (304). Let two matrices KD jξ and KD jν

be the dynamic stiffness matrices for the j-th degree of freedom, and let their β coefficients
be complex-conjugate, i.e., β jξ = β ∗

jν ; following from Eq. (303), KD jξ and KD jν are also
complex-conjugate. Thus, k jξ can be written as

k jξ = K−1
D jξ e j =

(
K∗

D jν
)−1 e j, (307)

which, using the property of inverse of complex-conjugate matrices, is simplified to

k jξ =
(

K−1
D jν

)∗
e j =

(
K−1

D jνe j

)∗
= k∗

jν . (308)
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Thereby, when there are pairs of complex-conjugate β coefficients, just half of the dynamic
stiffness matrices must be evaluated.

Example
In mechanical, electrical and civil engineering applications, periodic functions appear,

both analytically or represented using Fourier series expansion. These problems arise due to
harmonic excitation, examples range from cyclic forces, like support movement and wind drag,
up to electromagnetic loads and alternate current. Thus, finding particular solutions to such
problems is paramount for simulating and optimizing behavior of these structures. An example
of a system with 3 degrees of freedom is taken from (KELLY, 2000) to illustrate the use of such
excitations with the proposed approach. The previously presented matrices are used with the
excitation given by

f =


0

3sin(4t)

0

 , (309)

and β = 1×10−2. This is an under damped harmonic problem with known permanent solution

yp = [K+4iC−16M]−1


0
3
0

 (310)

with amplitude

|yp|=


9.687
13.756
4.711

×10−3, (311)

such that

yp(t) = sin(4t)|yp|. (312)

Using the proposed formulation,

f = g2(t)e2 = 3sin(4t)


0
1
0

 (313)

where, by using Euller’s identity,

g2(t) = 3sin(4t) =
3i
2

exp(−4it)− 3i
2

exp(4it) (314)

and nk = 2, c21 =
3i
2 , ω21 =−4, β21 =−4i, c22 =

−3i
2 , ω22 = 4, β22 = 4i.
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Particular solution can then be found by using Eq. (302)

yp =
2

∑
j=2

2

∑
k=1

c jk exp
(
β jkt

)
KD

−1
jk e j =

3i
2

exp(−4it)KD
−1
21 e2 +

−3i
2

exp(4it)KD
−1
22 e2 (315)

with

KD21 = K−4iC−16M, (316)

and

KD22 = K+4iC−16M. (317)

Term z = KD
−1
21 e2 is conjugate to KD

−1
22 e2. Thus,

yp(t) = 3
(

i
2

exp(−4it)z− i
2

exp(4it)z∗
)

(318)

or, by splitting z and z∗ into their real and imaginary parts

yp(t) = 3
(

i
2

exp(−4it)ℜ(z)+
i2

2
exp(−4it)ℑ(z)− i

2
exp(4it)ℜ(z)+

i2

2
exp(4it)ℑ(z)

)
.

(319)

Collecting common terms

yp(t) = 3
(

i
2

exp(−4it)− i
2

exp(4it)
)

︸ ︷︷ ︸
sin(4t)

ℜ(z)+3
(

i
2

exp(−4it)+
i
2

exp(4it)
)

︸ ︷︷ ︸
0

ℑ(z) (320)

such that

yp(t) = 3
i
2
(exp(−4it)− exp(4it))︸ ︷︷ ︸

sin(4t)


3.229
4.585
1.570

×10−3 (321)

or

yp(t) = sin(4t)


9.686

13.756
4.711

×10−3, (322)

the expected solution.
One can verify some conclusions obtained in previous sections. Let start by computing

C̄2 −4K̄ =

−1187 788 2
788 −1185 391

4 782 −2362

 (323)
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which has real negative eigenvalues −2653.11, −1762.11 and −318.77. Thus, its square root is
a complex matrix, as discussed in previous sections

1
2
[
C̄2 −4K̄

] 1
2 =

16.026 −6.29 −0.410
−6.29 15.62 −2.53
−0.820 −5.06 24.03

 i. (324)

Matrix K̄ has eigenvalues

ΛΛΛ =

79.85 0.0 0.0
0.0 445.49 0.0
0.0 0.0 674.66

 (325)

such that inequalities given by Eq. (261) for β = 1×10−2 are also satisfied

1×10−2 <

{√
4

79.85
,

√
4

445.49
,

√
4

674.66

}
. (326)

Matrix

F2,1,1 =
1
2

C̄+
1
2
[
C̄2 −4K̄

] 1
2 =

 1.5 −1.0 0.0
−1.0 1.5 −0.5
0.0 −1.0 3.0

+
16.026 −6.29 −0.410
−6.29 15.62 −2.53
−0.820 −5.06 24.03

 i (327)

and one can verify that F2,1,1 and C̄−F2,1,1 are complex-conjugate.
Homogeneous solution, Eq. (223), for this problem is

yh = exp(−F2,1,1t)C2 + exp
((

F2,1,1 − C̄
)

t
)

C1, (328)

where

C1 =


2.49
3.38
1.18

×10−4 + i


2.36
2.87
1.08

×10−3, (329)

and C2 = C∗
1 are obtained by solving Eqs. (641) and (642). The maximum order of magnitude of

the complex part of the homogeneous solution was 10−19, therefore, the homogeneous solution
is real-valued, as expected. Exponentials in Eq. (328) can be computed only once if a constant
time step ∆t is used, as discussed in Appendix B.5.

The real part of each DOFs of the complete solution y(t) = yh(t)+ yp(t) is shown in
Fig. 9 (solid lines). The solution y is compared to ỹ obtained by using traditional Newmark-beta
method with standard parameters and ∆t = 0.001s (dotted lines). It is clear that both solutions
match.

The solution using State Variables, given by Eq, (277), can be particularized for this
examples as
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ySV (t) = 3
[
16I+ D̄2]−1 [D̄sin(4t)−4Icos(4t)

]
B̄e2 + exp

(
−D̄t

)
C1,SV , (330)

where C1,SV is a constant vector due to the initial conditions. From Eq. (330) one can observe
how such squaring and inverse operations become costlier with the doubled dimensionality
associated to the State Variables approach. This solution is compared to the solution given by the
generalized integrating factor in Fig. 9.

Figure 9 – Complete solution for the under damped problem with sinusoidal excitation.
Solutions y1, y2 and y3, (real parts) obtained by using the proposed approach, are

shown as solid lines. Solutions ySV,1, ySV,2 and ySV,3, obtained by using State
Variables, are shown as dotted lines.

Example - Over Damped System
Let study the previous example with β = 10, an over damped problem, which arise

in many viscous problems in mechanical engineering and highly resistive circuits in electric
engineering. The proposed approach does not make any assumption on the level of damping such
that the solution procedure used in the previous example does not change. The main differences
are the fact that F2,1,1 is a real matrix

F2,1,1 =

 3 −2 0
−2 3 −1
0 −2 6

×103, (331)
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as well as the integration constants

C1 =


1.87
2.81
0.94

×10−4 (332)

and

C2 =−


5.61
6.23
2.40

×10−9. (333)

The solution using State Variables is the same from the last example, which is again
compared to the solution given by the generalized integrating factor in Fig. 10. Hence, the same
comments regarding the cost of matrix operations still holds true.

Figure 10 – Complete solution for the over damped problem with sinusoidal excitation.
Solutions y1, y2 and y3, (real part) obtained by using the proposed approach, are

shown as solid lines. Solutions ySV,1, ySV,2 and ySV,3, obtained by using State
Variables, are shown as dotted lines.

3.4.2 Polynomial excitation

Let the normalized excitation vector be defined as

f̄ = g1(t)M−1e1 + . . .+gn(t)M−1en = g1(t)v1 + . . .+gn(t)vn, (334)
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where g j(t) are polynomial functions

g j(t) =
nk

∑
k=0

c jk
(
t − t j

)k
, (335)

c jk ∈ R are coefficients, nk the number of terms and t j ∈ R time shift.
Substituting Eq. (334) into Eq. (442), yields

yp = e[F2,1,1−C̄]t
∫

exp
([

C̄−2F2,1,1
]

t
)∫

exp(F2,1,1t)
n

∑
j=1

nk

∑
k=0

c jk
(
t − t j

)k v j dt dt, (336)

using the linearity of the integral operator and as v j does not depend on time results in

yp = exp
([

F2,1,1 − C̄
]

t
) n

∑
j=1

nk

∑
k=0

c jk

∫
exp
([

C̄−2F2,1,1
]

t
)∫

exp(F2,1,1t)
(
t − t j

)k dt dt v j.

(337)

The inner convolution can be evaluated by parts (here ex is used instead of exp(x) to
shorten the equations),

∫
eAt (t − t j

)α dt =
∫ .(

eAtA−1
)(

t − t j
)α dt

=
(
t − t j

)α eAtA−1 −
∫

eAt (t − t j
)α−1 dtαA−1

=
(
t − t j

)α eAtA−1 −α
(
t − t j

)α−1 eAtA−2 +
∫

eAt (t − t j
)α−2 dtα (α −1)A−2

=
(
t − t j

)α eAtA−1 −α
(
t − t j

)α−1 eAtA−2 +α (α −1)
(
t − t j

)α−2 eAtA−3 + · · ·+

(−1)m−1
α (α −1) . . .(α −m+2)

(
t − t j

)α−m+1 eAtA−m +

(−1)m
∫

eAt (t − t j
)α−m dtα (α −1) . . .(α −m+1)A−m

m = α
=

(
t − t j

)α eAtA−1 −α
(
t − t j

)α−1 eAtA−2 +α (α −1)
(
t − t j

)α−2 eAtA−3 + · · ·+

(−1)α−1
α!
(
t − t j

)
eAtA−α +(−1)α

α!eAtA−α−1, (338)

which, by arranging all the terms in a single sum, yields

∫
exp(At)

(
t − t j

)α dt = exp(At)
α+1

∑
l=1

(−1)l+1 α!
(α − l +1)!

(
t − t j

)α−l+1 A−l. (339)

Using this integral formula with Eq. (337) and the considering that C̄ and F2,1,1 commute,

yp = exp
([

F2,1,1 − C̄
]

t
) n

∑
j=1

nk

∑
k=0

c jk

∫
exp
([

C̄−F2,1,1
]

t
)

k+1

∑
l=1

(−1)l+1 k!
(k− l +1)!

(
t − t j

)k−l+1 F−l
2,1,1 dt v j. (340)
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As the integral is a linear operator

yp = exp
([

F2,1,1 − C̄
]

t
) n

∑
j=1

nk

∑
k=0

c jk

k+1

∑
l=1

(−1)l+1 k!
(k− l +1)!∫

exp
([

C̄−F2,1,1
]

t
)(

t − t j
)k−l+1 F−l

2,1,1 dt v j, (341)

and using again Eq. (339),

yp = exp
([

F2,1,1 − C̄
]

t
) n

∑
j=1

nk

∑
k=0

c jk

k+1

∑
l=1

(−1)l+1 k!
(k− l +1)!

exp
([

C̄−F2,1,1
]

t
)

k−l+2

∑
p=1

(−1)p+1 (k− l +1)!
(k− l − p+2)!

(
t − t j

)k−l−p+2 [C̄−F2,1,1
]−p F−l

2,1,1v j. (342)

Since C̄ and F2,1,1 commute for Rayleigh damping, the matrix exponentials can be
cancelled. From Eq. (207), it follows that C̄−F2,1,1 = F−1

2,1,1K̄. Substituting this relation and
applying the inverse property A−1B−1 = (BA)−1 results in

yp =
n

∑
j=1

nk

∑
k=0

c jk

k+1

∑
l=1

(−1)l+1 k!
(k− l +1)!

k−l+2

∑
p=1

(−1)p+1 (k− l +1)!
(k− l − p+2)!

(
t − t j

)k−l−p+2
[
Fl

2,1,1F−p
2,1,1K̄p

]−1
v j, (343)

and as v j = M−1e j and using again the inverse property,

yp =
n

∑
j=1

nk

∑
k=0

c jk

k+1

∑
l=1

(−1)l+1 k!
(k− l +1)!

k−l+2

∑
p=1

(−1)p+1 (k− l +1)!
(k− l − p+2)!

(
t − t j

)k−l−p+2
[
MFl−p

2,1,1K̄p
]−1

e j. (344)

As K̄ and F2,1,1 commute for Rayleigh damping, Eq. (241), and p and l are integers,
property in Eq. (643) holds,

yp(t) =
n

∑
j=1

nk

∑
k=0

c jk

k+1

∑
l=1

(−1)l+1 k!
(k− l +1)!

k−l+2

∑
p=1

(−1)p+1 (k− l +1)!
(k− l − p+2)!

(
t − t j

)k−l−p+2
[
MK̄pFl−p

2,1,1

]−1
e j. (345)
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Derivative of previous equation with respect t is needed to evaluate constant vectors C1

and C2 (Appendix B.1)

ẏp(t) =
n

∑
j=1

nk

∑
k=0

c jk

k+1

∑
l=1

(−1)l+1 k!
(k− l +1)!

k−l+2

∑
p=1

(−1)p+1 (k− l +1)!
(k− l − p+2)!

(k− l − p+2)
(
t − t j

)k−l−p+1
[
MK̄pFl−p

2,1,1

]−1
e j, (346)

valid when k− l − p+2 is not zero.

Example
Polynomial excitation is particularly important for electrical engineering simulation, since

it can model important functions, like the ramp function for instance. Nevertheless, polynomials
can be used to represent variable forces and other phenomena, since even sets of points might
be interpolated using polynomials. Thus, consider the 3 DOF problem with β = 1×10−6 and
excitation

f =


0

10t − t2

0

 , (347)

such that g2(t) = c20 + c21t + c22t2 with c20 = 0, c21 = 10, c22 =−1 and t2 = 0.
Evaluation of particular solution yp(t), Eq. (345), is shown by means of Alg. 2 where

j = 2 and nk = 2. The terms obtained in the Algorithm result in

yp(t) = (2t −10)
((

MK̄2F−1
2,1,1

)−1
+
(
MK̄F2,1,1

)−1
)

e2 +
(
10t − t2)(MK̄

)−1 e2

−2
(
MK̄2)−1 e2 −2

(
MK̄3F−2

2,1,1

)−1
e2 −2

(
MK̄F2

2,1,1
)−1 e2. (348)

The derivative of the particular response w.r.t time t is given by

.yp = 2
((

MK̄2F−1
2,1,1

)−1
+
(
MK̄F2,1,1

)−1
)

e2 +(10−2t)
(
MK̄

)−1 e2. (349)

Both expressions can be simplified using matrix inverse properties,

yp(t) = (2t −10)
(

F2,1,1
(
MK̄2)−1

+(KF2,1,1)
−1
)

e2 +
(
10t − t2)K−1e2 −

2
(
MK̄2)−1 e2 −2F2

2,1,1
(
MK̄3)−1 e2 −2

(
KF2

2,1,1
)−1 e2, (350)

and

.yp = 2
(

F2,1,1
(
MK̄2)−1

+(KF2,1,1)
−1
)

e2 +(10−2t)K−1e2. (351)
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such that by using Eqs. (641) and (642), one gets the integration constants,

C1 =


8.8792
0.1457
4.6479

×10−5 + i


1.5639
1.9436
0.7237

×10−3, (352)

with C2 = C∗
1.

The solution using State Variables, given by Eq. (277), is particularized for this example
as

ySV (t) =
[
−D̄−1t2 +2D̄−2t +10D̄−1t −2D̄−3 −10D̄−2] B̄e2 + exp

(
−D̄t

)
C1,SV , (353)

where C1,SV is a vector of integration constants associated to the initial conditions. Although
both, Eq. (350) and Eq. (353), present costly matrix operations, one will observe that such
operations become much costlier as the size of the matrices increases, as well the fact that the
matrices associated to State Variables have twice the dimension. This solution is compared to the
solution given by the generalized integrating factor in Fig. 11.

Figure 11 – Complete solution for the three DOFs example subjected to a polynomial excitation.
Solutions y1, y2 and y3, (real part) obtained by using the proposed approach, are

shown as solid lines. Solutions ySV,1, ySV,2 and ySV,3 obtained by using State
Variables are shown as black dotted lines.
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Algorithm 2: Evaluation of Eq. (345) for j = 2 and nk = 2.
k = 0

c1,0 = 0
k = 1

c1,1 = 10
l = 1 =⇒ (−1)l+1 k!

(k−l+1)! = 1

p = 1 =⇒ (−1)p+1 (k−l+1)!
(k−l−p+2)!

(
t − t j

)k−l−p+2
[
MK̄pFl−p

2,1,1

]−1
e j = t

(
MK̄

)−1 e2

p = 2 =⇒ (−1)p+1 (k−l+1)!
(k−l−p+2)!

(
t − t j

)k−l−p+2
[
MK̄pFl−p

2,1,1

]−1
e j =

−
(

MK̄2F−1
2,1,1

)−1
e2

l = 2 =⇒ (−1)l+1 k!
(k−l+1)! =−1

p = 1 =⇒ (−1)p+1 (k−l+1)!
(k−l−p+2)!

(
t − t j

)k−l−p+2
[
MK̄pFl−p

2,1,1

]−1
e j =(

MK̄F2,1,1
)−1 e2

k = 2
c1,2 =−1
l = 1 =⇒ (−1)l+1 k!

(k−l+1)! = 1

p = 1 =⇒ (−1)p+1 (k−l+1)!
(k−l−p+2)!

(
t − t j

)k−l−p+2
[
MK̄pFl−p

2,1,1

]−1
e j = t2 (MK̄

)−1 e2

p = 2 =⇒ (−1)p+1 (k−l+1)!
(k−l−p+2)!

(
t − t j

)k−l−p+2
[
MK̄pFl−p

2,1,1

]−1
e j =

−2t
(

MK̄2F−1
2,1,1

)−1
e2

p = 3 =⇒ (−1)p+1 (k−l+1)!
(k−l−p+2)!

(
t − t j

)k−l−p+2
[
MK̄pFl−p

2,1,1

]−1
e j =

2
(

MK̄3F−2
2,1,1

)−1
e2

l = 2 =⇒ (−1)l+1 k!
(k−l+1)! =−2

p = 1 =⇒ (−1)p+1 (k−l+1)!
(k−l−p+2)!

(
t − t j

)k−l−p+2
[
MK̄pFl−p

2,1,1

]−1
e j =

t
(
MK̄F2,1,1

)−1 e2

p = 2 =⇒ (−1)p+1 (k−l+1)!
(k−l−p+2)!

(
t − t j

)k−l−p+2
[
MK̄pFl−p

2,1,1

]−1
e j =−

(
MK̄2)−1 e2

l = 3 =⇒ (−1)l+1 k!
(k−l+1)! = 2

p = 1 =⇒ (−1)p+1 (k−l+1)!
(k−l−p+2)!

(
t − t j

)k−l−p+2
[
MK̄pFl−p

2,1,1

]−1
e j =(

MK̄F2
2,1,1

)−1
e2

3.4.3 Dirac’s delta distribution

Let the normalized excitation vector be defined as

f̄ = g1(t)M−1e1 + . . .+gn(t)M−1en = g1(t)v1 + . . .+gn(t)vn, (354)

where g j(t) are Dirac’s delta distributions
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g j(t) =
nk

∑
k=0

c jkδ
(
t − t jk

)
, (355)

c jk ∈ R are coefficients, nk the number of terms and t jk ∈ R time shifts.
Substituting Eq. (355) into Eq. (442), yields

yp = exp
([

F2,1,1 − C̄
]

t
)∫

exp
([

C̄−2F2,1,1
]

t
)∫

exp(F2,1,1t)
n

∑
j=1

nk

∑
k=0

c jkδ
(
t − t jk

)
v j dt dt,

(356)

using the linearity of the integral operator and as v j does not depend on time results in

yp = exp
([

F2,1,1 − C̄
]

t
) n

∑
j=1

nk

∑
k=0

c jk

∫
exp
([

C̄−2F2,1,1
]

t
)∫

exp(F2,1,1t)δ
(
t − t jk

)
dt dt v j.

(357)

Equation (633), Appendix A.3, is used to evaluate the inner convolution

yp = exp
([

F2,1,1 − C̄
]

t
) n

∑
j=1

nk

∑
k=0

c jk

∫
exp
([

C̄−2F2,1,1
]

t
)

exp(F2,1,1tk)H
(
t − t jk

)
dt v j,

(358)

where H is the Heaviside step function defined in Eq. (120). As C̄−2F2,1,1 and F2,1,1 commute,
the two exponential maps can be simplified to

yp = exp
([

F2,1,1 − C̄
]

t
) n

∑
j=1

nk

∑
k=0

c jk

∫
exp
([

C̄−2F2,1,1
]

t +F2,1,1tk
)
H
(
t − t jk

)
dt v j, (359)

hence, by using the relation derived in Chapter 2

∫ t

0
exp(At) fk(t)H (t − tk)dt =

(∫ t

tk
exp(At) fk(t)dt

)
H (t − tk), (360)

where A is a matrix. The outer convolution is evaluated to

yp = exp
([

F2,1,1 − C̄
]

t
) n

∑
j=1

nk

∑
k=0

c jkH
(
t − t jk

)∫ t

tk
exp
([

C̄−2F2,1,1
]

t +F2,1,1tk
)

dt v j. (361)

If C̄−2F2,1,1 is invertible, then

yp =
n

∑
j=1

nk

∑
k=0

c jkH
(
t − t jk

)
exp
([

F2,1,1 − C̄
]

t
)[

exp
([

C̄−2F2,1,1
]

t +F2,1,1tk
)

−exp
([

C̄−F2,1,1
]

tk
)][

C̄−2F2,1,1
]−1 v j, (362)
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otherwise, the integral in Eq. (361) can be evaluated by using the Jordan canonical form
(HIGHAM, 2008).

The commutativity of the first power is checked,

[
F2,1,1 − C̄

]
t
([

C̄−2F2,1,1
]

t +F2,1,1tk
)
=

t2 (F2,1,1C̄−2F2
2,1,1 − C̄2 +2C̄F2,1,1

)
+ ttk

(
F2

2,1,1 − C̄F2,1,1
)

(363)([
C̄−2F2,1,1

]
+F2,1,1tk

)[
F2,1,1 − C̄

]
t =

t2 (C̄F2,1,1 −2F2
2,1,1 − C̄2 +2F2,1,1C̄

)
+ ttk

(
F2

2,1,1 −F2,1,1C̄
)
, (364)

as C̄ and F2,1,1 commute, Equation (363) and Equation (364) are equal. Commutativity for
the other power is straightforward, since a matrix commutes with itself regardless of different
constants multiplying it. Hence, also substituting v j = M−1e j,

yp =
n

∑
j=1

(
nk

∑
k=0

c jkH
(
t − t jk

)
[exp(−F2,1,1t +F2,1,1tk)

−exp
([

F2,1,1 − C̄
]

t +
[
C̄−F2,1,1

]
tk
)])[

C̄−2F2,1,1
]−1 M−1e j, (365)

rearranging the terms and applying the property A−1B−1 = (BA)−1 results in

yp =
n

∑
j=1

(
nk

∑
k=0

c jkH
(
t − t jk

)
[exp(F2,1,1 (tk − t))

−exp
([

C̄−F2,1,1
]
(tk − t)

)])
[C−2MF2,1,1]

−1 e j. (366)

In Eq. (247), it was shown that, for under-damped problems, C̄−F2,1,1 is the complex-
conjugate of F2,1,1, thus, according to (GALLIER, 2011), exp(A∗) = exp(A)∗, and it follows
that

yp =
n

∑
j=1

nk

∑
k=0

c jkH
(
t − t jk

)[
exp(F2,1,1 (tk − t))− exp(F2,1,1 (tk − t))∗

]
[C−2MF2,1,1]

−1 e j,

(367)

which further simplifies to

yp = 2i
n

∑
j=1

nk

∑
k=0

c jkH
(
t − t jk

)
ℑ(exp(F2,1,1 (tk − t))) [C−2MF2,1,1]

−1 e j. (368)
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Let Equation (367) be expanded as

yp =
n

∑
j=1

nk

∑
k=0

c jkH
(
t − t jk

)exp(F2,1,1 (tk − t))
[
C̄−2F2,1,1

]−1 M−1e j︸ ︷︷ ︸
χχχ1

−

exp(F2,1,1 (tk − t))∗
[
C̄−2F2,1,1

]−1 M−1e j︸ ︷︷ ︸
χχχ2

 . (369)

Using Eq. (252) and evaluating the complex-conjugate of χχχ1,

χχχ
∗
1 = exp(F2,1,1 (tk − t))∗

[
(−2iℑ(F2,1,1))

∗]−1 M−1e j

= exp(F2,1,1 (tk − t))∗ [2iℑ(F2,1,1)]
−1 M−1e j

=−exp(F2,1,1 (tk − t))∗
[
C̄−2F2,1,1

]−1 M−1e j =−χχχ2, (370)

thus, Equation (369) can be simplified to

yp =
n

∑
j=1

nk

∑
k=0

c jkH
(
t − t jk

)[
exp(F2,1,1 (tk − t))

[
C̄−2F2,1,1

]−1 M−1e j

+
(

exp(F2,1,1 (tk − t))
[
C̄−2F2,1,1

]−1 M−1e j

)∗]
, (371)

which further simplifies to

yp = 2
n

∑
j=1

nk

∑
k=0

c jkH
(
t − t jk

)
ℜ

(
exp(F2,1,1 (tk − t)) [C−2MF2,1,1]

−1 e j

)
. (372)

Example
Dirac’s delta is an important distribution in engineering and simulation since it can

be used to model impact and peaks in excitation. Therefore, it is widely used in mechanical
engineering to model transient vibration due to impact and in electrical engineering to model
peaks in current or tension. These phenomena are present in almost any structure and circuit,
although obtaining an accurate response is cumbersome and computationally expensive, due to
the necessity of interpolating the Dirac’s delta and due to the extremely tiny time step. Thus, this
example shows the ease of obtaining an analytical solution that does not need any interpolation
of the Dirac’s delta and that is quite simple to evaluate. Hence, consider the 3 DOF problem with
β = 1×10−2 and excitation

f =


0

δ (t −1)−δ (t −5)
0

 , (373)
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such that g2(t) = c20δ (t − t0)+ c21δ (t − t1) with c20 = 1, c21 =−1, t0 = 1 and t0 = 5.
Using the conjugacy of C̄−F2,1,1 and F2,1,1, one can use Eq. (368) directly,

yp = 2i(H (t −1)ℑ(exp(F2,1,1 (1− t)))−H (t −5)ℑ(exp(F2,1,1 (5− t))))

[C−2MF2,1,1]
−1 e2,

and as shown, for homogeneous initial conditions and impulse excitation, y = yp.
The solution using State Variables, given by Eq, (277), are particularized for this example

as

ySV (t)=
[
exp
(
D̄(1− t)

)
H (t −1)− exp

(
D̄(5− t)

)
H (t −5)

]
B̄e2+exp

(
−D̄t

)
C1,SV , (374)

where C1,SV is a vector of integration constants associated to the initial conditions. As both
solutions depend upon matrix exponentials only, Eq. (372) and Eq. (374), it is straightforward
to conclude that the cost of evaluation of such exponential maps become much larger when
the dimensionality is increased (HIGHAM, 2008; MOLER; LOAN, 2003). This solution is
compared to the solution given by the generalized integrating factor in Fig. 12. The response
was also compared to the solution obtained by using the traditional Newmark-beta method with
∆t = 0.001. Each impulse was approximated by (EFTEKHARI, 2015)

δ (t − t0)≈
1

2ε

(
1+ cos

(
π(t − t0)

ε

))
t0 − ε ≤ t ≤ t0 + ε, (375)

with ε = ∆t to impose the δ s to the numerical method (the proposed methodology and State
Variables do not need such approximation). Solutions are shown in Fig. 12 where the solid lines
correspond to the real part of the proposed approach, the dotted dark lines to the solution obtained
by using State Variables and the dotted red lines to the numerical solution (Newmark-beta method
with ∆t = 0.001s).

3.4.4 Heaviside step function

Let the normalized excitation vector be defined as

f̄ = g1(t)M−1e1 + . . .+gn(t)M−1en = g1(t)v1 + . . .+gn(t)vn, (376)

with

g j(t) =
nk

∑
k=0

f jk(t)H
(
t − t jk

)
, (377)

where f jk(t) are functions of t, nk the number of terms and t jk ∈ R time shifts. Again, H is the
Heaviside step function defined in Eq. (120).
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Figure 12 – Complete solution for the three DOFs example subjected to two opposed Dirac’s
deltas at t = 1 and t = 5, respectively. Solutions y1, y2 and y3, (real part) obtained

by using the proposed approach, are shown as solid lines. Solutions ySV,1, ySV,2 and
ySV,3, obtained by using State Variables, are shown as black dotted lines. Solutions
yNM,1, yNM,2 and yNM,3, obtained by using the Newmark-beta method, are shown as

red dotted lines.

Substituting in Eq. (442), yields

yp = exp
([

F2,1,1 − C̄
]

t
)∫

exp
([

C̄−2F2,1,1
]

t
)∫

exp(F2,1,1t)
n

∑
j=1

nk

∑
k=0

f jk(t)H
(
t − t jk

)
v j dt dt,

(378)

using the linearity of the integral operator and as v j does not depend in time results in

yp = exp
([

F2,1,1 − C̄
]

t
) n

∑
j=1

nk

∑
k=0

∫
exp
([

C̄−2F2,1,1
]

t
)∫

exp(F2,1,1t) f jk(t)H
(
t − t jk

)
dt dt v j.

(379)

Equation (360) is used to evaluate the inner convolution,

yp = exp
([

F2,1,1 − C̄
]

t
) n

∑
j=1

nk

∑
k=0

∫
exp
([

C̄−2F2,1,1
]

t
)∫ t

t jk

exp(F2,1,1t) f jk(t)dt

H
(
t − t jk

)
dt v j, (380)
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and, again, Equation (360) is used to evaluate the outer integral,

yp = exp
([

F2,1,1 − C̄
]

t
) n

∑
j=1

nk

∑
k=0

H
(
t − t jk

)∫ t

t jk

exp
([

C̄−2F2,1,1
]

t
)

∫ t

t jk

exp(F2,1,1t) f jk(t)dt dt v j. (381)

This solution depends on the function that multiplies the Heaviside function and the
convolution can be trivially evaluated when C̄−F2,1,1 is non-singular, since the convolution is
evaluated for times t jk different from t0. Nonetheless, for the singular case, one can evaluate the
convolution by using the Jordan canonical form (HIGHAM, 2008).

The cases derived in previous subsections cover an extent set of widely used excitation
functions, e.g., harmonic, polynomial and constant (a constant function is a polynomial of order
0). Thus, the integrals in Eq. 447 can be found by using previous results as reference. In the
following, the result for a second order polynomial is presented.

3.4.4.1 Particularizing Heaviside excitation for second order polynomial

Let f j,k in Eq. (377) to be particularized to a second order polynomial, i.e.,

g j(t) =
nk

∑
k=0

(
c jk0 + c jk1t + c jk2t2)H (

t − t jk
)
. (382)

Applying this excitation in Eq. (447) yields

yp
(2) = exp

([
F2,1,1 − C̄

]
t
) n

∑
j=1

nk

∑
k=0

H
(
t − t jk

)∫ t

t jk

exp
([

C̄−2F2,1,1
]

t
)

(∫ t

t jk

exp(F2,1,1t)c jk0 dt +
∫ t

t jk

exp(F2,1,1t)c jk1t dt+∫ t

t jk

exp(F2,1,1t)c jk2t2 dt
)

dt v j. (383)

The inner convolutions are analytically integrated using Eq. (339), and, rearranging the terms,
one gets
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yp
(2) = exp

([
F2,1,1 − C̄

]
t
) n

∑
j=1

nk

∑
k=0

H
(
t − t jk

)∫ t

t jk

c jk2t2 exp
([

C̄−F2,1,1
]

t
)

F−1
2,1,1+

t exp
([

C̄−F2,1,1
]

t
)(

c jk1F−1
2,1,1 −2c jk2F−2

2,1,1

)
+ exp

([
C̄−F2,1,1

]
t
)(

2c jk2F−3
2,1,1

−c jk1F−2
2,1,1 + c jk0F−1

2,1,1

)
+ exp

([
C̄−2F2,1,1

]
t
)(

−c jk2t2
jk exp

(
F2,1,1t jk

)
F−1

2,1,1+

2c jk2t jk exp
(
F2,1,1t jk

)
F−2

2,1,1 − c jk1t jk exp
(
F2,1,1t jk

)
F−1

2,1,1

−2c jk2 exp
(
F2,1,1t jk

)
F−3

2,1,1 + c jk1 exp
(
F2,1,1t jk

)
F−2

2,1,1

−c jk0 exp
(
F2,1,1t jk

)
F−1

2,1,1

)
dt v j,

(384)

which can be again convoluted by using Eq. (339). Multiplying by exp
([

F2,1,1 − C̄
]

t
)

yields

yp
(2) =

n

∑
j=1

nk

∑
k=0

H
(
t − t jk

)(
c jk2t2 (C̄−F2,1,1

)−1 F−1
2,1,1 + t

((
C̄−F2,1,1

)−1
(

c jk1F−1
2,1,1 −2c jk2F−2

2,1,1

)
−2c jk2

(
C̄−F2,1,1

)−2 F−1
2,1,1

)
+2c jk2

(
C̄−F2,1,1

)−3 F−1
2,1,1

−
(
C̄−F2,1,1

)−2
(

c jk1F−1
2,1,1 −2c jk2F−2

2,1,1

)
+
(
C̄−F2,1,1

)−1
(

2c jk2F−3
2,1,1

−c jk1F−2
2,1,1 + c jk0F−1

2,1,1

)
+ exp(−F2,1,1t)

(
C̄−2F2,1,1

)−1
(

−c jk2t2
jk exp

(
F2,1,1t jk

)
F−1

2,1,1 +2c jk2t jk exp
(
F2,1,1t jk

)
F−2

2,1,1

−c jk1t jk exp
(
F2,1,1t jk

)
F−1

2,1,1 −2c jk2 exp
(
F2,1,1t jk

)
F−3

2,1,1

+c jk1 exp
(
F2,1,1t jk

)
F−2

2,1,1 − c jk0 exp
(
F2,1,1t jk

)
F−1

2,1,1

)
+ exp

([
C̄−F2,1,1

](
t jk − t

))
(

−c jk2t2
jk
(
C̄−F2,1,1

)−1 F−1
2,1,1 +2c jk2t jk

(
C̄−F2,1,1

)−2 F−1
2,1,1

−2c jk2
(
C̄−F2,1,1

)−3 F−1
2,1,1 − t jk

(
c jk1F−1

2,1,1 −2c jk2F−2
2,1,1

)
+
(
C̄−F2,1,1

)−2
(

c jk1F−1 −2c jk2F−2
2,1,1

)
−
(
C̄−F2,1,1

)−1 (2c jk2F−3 − c jk1F−2 + c jk0F−1))−
exp
([

C̄−F2,1,1
](

t jk − t
)
−F2,1,1t jk

)(
C̄−2F2,1,1

)−1
(

−c jk2t2
jk exp

(
F2,1,1t jk

)
F−1

2,1,1 +2c jk2t jk exp
(
F2,1,1t jk

)
F−2

2,1,1−

c jk1t jk exp
(
F2,1,1t jk

)
F−1

2,1,1 −2c jk2 exp
(
F2,1,1t jk

)
F−3

2,1,1+

c jk1 exp
(
F2,1,1t jk

)
F−2

2,1,1 − c jk0 exp
(
F2,1,1t jk

)
F−1

2,1,1

))
v j. (385)

By using Eqs. (651) and (644), the term exp
(
F2,1,1t jk

)
can be commuted with(

C̄−2F2,1,1
)−1. Thus, the expression can be further simplified to
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yp
(2) =

n

∑
j=1

nk

∑
k=0

H
(
t − t jk

){
c jk2t2 [C̄−F2,1,1

]−1 F−1
2,1,1 + t

([
C̄−F2,1,1

]−1

(
c jk1F−1

2,1,1 −2c jk2F−2
2,1,1

)
−2c jk2

[
C̄−F2,1,1

]−2 F−1
2,1,1

)
+2c jk2

[
C̄−F2,1,1

]−3 F−1
2,1,1

−
[
C̄−F2,1,1

]−2
(

c jk1F−1
2,1,1 −2c jk2F−2

2,1,1

)
+
[
C̄−F2,1,1

]−1
(

2c jk2F−3
2,1,1

−c jk1F−2
2,1,1 + c jk0F−1

2,1,1

)
+ exp

(
F2,1,1

(
t jk − t

))[
C̄−2F2,1,1

]−1(
−
(

c jk2t2
jk + c jk1t jk + c jk0

)
F−1

2,1,1 +
(
2c jk2t jk + c jk1

)
F−2

2,1,1 −2c jk2F−3
2,1,1

)
+exp

([
C̄−F2,1,1

](
t jk − t

))([
C̄−F2,1,1

]−1
(

F−1
2,1,1

(
−c jk2t2

jk − c jk1t jk − c jk0

)
+F−2

2,1,1
(
2c jk2t jk + c jk1

)
−2c jk2F−3

2,1,1

)
+
[
C̄−F2,1,1

]−2
(

F−1
2,1,1

(
2c jk2t jk + c jk1

)
−2c jk2F−2

2,1,1

)
−2c jk2

[
C̄−F2,1,1

]−3 F−1
2,1,1 −

[
C̄−2F2,1,1

]−1
(
−F−1

2,1,1

(
c jk2t2

jk

+c jk1t jk + c jk0
)
+F−2

2,1,1
(
2c jk2t jk + c jk1

)
−2c jk2F−3

2,1,1

))}
M−1e j. (386)

Heaviside step function are used to model abruptly shifting forces and electrical
currents. This excitation type is extremely important in mechanical vibration analysis, circuitry
analysis and signal processing. Thus, enabling the exact modelling of a system subject to such
discontinuous excitation is paramount to forecast how it will respond to it and, then, a lot of
procedures may be taken to adequate it within desired behavior, like optimization. Hence, two
examples are provided of excitation functions that can be parameterized using Heaviside steps
multiplied by polynomials.

Example
Consider the 3 DOF problem with β = 1×10−2 and excitation

f2(t) =

{
−30+40t −10t2 1 ≤ t ≤ 3

0 t ∈ [0,1)∪ (3,∞]
(387)

or

f =


0

(−30+40t −10t2)H (t −1)+(30−40t +10t2)H (t −3)
0

 , (388)

such that c200 = −30, c201 = 40, c202 = −10, t20 = 1, c210 = 30, c211 = −40, c212 = 10 and
t21 = 3.

The solution using State Variables, given by Eq, (277), is particularized for this example
as



97

ySV (t) =
[[
−10D̄−1t2 + t

[
40D̄−1 +20D̄−2]−30D̄−1 −40D̄−2 −20D̄−3

+exp
(
D̄(1− t)

)[
20D̄−2 +20D̄−3]]H (t −1)+

[
10D̄−1t2 − t

[
40D̄−1 +20D̄−2]

+30D̄−1 +40D̄−2 +20D̄−3 + exp
(
D̄(5− t)

)[
20D̄−2 −20D̄−3]]H (t −5)

]
B̄e2

+exp
(
−D̄t

)
C1,SV , (389)

where C1,SV is a vector of integration constants associated to the initial conditions. As both
solutions depend upon costly matrix operations, such as exponential maps and matrix inverses,
it is straightforward to conclude that the evaluation of these operations become costlier when
the dimensionality is increased. Also, as the State Variables doubles the dimensionality of the
problem, one can expect much larger execution times for this approach. This solution is compared
to the solution given by the generalized integrating factor in Fig. 13.

Figure 13 – Complete solution for the three DOFs example subjected to a quadratic load
between t = 1 and t = 3s. Solutions y1, y2 and y3, (real part) obtained by using the

proposed approach, are shown as solid lines. Solutions ySV,1, ySV,2 and ySV,3
obtained by using State Variables are shown as black dotted lines.

Example
Consider the 3 DOF problem with β = 1×10−2. Assuming an unitary step at DOF 2
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between t = 1 and t = 5

f =


0

H (t −1)−H (t −5)
0

 , (390)

such that g2(t) = c200H (t − t20)+c210H (t − t21) with c200 = 1, c210 =−1, t20 = 1 and t21 = 5.
Solution provided by Eq. (386) can be particularized to order zero

yp
(0) =

n

∑
j=1

nk

∑
k=0

H
(
t − t jk

){[
C̄−F2,1,1

]−1 c jk0F−1
2,1,1

−c jk0 exp
(
F2,1,1

(
t jk − t

))[
C̄−2F2,1,1

]−1 F−1
2,1,1 + exp

([
C̄−F2,1,1

](
t jk − t

))(
−c jk0

[
C̄−F2,1,1

]−1 F−1
2,1,1 + c jk0

[
C̄−2F2,1,1

]−1 F−1
2,1,1

)}
M−1e j. (391)

Using the data for this example

yp
(0) = H (t −1)

{[
C̄−F2,1,1

]−1 F−1
2,1,1

−exp(F2,1,1 (1− t))
[
C̄−2F2,1,1

]−1 F−1
2,1,1 + exp

([
C̄−F2,1,1

]
(1− t)

)(
−
[
C̄−F2,1,1

]−1 F−1
2,1,1 +

[
C̄−2F2,1,1

]−1 F−1
2,1,1

)}
M−1e2 +

H (t −5)
{[

C̄−F2,1,1
]−1 F−1

2,1,1

+exp(F2,1,1 (5− t))
[
C̄−2F2,1,1

]−1 F−1
2,1,1 + exp

([
C̄−F2,1,1

]
(5− t)

)([
C̄−F2,1,1

]−1 F−1
2,1,1 −

[
C̄−2F2,1,1

]−1 F−1
2,1,1

)}
M−1e2, (392)

which is further simplified to

yp
(0) = H (t −1)

{[
MF2,1,1

[
C̄−F2,1,1

]]−1

−exp(F2,1,1 (1− t))
[
MF2,1,1

[
C̄−2F2,1,1

]]−1
+ exp

([
C̄−F2,1,1

]
(1− t)

)(
−
[
MF2,1,1

[
C̄−F2,1,1

]]−1
+
[
MF2,1,1

[
C̄−2F2,1,1

]]−1
)}

e2 +

H (t −5)
{[

MF2,1,1
[
C̄−F2,1,1

]]−1

+exp(F2,1,1 (5− t))
[
MF2,1,1

[
C̄−2F2,1,1

]]−1
+ exp

([
C̄−F2,1,1

]
(5− t)

)([
MF2,1,1

[
C̄−F2,1,1

]]−1 −
[
MF2,1,1

[
C̄−2F2,1,1

]]−1
)}

e2, (393)

and, by using Eq. (207), it reduces to



99

yp
(0) = H (t −1)

{
K−1 − exp(F2,1,1 (1− t))

[
K−MF2

2,1,1
]−1

−exp
([

C̄−F2,1,1
]
(1− t)

)(
K−1 −

[
K−MF2

2,1,1
]−1
)}

e2 +

H (t −5)
{

K−1 + exp(F2,1,1 (5− t))
[
K−MF2

2,1,1
]−1

+

exp
([

C̄−F2,1,1
]
(5− t)

)(
K−1 −

[
K−MF2

2,1,1
]−1
)}

e2, (394)

The solution using the method of state variables, given by Eq, (277), is particularized for
this example as

ySV (t) =
[[

I− exp
(
D̄(1− t)

)]
H (t −1)−

[
I− exp

(
D̄(5− t)

)]
H (t −5)

]
B̄e2

+exp
(
−D̄t

)
C1,SV , (395)

where C1,SV is a vector of integration constants associated to the initial conditions. As both
solutions depend upon costly matrix operations, such as exponential maps and matrix inverses,
it is straightforward to conclude that the evaluation of these operations become costlier when
the dimensionality is increased by a factor of 2, as when using State Variables. This remark
is reassured as the inverses in Eq. (394) depend mostly on the stiffness matrix, K, which is a
sparse positive-definite matrix (ZIENKIEWICZ; TAYLOR; ZHU, 2013), thus, enabling the use
of fast algorithms for the solution of the linear systems for each input vector, e j. This solution is
compared to the solution given by the real part of the generalized integrating factor in Fig. 14.

3.4.4.2 Initial conditions of Heaviside and Dirac’s delta excitation

As all previous excitation functions were split in the canonical basis of the Rn, each
integration was evaluated separately for each functional component and, then, multiplied by the
respective basis vector. Nonetheless, for both the Heaviside and the Dirac’s delta excitations,
the component of the solution that multiply each basis vector has null response and derivative
at the initial point. Consequently, the initial conditions for these excitations are zero such that
yp(t) = 0 ∀t, as discussed in Chapter 2. This result was observed in previous examples. The
consideration of non homogeneous initial conditions is discussed in Appendix B.1.

3.4.4.3 Matrix complexity for polynomial particularized Heaviside

Heaviside excitation particularized to polynomial f jk yields expensive matrices
evaluations, like power and inverse operations. This is expected, since similar complexity
is observed when addressing polynomial excitations. As it can be observed in Eq. (386), this
complexity increases with the order of f jk.

However, some calculation can be avoided by using the quadratic matrix equation, Eq.
(208). For example, by factoring Eq. (208),
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Figure 14 – Complete solution for the three DOFs example subjected to an unitary step between
t = 1 and t = 5s. Solutions y1, y2 and y3, (real part) obtained by using the proposed
approach, are shown as solid lines. Solutions ySV,1, ySV,2 and ySV,3 obtained by using

State Variables are shown as black dotted lines.

F2
2,1,1 −F2,1,1C̄+ K̄ = F2,1,1

[
F2,1,1 − C̄

]
+ K̄ = 0, (396)

which is then rearranged to

F2,1,1
[
C̄−F2,1,1

]
= K̄. (397)

Taking the inverse of both sides, results in

[
C̄−F2,1,1

]−1 F−1
2,1,1 = K̄−1 = K−1M, (398)

thus, the inverse of F2,1,1 can be calculated by

F−1
2,1,1 =

[
C̄−F2,1,1

]
K−1M; (399)

conversely, the inverse of
[
C̄−F2,1,1

]
can be evaluated by
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[
C̄−F2,1,1

]−1
= K−1MF2,1,1. (400)

Hence, the two most common inverses in Eq. (386) are evaluated using just one inverse,
the inverse of K. These relations can also be used to decrease the computational cost for
polynomial excitation. The inverse of K is particularly interesting in the Finite Element Analysis
(FEA) context, since the stiffness matrix is sparse, enabling the use of fast, efficient and tailored
algorithms for this kind of matrices (LI et al., 2008; BOLLHöFER; SCHENK; VERBOSIO,
2021). Therefore, the inverse of more complicate matrices, like F2,1,1 and

[
C̄−F2,1,1

]
, can be

computed by using an inverse that is cheaper to evaluate. It is important to stress that matrices
are not usually inverted in the numerical implementation, but K is the coefficient matrix used to
solve a linear system of equations. Nonetheless, all the previous discussion still applies., since
dealing directly with K is much cheaper than dealing with the original forms.

The matrix
[
C̄−2F2,1,1

]
is trickier to simplify, but it can be done using Eq. (239),

[
C̄−2F2,1,1

]
=−

(
C̄2 −4K̄

) 1
2 , (401)

and if C̄ is given by proportional damping,

[
C̄−2F2,1,1

]
=−

(
β

2K̄2 +(2αβ −4)K̄+α
2I
) 1

2 . (402)

Equation (402) can be approximated if one assumes both α and β as very small values.
In such case[

C̄−2F2,1,1
]
≈−2iK̄

1
2 , (403)

and the inverse of
[
C̄−2F2,1,1

]
can be approximated to

[
C̄−2F2,1,1

]−1 ≈ i
2
(
M−1K

)− 1
2 =

i
2
(
K−1M

) 1
2 . (404)

Again, a matrix inverse can be calculated using the inverse of the stiffness matrix. The
approximation presented in Eq. (403), however, can also be used in Eq. (239) to reduce
computation costs. Such approximations were not used in the examples discussed in this text.

3.5 RUNNING TIME COMPARISON

The proposed method was particularized for four families of excitation functions that are
common in real-world problems, such as exponential/periodic, polynomial, Dirac’s delta and
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Heaviside step functions. For all of the particularizations, at least one practical example was
provided and compared to the analytical solution obtained by State Variables. Exceptionally, for
excitation due to Dirac’s delta, the Newmark-beta numerical method was also used due to its
extensive usage in the literature and to illustrate how such excitation is numerically parameterized.
Regarding the analytical comparison with State Variables, it was observed that the response due
to the latter induced higher computational cost, since costly operations over matrix of doubled
dimension.

In the case of Newmark-beta and other numerical methods, it is important to highlight
the need for a finer time discretization, to reduce the propagation of errors. Despite that, it is
also important to stress that in the implementation of the Newmark-beta, (HUGHES, 2000;
LINDFIELD; PENNY, 2019), there are at least 3 matrix-vector multiplications per time step
(O
(
n2), (JIN; CHEW, 2005), where n is the dimensionality of the problem) and the solution of

a linear system. This linear system can be pre-factorized such that a forward and a backward
substitutions are needed at each time step ((O

(
n2) (FORD, 2015)). Hence, it is estimated that

each iteration of the Newmark-beta method has a complexity of 5O
(
n2).

If the scheme presented in Eq. (650) is used to evaluate the homogeneous analytical
response in a set of uniformly distributed time points, the exponential map must be evaluated only
once at a pre-processing step. Hence, a matrix-vector multiplication of complexity O

(
(2n)2

)
is needed at each time step when using State Variables. The proposed approach requires two
matrix-vector multiplications when the problem is over damped, with complexity O

(
n2) each,

or just a single matrix-vector product of complexity O
(
n2) if the system is under damped.

Henceforth, regardless of time discretization (which is expected to be fine in numerical
methods), the Newmark-beta is already expected to have more floating point operations per time
step, that build up as more points are added to the time span.

The example used to assess the proposed approach with Dirac’s delta was used as a
starting point to devise a numerical experiment. A FEM model with increasing number of
DOFs is subjected to the same loading (two Dirac’s deltas) and to the same settings: time span
(t ∈ [0,10]s), time discretization (∆t = 0.001 s) and the damping coefficient (β = 10−6).

The results are shown in Fig. 15. The blue line corresponds to the execution time for
the Newmark-beta method, whereas the orange line corresponds to the execution time of State
Variables and the green line to the execution time of the proposed approach. It is straightforward
to observe that the execution time of the Newmark-beta method rises much quicker than those
of the two analytical methods. It shows the advantage of using analytical techniques for linear
problems despite the preference for numerical approaches in the literature. Beyond that, it is clear
that the proposed approach spared computational time by a significant margin, that is visible
in Fig. 15. Thereby, the proposed approach can be also computationally efficient and a viable
option for simulation of linear systems with higher dimensionality.
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Figure 15 – Computation time to evaluate the response due to Dirac’s excitation as a function of
the dimensionality of the problem. The complete response was calculated using the
Newmark-beta method (NM, blue line), State Variables (SV, orange line) and the

proposed approach (GIF, green line). T is the computation time at a given
dimensionality, while Tmax is the maximum time measured for all methods in the

entire experiment.

3.6 APPLICATION IN INTEGRAL MEASURES

Integral measures arise in many engineering applications, especially in optimization
of structures subject to dynamic loads. In (JOG, 2002), a review of the integral measures is
provided, while, in (ZHU; ZHANG; BECKERS, 2009), examples with topology optimization
are given. One of such integral measures is power input, which can be used to mitigate vibrations
in structures using topology optimization (SILVA; NEVES; LENZI, 2019; SILVA; NEVES;
LENZI, 2020). Calculate such measures analytically and, thus, having analytical expressions for
their sensitivity analysis is paramount. Hence, the generalized integrating factor can be used both
for determining system response and for evaluating objective or constraint functions dependent
upon integral measures.

3.6.1 Input energy with periodic excitation

The input energy along a time span can be calculated as
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E =
∫ t f

t0
fT ẏdt, (405)

where T stands for the transpose of the excitation vector. If the excitation function is periodic,
Equations (282) and (306) and the derivative of Eq. (223) can be directly substituted in Eq. (405),

E =
n

∑
j=1

nk

∑
k=1

n

∑
l=1

nk

∑
m=1

∫ t f

t0
c jk exp

(
β jkt +φ jk

)
eT

j clmβlm exp(βlmt +φlm)klm +

c jk exp
(
β jkt +φ jk

)
eT

j [−exp(−F2,1,1t)F2,1,1C2+

exp
([

F2,1,1 − C̄
]

t
)[

F2,1,1 − C̄
]

C1
]

dt. (406)

The integral above has two parts - one corresponding to the particular solution with no
matrix exponential and one corresponding to the homogeneous solution, that has indeed matrix
exponentials. The part due to the particular response has a straightforward solution, while the
one due to the homogeneous response has a solution using Eq. (289), thus,

E =
n

∑
j=1

nk

∑
k=1

n

∑
l=1

nk

∑
m=1

c jkclmβlm

β jk +βlm
exp
((

β jk +βlm
)

t +φ jk +φlm
)∣∣∣∣∣

t f

t0

eT
j klm +

c jk exp
(
β jkt +φ jk

)
eT

j

[
exp(−F2,1,1t)

[
F2,1,1 −β jkI

]−1 F2,1,1C2+

exp
([

F2,1,1 − C̄
]

t
)[

F2,1,1 − C̄+β jkI
]−1 [F2,1,1 − C̄

]
C1

]∣∣∣∣∣
t f

t0

. (407)

Both matrix inverses in Eq. (407) are the result of integrating the homogeneous parcel of
the solution, therefore, this part will be common to the input energy calculation of all responses
due to continuous excitation. These inverses can be avoided if the homogeneous response is
neglected altogether, like in (SILVA; NEVES; LENZI, 2019; SILVA; NEVES; LENZI, 2020).
Nevertheless, the complexity of all these matrix operations is dependent upon the dimensionality
of the problem only and totally independent of the time span, in contrast to numerical methods,
whose evaluation points would have to be again numerically integrated. In consequence, as the
length of the time span increases, the approach using the generalized integrating factor gets
computationally more efficient, besides its intrinsic accuracy.

3.7 OPEN-SOURCE REPOSITORY - GIFFNDOF

The source code of the computer implementation of the proposed formulation is available
in the public repository <https://github.com/CodeLenz/Giffndof.jl>. The open source Julia
language (BEZANSON et al., 2012) is used. Instructions for downloading and usage can be
found in the documentation and in the examples provided in the GitHub page of the repository.

https://github.com/CodeLenz/Giffndof.jl
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Two different implementations are available: a continuous one, where the complete, the particular
and the homogeneous responses are given, for each tye of excitation, as functions of time and a
discrete version where the complete response is computed for a pre-defined grid of time steps
and for any combination of exponential, polynomial and Dirac’s impulse excitations.

3.8 FINAL REMARKS OF THE CHAPTER

This chapter extended the use of the GIF to coupled systems of second order ODEs.
Expressions for the time-dependent coefficient case were derived in general form. These forms
were later particularized to the constant coefficient case where it was shown that under mild
assumptions about coefficient matrix C̄ the integrating factor can be found in closed form.
Analytical particular solutions were derived for different forms of continuous and discontinuous
excitations. Complicate expressions for loading can be generated by using a linear combination
of polynomials multiplied by Heavisides and also by combining the analytical solutions derived
in this manuscript.

Examples showed that the proposed approach is accurate and can be made efficient, not
suffering with common issues found in traditional numerical approaches, like stability associated
to time discretization and interpolation errors. Initial conditions can be imposed at any given
time t0, not only in the extremes of the interval. Actually, no time span is needed to evaluate the
response when using the proposed approach.

Implementation ideas regarding the exponential maps in the solutions were launched
and tested, which made the computational implementation efficient. It was observed through
numerical experiments that the GIF spent less computational effort than well-established
techniques, such as Newmark-beta and State Variables methods.

Comparisons against other analytical approach, namely the Laplace transform,
demonstrated that the latter is indeed impractical for large problems and cannot be scaled
to n-dimensional problems like the GIF can. Summing these results up, it follows that the GIF
is a practical option to solve systems of coupled ODEs, both reliably and with computational
efficiency.
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4 HEAVISIDE SERIES

In Chapter 3, the importance of solving systems of coupled linear ODEs was highlighted
in many practical applications. For this reason, the Generalized Integrating Factor was extended to
tackle these systems and particularized for some families of excitation functions. The advantages
of the method, such as accuracy and lesser computational effort, were shown through numerical
experiments.

The particular solutions in Chapter 3, however, depended on a double convolution. Hence,
one might ask: what if an excitation function does not have a analytical convolution?While
another might also ask: what if I do not want to trouble myself to evaluate the convolution for

an excitation function that interests me? The answer is to approximate such cases of excitation
function in a way that does have analytical convolution and that has already been derived.

From this intuition, a semi-analytical method is formulated in this chapter. The original
excitation function is approximated using series of Heaviside step functions multiplied by
polynomial coefficients. As this type of excitation had already been developed in Chapter 3,
the solution to the approximated function will be analytic. For this reason, the method is semi-
analytic, since the solution is analytic but the excitation is an approximation, and the accuracy is
solely dependent on the quality of the approximation of the excitation function.

It will be shown in this chapter that the proposed semi-analytical method, called Heaviside
Series method, keeps the advantage of lesser computational effort from the original GIF technique.
It will be shown through numerical experiments that the method has an order of convergence
between 2 and 4 and that it is, consequently, more accurate and faster than the Newmark-beta
method. The numerical stability of the Heaviside Series method, HS for short, is also explored
and it is shown to be linked to the eigenvalues of the matrices F2,1,1 and

[
C̄−F2,1,1

]
- if they

have positive real part.
The eigenvalues of these matrices show that the method is unconditionally stable when

damping is positive. It is proven that, when the eigenvalues have negative real part, it is not the
method that is unstable but the system as a whole. Consequently, the response is not artificially
damped as in other numerical methods. Conditions for the damping being positive are investigated
for Rayleigh proportional damping.

4.1 HEAVISIDE SERIES FOR FUNCTION APPROXIMATION

In many real-world and mathematical problems, functions must be approximated to fit
some conditions. Among different uses, two classes of these problems are very common: data
regression, when a function must be fit to data to infer and predict over unknown data and
approximate solutions for differential equations, when a candidate solution is adjusted to fit
the model’s differential equation by minimizing a residue metric, such as in Galerkin method
(ZIENKIEWICZ; TAYLOR; ZHU, 2013; GAUL; KÖGL; WAGNER, 2012). Hence, developing
new ways of representing and approximating functions is indeed an important and current
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research topic.

4.1.1 One dimensional functions f : V →V

Let a function f (t), f : V →V , be approximated as a series of polynomials ĉk,mtm ∈V

up to power nm multiplied by Heaviside step functions at nk discrete time steps tk

f (t)≈ f̃ (t) =
nk

∑
k=0

nm

∑
m=0

ĉk,mtmH (t − tk) , (408)

where H is the Heaviside step function defined in Eq. (120).
As the function is essentially approximated by a polynomial of order nm, it is fair to say

that Eq. (408) provides an approximation of order nm for f (t), much like using Taylor series.
Nonetheless, the coefficients of the polynomials are updated according to t, such that there is no
need to center the approximation around a point like in Taylor series. Thus, the calculation of
coefficients ĉk,m is carried out differently.

The main idea for evaluating the coefficients ĉk,m is to preserve the integral of the original
function, f (t) and its derivatives at each point tk, depending on the order of approximation but
regardless of domain discretization. Examples with zero, first and second order approximations
are presented in the following and provide a glance at the niche of application of this series
representation.

4.1.1.1 Zero order approximation

For zero order approximation, nm = 0, Eq. (408) reduces to

f̃ (t) =
nk

∑
k=0

ĉkH (t − tk) . (409)

Using the preservation of the integral of f (t) at each interval t ∈ [tl, tl+1] and the mean value
theorem for integrals

f̃ (t) =
l

∑
k=0

ĉk =
1

∆tl

∫ tl+1

tl
f (t)dt, tl ≤ t ≤ tl+1, (410)

where ∆tl = tl+1 − tl and 0 ≤ l ≤ nk. Thus, the l-th coefficient, ĉl , is evaluated by

ĉl =
1

∆tl

∫ tl+1

tl
f (t)dt −

l−1

∑
k=0

ĉk. (411)
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4.1.1.2 First order approximation

For first order approximation, nm = 1, Eq. (408) reduces to

f̃ =
nk

∑
k=0

(
ĉk,0 + ĉk,1t

)
H (t − tk) . (412)

The approximation at interval t ∈ [tl, tl+1] is given by

f̃ (t) =
l

∑
k=0

ĉk,0 +
l

∑
k=0

ĉk,1t = a0,l +a1,lt, tl ≤ t ≤ tl+1. (413)

The slope of this polynomial, a1,l , can be tailored to be equal to

a1,l =
f (tl+1)− f (tl)

∆tl
, (414)

which, by the mean value theorem for derivatives, guarantees that the derivative of f (t) coincides
with the derivative of f̃ at one point within the given interval, at least. Coefficient a0,l is obtained
by

∫ tl+1

tl
f̃ (t)dt = a0,l∆tl +

a1,l

2
(
t2
l+1 − t2

l
)
=
∫ tl+1

tl
f (t)dt, (415)

such that,

a0,l =
1

∆tl

∫ tl+1

tl
f (t)dt −

a1,l

2∆tl

(
t2
l+1 − t2

l
)
. (416)

Thus, using Eq. (413), the coefficients are evaluated as

ĉl,0 =
1

∆tl

∫ tl+1

tl
f (t)dt −

a1,l

2∆tl

(
t2
l+1 − t2

l
)
−

l−1

∑
k=0

ĉk,0 (417)

and

ĉl,1 =
f (tl+1)− f (tl)

∆tl
−

l−1

∑
k=0

ĉk,1. (418)

This approximation guarantees that the integral of f̃ (t) is the same as the integral of
f (t). It also enforces that the mean value of the derivative of f (t) and the derivative of f̃ (t) are
equal in each time interval. Both properties are observed regardless of the time step used in the
approximation.
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4.1.1.3 Second order approximation

For second order approximation, nm = 2, Eq. (408) reduces to

f̃ (t) =
nk

∑
k=0

(
ĉk,0 + ĉk,1t + ĉk,2t2)H (t − tk) . (419)

At interval t ∈ [tl, tl+1] the approximation function is given by

f̃ (t) =
l

∑
k=0

ĉk,0 +
l

∑
k=0

ĉk,1t +
l

∑
k=0

ĉk,2t2 = a0,l +a1,lt +a2,lt2, tl ≤ t ≤ tl+1. (420)

For this order of approximation, the first derivative of the HS representation is set to be
equal to the derivative of f (t) at the vicinity of each time point tk, what gives the advantage
that the first derivative is smooth, although not defined at points tk. Thus, the derivative of
the representation, f̃ , is continuous in the domain Ω : (−∞,∞)−{tl}, l ∈ {0,1, . . . ,nk}. It is
straightforward to observe that, if f is differentiable at tl , tl is an accumulation point and the
limit of the derivative of f̃ converges from both the left and the right sides. These conditions
yield a linear system of equations

2a2,ltl+1 +a1,l = ḟ (tl+1) , (421)

and

2a2,ltl +a1,l = ḟ (tl) (422)

whose solutions are the coefficients a1,l and a2,l ,

a2,l =
ḟ (tl+1)− ḟ (tl)

2∆tl
, (423)

and

a1,l = ḟ (tl+1)−2a2,ltl+1. (424)

Using the mean value theorem for integrals, one gets the coefficient a0,l to make the
integral of the representation equal to the integral of the represented function at each point tk.
The integral of the representation is

∫ tl+1

tl
a2,lt2 +a1,lt +a0,l dt =

a2,l

3
(
t3
l+1 − t3

l
)
+

a1,l

2
(
t2
l+1 − t2

l
)
+a0,l (tl+1 − tl) , (425)

which, comparing to the integral of the represented function, reduces to
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a0,l =
1

∆tl

∫ tl+1

tl
f (t)dt − 1

∆tl

a2,l

3
(
t3
l+1 − t3

l
)
− 1

∆tl

a1,l

2
(
t2
l+1 − t2

l
)
. (426)

Turning these equations in terms of ĉk, j yields

ĉl,2 =
ḟ (tl+1)− ḟ (tl)

2∆tl
−

l−1

∑
k=0

ĉk,2, (427)

ĉl,1 = ḟ (tl+1)−2a2,ltl+1 −
l−1

∑
k=0

ĉk,1 (428)

and

ĉl,0 =
1

∆tl

∫ tl+1

tl
f (t)dt − 1

∆tl

a2,l

3
(
t3
l+1 − t3

l
)
− 1

∆tl

a1,l

2
(
t2
l+1 − t2

l
)
−

l−1

∑
k=0

ĉk,0. (429)

4.1.2 n-dimensional functions f : V →V n

In an analogous manner to one-dimensional functions, let approximate n-dimensional
functions f : V →V n extending Eq. (408). For this purpose, let a vector function be written as
linear combination of the vectors of the canonical base, e j,

f(t) = g1(t)e1 +g2(t)e2 + . . .+gn(t)en, (430)

where each functional coefficient g j(t), j ∈ {1,2, . . . ,n}, can be represented using HS,

g j(t)≈ ĝ j(t) =
nk

∑
k=0

nkm

∑
m=0

ĉ j,k,mtmH
(
t − t j,k

)
. (431)

Hence, the HS is extended to the n-dimensional codomain, V n, by simply representing
each component of the vector function f independently. Analogously to one-dimensional
representation, there will be different orders of approximation as well. For the purpose of
illustrating the process for the n-dimensional case, first order only will be addressed, since it both
shows how the procedure is carried out and it is the most prominent approximation, as following
results will demonstrate.

4.1.2.1 First order approximation

Assuming that functions g j(t) are written in approximate form as in Eq. (431) and
particularizing for nkm = 1, Equation (431) becomes
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g j(t)≈ ĝ j(t) =
nk

∑
k=0

(
ĉ j,k,0 + ĉ j,k,1t

)
H
(
t − t j,k

)
. (432)

Due to the Heaviside steps, the approximation at interval t ∈ [tl, tl+1] is given by

ĝ j(t) =
l

∑
k=0

ĉ j,k,0 +
l

∑
k=0

ĉ j,k,1t = a0 jl +a1, j,lt, tl ≤ t ≤ tl+1. (433)

The slope a1, j,l of this polynomial can be tailored to be equal to

a1, j,l =
g j (tl+1)−g j (tl)

∆tl
, (434)

whereas coefficient a0, j,l is obtained by the equality between the integrals of the original function
and its representation through HS,

∫ tl+1

tl
ĝ j(t)dt = a0, j,l∆tl +

a1, j,l

2
(
t2
l+1 − t2

l
)
=
∫ tl+1

tl
g j(t)dt, (435)

such that,

a0, j,l =
1

∆tl

∫ tl+1

tl
g j(t)dt −

a1, j,l

2∆tl

(
t2
l+1 − t2

l
)
. (436)

Thus, by using Eq. (433), the coefficients are evaluated as

ĉ j,l,0 = a0, j,l −
l−1

∑
k=0

ĉ j,k,0 (437)

and

ĉ j,l,1 = a1, j,l −
l−1

∑
k=0

ĉ j,k,1. (438)

4.2 USING THE HEAVISIDE SERIES TO SOLVE ODES

Systems of coupled second order ODEs with constant matrix coefficients are represented
by Eq. (1). As matrix coefficient M is non-singular, it its possible to rewrite this Equation as

Iÿ(t)+ C̄ẏ(t)+ K̄y(t) = f̄(t) (439)

where C̄ = M−1C, K̄ = M−1K and f̄(t) = M−1f(t). The Generalized Integrating Factor, an
analytical approach to solve this problem, was proposed in Chapter 3. The general solution for
ODEs with constant coefficients is given by
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y(t) = exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)
∫

exp(F2,1,1t) f̄dt dt︸ ︷︷ ︸
yp(t)

+

exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)C2 dt + exp
(
−
[
C̄−F2,1,1

]
t
)

C1︸ ︷︷ ︸
yh(t)

,

(440)

where yp(t) is the particular solution due to the excitation vector f(t), yh(t) is the homogeneous
solution and C1 and C2 are vectors of integration constants.

When matrices C̄ and K̄ commute, as is the case with proportional damping and other
damping models that yield classic normal modes (ADHIKARI, 2006), the two terms in Eq. (513)
are simplified to

yh(t) = exp(−F2,1,1t)C2 + exp
(
−
[
C̄−F2,1,1

]
t
)

C1, (441)

and

yp(t) = exp
([

F2,1,1 − C̄
]

t
)∫

exp
([

C̄−2F2,1,1
]

t
)∫

exp(F2,1,1t) f̄(t)dt dt. (442)

Following Chapter 3, matrix F2,1,1 is the result of

F2
2,1,1 −F2,1,1C̄+ K̄ = 0, (443)

whose solution is

F2,1,1 =
1
2

C̄+
1
2
[
C̄2 −4K̄

] 1
2 . (444)

Thus, analytical solutions can be found when the convolution in Eq. (442) can be evaluated in
closed form, as it is shown in Chapter 3 for different families of excitation functions. Those
analytical solutions are continuous in time (not a discrete solution) and do not depend on the
level of damping if the matrix C̄−2F2,1,1 is non singular (conditions for the singularity of this
matrix are given in Appendix C.1). Other important aspect when comparing to the numerical
procedures it the fact that the complete solution is split in its homogeneous and particular parts.
The homogeneous solution does not depend on the excitation f̄(t) and is always analytic.

For the particular solution, nonetheless, sometimes one is interested in using excitations
f̄(t):

1. only known at discrete time points t j,k;
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2. hard to evaluate by convolution, although the integral itself can be easy to evaluate (at least
numerically).

Both cases can be addressed using HS, since the convolution for Heaviside steps multiplied by
polynomials has analytical solution, as observed in Chapter 2 and in Chapter 3.

Thereby, the use of the Generalized Integrating Factor approach is straightforward
even beyond the subspace of excitation functions whose convolution is simply calculated.
Nevertheless, it can be systematically extended for the two problematic cases referred previously,
as summarized in Fig. 16.

Application of
Heaviside series

Ease to
integrate

Discrete
domain

Ease to
convolute

Space of functions 
ℝ  → ℝ
  

Figure 16 – Diagram of the extension of the function space covered by the use of HS
representation as excitation function to the Generalized Integrating Factor. Verônica
Herbst Pazda, undergraduate student of the department, is acknowledged for making

this image by request of the author.

The use of the HS as excitation to evaluate the particular response using the Generalized
Integrating Factor is discussed in the following.

4.2.1 Particular solution due to Heaviside Series in n-DOF problems

Let the normalized excitation vector be defined using Eq. (430),

f̄(t) = g1(t)M−1e1 + . . .+gn(t)M−1en = g1(t)v1 + . . .+gn(t)vn, (445)

with

g j(t) =
nk

∑
k=0

H
(
t − t j,k

)
f j,k(t), (446)

where t j,k are nk discrete time points for each DOF j and f j,k are functional coefficients.
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The particular solution for this class of excitation was shown to be, Chapter 3,

yp(t) = exp
([

F2,1,1 − C̄
]

t
) n

∑
j=1

nk

∑
k=0

H
(
t − t j,k

)∫ t

t j,k

exp
([

C̄−2F2,1,1
]

t
)

∫ t

t j,k

exp(F2,1,1t) f jk(t)dt dt v j, (447)

depending on the function that multiplies the Heaviside function. The closed-form particular
solution when f j,k(t) are polynomials was obtained in Chapter 3, such that one can combine this
solution with the approximation provided by the Heaviside series to devise a general procedure
to extend the applicability of the Generalized Integrating Factor approach.

If g j(t), Eq. (446), is represented by a second order Heaviside Series

g j(t) =
nk

∑
k=0

(
ĉ j,k,0 + ĉ j,k,1t + ĉ jk2t2)H (

t − t j,k
)
, (448)

and if C̄−2F2,1,1 is non-singular (C.1), the particular solution to Eq. (447), according to Chapter
3, is given by

yp(t) =
n

∑
j=1

nk

∑
k=0

H
(
t − t j,k

){
ĉ jk2t2 [C̄−F2,1,1

]−1 F−1
2,1,1 + t

([
C̄−F2,1,1

]−1

(
ĉ j,k,1F−1

2,1,1 −2ĉ jk2F−2
2,1,1

)
−2ĉ jk2

[
C̄−F2,1,1

]−2 F−1
2,1,1

)
+2ĉ jk2

[
C̄−F2,1,1

]−3 F−1
2,1,1

−
[
C̄−F2,1,1

]−2
(

ĉ j,k,1F−1
2,1,1 −2ĉ jk2F−2

2,1,1

)
+
[
C̄−F2,1,1

]−1
(

2ĉ jk2F−3
2,1,1

−ĉ j,k,1F−2
2,1,1 + ĉ j,k,0F−1

2,1,1

)
+ exp

(
F2,1,1

(
t j,k − t

))[
C̄−2F2,1,1

]−1(
−
(

ĉ jk2t2
j,k + ĉ j,k,1t j,k + ĉ j,k,0

)
F−1

2,1,1 +
(
2ĉ jk2t j,k + ĉ j,k,1

)
F−2

2,1,1 −2ĉ jk2F−3
2,1,1

)
+exp

([
C̄−F2,1,1

](
t j,k − t

))([
C̄−F2,1,1

]−1
(

F−1
2,1,1

(
−ĉ jk2t2

j,k − ĉ j,k,1t j,k − ĉ j,k,0

)
+F−2

2,1,1
(
2ĉ jk2t j,k + ĉ j,k,1

)
−2ĉ jk2F−3

2,1,1

)
+
[
C̄−F2,1,1

]−2
(

F−1
2,1,1

(
2ĉ jk2t j,k + ĉ j,k,1

)
−2ĉ jk2F−2

2,1,1

)
−2ĉ jk2

[
C̄−F2,1,1

]−3 F−1
2,1,1 −

[
C̄−2F2,1,1

]−1
(
−F−1

2,1,1

(
ĉ jk2t2

j,k

+ĉ j,k,1t j,k + ĉ j,k,0
)
+F−2

2,1,1
(
2ĉ jk2t j,k + ĉ j,k,1

)
−2ĉ jk2F−3

2,1,1

))}
M−1e j.

(449)

otherwise, if C̄−2F2,1,1 is indeed singular (Appendix C.1), the exponential map over this matrix
should be evaluated using Jordan canonical form to assess its integral (HIGHAM, 2008).

As discussed in Chapter 3, the cost of evaluation of the particular response given by Eq.
(449) increases dramatically with the order of the polynomial, as shown in Tab. 2. Thus, a good
compromise relationship is found using a first order approximation, resulting in
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yp(t) =
n

∑
j=1

nk

∑
k=0

H
(
t − t j,k

){
ĉ j,k,1

(
t
[
C̄−F2,1,1

]−1 −
[
C̄−F2,1,1

]−2
)

F−1
2,1,1

+
[
C̄−F2,1,1

]−1
(
−ĉ j,k,1F−2

2,1,1 + ĉ j,k,0F−1
2,1,1

)
+exp

(
F2,1,1

(
t j,k − t

))[
C̄−2F2,1,1

]−1
(
−
(
ĉ j,k,1t j,k + ĉ j,k,0

)
F−1

2,1,1 + ĉ j,k,1F−2
2,1,1

)
+exp

([
C̄−F2,1,1

](
t j,k − t

)){[
C̄−F2,1,1

]−1
(

F−1
2,1,1

(
−ĉ j,k,1t j,k − ĉ j,k,0

)
+F−2

2,1,1ĉ j,k,1

)
+
[
C̄−F2,1,1

]−2
(

F−1
2,1,1ĉ j,k,1

)
−
[
C̄−2F2,1,1

]−1
(
−F−1

2,1,1
(
ĉ j,k,1t j,k + ĉ j,k,0

)
+

F−2
2,1,1ĉ j,k,1

)}}
M−1e j.

(450)

For summarizing, the particular solution due to Heaviside excitation with first order
polynomials can be obtained from Eq. (450), where coefficients ĉ j,k,0 and ĉ j,k,1 are evaluated
according to Eqs. (437) and (438) by pre-processing the loading data in advance. The complete
solution is comprised of the sum of this particular response and the analytical solution of the
homogeneous response, Eq. (441).

Table 2 – Matrix inverses for each approximation order.

Zero order F−1
2,1,1

[
C̄−F2,1,1

]−1 [
C̄−2F2,1,1

]−1

First order F−1
2,1,1

[
C̄−F2,1,1

]−1 [
C̄−2F2,1,1

]−1

F−2
2,1,1

[
C̄−F2,1,1

]−2

Second order F−1
2,1,1

[
C̄−F2,1,1

]−1 [
C̄−2F2,1,1

]−1

F−2
2,1,1

[
C̄−F2,1,1

]−2

F−3
2,1,1

[
C̄−F2,1,1

]−3

4.2.2 Properties of the solution using HS

One can devise some interesting aspects of the solution provided by Eq. (450).

4.2.2.1 Accuracy

Particular solution provided by Eq. (450) is analytical due to approximated non-
homogeneous terms, as the only approximations are introduced in the computation of coefficients
ĉ j,k,0 and ĉ j,k,1, associated to the approximation of the excitations g j(t). Also, there is no
assumption on the behavior of the solution between discrete time points, like in implicit and
explicit numerical methods.

The homogeneous solution, Eq. (441), does not depend on such approximations. This
is another advantage when comparing the proposed approach with purely numerical methods,
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since the complete solution is a linear combination of these two terms and one of these terms is
always analytical.

4.2.2.2 Integration

The integrals of g j(t) from tl to tl+1 can be carried out analytically if g j(t) is easy to
integrate. This can be used to avoid numerical errors due to numerical integration. If the integral
cannot be evaluated analytically, one can resort to numerical approximations.

One interesting result is the fact that if g j(t) is known only at discrete times tl and tl+1,
then, the integrals can be approximated by using a trapezoidal rule

∫ tl+1

tl
g j(t)dt ≈ (tl+1 − tl)

(
g j(tl)+

1
2
(
(g j(tl+1)−g j(tl)

))
, (451)

extending the approach to discrete excitations.

4.2.2.3 Preservation of Impulse

The integrals of the represented functions, g j(t), and of the HS approximations are equal
at the singularity points t j,k. Therefore, the impulse I and variation of the linear momentum ∆p

for each DOF j are conserved, (SERWAY; JEWETT, 2004),

∫ t j

ti
g j(t)dt = I = ∆p, (452)

regardless of the time discretization.

4.2.2.4 Integral measures

Still regarding integral properties, integrating Eq. (1) between the singularity points, ti
and t j, of the HS yields

M
(
ẏ
(
t j
)
− ẏ(ti)

)
+C

(
y
(
t j
)
−y(ti)

)
+K

∫ t j

ti
ydt =

∫ t j

ti
fdt. (453)

Thus, the integral of the complete response y(t) is given by

∫ t j

ti
ydt = K−1


∫ t j

ti
fdt︸ ︷︷ ︸

Γ1

+M
(
ẏ(ti)− ẏ

(
t j
))

+C
(
y(ti)−y

(
t j
))︸ ︷︷ ︸

Γ2

 . (454)

One can observe that the accuracy of the integral in the left hand side of Eq. (454) depends
upon the integral of the excitation function itself, Γ1, and upon the accuracy of the response and
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its first time derivative Γ2. Therefore, for applications where the integral of the response matters,
HS present another advantage, since Γ1, the impulse of the force, is satisfied by the definition of
the series coefficients.

4.2.2.5 Computational cost

As one can observe in Eq. (449) and in Tab. 2, the matrix cost of solutions due to
Heaviside steps multiplied by polynomials does not depend on the number of excitation terms
nor on the number of excited degrees of freedom. Hence, HS present an option to reduce matrix
computation cost compared to the analytical solutions provided in Chapter 3, since its main cost
is tied to the approximation order only. This is an important contrast with particular solutions due
to periodic excitation functions discussed in Chapter 3, for instance, since the matrix operations
depend on the number of frequencies present in the signal.

The following section is devoted to present an efficient numerical implementation of the
proposed procedure, when compared to the direct evaluation of Eq. (450) and Eq. (441), without
loss of accuracy.

4.3 EFFICIENT EVALUATION OF THE ODES RESPONSE USING FIRST ORDER HS

In order to evaluate the solution of system of coupled ODEs using first order HS in an
efficient fashion, let Equation (450) be separated in three parts and let all matrix operations be
expanded as
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yp(t) =
n

∑
j=1

nk

∑
k=0

H
(
t − t j,k

)ĉ j,k,1t
[
C̄−F2,1,1

]−1 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ1

−ĉ j,k,1
[
C̄−F2,1,1

]−2 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ2

−ĉ j,k,1
[
C̄−F2,1,1

]−1 F−2
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ3

+ĉ j,k,0
[
C̄−F2,1,1

]−1 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ1

e j

+
n

∑
j=1

nk

∑
k=0

H
(
t − t j,k

)
exp
(
F2,1,1

(
t j,k − t

))−ĉ j,k,1t j,k
[
C̄−2F2,1,1

]−1 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ4

−ĉ j,k,0
[
C̄−2F2,1,1

]−1 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ4

+ĉ j,k,1
[
C̄−2F2,1,1

]−1 F−2
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ5

e j

+
n

∑
j=1

nk

∑
k=0

H
(
t − t j,k

)
exp
([

C̄−F2,1,1
](

t j,k − t
))−ĉ j,k,1t j,k

[
C̄−F2,1,1

]−1 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ1

−ĉ j,k,0
[
C̄−F2,1,1

]−1 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ1

+ĉ j,k,1
[
C̄−F2,1,1

]−1 F−2
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ3

+ĉ j,k,1
[
C̄−F2,1,1

]−2 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ2

+ĉ j,k,1t j,k
[
C̄−2F2,1,1

]−1 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ4

+ĉ j,k,0
[
C̄−2F2,1,1

]−1 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ4

−ĉ j,k,1
[
C̄−2F2,1,1

]−1 F−2
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ5

e j.

(455)

One notices that there are, in total, 5 matrix-vector products for each j, whose matrices are ΓΓΓ1,
ΓΓΓ2, ΓΓΓ3, ΓΓΓ4 and ΓΓΓ5 and vectors are e j. Using inverse properties, each of these matrices can be
simplified, as it will be shown in the following equations for each ΓΓΓi.

Matrix ΓΓΓ1, that appears 4 times in Eq. (455), can be simplified to

[
C̄−F2,1,1

]−1 F−1
2,1,1M−1 =

(
F2,1,1

[
C̄−F2,1,1

])−1 M−1 =
(
MF2,1,1

[
C̄−F2,1,1

])−1
,

(456)

which, using Eq. (443), is further simplified to

ΓΓΓ1 =
(
MK̄

)−1
= K−1 = ΩΩΩ

−1
1 . (457)



119

Matrix ΓΓΓ2, that appears 2 times in Eq. (455), can be simplified to

[
C̄−F2,1,1

]−2 F−1
2,1,1M−1 =

(
F2,1,1

[
C̄−F2,1,1

]2)−1
M−1 =

(
MF2,1,1

[
C̄−F2,1,1

]2)−1
,

(458)

which, using Eq. (443), is further simplified to

ΓΓΓ2 =
(
MK̄

[
C̄−F2,1,1

])−1
=
(
K
[
C̄−F2,1,1

])−1
= ΩΩΩ

−1
2 . (459)

Matrix ΓΓΓ3, that appears 2 times in Eq. (455), can be simplified as

[
C̄−F2,1,1

]−1 F−2
2,1,1M−1 =

(
F2

2,1,1
[
C̄−F2,1,1

])−1 M−1 =
(
MF2

2,1,1
[
C̄−F2,1,1

])−1
,

(460)

which, using Eq. (443) and the commutativity of F2,1,1 with K̄, as proven in Chapter 3, is further
simplified to

ΓΓΓ3 =
(
MF2,1,1K̄

)−1
=
(
MK̄F2,1,1

)−1
= (KF2,1,1)

−1 = ΩΩΩ
−1
3 . (461)

Matrix ΓΓΓ4, that appears 4 times in Eq. (455), can be simplified as

[
C̄−2F2,1,1

]−1 F−1
2,1,1M−1 =

(
F2,1,1

[
C̄−2F2,1,1

])−1 M−1 =
(
MF2,1,1

[
C̄−2F2,1,1

])−1
,

(462)

which, using Eq. (444), is further simplified to

ΓΓΓ4 =
(
MF2,1,1

[
C̄−2F2,1,1

])−1
=
(
M
[
K̄−F2

2,1,1
])−1

=
(
K−MF2

2,1,1
)−1

= ΩΩΩ
−1
4 .

(463)

Matrix ΓΓΓ5, that appears 2 times in Eq. (455), can be simplified as

[
C̄−2F2,1,1

]−1 F−2
2,1,1M−1 =

(
F2

2,1,1
[
C̄−2F2,1,1

])−1 M−1 =
(
MF2

2,1,1
[
C̄−2F2,1,1

])−1
,

(464)

which, using Eq. (444) and the commutativity of F2,1,1 with K̄, as proven in Chapter 3, is further
simplified to
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ΓΓΓ5 =
(
MF2

2,1,1
[
C̄−2F2,1,1

])−1
=
(
MF2,1,1K̄−MF3

2,1,1
)−1

=
(
KF2,1,1 −MF3

2,1,1
)−1

= (ΩΩΩ4F2,1,1)
−1 =

(
ΩΩΩ3 −MF3

2,1,1
)−1

= ΩΩΩ
−1
5 .

(465)

Henceforth, all inverse operations can be carried out using a linear system of equations,

xi, j = ΩΩΩi\e j, i = 1,2,3,4,5. (466)

where \ indicates the solution of a linear system ΩΩΩixi, j = e j, and xi, j is the solution. Thus,
substituting those results into Eq. (455), it yields

yp(t) =
n

∑
j=1

[
nk

∑
k=0

H
(
t − t j,k

)[(
ĉ j,k,1t + ĉ j,k,0

)
x1, j − ĉ j,k,1x2, j − ĉ j,k,1x3, j

]
+

nk

∑
k=0

H
(
t − t j,k

)
exp
(
F2,1,1

(
t j,k − t

))[
−
(
ĉ j,k,1t j,k + ĉ j,k,0

)
x4, j + ĉ j,k,1x5, j

]
+

nk

∑
k=0

H
(
t − t j,k

)
exp
([

C̄−F2,1,1
](

t j,k − t
))[

−
(
ĉ j,k,1t j,k + ĉ j,k,0

)
x1 j

+ĉ j,k,1x2, j + ĉ j,k,1x3, j +
(
ĉ j,k,1t j,k + ĉ j,k,0

)
x4, j − ĉ j,k,1x5, j

]]
. (467)

To this point, the matrix operations with the matrix coefficients that multiply the
polynomial and exponential terms were simplified, with great reduction in expected computation
cost. Let further considerations regarding the exponential maps be made. For this purpose, let
the time points, t j,k, be equally spaced by a time step ∆t and the initial time, t0, coincide with
t j,0 (the same discrete times are used for all excited DOFs j). Finally, let the response, yp, be
evaluated in the same discrete set of time points, i.e. tk = t j,k. As the same time discretization is
made for all of the excited DOFs, the summations in j and in k can be swapped,

yp(t) =
nk

∑
k=0

n

∑
j=1

H (t − tk)
[
tĉ j,k,1x1, j + ĉ j,k,0x1, j − ĉ j,k,1

(
x2, j +x3, j

)]
+

nk

∑
k=0

n

∑
j=1

H (t − tk)exp(F2,1,1 (tk − t))
[
−
(
ĉ j,k,1tk + ĉ j,k,0

)
x4, j + ĉ j,k,1x5, j

]
+

nk

∑
k=0

n

∑
j=1

H (t − tk)exp
([

C̄−F2,1,1
]
(tk − t)

)[(
ĉ j,k,1tk + ĉ j,k,0

)
x4, j

+ĉ j,k,1
(
x2, j +x3, j −x5, j

)
− tkĉ j,k,1x1, j − ĉ j,k,0x1, j

]
. (468)

Let Equation (468) be evaluated at time ti, where ti belongs to the set of discrete time
points tk. Using the definition of the Heaviside step function, Equation (468) is simplified and
some structures are highlighted,
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yp(ti) =
i

∑
k=0

n

∑
j=1

[
tiĉ j,k,1x1, j + ĉ j,k,0x1, j − ĉ j,k,1

(
x2, j +x3, j

)]
+

i

∑
k=0

n

∑
j=1

exp(F2,1,1 (tk − ti))
[
−
(
ĉ j,k,1tk + ĉ j,k,0

)
x4, j + ĉ j,k,1x5, j

]
︸ ︷︷ ︸

γγγ1,i

+

{
∑

i
k=0 ∑

n
j=1 exp

([
C̄−F2,1,1

]
(tk − ti)

)[(
ĉ j,k,1tk + ĉ j,k,0

)
x4, j

+ĉ j,k,1
(
x2, j +x3, j −x5, j

)
− tkĉ j,k,1x1, j − ĉ j,k,0x1, j

] }
︸ ︷︷ ︸

γγγ2,i

.

Now, to assess how the method progress from one point to the next, let Equation (468) be
evaluated at time ti+1, it follows from the definition of the Heaviside step function that

yp(ti+1) =
i+1

∑
k=0

n

∑
j=1

[
ti+1ĉ j,k,1x1, j + ĉ j,k,0x1, j − ĉ j,k,1

(
x2, j +x3, j

)]
+

i+1

∑
k=0

n

∑
j=1

exp(F2,1,1 (tk − ti+1))
[
−
(
ĉ j,k,1tk + ĉ j,k,0

)
x4, j + ĉ j,k,1x5, j

]
+

i+1

∑
k=0

n

∑
j=1

exp
([

C̄−F2,1,1
]
(tk − ti+1)

)[(
ĉ j,k,1tk + ĉ j,k,0

)
x4, j

+ĉ j,k,1
(
x2, j +x3, j −x5, j

)
− tkĉ j,k,1x1, j − ĉ j,k,0x1, j

]
, (469)

taking out the (i+1)-th term of each summation in k, it yields

yp(ti+1) =
n

∑
j=1

[
ti+1ĉ j,i+1,1x1, j + ĉ j,i+1,0x1, j − ĉ j,i+1,1

(
x2, j +x3, j

)
+
[
−
(
ĉ j,i+1,1ti+1 + ĉ j,i+1,0

)
x4, j + ĉ j,i+1,1x5, j

]
+
[(

ĉ j,i+1,1ti+1 + ĉ j,i+1,0
)

x4, j

+ĉ j,i+1,1
(
x2, j +x3, j −x5, j

)
− ti+1ĉ j,i+1,1x1, j − ĉ j,i+1,0x1, j

]]
+

i

∑
k=0

n

∑
j=1

[
ti+1ĉ j,k,1x1, j + ĉ j,k,0x1, j − ĉ j,k,1

(
x2, j +x3, j

)]
+

i

∑
k=0

n

∑
j=1

exp(F2,1,1 (tk − ti+1))
[
−
(
ĉ j,k,1tk + ĉ j,k,0

)
x4, j + ĉ j,k,1x5, j

]
+

i

∑
k=0

n

∑
j=1

exp
([

C̄−F2,1,1
]
(tk − ti+1)

)[(
ĉ j,k,1tk + ĉ j,k,0

)
x4, j

+ĉ j,k,1
(
x2, j +x3, j −x5, j

)
− tkĉ j,k,1x1, j − ĉ j,k,0x1, j

]
. (470)

All the terms out of the summations in k in Eq. (470) cancel themselves out. Thus, since
ti+1 = ti +∆t, it is possible to rewrite Eq. (470) as
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yp(ti+1) = ti+1

i

∑
k=0

n

∑
j=1

ĉ j,k,1x1, j︸ ︷︷ ︸
w1,i

+
i

∑
k=0

n

∑
j=1

ĉ j,k,0x1, j︸ ︷︷ ︸
w2,i

−
i

∑
k=0

n

∑
j=1

ĉ j,k,1
(
x2, j +x3, j

)
︸ ︷︷ ︸

w3,i

+exp(−F2,1,1∆t)

{
i

∑
k=0

n

∑
j=1

exp(F2,1,1 (tk − ti))
[
−
(
ĉ j,k,1tk + ĉ j,k,0

)
x4, j + ĉ j,k,1x5, j

]}
︸ ︷︷ ︸

γγγ1,i

+exp
(
−
[
C̄−F2,1,1

]
∆t
){∑

i
k=0 ∑

n
j=1 exp

([
C̄−F2,1,1

]
(tk − ti)

)[(
ĉ j,k,1tk + ĉ j,k,0

)
x4, j

+ĉ j,k,1
(
x2, j +x3, j −x5, j

)
− tkĉ j,k,1x1, j − ĉ j,k,0x1, j

] }
︸ ︷︷ ︸

γγγ2,i

.

(471)

Finally, the response at time ti+1 can be rewritten in a simpler form

yp(ti+1) = ti+1w1,i +w2,i −w3,i + exp(−F2,1,1∆t)γγγ1,i + exp
(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2,i.

(472)

Vectors γγγ1,i and γγγ2,i were defined to establish a link between yp (ti+1) and yp (ti), for
summations in both vectors are from k = 0 up to k = i. Therefore, yp (ti+2) will be related to
yp (ti+1) through γγγ1,i+1 and γγγ2,i+1 and so on, recursively. Hence, an update rule for vector γγγ

must be derived and this can be achieved with Eq. (468) evaluated at ti+2. Again the terms
with k = i+2 are taken out of the summations just like in Eq. (470) and the summations over
exponentials can be simplified to

yp(ti+2) =
n

∑
j=1

[
ti+2ĉ j,i+2,1x1, j + ĉ j,i+2,0x1, j − ĉ j,i+2,1

(
x2, j +x3, j

)
+
[
−
(
ĉ j,i+2,1ti+2

+ĉ j,i+2,0
)

x4, j + ĉ j,i+2,1x5, j
]
+
[(

ĉ j,i+2,1ti+2 + ĉ j,i+2,0
)

x4, j + ĉ j,i+2,1
(
x2, j +x3, j −x5, j

)
−ti+2ĉ j,i+2,1x1, j − ĉ j,i+2,0x1, j

]]
+

i+1

∑
k=0

n

∑
j=1

[
ti+2ĉ j,k,1x1, j + ĉ j,k,0x1, j − ĉ j,k,1

(
x2, j +x3, j

)]
+exp(−F2,1,1∆t)

i+1

∑
k=0

n

∑
j=1

exp(F2,1,1 (tk − ti+1))
[
−
(
ĉ j,k,1tk + ĉ j,k,0

)
x4, j + ĉ j,k,1x5, j

]
︸ ︷︷ ︸

γγγ1,i+1

+

exp
(
−
[
C̄−F2,1,1

]
∆t
){∑

i+1
k=0 ∑

n
j=1 exp

([
C̄−F2,1,1

]
(tk − ti+1)

)[(
ĉ j,k,1tk + ĉ j,k,0

)
x4, j + ĉ j,k,1

(
x2, j +x3, j −x5, j

)
− tkĉ j,k,1x1, j − ĉ j,k,0x1, j

] }︸ ︷︷ ︸
γγγ2,i+1

 .
(473)
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The terms with index i+ 2 in Eq. (473) cancel each other out. Taking the terms with
k = i+1 out of the summations with exponential maps, taking the terms with k = i+1 out of the
summation without exponential maps, and recollecting that ti+1 = ti +∆t, Equation (473) can be
rewritten as

yp(ti+2) = ti+2

n

∑
j=1

ĉ j,i+1,1x1, j +
n

∑
j=1

ĉ j,i+1,0x1, j −
n

∑
j=1

ĉ j,i+1,1
(
x2, j +x3, j

)
+ti+2

i

∑
k=0

n

∑
j=1

ĉ j,k,1x1, j︸ ︷︷ ︸
w1,i

+
i

∑
k=0

n

∑
j=1

ĉ j,k,0x1, j︸ ︷︷ ︸
w2,i

−
i

∑
k=0

n

∑
j=1

ĉ j,k,1
(
x2, j +x3, j

)
︸ ︷︷ ︸

w3,i

+exp(−F2,1,1∆t)

{
∑

n
j=1
[
−
(
ĉ j,i+1,1ti+1 + ĉ j,i+1,0

)
x4, j + ĉ j,i+1,1x5, j

]
+exp(−F2,1,1∆t)∑

i
k=0 ∑

n
j=1 exp(F2,1,1 (tk − ti))

[
−
(
ĉ j,k,1tk + ĉ j,k,0

)
x4, j + ĉ j,k,1x5, j

]}︸ ︷︷ ︸
γγγ1,i+1

+exp
(
−
[
C̄−F2,1,1

]
∆t
)


∑
n
j=1
[(

ĉ j,i+1,1ti+1 + ĉ j,i+1,0
)

x4, j + ĉ j,i+1,1
(
x2, j

+x3, j −x5, j
)
− ti+1ĉ j,i+1,1x1, j − ĉ j,i+1,0x1, j

]
+exp

(
−
[
C̄−F2,1,1

]
∆t
)

∑
i
k=0 ∑

n
j=1
[
exp
([

C̄−F2,1,1
]

(tk − ti))
[(

ĉ j,k,1tk + ĉ j,k,0
)

x4, j + ĉ j,k,1
(
x2, j +x3, j −x5, j

)
−tkĉ j,k,1x1, j − ĉ j,k,0x1, j

]]

︸ ︷︷ ︸
γγγ2,i+1

.

(474)

Hence, the response at time ti+2 can be evaluated similarly to yp (ti+1), Eq. (472),

yp(ti+2) = ti+2

w1,i +
n

∑
j=1

ĉ j,i+1,1x1, j︸ ︷︷ ︸
d1,i+1


︸ ︷︷ ︸

w1,i+1

+

w2,i +
n

∑
j=1

ĉ j,i+1,0x1, j︸ ︷︷ ︸
d2,i+1


︸ ︷︷ ︸

w2,i+1

−

w3,i +
n

∑
j=1

ĉ j,i+1,1
(
x2, j +x3, j

)
︸ ︷︷ ︸

d3,i+1


︸ ︷︷ ︸

w3,i+1

+exp(−F2,1,1∆t)γγγ1,i+1 + exp
(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2,i+1. (475)

By comparing Eq. (472) to Eq. (475), there immediately follow update rules for vectors
γγγ and w,
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w1,i+1 = w1,i +
n

∑
j=1

ĉ j,i+1,1x1, j︸ ︷︷ ︸
d1,i+1

,

w2,i+1 = w2,i +
n

∑
j=1

ĉ j,i+1,0x1, j︸ ︷︷ ︸
d2,i+1

,

w3,i+1 = w3,i +
n

∑
j=1

ĉ j,i+1,1
(
x2, j +x3, j

)
︸ ︷︷ ︸

d3,i+1

,

γγγ1,i+1 = exp(−F2,1,1∆t)γγγ1,i −
n

∑
j=1

(
ĉ j,i+1,1ti+1 + ĉ j,i+1,0

)
x4, j︸ ︷︷ ︸

d4,i+1

+
n

∑
j=1

ĉ j,i+1,1x5, j︸ ︷︷ ︸
d5,i+1

,

γγγ2,i+1 = exp
(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2,i +
n

∑
j=1

(
ĉ j,i+1,1ti+1 + ĉ j,i+1,0

)
x4, j︸ ︷︷ ︸

d4,i+1

+
n

∑
j=1

ĉ j,i+1,1
(
x2, j +x3, j

)
︸ ︷︷ ︸

d3,i+1

−
n

∑
j=1

ĉ j,i+1,1x5, j︸ ︷︷ ︸
d5,i+1

−ti+1

n

∑
j=1

ĉ j,i+1,1x1, j︸ ︷︷ ︸
d1,i+1

−
n

∑
j=1

ĉ j,i+1,0x1, j︸ ︷︷ ︸
d2,i+1

. (476)

Let a generic form of the summations in j be studied and expanded,

n

∑
j=1

b jxi, j = b1xi,1 +b2xi,2 + · · ·+bnxi,n =


b1xi,1,1 +b2xi,2,1 + · · ·+bnxi,n,1

b1xi,1,2 +b2xi,2,2 + · · ·+bnxi,n,2

. . .

b1xi,1,n +b2xi,2,n + · · ·+bnxi,n,n

 , (477)

where xi, j,p is the p-th component of the vector xi, j. Equation (477) can be expressed in matrix
notation as

n

∑
j=1

b jxi, j =


b1xi,1,1 +b2xi,2,1 + · · ·+bnxi,n,1

b1xi,1,2 +b2xi,2,2 + · · ·+bnxi,n,2

. . .

b1xi,1,n +b2xi,2,n + · · ·+bnxi,n,n

=
[
xi,1 xi,2 . . . xi,n

]
︸ ︷︷ ︸

Xi


b1

b2

. . .

bn


︸ ︷︷ ︸

b

. (478)

It is important to stress that j is not a counter on the DOFs of system but a counter of excited
DOFs of the system. For that reason, the summations in j can be substituted by the following
notation,
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n

∑
j=1

b jxi, j ≡ ∑
j∈S

bS ( j)xi,S ( j) =
[
xi,S (1) xi,S (2) . . . xi,S (ne)

]
︸ ︷︷ ︸

Xi


bS (1)

bS (2)

. . .

bS (ne)


︸ ︷︷ ︸

b

, (479)

where S is the set of excited DOFs, ne is the cardinality of S , and S ( j) is the j-th component
of S , i.e. it is the j-th excited DOF that is contained in the aforementioned set. The importance
of set S is to mathematically lay the foundation for applications where not all DOFs are excited.
Therefore, the matrix Xi is a n×ne matrix, whereas b is a n×1 vector.

Using the reasoning from Eq. (479), the vectors d in Eq. (476) are rewritten as

d1,i+1 = X1


ĉS (1),i+1,1

ĉS (2),i+1,1

. . .

ĉS (ne),i+1,1

 ,

d2,i+1 = X1


ĉS (1),i+1,0

ĉS (2),i+1,0

. . .

ĉS (ne),i+1,0

 ,

d3,i+1 = (X2 +X3)


ĉS (1),i+1,1

ĉS (2),i+1,1

. . .

ĉS (ne),i+1,1

 ,

d4,i+1 = X4


ĉS (1),i+1,1ti+1 + ĉS (1),i+1,0

ĉS (2),i+1,1ti+1 + ĉS (2),i+1,0

. . .

ĉS (ne),i+1,1ti+1 + ĉS (ne),i+1,0

 ,

d5,i+1 = X5


ĉS (1),i+1,1

ĉS (2),i+1,1

. . .

ĉS (ne),i+1,1

 . (480)

Then, Eq. (476) is rewritten to
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w1,i+1 = w1,i +d1,i+1,

w2,i+1 = w2,i +d2,i+1,

w3,i+1 = w3,i +d3,i+1,

γγγ1,i+1 = exp(−F2,1,1∆t)γγγ1,i −d4,i+1 +d5,i+1,

γγγ2,i+1 = exp
(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2,i +d4,i+1 +d3,i+1 −d5,i+1 − ti+1d1,i+1 −d2,i+1.

(481)

As the response due to HS, regardless of the order used, has always homogeneous initial
conditions as reasoned in Appendix C.2, there is no point in calculating the response at t0.
However, w1,0, w2,0, w3,0, γγγ1,0 and γγγ2,0 are needed for evaluating yp (t1), thus, these 4 quantities
must be initialized as

w1,0 = d1,0,

w2,0 = d2,0,

w3,0 = d3,0,

γγγ1,0 = C2 −d4,0 +d5,0,

γγγ2,0 = C1 +d4,0 +d3,0 −d5,0 − t0d1,0 −d2,0, (482)

in which, the vectors di,0 follow the definition of Eq. (480). The addition of the initial condition
vectors, C1 and C2, into the γγγ vectors is due to the dependence of all of them with the exact same
exponential maps. Besides, if one compares the update rules in Eq. (476) to the efficient way of
computing the homogeneous response in Alg. 7, the same structure of update will be obvious.
Henceforth, the homogeneous response can be added to the response due to HS excitation without
any additional computational cost per iteration and, consequently, initial conditions different than
the homogeneous ones can be evaluated using HS without any problem, being computationally
inexpensive. This poses an advantage over the previously proposed analytical solutions using
Generalized Integrating Factor, since the homogeneous solution is evaluated separately.

4.3.1 Particularization for under damped problems

Exponentials of F2,1,1 and of
[
C̄−F2,1,1

]
appear in Eq. (472). As explored in Chapter 3,

when underdamped problems are analyzed, both matrices are complex conjugate of one another,
such that

[
C̄−F2,1,1

]
= F∗

2,1,1 and so are their exponentials. Thus, only one of them must be
calculated in such situation and Eq. (471) turns to

yp(ti+1) = ti+1

i

∑
k=0

n

∑
j=1

ĉ j,k,1x1, j +
i

∑
k=0

n

∑
j=1

ĉ j,k,0x1, j −
i

∑
k=0

n

∑
j=1

ĉ j,k,1
(
x2, j +x3, j

)
+exp(−F2,1,1∆t)γγγ1,i + exp(−F2,1,1∆t)∗ γγγ2,i. (483)
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From Eq. (471), it follows by inspection that if the conditions bellow hold true, then, there is
complex-conjugate relationship between the vectors γγγ ,

I) x2, j +x3, j −x5, j = x∗5, j,

II) x1, j −x4, j = x∗4, j
=⇒ γγγ2,i = γγγ

∗
1,i, (484)

Condition I from Eq. (484) can be expanded into

x2, j +x3, j −x5, j =
[
ΩΩΩ

−1
2 +ΩΩΩ

−1
3 −ΩΩΩ

−1
5

]
e j, (485)

which, from Eq. (458), Eq. (460) and Eq. (464), results into

[[
C̄−F2,1,1

]−2 F−1
2,1,1M−1 +

[
C̄−F2,1,1

]−1 F−2
2,1,1M−1 −

[
C̄−2F2,1,1

]−1 F−2
2,1,1M−1

]
e j

=
[[

C̄−F2,1,1
]−2 F−1

2,1,1 +
[
C̄−F2,1,1

]−1 F−2
2,1,1 −

[
C̄−2F2,1,1

]−1 F−2
2,1,1

]
M−1e j.

(486)

Using
[
C̄−F2,1,1

]
= F∗

2,1,1 and, consequently,
[
C̄−2F2,1,1

]
=
[
F∗

2,1,1 −F2,1,1

]
,

Equation (486) can be written as

[(
F∗

2,1,1
)−2 F−1

2,1,1 +
(
F∗

2,1,1
)−1 F−2

2,1,1 −
[
F∗

2,1,1 −F2,1,1
]−1 F−2

2,1,1

]
M−1e j

=
[
F2,1,1 −F∗

2,1,1
]−1
[[

F2,1,1 −F∗
2,1,1

](
F∗

2,1,1
)−2 F−1

2,1,1+[
F2,1,1 −F∗

2,1,1
](

F∗
2,1,1

)−1 F−2
2,1,1 +F−2

2,1,1

]
M−1e j

=
[
F2,1,1 −F∗

2,1,1
]−1
[
F2,1,1

(
F∗

2,1,1
)−2 F−1

2,1,1 −
(
F∗

2,1,1
)−1 F−1

2,1,1 +F2,1,1
(
F∗

2,1,1
)−1 F−2

2,1,1

−F−2
2,1,1 +F−2

2,1,1

]
M−1e j.

(487)

As
[
C̄−F2,1,1

]
and F2,1,1 commute, so do F2,1,1 and F∗

2,1,1, hence

x2, j +x3, j −x5, j =
[
F2,1,1 −F∗

2,1,1
]−1 (F∗

2,1,1
)−2 M−1e j. (488)

Let the complex conjugate of x5, j,

x∗5, j =
([

C̄−2F2,1,1
]−1 F−2

2,1,1M−1
)∗

e j =
([

C̄−2F2,1,1
]∗)−1 (F∗

2,1,1
)−2 M−1e j

=
([

F∗
2,1,1 −F2,1,1

]∗)−1 (F∗
2,1,1

)−2 M−1e j =
[
F2,1,1 −F∗

2,1,1
]−1 (F∗

2,1,1
)−2 M−1e j, (489)
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and, thus, condition I is true.
Let the LHS of condition II be expanded,

x1, j −x4, j =
[
ΩΩΩ

−1
1 −ΩΩΩ

−1
4

]
e j =

[[
C̄−F2,1,1

]−1 F−1
2,1,1M−1

−
[
C̄−2F2,1,1

]−1 F−1
2,1,1M−1

]
e j =

[[
C̄−F2,1,1

]−1 −
[
C̄−2F2,1,1

]−1
]

F−1
2,1,1M−1e j

=
[(

F∗
2,1,1

)−1 −
[
F∗

2,1,1 −F2,1,1
]−1
]

F−1
2,1,1M−1e j

=
[
F2,1,1 −F∗

2,1,1
]−1
[[

F2,1,1 −F∗
2,1,1

](
F∗

2,1,1
)−1

+ I
]

F−1
2,1,1M−1e j

=
[
F2,1,1 −F∗

2,1,1
]−1 (F∗

2,1,1
)−1 M−1e j;

(490)

while, for the RHS of condition II,

x∗4, j =
([

C̄−2F2,1,1
]−1 F−1

2,1,1M−1
)∗

e j =
([

C̄−2F2,1,1
]∗)−1 (F∗

2,1,1
)−1 M−1e j

=
[
F2,1,1 −F∗

2,1,1
]−1 (F∗

2,1,1
)−1 M−1e j. (491)

Hence, both conditions are true and

[
C̄−F2,1,1

]
= F∗

2,1,1 =⇒ γγγ2,i = γγγ
∗
1,i. (492)

This result is also consistent with the relation between the integrating constants C1 and C2,
as proven in Eq. (674), for they are also complex-conjugate when

[
C̄−F2,1,1

]
and F2,1,1 are

complex-conjugate.
Putting all two conditions together with Eq. (472) yields

[
C̄−F2,1,1

]
= F∗

2,1,1 =⇒ yp(ti+1) = ti+1

i

∑
k=0

n

∑
j=1

ĉ j,k,1x1, j +
i

∑
k=0

n

∑
j=1

ĉ j,k,0x1, j

−
i

∑
k=0

n

∑
j=1

ĉ j,k,1
(
x2, j +x3, j

)
+ exp(−F2,1,1∆t)γγγ1,i +

(
exp(−F2,1,1∆t)γγγ1,i

)∗
,

∴ yp(ti+1) = ti+1

i

∑
k=0

n

∑
j=1

ĉ j,k,1x1, j +
i

∑
k=0

n

∑
j=1

ĉ j,k,0x1, j −
i

∑
k=0

n

∑
j=1

ĉ j,k,1
(
x2, j +x3, j

)
+2ℜ

(
exp(−F2,1,1∆t)γγγ1,i

)
. (493)

Nonetheless, condition II) and condition I) can both be rearranged to

x1, j = x∗4, j +x4, j = 2ℜ
(
x4, j
)
,

x2, j +x3, j = x∗5, j +x5, j = 2ℜ
(
x5, j
)
. (494)
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Substituting these results into Eq. (493) yields

[
C̄−F2,1,1

]
= F∗

2,1,1 =⇒ yp(ti+1) = 2ti+1

i

∑
k=0

n

∑
j=1

ĉ j,k,1ℜ
(
x4, j
)
+2

i

∑
k=0

n

∑
j=1

ĉ j,k,0ℜ
(
x4, j
)

−2
i

∑
k=0

n

∑
j=1

ĉ j,k,1ℜ
(
x5, j
)
+2ℜ

(
exp(−F2,1,1∆t)γγγ1,i

)
.

(495)

If the coefficients ĉ j,k,0 and ĉ j,k,1 are real-valued, i.e. ĉ j,k,0, ĉ j,k,1 ∈ R ∀ j ∈
{1,2, . . . ,ne} ,∀k ∈ {0,1,2, . . . ,nk}, then, Eq. (495) can be simplified even further to

[
C̄−F2,1,1

]
= F∗

2,1,1, ĉ j,k,0, ĉ j,k,1 ∈ R ∀ j ∈ {1,2, . . . ,ne} ,∀k ∈ {0,1,2, . . . ,nk} =⇒

yp(ti+1) = ti+1

i

∑
k=0

2ℜ

(
n

∑
j=1

ĉ j,k,1x4, j

)
︸ ︷︷ ︸

w1,i

+
i

∑
k=0

2ℜ

(
n

∑
j=1

ĉ j,k,0x4, j

)
︸ ︷︷ ︸

w2,i

−
i

∑
k=0

2ℜ

(
n

∑
j=1

ĉ j,k,1x5, j

)
︸ ︷︷ ︸

w3,i

+2ℜ
(
exp(−F2,1,1∆t)γγγ1,i

)
.

(496)

In the same fashion from Eq. (475) and from Eq. (476), let define two new vectors d
using notation from Eq. (480),

d8,i+1 = X4


ĉS (1),i+1,1

ĉS (2),i+1,1

. . .

ĉS (ne),i+1,1

 ,

d9,i+1 = X4


ĉS (1),i+1,0

ĉS (2),i+1,0

. . .

ĉS (ne),i+1,0

 , (497)

Comparing Eq. (496) to Eq. (475) and to Eq. (476), one realizes that

[
C̄−F2,1,1

]
= F∗

2,1,1, ĉ j,k,0, ĉ j,k,1 ∈ R ∀ j ∈ {1,2, . . . ,ne} ,∀k ∈ {0,1,2, . . . ,nk} =⇒

w1,i+1 = w1,i +2ℜ(d8,i+1) ,

w2,i+1 = w2,i +2ℜ(d9,i+1) ,

w3,i+1 = w3,i +2ℜ
(
d5,i+1

)
,

γγγ1,i+1 = exp(−F2,1,1∆t)γγγ1,i − ti+1d8,i+1 −d9,i+1 +d5,i+1.

(498)
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Thus, when
[
C̄−F2,1,1

]
and F2,1,1 are complex-conjugate, the number of matrix-vector

operations regarding the excited DOFs is 3, in opposition to the 5 required when they are
not complex-conjugate. In summary, for overdamped problems, the total number of operations
per iterations is: 2 matrix-vector multiplications (n×n ·n×1) and 5 matrix-vector multiplications
(n×ne ·ne×1); whereas, for underdamped problems, 1 matrix-vector multiplication (n×n ·n×1)
and 3 matrix-vector multiplications (n×ne ·ne ×1). After all the previous considerations, the
calculation of the response in the singularity points tk can be summarized in Alg. 6

4.3.2 Computational implementation

As it was already stated previously, the most efficient way to compute the response is
to set the same set of discrete time points for all the excited DOFs. This permits the use of the
same exponential maps, exp(−F2,1,1∆t) and exp

(
−
[
C̄−F2,1,1

]
∆t
)
, in all iterations, despite the

different excited DOFs, as can be seen in Alg. 6. For simplicity, the previous equations were
derived for equally spaced time points, but that is not necessary for them to work since ∆t can be
varied within each iteration. This broader approach, with variable time step, was not included
to keep notation simple and maintain implementation straightforward. The major computation
drawback, however, would be to calculate or to approximate the exponential maps in each or in
some iterations.

The update of the vectors d present a upper bound of computational effort, for they are
given by a matrix-vector multiplication. The complexity of such operations are O (nne), and the
upper limit is when ne = n. In many applications, although, it is common to have loads applied
only in some regions of the system, such that most of the DOFs are not excited, ne ≪ n. In such
cases, the operations with the exponential maps dominate the computational effort.

4.3.2.1 Bundles of excited DOFs

In situations where ne is large relative to n and it impacts on computational effort,
alternatives can be suggested to reduce ne. One such suggestion proposed by the authors is
to aggregate some DOFs in bundles, the criterion must be how similar they vary with time.
Objectively, one can bundle DOFs up considering frequency and phase for instance. Then, the
coefficients ĉ j,k,p can be shared among the DOFs contained in the same bundle, which allows to
sum the corresponding columns of the Xi matrices in a pre-processing step, before the iterative
procedure. Recollect Eq. (479) and let a set of DOFs with same characteristics, Bm of cardinality
nB,m, share the same coefficients bBm(q),

∑
j∈S

bS ( j)xi,S ( j) = bS (1)xi,S (1)+bS (2)xi,S (2)+ · · ·+bBm(1)xi,Bm(1)+bBm(2)xi,Bm(2)

+ · · ·+bBm(nB,m)xi,Bm(nB,m) + · · ·+bS (ne)xi,S (ne),

(499)
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as the coefficients are equal, bBm(1) = bBm(2) = · · ·= bBm(nB,m) = bB,m,

∑
j∈S

bS ( j)xi,S ( j) = bS (1)xi,S (1)+bS (2)xi,S (2)

+ · · ·+bB,m

(
xi,Bm(1)+xi,Bm(2)+ · · ·+xi,Bm(nB,m)

)
︸ ︷︷ ︸

xi,B,m

+ · · ·+bS (ne)xi,S (ne), (500)

that can be rewritten in matrix notation,

∑
j∈S

bS ( j)xi,S ( j) =
[
xi,S (1) xi,S (2) · · · xi,B,m · · · xi,S (ne)

]
︸ ︷︷ ︸

XR
i



bS (1)

bS (2)

. . .

bB,m

. . .

bS (ne)


︸ ︷︷ ︸

bR

, (501)

where XR
i is the reduced form of matrix Xi, and bR is the corresponding reduced version of

vector b. It follows directly from Eq. (501) that the matrix XR
i has ne −nB,m +1 columns. The

derivations above were developed for a single bundle, Bm, but it can be recursively done for
multiple bundles: B1, B2, ..., Bm. Each bundle compresses the matrix Xi by its cardinality
minus 1.

Now, one needs a systematic approach to construct such bundles. It follows from Eq. (480)
and from Eq. (497) that vectors d1,i+1, d3,i+1, d5,i+1 and d8,i+1 depend solely on coefficients
ĉ j,i+1,1. Consequently, if the DOFs in these vectors are divided in bundles that share the same
ĉ j,k,1, the computation cost of evaluating such vectors d can be considerably diminished. To do
it, let the coefficient a1, j,k from Eq. (434) be picked. Then, an average can be calculated and
assigned to all the DOFs belonging to a bundle Bm,

â1,Bm(1),k = â1,Bm(2),k = · · ·= â1,Bm(nB,m),k = ā1,Bm,k =
1

nB,m

nB,m

∑
q=1

a1,B(q),k, (502)

in which, a1,B(q),k is the original coefficient a1, j,k for the q-th DOF of the bundle Bm, and
â1,Bm(q),k are the new averaged a1 coefficients. If all the coefficients are equal to each other, it is
observed from Eq. (438) that so will be the coefficients ĉ j,k,1, henceforth, matrices X1, X2, X3,
X5 and X4 can be compressed.

The impact of such proposal in computational cost is readily visible, but the impact on
solution accuracy, however, is trickier to assess and depends greatly on how the bundles are
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created. This investigation is out of the scope of this study, thus, this work will keep with the
original and uncompressed matrices in the numerical experiments, and the bundle approach is
left as a suggestion for future works.

Algorithm 3: Evaluation of the response yp at the Heaviside singularity points t j,k using
Eq. (472) or Eq. (493) and the update rules from Eq. (476)
Calculate K̄, C̄, F2,1,1 and exp(−F2,1,1∆t)
Initialize a vector n×1 for γγγ1
Initialize a matrix n×ne for each of X4 and X5
if
[
C̄−F2,1,1

]
= F∗

2,1,1 then
exp
(
−
[
C̄−F2,1,1

]
∆t
)
= exp(−F2,1,1∆t)∗

Calculate ΩΩΩ4 and ΩΩΩ5
else

Initialize a vector n×1 for γγγ2
Initialize a matrix n×ne for each of X1, X2 and X3
Calculate exp

(
−
[
C̄−F2,1,1

]
∆t
)

Calculate ΩΩΩ1, ΩΩΩ2, ΩΩΩ3, ΩΩΩ4 and ΩΩΩ5
end
Iterate through the set of excited degrees of freedom S
for j = 1,2, . . . ,ne

Calculate xi [ j] = ΩΩΩi\e j
Calculate coefficients a0 j and a1 j using Eq. (436) and Eq. (434)
Initialize γγγ1 and γγγ2 and update di,0 using Eq. (482)
Initialize the response as null and sums the initial conditions vectors C1 and C2

end
Iterate through the remaining points in time, {t1, t2, t3, . . . , tnk}
for i = 1,2, . . . ,nk

if
[
C̄−F2,1,1

]
= F∗

2,1,1 then
Calculate exp(−F2,1,1∆t)γγγ1
Calculate the response at time ti, yp (ti), using Eq. (496)

else
Calculate exp(−F2,1,1∆t)γγγ1 and exp

(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2
Calculate the response at time ti, yp (ti), using Eq. (472)

end
Iterate through the set of excited degrees of freedom S
for j = 1,2, . . . ,ne

Calculate coefficients ĉ ji0 and ĉ ji1 using Eq. (437) and Eq. (438)
end
if
[
C̄−F2,1,1

]
= F∗

2,1,1 then
Update d8, d9, d5, w1, w2, w3 and γγγ1 using Eq. (498).

else
Update d1, d2, d3, d4, d5, w1, w2, w3, γγγ1 and γγγ2 using Eq. (481)

end
end
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4.4 STABILITY ANALYSIS

A measure of stability of a numerical time integration method is an assessment of how
error can build up along the iterations and turn the calculated response unbounded (BUTCHER,
2016). To derive expressions for this measure, one can write the response at a time ti+1 as
a function of previous time points evaluations (BUTCHER, 2016; KAMALI et al., 2023).
The result is alike Eq. (2), where there is a matrix A, called the amplification matrix, and its
eigenvalues tell how and when such method is stable. When the stability does not depend upon
the time step, ∆t, the method is said to be unconditionally stable and the choice of time step is
made according to accuracy only (NOH; BATHE, 2018).

The evaluation of the response in a point ti+1 as function of previously evaluated point
was already carried out for the efficient evaluation of the Heaviside series method for time
integration in Eq. (472). Although the terms yp (ti) does not appear explicitly, it is clear by the
recurrence and update relations in Eq. (476) that the response yp (ti+1) depends upon a local term,
given by operations with the vectors w, and upon terms coming from previous iterations, namely
γγγ1 and γγγ2. From Eq. (481), it follows that yp (ti+1) is a function directly of yp (ti), and, thus, the
behavior of the operations of this function must be analysed to evaluate stability characteristics.

If matrices M and K are non-singular, which is a fair hypothesis for properly applied
boundary conditions in FEA, and if

[
C̄−2F2,1,1

]
is also non-singular, which is explored in

Appendix C.1, it is possible to deduce that vectors xi, j will be bounded, i.e. they will have
its components bounded, since matrices ΩΩΩi in Eq. (457), Eq. (459), Eq. (461), Eq. (463) and
Eq. (465) are also bounded. It is also possible to reason that, if coefficients ĉ j,k,0 and ĉ j,k,1 are
bounded, so are the vectors d in Eq. (480). In fact, as coefficients ĉ j,k,0 and ĉ j,k,1 are evaluated
using the integral of the function, if the points of integration tk are chosen such as the integral of
the represented function is bounded, so will be the coefficients. Furthermore, if the represented
function is bounded, it is straightforward to observe that the integral and, by consequence, the
coefficients too will be bounded. With this reasoning, it is clear that the relations in the update
rules of Eq. (476) will yield bounded results.

The last operation to analyse is the exponential terms exp(−F2,1,1∆t) and
exp
(
−
[
C̄−F2,1,1

]
∆t
)
. For generalization purposes, let evaluate the exponential of a generic

matrix A using the Jordan canonical form (HIGHAM, 2008),

exp(−A∆t) = exp
(
−∆tZ−1JZ

)
= Z−1 exp(−∆tJ)Z = Z−1diag

(
exp
(
−∆tJ j

))
Z,

(503)

where the exponential of the j-th Jordan block is defined for this problem, according to
(HIGHAM, 2008), as
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exp
(
−∆tJ j

)
=


exp
(
−∆tλ j

)
−∆t exp

(
−∆tλ j

)
. . . −∆tm j−1 exp(−∆tλ j)

(m j−1)!

0 exp
(
−∆tλ j

) . . . ...
...

... . . . −∆t exp
(
−∆tλ j

)
0 0 exp

(
−∆tλ j

)

 , (504)

in which, λ j is the j-th eigenvalue of A and m j is its geometric multiplicity. Thus, one can
easily reason that, if all eigenvalues of A are strictly positive, the exponential in Eq. (503) will
decrease and converge to a null matrix as ∆t increases, since the exponential of the Jordan
form will decay. Therefore, if the real part of the eigenvalues of both F2,1,1 and

[
C̄−F2,1,1

]
are

strictly positive, exp(−F2,1,1∆t) and exp
(
−
[
C̄−F2,1,1

]
∆t
)

will converge to the null matrix as
∆t increases, rendering these matrices bounded for positive ∆t. As all terms in Eq. (472) and in
Eq. (481) are bounded for stable systems (with no negative damping), it is possible to assure that
the method is unconditionally stable when the eigenvalues of F2,1,1 and

[
C̄−F2,1,1

]
are positive,

as the exponential maps are bounded too.
The exponential maps of F2,1,1 and

[
C̄−F2,1,1

]
also appear in the analytical

homogeneous solutions, Equation (441). Thus, if the eigenvalues of F2,1,1 and
[
C̄−F2,1,1

]
have negative real part, the analytical homogeneous response will not be bounded. This result
shows that there are conditions regarding Rayleigh proportional damping for the analytical
response to be bounded. As a matter of fact, Equation (474) and Equation (482) show that the
proposed method acts as a modulator for the homogeneous response, i.e., it approximates the
loading and uses the homogeneous response to approximate the particular solution while keeping
the latter exact. Thus, when the eigenvalues of F2,1,1 and

[
C̄−F2,1,1

]
have negative real part, it

is not the HS method that is unstable, but the physical system itself. For this reason, Appendix
C.3 presents conditions, Eq. (744), for Rayleigh damping to produce physically stable solutions,
both analytically and numerically.

It is worth noting that Appendix C.3 can be easily extended for generalized proportional
damping, like in (ADHIKARI, 2006), since matrices in that work are simultaneously
diagonalizable. Nonetheless, if C̄ and K̄ are not simultaneously diagonalizable, there is a
basis where both commuting matrices are triangular when they commute (HORN; JOHNSON,
2012), and it is well known that the eigenvalues of triangular matrices are their main diagonal
entries. Henceforth, calculations can be made for these more general cases of damping in an
analogous fashion to Appendix C.3.

4.5 RESULTS

A simple benchmark problem is proposed to assess the proposed formulation. The
problem is a 3 DOFs system described by
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M =

5.0 0.0 0.0
0.0 2.0 0.0
0.0 0.0 3.0

 , (505)

K =

 6.0 −4.0 0.0
−4.0 10.0 −3.0
0.0 −3.0 7.0

×102 (506)

and

C = βK, (507)

with

y(0) = .y(0) =


0
0
0

 , (508)

where the damping parameter is β = 1×10−6. The time span is t ∈ [0,10]s in all simulations.
This system has 3 natural frequencies: 1.352 Hz, 2.266 Hz and 3.828 Hz. Thus, the

smaller natural period of the response is 0.26 s. This system is subjected to a simple sinusoidal
excitation in the second DOF with unitary amplitude and different excitation frequencies,
according to Figure 17 and to Figure 18. This excitation was chosen since periodic continuous
function can be approximated by a linear combination of sines by means of Fourier Series
(KREYSZIG; KREYSZIG; NORMINTON, 2011).

The influence of the time step, ∆t, is also studied for each excitation frequency. The Root
Mean Squared Mean Error (RMSE), (JAMES et al., 2013), of the complete solution obtained by
using the proposed approach and also obtained by using the Newmark-beta method are evaluated
using the analytical solution from Chapter 3 as reference. The excitation frequency also impacts
the accuracy of numerical methods, due to problems like aliasing. Consequently, a wide range of
frequencies must be tested, which is observed in Fig. 17 and in Fig. 18, where each set of circles
with the same color represent results with the same excitation frequency for different time steps
∆t.

Figure 17 shows that, the smaller the step size ∆t, the more accurate is the solution
for a given excitation frequency. This improvement in accuracy has a linear tendency in the
log10× log10 plot, indicating that the proposed approach has a stable rate of convergence
regardless of the step size in the linear zone. It can be also seen that this behavior happens
for all frequencies, including excitation frequencies near the natural frequencies (as the damping
factor is very small, one may assume that the resonance frequencies are very close to the
fundamental frequencies).



136

The same experiment was performed using the Newmark-beta method, as depicted in
Fig. 18. This graphic shows that the Newmark method is more affected by excitation frequencies
near the natural frequencies when compared to the proposed approach. Also, the linear tendency
in the log× log plot is only achieved for very small time steps, which can be confirmed by the
linear region being shifted further to the left in Fig. 18.

The presence of linear zones of error in the log10× log10 indicates that a clear relation
between error and time discretization can be derived. Let the linear relation between error and
time discretization be written in the log scale,

log10 RMSE = a log10 ∆t +b, (509)

which can be converted to a exponential equation of base 10 by raising 10 by each side of Eq.
(509),

RMSE = 10a log10 ∆t+b = 10log10 ∆ta
10b, (510)

that is simplified to

RMSE = ∆ta10b. (511)

Using Eq. (511), it is possible to notice that the proposed method reached a convergence
order between 4 (quartic) and of 2 (quadratic) depending on excitation frequency, while the
Newmark-beta method presented convergence orders between 2 and 1, also depending on the
excitation frequency.

4.5.1 Elapsed time

The elapsed time during execution of each method is a strong criterion to choose among
numerical methods. An estimate of computation time is possible to do with complexity analysis.
In the case of Newmark-beta, for instance, and other numerical methods, it is important to
highlight the need for a finer time discretization, to reduce the propagation of errors. Despite that,
it is also important to stress that in the implementation of the Newmark-beta, (HUGHES, 2000;
LINDFIELD; PENNY, 2019), there are at least 3 matrix-vector multiplications per time step
(O
(
n2), (JIN; CHEW, 2005), where n is the dimensionality of the problem) and the solution of

a linear system. This linear system can be pre-factorized such that a forward and a backward
substitutions are needed at each time step ((O

(
n2) (FORD, 2015)). Hence, it is estimated that

each iteration of the Newmark-beta method has a complexity of 5O
(
n2).

The proposed approach, Alg. 6, requires two matrix-vector multiplications when the
problem is over damped, with complexity 2O

(
n2), or just a single matrix-vector product
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Figure 17 – log10 of the Root Mean Square Error (RMSE) of y(t) obtained with the proposed
approach regarding the time step ∆t and the excitation frequency f . Crosses are

associated to the fundamental frequencies of the system.

Figure 18 – log10 of the Root Mean Square Error (RMSE) of y(t) obtained with the
Newmark-beta method regarding the time step ∆t and the excitation frequency f .

Crosses are associated to the fundamental frequencies of the system.
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with complexity O
(
n2) if the system is under damped. The Heaviside series method presents

the cost of evaluating the vectors d in Eq. (481) and (498). Nevertheless, they are matrix-
vector multiplications (n×ne ·n×1), so their order of complexity is O (nne) and, consequently,
inferior to O

(
n2), as ne ≤ n. For instance, in underdamped problems, even if ne = n, the

complexity per iteration is 4O
(
n2), which is lesser than Newmark-beta’s. In addition to the

smaller computational complexity, one must also note that the proposed approach is more
accurate for a given ∆t when compared to the numerical approach. Thus, one can use larger ∆t

for the same RMSE, reducing the computational effort even more.
A finite element model with increasing number of DOFs is used to investigate the solution

time for both the proposed approach and for the Newmark-beta method. The simulation for
each time discretization was repeated 13 times and the mean elapsed time and its standard
deviation were recorded. All the values were normalized by the maximum mean elapsed time of
all simulations. The 13 independent runs were used to take into account inherent variations in
elapsed time, associated to compilation times in the Julia language, operational system issues,
among other factors.

Figure 19 and Figure 20 show the mean elapsed time and the standard deviation
normalized by the maximum time as a function of the number of discrete time steps, nk. Figure
19 presents this simulation for a structure with 458 DOFs, while Figure 20 for a structure with
1718 DOFs. The mean elapsed time of the Newmark-beta method is given by the blue line and
the mean elapsed time of HS is given by the the orange line.

Two features are common to both Figure 19 and Figure 20: the (almost) linearity of
all curves with respect to nk and the intersection of both curves at the beginning of the graph,
i.e. with low nk. The linearity was expected, since the total cost is the sum of the cost of each
individual iteration, plus some time associated to pre-processing. As the pre-processing of the
HS is more expensive, due to solving Eq. (444) and evaluating the matrix exponential, the cost of
HS is higher for low nk. Nonetheless, this cost rapidly decreases relative to the the Newmark-beta
method as nk increases. One can also observe that the cost of the HS method per iteration is
smaller than the cost per iteration of the Newmark-beta method, whose immediate consequence
is the dilution of the initial cost of this pre-processing. Even more interestingly, comparing Figure
19 to Figure 20 shows that the rate of increase of mean elapsed time of HS method with respect
to nk diminishes comparatively to the rate of the Newmark-beta as the problem dimensionality
increases.

Figure 21 and Figure 22 show the effective time to compute the complete solution for
different number of DOFs, for both the proposed approach and for the Newmark-beta method.
Two time discretizations were chosen to investigate the elapsed time as a function of the number
of DOFs: log10 (∆t) = −1.3096, or nk = 103, and log10 (∆t) = −3, or nk = 5001. These time
steps were chosen since for lower nk there is a tendency for the Newmark-beta to be more
efficient than the proposed approach, whereas the converse is true for large nk.

Figure 21 shows that the proposed approach is less efficient than the Newmark-beta
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Figure 19 – Normalized mean elapsed time as a function of the number of discrete time steps for
an 458 DOFs problem. The blue line refers to the Newmark-beta method and the
orange line to the proposed approach. The black error bars represent the standard

deviation relative to 13 independent runs.

Figure 20 – Normalized mean elapsed time as a function of the number of discrete time steps for
an 1718 DOFs problem. The blue line refers to the Newmark-beta method and the
orange line to the proposed approach. The black error bars represent the standard

deviation relative to 13 independent runs.
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Figure 21 – Normalized mean elapsed time as a function of the dimensionality of the problem, n.
The blue line refers to the Newmark-beta method and the orange line to the

proposed approach. The black error bars represent the standard deviation relative to
13 independent runs

method for coarse time discretization, disregarding the number of DOFs (one must keep in mind
the large difference in accuracy, as shown in previous results). This difference is associated to
the pre-processing phase of the proposed approach. Nonetheless, as depicted in Fig. 22, there is
a significant difference in performance when the number of discrete time points and the number
of DOFs increase.

It is important to note the small deviation in the results (represented by the black error
bars) and, especially, by the fact that the trust regions of both methods do not overlap in the
majority of the points in the previous graphics.
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Figure 22 – Normalized mean elapsed time as a function of the dimensionality of the problem, n.
The blue line refers to the Newmark-beta method and the orange line to the

proposed approach. The black error bars represent the standard deviation relative to
13 independent runs.

4.6 FINAL REMARKS OF THE CHAPTER

This chapter proposed a new approximation technique, which represents a function as a
finite sum of Heaviside step functions multiplied by polynomial terms. Despite the relevance
of such approximation in its own right, this approach was used to sought for semi-analytical
solutions to systems of coupled linear ODEs using the GIF. The solutions are semi-analytical
because the GIF yields analytical solutions for excitation functions comprised of series of
Heaviside steps, but the excitation itself is not exact, rather an approximation.

The approximation of the load is devised to guarantee that the approximated load has the
same integral as the original load in the points where the Heaviside steps are applied, thereby,
preserving physical quantity such as impulse. Besides, it is shown that the preservation of the
integral of the load contributes to the accuracy of the integral of the response itself, hence,
improving the accuracy of integral measures, like the ones used in optimization problems.

The order of approximation is set and shown up to the second order. The implication
of the computational cost of each approximation order is demonstrated, and it is shown that
the first order approximation is the most cost-effective. For this reason, Alg. 6 was derived to
efficiently evaluate first order approximations when the times where the Heaviside steps are
applied are uniformly distributed along the simulated time span. Variations of the method were
also suggested for future work, above all to reduce the computational burden and make the
technique even cheaper. Using the derivation of Alg. 6, the stability analysis of the method could
also be derived.
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It was shown that the method is unconditionally stable when the eigenvalues of the
matrices F2,1,1 and

[
C̄−F2,1,1

]
have non-negative real part. With support of Appendix C.3,

it was shown that for some conditions, Rayleigh proportional damping yields eigenvalues
with strictly non-negative real part. These conditions, nevertheless, are not a limitation of
the proposed approach, but physical aspects of the system, since the exponential maps in the
analytical homogeneous solution are bounded only if the eigenvalues have non-negative real part.
Henceforth, if the system is physically unstable, the HS method does not mask it with artificial
numerical damping.

To assess accuracy and computational cost, the HS method is compared with the analytical
solution due to the Generalized Integrating Factor method and with the Newmark-beta method.
Different excitation frequencies are tested with different time discretization for FEM models
with different number of DOFs. Thus, effects of time discretization and of the problem’s
dimensionality were evaluated in a set of numerical experiments.

Finally, it was shown that the proposed method yields greater accuracy with less
computational effort when compared to the Newmark-beta method. This result makes the
HS method a good choice to solve linear systems of coupled ordinary differential equations, for
its cost-benefit ratio is considerably larger.
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5 NON-CLASSICAL NORMAL MODES

In Chapter 3 and in Chapter 4, the derivation of the closed-form solutions were all
made using the assumption that C̄ and K̄ commute, which is true to undamped systems and to
proportional damping, whose application is widespread. Nevertheless, one might reasonably
question whether the proposed methods, GIF and HS, are limited to such case and to the
simplifications that follow thereafter. The answer is no and this chapter will evaluate again many
important results to prove it and to show how the solution behaviors when the system does not
have classical normal modes.

The focus of this chapter will be on three main results: homogeneous solution, particular
solution due to Dirac’s delta, and particular solution due to Heaviside step functions multiplied
by polynomial coefficients. These three situations were chosen for their importance and for their
ability to construct other and more complicated excitation functions. Another justification for
this choice is the similar mathematical structure shared by all of the three solutions.

It is proven that the convolution leads to an accessory Sylvester equation, which can be
solved once as a preprocessing step. The computation cost is shown not to increase dramatically,
and suggestions are made to reduce it. Numerical experiments were not performed, for the
application of non-classical normal modes is not common and because the main objective is
to extend the mathematical formulation for this case. It is demonstrated, however, for all the
presented results, that the solutions found previously are special cases, as they must be.

5.1 LINEAR SECOND ORDER SYSTEMS OF ODES WITH CONSTANT MATRIX
COEFFICIENTS AND GENERAL MODES

Systems of coupled second order ODEs with constant matrix coefficients are represented
by Eq. (1). As matrix coefficient M is non-singular, it its possible to rewrite this Equation as

Iÿ(t)+ C̄ẏ(t)+ K̄y(t) = f̄(t) (512)

where C̄ = M−1C, K̄ = M−1K and f̄(t) = M−1f(t). The Generalized Integrating Factor, an
analytical approach to solve this problem, was extended to systems of ODEs in Chapter 3. The
general solution for ODEs with constant coefficients is given by

y(t) = exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)
∫

exp(F2,1,1t) f̄dt dt︸ ︷︷ ︸
yp(t)

+

exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dtC2 + exp
(
−
[
C̄−F2,1,1

]
t
)

C1︸ ︷︷ ︸
yh(t)

,

(513)
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where yp(t) is the particular solution due to the excitation vector f(t), yh(t) is the homogeneous
solution and C1 and C2 are vectors of integration constants. The matrix F2,1,1 is the solution to
the following matrix equation

F2
2,1,1 −F2,1,1C̄+ K̄ = 0. (514)

If the original system has classical normal modes, one observes that C̄ and K̄ commute
(ADHIKARI, 2006), thus, the solution is, according to (HIGHAM, 2008), given in closed
form as

F2,1,1 =
1
2

[
C̄+

√
C̄2 −4K̄

]
. (515)

However, when the system does not have classical normal modes, Equation (514) must be
solved numerically and there is, indeed, a large literature on the topic of solving quadratic
matrix equations numerically, such as (HIGHAM; KIM, 2001; KIM; HIGHAM; KIM, 2001;
LU; AHMED; GUAN, 2016; KIM, 2007; HERNáNDEZ-VERóN; ROMERO, 2019; POLONI,
2011; HASHEMI; DEHGHAN, 2010). Many of these works achieved accurate solvents with
low computational time.

As the solution is not necessarily given by Eq. (515) anymore, there is no guarantee
that F2,1,1 and C̄ commute, as it was proven in Chapter 3. Therefore, the solution provided
in Eq. (513) must be tackled without the simplifications that the commutativity provides. The
exploration of such solutions will be carried out step by step, first for the homogeneous solution,
then for excitation due to Dirac’s delta and, finally, for excitation due to Heaviside step function
multiplied by first order polynomials, i.e. first order Heaviside Series (HS), as proposed in
Chapter 4.

5.1.1 Homogeneous solution

From Eq. (513), the homogeneous solution is given by

yh (t) = exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt︸ ︷︷ ︸
Yh,1

C2

+exp
(
−
[
C̄−F2,1,1

]
t
)︸ ︷︷ ︸

Yh,2

C1 (516)

where Yh,1 and Yh,2 are time dependent n× n matrices. The Yh,2 term is straightforward to
compute, as it can be evaluated quite efficiently using discrete time points, as shown in Chapter
3 and Chapter 4. The question lies in term Yh,1, specially regarding the integration. This integral,
nonetheless, can be evaluated using integration by parts
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∫
exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt

=
∫

exp
([

C̄−F2,1,1
]

t
) ˙(

−exp
(
−F2,1,1t

)
F−1

2,1,1

)
dt

=−exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)F−1
2,1,1+∫ [

C̄−F2,1,1
]

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dtF−1
2,1,1

=−exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)F−1
2,1,1

+
[
C̄−F2,1,1

]∫
exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dtF−1
2,1,1; (517)

multiplying both sides of the equation to the right by −F2,1,1 and rearranging it yields

[
C̄−F2,1,1

]∫
exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt

−
∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dtF2,1,1 =

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t) . (518)

In Eq. (516), one observes that the term Yh,1 contains the exponential of
[
C̄−F2,1,1

]
.

For this reason, Eq. (518) is multiplied to the right by this exponential,

exp
(
−
[
C̄−F2,1,1

]
t
)[

C̄−F2,1,1
]∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt

−exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dtF2,1,1 =

exp
(
−
[
C̄−F2,1,1

]
t
)

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t) ; (519)

Using the Taylor series definition of the matrix exponential, (HIGHAM, 2008), it is easy
to observe that the exponential of a matrix commutes with the matrix itself. Besides, as a matrix
commutes with itself, the multiplication of the exponential of a matrix by the exponential of
this matrix multiplied by (−1) yields the identity matrix. Consequently, Equation (519) can be
simplified to

[
C̄−F2,1,1

]
exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt

−exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dtF2,1,1 = exp(−F2,1,1t) .

(520)

Equation (520), however, can be multiplied to the right by the exponential of F2,1,1, which results
in
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[
C̄−F2,1,1

]
exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt exp(F2,1,1t)

−exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dtF2,1,1 exp(F2,1,1t) = I,

(521)

or, simply,

[
C̄−F2,1,1

]
exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt exp(F2,1,1t)︸ ︷︷ ︸
X

−exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt exp(F2,1,1t)︸ ︷︷ ︸
X

F2,1,1 = I,

(522)

which can be rewritten as

[
C̄−F2,1,1

]
X−XF2,1,1 = I, (523)

a Sylvester equation with unique solution if and only if
[
C̄−F2,1,1

]
and F2,1,1 do not share

any eigenvalue (BARTELS; STEWART, 1972). In Eq. (522), it was noted that the term X is a
function of time t, but, as it must satisfy the Sylvester equation with constant coefficients in Eq.
(523), which has a unique solution if there are no common eigenvalue, the time dependency can
be omitted and, more importantly, the term Yh,1 can be rewritten as

Yh,1 (t) = exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt

= Xexp(−F2,1,1t) ; (524)

and the integral itself can be expressed as

∫
exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt = exp
([

C̄−F2,1,1
]

t
)

Xexp(−F2,1,1t) , (525)

that is easily verified if the LHS is differentiated w.r.t. t and Eq. (523) is applied, which yields
the integrand of the RHS.

Finally, the homogeneous solution can be rewritten as follows using Eq. (524),

yh (t) = Xexp(−F2,1,1t)C2 + exp
(
−
[
C̄−F2,1,1

]
t
)

C1, (526)
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whose time derivative is

.yh (t) =−Xexp(−F2,1,1t)F2,1,1C2 − exp
(
−
[
C̄−F2,1,1

]
t
)[

C̄−F2,1,1
]

C1. (527)

Thus, at time t = 0, the initial conditions u = y(0) and v =
.y(0) are given by

u = yp (0)+XC2 +C1,

v =
.yp (0)−XF2,1,1C2 −

[
C̄−F2,1,1

]
C1, (528)

which can be rewritten in a system of equations,

[
I X

−
[
C̄−F2,1,1

]
−XF2,1,1

][
C1

C2

]
=

[
u−yp (0)
v− .yp (0)

]
. (529)

By multiplying the first row to the left by
[
C̄−F2,1,1

]
and adding it to the second row, one gets

[
I X
0
[
C̄−F2,1,1

]
X−XF2,1,1

][
C1

C2

]
=

[
u−yp (0)

v− .yp (0)+
[
C̄−F2,1,1

]
(u−yp (0))

]
. (530)

Inspecting the term at the second row and second column of Eq. (530) and comparing it to Eq.
(523), one easily realizes that the system can be further simplified to

[
I X
0 I

][
C1

C2

]
=

[
u−yp (0)

v− .yp (0)+
[
C̄−F2,1,1

]
(u−yp (0))

]
, (531)

whose solution is

C2 = v− .yp (0)+
[
C̄−F2,1,1

]
(u−yp (0)) ,

C1 = u−yp (0)−XC2. (532)

5.1.1.1 Homogeneous solution when the modes are classical normal

As proven in Appendix D.1, when the system has classical normal modes, the Sylvester
equation has a closed form solution. If this solution is substituted in Eq. (532) and, then, in Eq.
(526), one gets

yh (t) =
[
C̄−2F2,1,1

]−1 exp(−F2,1,1t)
[
v− .yp (0)+

[
C̄−F2,1,1

]
(u−yp (0))

]
+exp

(
−
[
C̄−F2,1,1

]
t
)[

u−yp (0)−
[
C̄−2F2,1,1

]−1
[v− .yp (0)

+
[
C̄−F2,1,1

]
(u−yp (0))

]]
, (533)
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which is further simplified using the commutativity of C̄ and F2,1,1 proven in Chapter 3,

yh (t) = exp(−F2,1,1t)
[
C̄−2F2,1,1

]−1 [v− .yp (0)+
[
C̄−F2,1,1

]
(u−yp (0))

]
+exp

(
−
[
C̄−F2,1,1

]
t
)[

u−yp (0)−
[
C̄−2F2,1,1

]−1
[v− .yp (0)

+
[
C̄−F2,1,1

]
(u−yp (0))

]]
, (534)

that is equal to the homogeneous response derived in Chapter 3. Thus, the expression proposed
in Eq. (526) is consistent to classical normal modes, as it should be.

5.1.2 Particular solution due to Dirac’s delta excitation

From Eq. (513), the particular solution due to excitation is given by

yp (t) = exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)
∫

exp(F2,1,1t) f̄dt dt.

(535)

Let the excitation vector be particularized to

f(t) =
nk

∑
k=0

n

∑
j=1

c jkδ (t − tk)e j, (536)

where c jk is a constant, δ
(
t − t jk

)
, the Dirac’s delta at t = t jk, nk is the number of pulses, and

e j = {δi j}, i = {1,2, . . . ,n}, where δi j is the Kronecker’s delta. Thus, the normalized excitation
vector is given by

f̄(t) =
nk

∑
k=0

n

∑
j=1

c jkδ (t − tk)M−1e j =
nk

∑
k=0

n

∑
j=1

c jkδ (t − tk)v j. (537)

Applying this excitation to Eq. (535) and using the linearity property of the integral
operator, the particular solution is given by

yp (t) =
nk

∑
k=0

n

∑
j=1

c jk exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)∫
exp(F2,1,1t)δ (t − tk)dt dtv j, (538)

whose inner convolution can be evaluated using the Dirac’s delta filter property, (KANWAL,
2011),

yp (t) =
nk

∑
k=0

n

∑
j=1

c jk exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)

exp(F2,1,1tk)H (t − tk)dtv j, (539)
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where H (t − tk) is the Heaviside step function with discontinuity in t = tk.
The constant matrix exponential that resulted from the inner convolution in Eq. (539) can

be put out of the outer convolution and its integration limits can be changed using the property
of the Heaviside step functions discussed in Chapter 3,

yp (t) =
nk

∑
k=0

n

∑
j=1

c jk exp
(
−
[
C̄−F2,1,1

]
t
)∫ t

tk
exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt

exp(F2,1,1tk)H (t − tk)v j. (540)

The integral term in Eq. (540) was already developed in Eq. (525), hence, it can be readily used
here,

yp (t) =
nk

∑
k=0

n

∑
j=1

c jk exp
(
−
[
C̄−F2,1,1

]
t
)[

exp
([

C̄−F2,1,1
]

t
)

Xexp(−F2,1,1t)−

exp
([

C̄−F2,1,1
]

tk
)

Xexp(−F2,1,1tk)
]

exp(F2,1,1tk)H (t − tk)v j. (541)

which further simplifies to

yp (t) =
nk

∑
k=0

n

∑
j=1

c jk
[
Xexp(F2,1,1 (tk − t))− exp

([
C̄−F2,1,1

]
(tk − t)

)
X
]
H (t − tk)v j.

(542)

5.1.2.1 Solution due to Dirac’s delta when the modes are classical normal

It was shown in Appendix D.1 that, when the system has classical normal modes, the
solution of the Sylvester equation, X, commutes with F2,1,1, so Equation (542) can be rearranged
to

yp (t) =
nk

∑
k=0

n

∑
j=1

c jk
[
exp(F2,1,1 (tk − t))X− exp

([
C̄−F2,1,1

]
(tk − t)

)
X
]
H (t − tk)v j,

(543)

which is simplified to

yp (t) =
nk

∑
k=0

n

∑
j=1

c jk
[
exp(F2,1,1 (tk − t))− exp

([
C̄−F2,1,1

]
(tk − t)

)]
XH (t − tk)v j,

(544)

and, substituting the solution X from Appendix D.1 into Eq. (544), yields
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yp (t) =
nk

∑
k=0

n

∑
j=1

c jk
[
exp(F2,1,1 (tk − t))− exp

([
C̄−F2,1,1

]
(tk − t)

)]
[
C̄−2F2,1,1

]−1 v jH (t − tk) , (545)

which is exactly the same found in Chapter 3. Thereby, Equation (542) is consistent with classical
normal modes.

5.1.3 Particular solution due to first order HS

Let the excitation vector be given by

f(t) =
n

∑
j=1

nk

∑
k=0

(
ĉ j,k,0 + ĉ j,k,1t

)
H (t − tk)e j (546)

where ĉ j,k,0 and ĉ j,k,1 are constant coefficients. Normalized by the mass matrix, it becomes

f̄(t) =
nk

∑
k=0

n

∑
j=1

(
ĉ j,k,0 + ĉ j,k,1t

)
H (t − tk)v j; (547)

applying it to Eq. (535) and using the linearity of the integral operator, the particular response is
given by

yp (t) =
nk

∑
k=0

n

∑
j=1

exp
(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)∫
exp(F2,1,1t)

(
ĉ j,k,0 + ĉ j,k,1t

)
H (t − tk)dt dtv j. (548)

The property of change of integration limits of the Heaviside step function can be used, yielding

yp (t) =
nk

∑
k=0

n

∑
j=1

exp
(
−
[
C̄−F2,1,1

]
t
)∫ t

tk
exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)

∫ t

tk
exp(F2,1,1t)

(
ĉ j,k,0 + ĉ j,k,1t

)
dt dtH (t − tk)v j. (549)

The inner convolution is easily evaluated using integration by parts, whose result is

yp (t) =
nk

∑
k=0

n

∑
j=1

exp
(
−
[
C̄−F2,1,1

]
t
)∫ t

tk
exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)[
ĉ j,k,0 exp(F2,1,1t)F−1

2,1,1 − ĉ j,k,1 exp(F2,1,1t)F−2
2,1,1

+ĉ j,k,1t exp(F2,1,1t)F−1
2,1,1

]∣∣∣∣∣
t

tk

dtH (t − tk)v j, (550)
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that is equal to

yp (t) =
nk

∑
k=0

n

∑
j=1

exp
(
−
[
C̄−F2,1,1

]
t
)∫ t

tk
exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)[
ĉ j,k,0 exp(F2,1,1t)F−1

2,1,1 − ĉ j,k,1 exp(F2,1,1t)F−2
2,1,1 + ĉ j,k,1t exp(F2,1,1t)F−1

2,1,1

−ĉ j,k,0 exp(F2,1,1tk)F−1
2,1,1 + ĉ j,k,1 exp(F2,1,1tk)F−2

2,1,1

−ĉ j,k,1tk exp(F2,1,1tk)F−1
2,1,1

]
dtH (t − tk)v j. (551)

The remaining convolution can be split in two parts,

yp (t) =
nk

∑
k=0

n

∑
j=1

exp
(
−
[
C̄−F2,1,1

]
t
)(∫ t

tk
exp
([

C̄−F2,1,1
]

t
)[

ĉ j,k,0F−1
2,1,1 − ĉ j,k,1F−2

2,1,1

+ĉ j,k,1tF−1
2,1,1

]
dt −

∫ t

tk
exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt exp(F2,1,1tk)
[
ĉ j,k,0F−1

2,1,1

−ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tkF−1

2,1,1

]
dt
)

H (t − tk)v j.

(552)

The first part can be calculated using integration by parts as for the inner convolution, while the
second integral is the same as the one in Eq. (525), therefore, Equation (552) can be simplified to

yp (t) =
nk

∑
k=0

n

∑
j=1

exp
(
−
[
C̄−F2,1,1

]
t
)([

exp
([

C̄−F2,1,1
]

t
)([

C̄−F2,1,1
]−1
[
ĉ j,k,0F−1

2,1,1

−ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tF−1

2,1,1

]
− ĉ j,k,1

[
C̄−F2,1,1

]−2 F−1
2,1,1

)]∣∣∣∣∣
t

tk

−
[
exp
([

C̄−F2,1,1
]

t
)

Xexp(−F2,1,1t)
]∣∣∣∣∣

t

tk

exp(F2,1,1tk)
[
ĉ j,k,0F−1

2,1,1 − ĉ j,k,1F−2
2,1,1

+ĉ j,k,1tkF−1
2,1,1

])
H (t − tk)v j,

(553)

which is expanded to
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yp (t) =
nk

∑
k=0

n

∑
j=1

exp
(
−
[
C̄−F2,1,1

]
t
)(

exp
([

C̄−F2,1,1
]

t
)([

C̄−F2,1,1
]−1
[
ĉ j,k,0F−1

2,1,1

−ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tF−1

2,1,1

]
− ĉ j,k,1

[
C̄−F2,1,1

]−2 F−1
2,1,1

)
− exp

([
C̄−F2,1,1

]
tk
)
([

C̄−F2,1,1
]−1
[
ĉ j,k,0F−1

2,1,1 − ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tkF−1

2,1,1

]
− ĉ j,k,1

[
C̄−F2,1,1

]−2 F−1
2,1,1

)
−[

exp
([

C̄−F2,1,1
]

t
)

Xexp(−F2,1,1t)− exp
([

C̄−F2,1,1
]

tk
)

Xexp(−F2,1,1tk)
]

exp(F2,1,1tk)
[
ĉ j,k,0F−1

2,1,1 − ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tkF−1

2,1,1

])
H (t − tk)v j,

(554)

and, then, further simplified to

yp (t) =
nk

∑
k=0

n

∑
j=1

([
C̄−F2,1,1

]−1
[
ĉ j,k,0F−1

2,1,1 − ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tF−1

2,1,1

]
−ĉ j,k,1

[
C̄−F2,1,1

]−2 F−1
2,1,1 − exp

([
C̄−F2,1,1

]
(tk − t)

)([
C̄−F2,1,1

]−1
[
ĉ j,k,0F−1

2,1,1

−ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tkF−1

2,1,1

]
− ĉ j,k,1

[
C̄−F2,1,1

]−2 F−1
2,1,1

)
−Xexp(F2,1,1 (tk − t))[

ĉ j,k,0F−1
2,1,1 − ĉ j,k,1F−2

2,1,1 + ĉ j,k,1tkF−1
2,1,1

]
+ exp

([
C̄−F2,1,1

]
(tk − t)

)
X
[
ĉ j,k,0F−1

2,1,1

−ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tkF−1

2,1,1

])
H (t − tk)v j,

(555)

that is rearranged again to

yp (t) =
nk

∑
k=0

n

∑
j=1

([
C̄−F2,1,1

]−1
[
ĉ j,k,0F−1

2,1,1 − ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tF−1

2,1,1

]
−ĉ j,k,1

[
C̄−F2,1,1

]−2 F−1
2,1,1 − exp

([
C̄−F2,1,1

]
(tk − t)

)([
C̄−F2,1,1

]−1
[
ĉ j,k,0F−1

2,1,1

−ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tkF−1

2,1,1

]
−X

[
ĉ j,k,0F−1

2,1,1 − ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tkF−1

2,1,1

]
−ĉ j,k,1

[
C̄−F2,1,1

]−2 F−1
2,1,1

)
−Xexp(F2,1,1 (tk − t))

[
ĉ j,k,0F−1

2,1,1 − ĉ j,k,1F−2
2,1,1

+ĉ j,k,1tkF−1
2,1,1

])
H (t − tk)v j.

(556)

5.1.3.1 Solution due to first order HS when the modes are classical normal

Again, using the commutativity between X and F2,1,1, proven in Appendix D.1 when the
system has classical normal modes, Equation (556) becomes
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yp (t) =
nk

∑
k=0

n

∑
j=1

([
C̄−F2,1,1

]−1
[
ĉ j,k,0F−1

2,1,1 − ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tF−1

2,1,1

]
−ĉ j,k,1

[
C̄−F2,1,1

]−2 F−1
2,1,1 − exp

([
C̄−F2,1,1

]
(tk − t)

)([
C̄−F2,1,1

]−1
[
ĉ j,k,0F−1

2,1,1

−ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tkF−1

2,1,1

]
−X

[
ĉ j,k,0F−1

2,1,1 − ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tkF−1

2,1,1

]
−ĉ j,k,1

[
C̄−F2,1,1

]−2 F−1
2,1,1

)
− exp(F2,1,1 (tk − t))X

[
ĉ j,k,0F−1

2,1,1 − ĉ j,k,1F−2
2,1,1

+ĉ j,k,1tkF−1
2,1,1

])
H (t − tk)v j;

(557)

and substituting the solution X from Appendix D.1, Equation (557) expands to

yp (t) =
nk

∑
k=0

n

∑
j=1

([
C̄−F2,1,1

]−1
[
ĉ j,k,0F−1

2,1,1 − ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tF−1

2,1,1

]
−ĉ j,k,1

[
C̄−F2,1,1

]−2 F−1
2,1,1 − exp

([
C̄−F2,1,1

]
(tk − t)

)([
C̄−F2,1,1

]−1
[
ĉ j,k,0F−1

2,1,1

−ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tkF−1

2,1,1

]
−
[
C̄−2F2,1,1

]−1
[
ĉ j,k,0F−1

2,1,1 − ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tkF−1

2,1,1

]
−ĉ j,k,1

[
C̄−F2,1,1

]−2 F−1
2,1,1

)
− exp(F2,1,1 (tk − t))

[
C̄−2F2,1,1

]−1
[
ĉ j,k,0F−1

2,1,1

−ĉ j,k,1F−2
2,1,1 + ĉ j,k,1tkF−1

2,1,1

])
H (t − tk)v j,

(558)

that is, once more, equal to the results given in Chapter 3 and in Chapter 4, consequently,
Equation (556) is consistent to classical normal modes too.

5.2 EFFICIENT COMPUTATION

Solving such systems of differential equations without classical normal modes poses
new sources of computational cost, when compared to the results in Chapter 3 and in Chapter 4,
namely the numerical solution of Eq. (514) and the solution of the Sylvester equation in Eq. (523).
According to (DATTA, 2004; BARTELS; STEWART, 1972), the computation cost of solving
the Sylvester equation is in the order of O

(
n3) if the Schur decomposition is used to solve it.

This is not particularly alarming, since this task is performed only once in a pre-processing step,
as well as the numerical solution of Eq. (514). It was observed in Chapter 3 and in Chapter 4,
through numerical experiments, that the computational cost tends to concentrate in the iterative
processes of computing the response in the different time points, for the Generalized Integrating
Factor and Heaviside Series as well as for numerical methods such as Newmark-beta.

Acknowledging the observation that the computation cost tends to lie mostly on the
evaluation in different time points, for it grows as the number of points increases, there is a
motivation to evaluate the response using the Generalized Integrating Factor or Heaviside Series
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in the most efficient way possible. As it was highlighted in Chapter 3 and in Chapter 4, one of
the most efficient ways to tackle this problem is to evaluate the response at equally spaced points
in time, so that the exponential map of the matrices is evaluated only once, as a pre-processing
step. This procedure will be extended for the situation without classical normal modes in the
following subsections.

The process of evaluating the exponential map of the matrix A in a time point ti+1,
forward by a distance of ∆t of a already evaluated time point ti is given by

exp(Ati+1) = exp(A(∆t + ti)) = exp(A∆t)exp(Ati) , (559)

which implies, in a set of equally spaced time points, that the exponential map in a generic time
point tk equals

exp(Atk) = exp(A∆t)exp(A∆t) . . .exp(A∆t)︸ ︷︷ ︸
k times

exp(At0) . (560)

5.2.1 Homogeneous solution

Inspecting Eq. (526), there are two exponential maps, namely exp(−F2,1,1t) and
exp
(
−
[
C̄−F2,1,1

]
t
)
. Each one can be separately evaluated using Eq. (560), just as with classical

normal modes in Chapter 3 and in Chapter 4. The difference is in the matrix X at the left of
exp(−F2,1,1t). As they do not commute, one would suggest that matrix-matrix multiplication
would be necessary, but this is not the case, for the multiplication between exp(−F2,1,1t) and
C2 can be carried out first and, then, the multiplication with X. Hence, without classical normal
modes, the number of matrix-vector multiplications grew from 2 to 3. The whole process is
illustrated in Alg. 7. The 3 matrix-vector multiplications are highlighted in Alg. 7 and it is
important to stress that the first and second matrix-vector multiplications are equally evaluated
when the system does have classical normal modes.

Algorithm 4: Evaluation of the homogeneous response, yh, at equally spaced time
points tk
Calculate K̄, C̄, F2,1,1, exp(−F2,1,1∆t), exp

(
−
[
C̄−F2,1,1

]
∆t
)
, C2 and C1 using Eq. (532)

Evaluate the homogeneous response at t0
yh (t0) = XC2 +C1
for i=1,2,. . . ,nk

Update the vectors C1 and C2
C1 = exp

(
−
[
C̄−F2,1,1

]
∆t
)

C1, 1st matrix-vector multiplication
C2 = exp(−F2,1,1∆t)C2, 2nd matrix-vector multiplication
Calculate the homogeneous response
yh (ti) = XC2 +C1, 3rd matrix-vector multiplication

end
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5.2.2 Particular solution due to Dirac’s delta excitation

To simplify the response due to a series of Dirac’s deltas, Eq. (542), the vector v j can be
placed inside the brackets, hence, it becomes

yp (t) =
nk

∑
k=0

n

∑
j=1

c jk
[
Xexp(F2,1,1 (tk − t))v j − exp

([
C̄−F2,1,1

]
(tk − t)

)
z j
]
H (t − tk) ,

(561)

where z j = Xv j. Now, the expression inside of the brackets resembles the mathematical structure
of the homogeneous response, Eq. (526) and can be evaluated using the identity from Eq. (560).
To perform this task, the most efficient way is to divide the intended simulation time into a set of
equally spaced time points and the Dirac’s deltas must be applied into the system in these time
points. This approach enables the use of Eq. (561) to apply load and to measure the response.
If a time point is intended just to assert the response of the system without any loading due to
Dirac’s delta, the coefficient c jk has only to be zero.

Let Equation (561) be evaluated in a time point ti. Due to the Heaviside step function
properties, it equals

yp (ti) =
i

∑
k=0

n

∑
j=1

c jk
[
Xexp(F2,1,1 (tk − ti))v j − exp

([
C̄−F2,1,1

]
(tk − ti)

)
z j
]
. (562)

Let the term in brackets be split and rearranged, and let some terms be highlighted,

yp (ti) = X
i

∑
k=0

n

∑
j=1

c jk exp(F2,1,1 (tk − ti))v j︸ ︷︷ ︸
γγγ1,i

−
i

∑
k=0

n

∑
j=1

c jk exp
([

C̄−F2,1,1
]
(tk − ti)

)
z j︸ ︷︷ ︸

γγγ2,i

.

(563)

Now, one shall evaluate Eq. (561) in a time point one step ahead, ti+1 = ti +∆t,

yp (ti+1) =
i+1

∑
k=0

n

∑
j=1

c jk
[
Xexp(F2,1,1 (tk − ti+1))v j − exp

([
C̄−F2,1,1

]
(tk − ti+1)

)
z j
]
,

(564)

This equation can have the term i+1 taken out of the summation,

yp (ti+1) =
n

∑
j=1

[
c j,i+1

[
Xexp(F2,1,1 (ti+1 − ti+1))v j − exp

([
C̄−F2,1,1

]
(ti+1 − ti+1)

)
z j
]]

+
i

∑
k=0

n

∑
j=1

c jk
[
Xexp(F2,1,1 (tk − ti+1))v j − exp

([
C̄−F2,1,1

]
(tk − ti+1)

)
z j
]
.

(565)
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It follows from the definition of the vector z j that the term taken out of the summation is indeed
null; besides, the summation can be split in the same fashion of Eq. (563) and the exponential
maps can, then, be factored,

yp (ti+1) = Xexp(−F2,1,1∆t)
i

∑
k=0

n

∑
j=1

c jk exp(F2,1,1 (tk − ti))v j

−exp
(
−
[
C̄−F2,1,1

]
∆t
) i

∑
k=0

n

∑
j=1

c jk exp
([

C̄−F2,1,1
]
(tk − ti)

)
z j, (566)

which can be rewritten using the notation introduced in Eq. (563),

yp (ti+1) = Xexp(−F2,1,1∆t)γγγ1,i − exp
(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2,i. (567)

Equation (567) presents an interesting fact - the solution in a point ahead can be constructed
just by scaling (through the exponential maps) information from an immediately previous point.
Again, analogously to the homogeneous response, this evaluation is carried out by 3 matrix-vector
multiplications.

Nevertheless, one must derive how the vectors γγγ1,i and γγγ2,i are updated from an iteration
to the next. To this aim, let Equation (561) be evaluated in t = ti+2 = ti +2∆t,

yp (ti+2) =
i+2

∑
k=0

n

∑
j=1

c jk
[
Xexp(F2,1,1 (tk − ti+2))v j − exp

([
C̄−F2,1,1

]
(tk − ti+2)

)
z j
]

;

(568)

again, Equation (568) can have the term i+2 taken out of the summation and the summation
can be split and rearranged,

yp (ti+2) =
n

∑
j=1

[
c j,i+2

[
Xexp(F2,1,1 (ti+2 − ti+2))v j − exp

([
C̄−F2,1,1

]
(ti+2 − ti+2)

)
z j
]

+Xexp(−F2,1,1∆t)
i+1

∑
k=0

n

∑
j=1

c jk exp(F2,1,1 (tk − ti+1))v j

−exp
(
−
[
C̄−F2,1,1

]
∆t
) i+1

∑
k=0

n

∑
j=1

c jk exp
([

C̄−F2,1,1
]
(tk − ti+1)

)
z j

]
.

(569)

The term that multiplies c j,i+2 is zero because of the definition of z j. Besides, if the the term
i+1 is taken out of each one of the remaining summations, one gets
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yp (ti+2) = Xexp(−F2,1,1∆t)

[
n

∑
j=1

c j,i+1 exp(F2,1,1 (ti+1 − ti+1))v j

+
i

∑
k=0

n

∑
j=1

c jk exp(F2,1,1 (tk − ti+1))v j

]

−exp
(
−
[
C̄−F2,1,1

]
∆t
)[ n

∑
j=1

c j,i+1 exp
([

C̄−F2,1,1
]
(ti+1 − ti+1)

)
z j+

i

∑
k=0

n

∑
j=1

c jk exp
([

C̄−F2,1,1
]
(tk − ti+1)

)
z j

]
, (570)

which is finally simplified to

yp (ti+2) = Xexp(−F2,1,1∆t)

[
n

∑
j=1

c j,i+1v j

+exp(−F2,1,1∆t)
i

∑
k=0

n

∑
j=1

c jk exp(F2,1,1 (tk − ti))v j

]
− exp

(
−
[
C̄−F2,1,1

]
∆t
)

[
n

∑
j=1

c j,i+1z j + exp
(
−
[
C̄−F2,1,1

]
∆t
) i

∑
k=0

n

∑
j=1

c jk exp
([

C̄−F2,1,1
]
(tk − ti)

)
z j

]
. (571)

Comparing Eq. (571) to Eq. (567), one realizes that

γγγ1,i+1 =
n

∑
j=1

c j,i+1v j + exp(−F2,1,1∆t)
i

∑
k=0

n

∑
j=1

c jk exp(F2,1,1 (tk − ti))v j,

γγγ2,i+1 =
n

∑
j=1

c j,i+1z j + exp
(
−
[
C̄−F2,1,1

]
∆t
) i

∑
k=0

n

∑
j=1

c jk exp
([

C̄−F2,1,1
]
(tk − ti)

)
z j;

(572)

which, by comparison with Eq. (563), yields the update rules for the vectors γγγ1 and γγγ2,

γγγ1,i+1 = exp(−F2,1,1∆t)γγγ1,i +
n

∑
j=1

c j,i+1v j,

γγγ2,i+1 = exp
(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2,i +
n

∑
j=1

c j,i+1z j. (573)

Inspecting Eq. (566) and Eq. (567), as well as Alg. 7, it is clear that these vectors must be
initialized as

γγγ1,0 =
n

∑
j=1

c j,0v j +C2,

γγγ2,0 =
n

∑
j=1

c j,0z j −C1. (574)
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The whole process of evaluating Eq. (567) is illustrated in Alg. 5. There, the equations
above are placed in a logic order, readily available for implementation. As it is common for a
system not to be excited in all of its DOFs, a set of excited DOFs is created, where each excited
DOF is numbered from 1 up to ne, the size of this set.

Algorithm 5: Evaluation of the response yp at the Dirac’s delta singularity points tk
using Eq. (567)
Calculate K̄, C̄, F2,1,1, X, exp(−F2,1,1∆t) and exp

(
−
[
C̄−F2,1,1

]
∆t
)

Initialize a vector n×ne1 for γγγ1 and for γγγ2
Iterate through the excited degrees of freedom ne
for j = 1,2, . . . ,ne

Computes v j = M−1e j and z j = Xv j
Initialize γγγ1 and γγγ2 using Eq. (574)
Initialize the response as null and sums the initial conditions vectors C1 and C2

end
Iterate through the remaining points in time, {t1, t2, t3, . . . , tnk}
for i = 1,2, . . . ,nk

Calculate exp(−F2,1,1∆t)γγγ1 and exp
(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2
Calculate Xexp(−F2,1,1∆t)γγγ1
Calculate the response at time ti, yp (ti), using Eq. (567)
Iterate through the excited degrees of freedom
Update γγγ1 and γγγ2 using Eq. (573)

end

5.2.3 Particular solution due to first order HS

In Chapter 4, the inverse operations were separated and simplified, the same can be
done here. Thus, in Eq. (556), the definition of the vector v j = M−1e j is applied and the matrix
operations are expanded. Each one of these operations are named identically to that in Chapter 4,
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yp (t) =
nk

∑
k=0

n

∑
j=1

ĉ j,k,0
[
C̄−F2,1,1

]−1 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ1

−ĉ j,k,1
[
C̄−F2,1,1

]−1 F−2
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ3

+ĉ j,k,1t
[
C̄−F2,1,1

]−1 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ1

−ĉ j,k,1
[
C̄−F2,1,1

]−2 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ2

−exp
([

C̄−F2,1,1
]
(tk − t)

)ĉ j,k,0
[
C̄−F2,1,1

]−1 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ1

−ĉ j,k,1
[
C̄−F2,1,1

]−1 F−2
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ3

+ĉ j,k,1tk
[
C̄−F2,1,1

]−1 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ1

−ĉ j,k,0 XF−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ4

+ĉ j,k,1 XF−2
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ5

−ĉ j,k,1tk XF−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ4

−ĉ j,k,1
[
C̄−F2,1,1

]−2 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ2

−Xexp(F2,1,1 (tk − t))

ĉ j,k,0 F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ6

−ĉ j,k,1 F−2
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ7

+ĉ j,k,1tk F−1
2,1,1M−1︸ ︷︷ ︸

ΓΓΓ6


H (t − tk)e j.

(575)

Using the property of inverse of matrices, namely (AB)−1 = B−1A−1, each term ΓΓΓi can be
rewritten or simplified. The simplifications for ΓΓΓ1 and ΓΓΓ2 were already developed in Chapter 4,
resulting in

ΓΓΓ1 = K−1 = ΩΩΩ
−1
1 , (576)

ΓΓΓ2 =
(
K
[
C̄−F2,1,1

])−1
= ΩΩΩ

−1
2 . (577)

(578)

Let continue with ΓΓΓ3,

ΓΓΓ3 =
[
C̄−F2,1,1

]−1 F−2
2,1,1M−1 =

(
MF2

2,1,1
[
C̄−F2,1,1

])−1
=
(
MF2,1,1K̄

)−1
= ΩΩΩ

−1
3 .

(579)

And with ΓΓΓ6,

ΓΓΓ6 = F−1
2,1,1M−1 = (MF2,1,1)

−1 = ΩΩΩ
−1
6 . (580)
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Then, with ΓΓΓ7,

ΓΓΓ7 = F−2
2,1,1M−1 =

(
MF2

2,1,1
)−1

= ΩΩΩ
−1
7 ; (581)

Finally, ΓΓΓ4 and ΓΓΓ5 are evaluated only by multiplying by X, resulting in

ΓΓΓ4 = XΩΩΩ
−1
6 , (582)

ΓΓΓ5 = XΩΩΩ
−1
7 . (583)

Henceforth, alike in Chapter 4, all inverse operations can be carried out using a linear
system of equations,

xi, j = ΩΩΩi\e j, i = 1,2,3,4,5,6,7, (584)

where \ indicates the solution of a linear system ΩΩΩixi, j = e j, and xi, j is the solution. Thus,
substituting those results into Eq. (575), it yields

yp (t) =
nk

∑
k=0

n

∑
j=1

((
ĉ j,k,0 + ĉ j,k,1t

)
x1, j − ĉ j,k,1x2, j − ĉ j,k,1x3, j

−exp
([

C̄−F2,1,1
]
(tk − t)

)((
ĉ j,k,0 + ĉ j,k,1tk

)
x1, j − ĉ j,k,1x2, j − ĉ j,k,1x3, j

−
(
ĉ j,k,0 + ĉ j,k,1tk

)
x4, j + ĉ j,k,1x5, j

)
−Xexp(F2,1,1 (tk − t))

[(
ĉ j,k,0 + ĉ j,k,1tk

)
x6, j − ĉ j,k,1x7, j

])
H (t − tk) . (585)

It follows directly from Eq. (582) and from Eq. (583) that

x4, j = Xx6, j,

x5, j = Xx7, j. (586)

However, Eq. (587) can be regrouped to

yp (t) =
nk

∑
k=0

[
t

n

∑
j=1

ĉ j,k,1x1, j +
n

∑
j=1

ĉ j,k,0x1, j −
n

∑
j=1

ĉ j,k,1x8, j

]
H (t − tk)

−
nk

∑
k=0

exp
([

C̄−F2,1,1
]
(tk − t)

) n

∑
j=1

(
tkĉ j,k,1x1, j + ĉ j,k,0x1, j −

(
ĉ j,k,0 + ĉ j,k,1tk

)
x4, j

+ĉ j,k,1x5, j − ĉ j,k,1x8, j
)
H (t − tk)−X

nk

∑
k=0

exp(F2,1,1 (tk − t))
n

∑
j=1

((
ĉ j,k,0 + ĉ j,k,1tk

)
x6, j

−ĉ j,k,1x7, j
)
H (t − tk) ,

(587)
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where

x8, j = x2, j +x3, j, (588)

whose advantage is the requirement of just 6 vectors for each excited DOF, in opposition to the 7
vectors previously. This arrangement spares both the overall memory cost and the computational
cost due to additions in each iteration.

Using the same technique deployed in the previous Subsec. 5.2.2 and in Chapter 4, let
Eq. (587) be evaluated in a discrete set of equally spaced time points. Let it first be evaluated in
a generic time point t = ti and have its terms regrouped,

yp (ti) =
i

∑
k=0

[
ti

n

∑
j=1

ĉ j,k,1x1, j +
n

∑
j=1

ĉ j,k,0x1, j −
n

∑
j=1

ĉ j,k,1x8, j

]

−
i

∑
k=0

exp
([ ¯C−F2,1,1

]
(tk − ti)

) n

∑
j=1

(
tkĉ j,k,1x1, j + ĉ j,k,0x1, j −

(
ĉ j,k,0 + ĉ j,k,1tk

)
x4, j

+ĉ j,k,1x5, j − ĉ j,k,1x8, j
)
−X

i

∑
k=0

exp(F2,1,1 (tk − ti))
n

∑
j=1

((
ĉ j,k,0 + ĉ j,k,1tk

)
x6, j − ĉ j,k,1x7, j

)
(589)

much like in Subsec. 5.2.2, two terms emerge

γγγ2,i =
i

∑
k=0

exp
([

C̄−F2,1,1
]
(tk − ti)

) n

∑
j=1

(
tkĉ j,k,1x1, j + ĉ j,k,0x1, j −

(
ĉ j,k,0 + ĉ j,k,1tk

)
x4, j

+ĉ j,k,1x5, j − ĉ j,k,1x8, j
)
,

γγγ1,i =
i

∑
k=0

exp(F2,1,1 (tk − ti))
n

∑
j=1

((
ĉ j,k,0 + ĉ j,k,1tk

)
x6, j − ĉ j,k,1x7, j

)
.

(590)

Now, let Eq. (587) be evaluated in t = ti+1 = ti +∆t,

yp (ti+1) =
i+1

∑
k=0

[
ti+1

n

∑
j=1

ĉ j,k,1x1, j +
n

∑
j=1

ĉ j,k,0x1, j −
n

∑
j=1

ĉ j,k,1x8, j

]

−
i+1

∑
k=0

exp
([

C̄−F2,1,1
]
(tk − ti+1)

) n

∑
j=1

(
tkĉ j,k,1x1, j + ĉ j,k,0x1, j −

(
ĉ j,k,0 + ĉ j,k,1tk

)
x4, j

+ĉ j,k,1x5, j − ĉ j,k,1x8, j
)
−X

i+1

∑
k=0

exp(F2,1,1 (tk − ti+1))
n

∑
j=1

((
ĉ j,k,0 + ĉ j,k,1tk

)
x6, j

−ĉ j,k,1x7, j
)
,

(591)
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whose term with k = i+1 can be taken out of the summation, while the summation is split in the
same fashion as in Eq. (589),

yp (ti+1) = ti+1

n

∑
j=1

ĉ j,k,1x1, j +
n

∑
j=1

ĉ j,i+1,0x1, j −
n

∑
j=1

ĉ j,i+1,1x8, j − ti+1

n

∑
j=1

ĉ j,i+1,1x1, j

−
n

∑
j=1

ĉ j,i+1,0x1, j +
n

∑
j=1

(
ĉ j,i+1,0 + ĉ j,i+1,1ti+1

)
x4, j −

n

∑
j=1

ĉ j,i+1,1x5, j +
n

∑
j=1

ĉ j,i+1,1x8, j

−
n

∑
j=1

(
ĉ j,i+1,0 + ĉ j,i+1,1ti+1

)
Xx6, j +

n

∑
j=1

ĉ j,i+1,1Xx7, j +
i

∑
k=0

[
ti+1

n

∑
j=1

ĉ j,k,1x1, j

+
n

∑
j=1

ĉ j,k,0x1, j −
n

∑
j=1

ĉ j,k,1x8, j

]
−

i

∑
k=0

exp
([

C̄−F2,1,1
]
(tk − ti+1)

) n

∑
j=1

(
tkĉ j,k,1x1, j

+ĉ j,k,0x1, j −
(
ĉ j,k,0 + ĉ j,k,1tk

)
x4, j + ĉ j,k,1x5, j − ĉ j,k,1x8, j

)
−X

i

∑
k=0

exp(F2,1,1 (tk − ti+1))
n

∑
j=1

((
ĉ j,k,0 + ĉ j,k,1tk

)
x6, j − ĉ j,k,1x7, j

)
,

(592)

the elements out of the summation in index k cancel each other out using relations of Eq. (586)
and of Eq. (588). Equation (592) can, then, be further simplified to

yp (ti+1) = ti+1

i

∑
k=0

n

∑
j=1

ĉ j,k,1x1, j︸ ︷︷ ︸
w1,i

+
i

∑
k=0

n

∑
j=1

ĉ j,k,0x1, j︸ ︷︷ ︸
w2,i

−
i

∑
k=0

n

∑
j=1

ĉ j,k,1x8, j︸ ︷︷ ︸
w3,i

−exp
(
−
[
C̄−F2,1,1

]
∆t
){∑

i
k=0 exp

([
C̄−F2,1,1

]
(tk − ti)

)
∑

n
j=1
(
tkĉ j,k,1x1, j + ĉ j,k,0x1, j

−
(
ĉ j,k,0 + ĉ j,k,1tk

)
x4, j + ĉ j,k,1x5, j − ĉ j,k,1x8, j

) }
︸ ︷︷ ︸

γγγ2,i

−Xexp(−F2,1,1∆t)
i

∑
k=0

exp(F2,1,1 (tk − ti))
n

∑
j=1

((
ĉ j,k,0 + ĉ j,k,1tk

)
x6, j − ĉ j,k,1x7, j

)
︸ ︷︷ ︸

γγγ1,i

(593)

As it was made in Subsec. 5.2.2, Equation (593) can be rewritten using relations from Eq. (590),

yp (ti+1) = ti+1w1,i +w2,i −w3,i − exp
(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2,i −Xexp(−F2,1,1∆t)γγγ1,i.

(594)

In Subsec. 5.2.2, the response was also evaluated in time t = ti+2 to derive how the vectors
γγγ2,i and γγγ1,i are updated. The same intuition will be used ahead, hence,
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yp (ti+2) = ti+2

i+2

∑
k=0

n

∑
j=1

ĉ j,k,1x1, j +
i+2

∑
k=0

n

∑
j=1

ĉ j,k,0x1, j −
i+2

∑
k=0

n

∑
j=1

ĉ j,k,1x8, j

−
i+2

∑
k=0

exp
([

C̄−F2,1,1
]
(tk − ti+2)

) n

∑
j=1

(
tkĉ j,k,1x1, j + ĉ j,k,0x1, j −

(
ĉ j,k,0 + ĉ j,k,1tk

)
x4, j

+ĉ j,k,1x5, j − ĉ j,k,1x8, j
)
−X

i+2

∑
k=0

exp(F2,1,1 (tk − ti+2))
n

∑
j=1

((
ĉ j,k,0 + ĉ j,k,1tk

)
x6, j

−ĉ j,k,1x7, j
)
.

(595)

Again, taking the term i+2 out of the summation in k and separating the summation in three
components,

yp (ti+2) = ti+2

n

∑
j=1

ĉ j,i+2,1x1, j +
n

∑
j=1

ĉ j,i+2,0x1, j −
n

∑
j=1

ĉ j,i+2,1x8, j − ti+2

n

∑
j=1

ĉ j,i+2,1x1, j

−
n

∑
j=1

ĉ j,i+2,0x1, j +
n

∑
j=1

(
ĉ j,i+2,0 + ĉ j,i+2,1ti+2

)
x4, j −

n

∑
j=1

ĉ j,i+2,1x5, j +
n

∑
j=1

ĉ j,i+2,1x8, j

−
n

∑
j=1

(
ĉ j,i+2,0 + ĉ j,i+2,1ti+2

)
Xx6, j +

n

∑
j=1

ĉ j,i+2,1Xx7, j + ti+2

i+1

∑
k=0

n

∑
j=1

ĉ j,k,1x1, j

+
i+1

∑
k=0

n

∑
j=1

ĉ j,k,0x1, j −
i+1

∑
k=0

n

∑
j=1

ĉ j,k,1x8, j −
i+1

∑
k=0

exp
([

C̄−F2,1,1
]
(tk − ti+2)

) n

∑
j=1

(
tkĉ j,k,1x1, j

+ĉ j,k,0x1, j −
(
ĉ j,k,0 + ĉ j,k,1tk

)
x4, j + ĉ j,k,1x5, j − ĉ j,k,1x8, j

)
−X

i+1

∑
k=0

exp(F2,1,1 (tk − ti+2))
n

∑
j=1

((
ĉ j,k,0 + ĉ j,k,1tk

)
x6, j − ĉ j,k,1x7, j

)
.

(596)

Once more, the terms out of the summation cancel each other out using the relations of Eq.
(586) and of Eq. (588). Thus, Equation (596) can be simplified and the exponential maps can be
rearranged to

yp (ti+2) = ti+2

i+1

∑
k=0

n

∑
j=1

ĉ j,k,1x1, j +
i+1

∑
k=0

n

∑
j=1

ĉ j,k,0x1, j −
i+1

∑
k=0

n

∑
j=1

ĉ j,k,1x8, j

−exp
(
−
[
C̄−F2,1,1

]
∆t
) i+1

∑
k=0

exp
([

C̄−F2,1,1
]
(tk − ti+1)

) n

∑
j=1

(
tkĉ j,k,1x1, j + ĉ j,k,0x1, j

−
(
ĉ j,k,0 + ĉ j,k,1tk

)
x4, j + ĉ j,k,1x5, j − ĉ j,k,1x8, j

)
−Xexp(−F2,1,1∆t)

i+1

∑
k=0

exp(F2,1,1 (tk − ti+1))
n

∑
j=1

((
ĉ j,k,0 + ĉ j,k,1tk

)
x6, j − ĉ j,k,1x7, j

)
;

(597)
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taking the terms i+1 out of the summations and rearranging the exponential maps again, one
gets

yp (ti+2) = ti+2


n

∑
j=1

ĉ j,i+1,1x1, j +
i

∑
k=0

n

∑
j=1

ĉ j,k,1x1, j︸ ︷︷ ︸
w1,i


︸ ︷︷ ︸

w1,i+1

+


n

∑
j=1

ĉ j,i+1,0x1, j +
i

∑
k=0

n

∑
j=1

ĉ j,k,0x1, j︸ ︷︷ ︸
w2,i


︸ ︷︷ ︸

w2,i+1

−


n

∑
j=1

ĉ j,i+1,1x8, j +
i

∑
k=0

n

∑
j=1

ĉ j,k,1x8, j︸ ︷︷ ︸
w3,i


︸ ︷︷ ︸

w3,i+1

−exp
(
−
[
C̄−F2,1,1

]
∆t
)[

ti+1

n

∑
j=1

ĉ j,i+1,1x1, j +
n

∑
j=1

ĉ j,i+1,0x1, j

−
n

∑
j=1

(
ĉ j,i+1,0 + ĉ j,i+1,1ti+1

)
x4, j +

n

∑
j=1

ĉ j,i+1,1x5, j −
n

∑
j=1

ĉ j,i+1,1x8, j

+exp
(
−
[
C̄−F2,1,1

]
∆t
) i

∑
k=0

exp
([

C̄−F2,1,1
]
(tk − ti)

) n

∑
j=1

(
tkĉ j,k,1x1, j + ĉ j,k,0x1, j−

(
ĉ j,k,0 + ĉ j,k,1tk

)
x4, j + ĉ j,k,1x5, j − ĉ j,k,1x8, j

)]
−Xexp(−F2,1,1∆t)

[
n

∑
j=1

(
ĉ j,i+1,0

+ĉ j,i+1,1ti+1
)

x6, j −
n

∑
j=1

ĉ j,i+1,1x7, j + exp(−F2,1,1∆t)
i

∑
k=0

exp(F2,1,1 (tk − ti))
n

∑
j=1

((
ĉ j,k,0

+ĉ j,k,1tk
)

x6, j − ĉ j,k,1x7, j
)]
,

(598)

which is similar to Eq. (593) and, consequently, can be rewritten to

yp (ti+2) = ti+2w1,i+1 +w2,i+1 −w3,i+1

−exp
(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2,i+1 −Xexp(−F2,1,1∆t)γγγ1,i+1. (599)

Finally, Eq. (599) leads to the update rules for the vectors γγγ2,i, γγγ1,i, w1,i, w2,i and w3,i,
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w1,i+1 = w1,i +
n

∑
j=1

ĉ j,i+1,1x1, j︸ ︷︷ ︸
d1,i+1

,

w2,i+1 = w2,i +
n

∑
j=1

ĉ j,i+1,0x1, j︸ ︷︷ ︸
d2,i+1

,

w3,i+1 = w3,i +
n

∑
j=1

ĉ j,i+1,1x8, j︸ ︷︷ ︸
d3,i+1

,

γγγ2,i+1 = exp
(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2,i + ti+1

n

∑
j=1

ĉ j,i+1,1x1, j︸ ︷︷ ︸
d1,i+1

+
n

∑
j=1

ĉ j,i+1,0x1, j︸ ︷︷ ︸
d2,i+1

−
n

∑
j=1

(
ĉ j,i+1,0 + ĉ j,i+1,1ti+1

)
x4, j︸ ︷︷ ︸

d4,i+1

+
n

∑
j=1

ĉ j,i+1,1x5, j︸ ︷︷ ︸
d5,i+1

−
n

∑
j=1

ĉ j,i+1,1x8, j︸ ︷︷ ︸
d3,i+1

,

γγγ1,i+1 = exp(−F2,1,1∆t)γγγ1,i +
n

∑
j=1

(
ĉ j,i+1,0 + ĉ j,i+1,1ti+1

)
x6, j︸ ︷︷ ︸

d6,i+1

−
n

∑
j=1

ĉ j,i+1,1x7, j︸ ︷︷ ︸
d7,i+1

; (600)

which is then rewritten as

w1,i+1 = w1,i +d1,i+1,

w2,i+1 = w2,i +d2,i+1,

w3,i+1 = w3,i +d3,i+1,

γγγ2,i+1 = exp
(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2,i + ti+1d1,i+1 +d2,i+1 −d4,i+1 +d5,i+1 −d3,i+1,

γγγ1,i+1 = exp(−F2,1,1∆t)γγγ1,i +d6,i+1 −d7,i+1.

(601)

The structure of the vectors d and their construction in matrix form was already discussed in
Chapter 4. Inspecting Eq. (601), one observes that, when the modes are not classical normal,
there are 7 matrix-vector multiplications (n×ne ·n×1, where ne is the number of excited DOFs)
and 3 matrix-vector multiplications (n×n ·n×1) per iteration. The quantity ne was introduced
in Chapter 4 too as the cardinality of the set of excited DOFs, S . As ne ≤ n, the complexity
of the procedure is dominated by the 3 matrix-vector multiplications (n× n · n× 1), namely
exp
(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2,i, exp(−F2,1,1∆t)γγγ1,i and Xexp(−F2,1,1∆t)γγγ1,i, as their complexity
is O

(
n2). Hence, when the system does not have classical normal modes, the cost of the

Heaviside series method is 50% higher compared to when it does.
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The third multiplication Xexp(−F2,1,1∆t)γγγ1,i can be evaluated in a more rational way.
As X is invariant to the iteration, the vectors exp(−F2,1,1∆t)γγγ1,i could be stored and the
multiplication could, then, be carried out later as a post-processing step,

[
Xexp(−F2,1,1∆t)γγγ1,0 Xexp(−F2,1,1∆t)γγγ1,1 . . . Xexp(−F2,1,1∆t)γγγ1,nk−1

]
=

X
[
exp(−F2,1,1∆t)γγγ1,0 exp(−F2,1,1∆t)γγγ1,1 . . . exp(−F2,1,1∆t)γγγ1,nk−1

]
︸ ︷︷ ︸

E

. (602)

Multiplying X by the vector exp(−F2,1,1∆t)γγγ1,i at each iteration is essentially the naive method
to multiply the matrix X by the matrix n×nk E. However, there are other numerical methods
to do that multiplication much more efficiently and, consequently, doing it in that way, the
additional computational effort compared to Heaviside series with classical normal modes is less
than 50% (the exact figure relying on the matrix-matrix multiplication method).

In Chapter 3 and in Chapter 4, it was stated that the initial conditions of the particular
response due to HS are always homogeneous, this reasoning can be used again, for non-classical
normal modes, since the nature of the vibration modes were not prescribed for deriving the initial
conditions in Chapter 4. One might observe that the mathematical structure of the homogeneous
solution in Alg. 7 is very similar to Eq. (594), therefore, the vectors of integration constants, C1

and C2, can be incorporated directly into the initialization of the vectors γγγ1,i and γγγ2,i. Finally, it
is clear that the parameters in Eq. (601) must be initialized as follows, t0 = 0,

w1,0 = d1,0,

w2,0 = d2,0,

w3,0 = d3,0,

γγγ2,0 = d2,0 −d4,0 +d5,0 −d3,0 −C1,

γγγ1,0 = d6,0 −d7,0 −C2. (603)

With the addition of the integration constant vectors to the vectors γγγ1,0 and γγγ2,0 in Eq. (603),
the homogeneous response can be evaluated in the same steps where the particular solution is
calculated, thus, no extra operations are needed and the computational cost decreases.

Due to the property of the particular solution using HS being homogeneous at t = t0, the
evaluation of the integrating constants in Eq. (532) is even simpler,

C2 = v+
[
C̄−F2,1,1

]
u,

C1 = u−XC2. (604)
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Algorithm 6: Evaluation of the response yp at the Heaviside singularity points tk using
Eq. (594) and the update rules from Eq. (601)
Calculate K̄, C̄, F2,1,1, exp

(
−
[
C̄−F2,1,1

]
∆t
)

and exp(−F2,1,1∆t)
Calculate the vectors of initial conditions, C1 and C2, using Eq. (604)
Initialize a vector n×1 for each vector d
Initialize a vector n×1 for each vector w
Initialize a vector n×1 for γγγ1 and for γγγ2
Initialize a matrix n×ne for each of X1, X2, X3, X4 and X5
Calculate ΩΩΩ1, ΩΩΩ2, ΩΩΩ3, ΩΩΩ4, ΩΩΩ5, ΩΩΩ6 and ΩΩΩ7
Iterate through the set of excited degrees of freedom S
for j = 1,2, . . . ,ne

Calculate Xi [ j] = ΩΩΩi\e j
Calculate coefficients ĉ j,0,0 and ĉ j,0,1 as in Chapter 4
Initialize γγγ1, γγγ2, w1, w2 and w3 using Eq. (603)
Initialize the response as null and sums the initial conditions vectors, C1 and XC2

end
Iterate through the remaining points in time, {t1, t2, t3, . . . , tnk}
for i = 1,2, . . . ,nk

Calculate exp(−F2,1,1∆t)γγγ1 and exp
(
−
[
C̄−F2,1,1

]
∆t
)

γγγ2
Calculate the response at time ti, yp (ti), using Eq. (594)
Iterate through the set of excited degrees of freedom S
for j = 1,2, . . . ,ne

Calculate coefficients ĉ ji0 and ĉ ji1 as in Chapter 4
end
Update d1, d2, d3, d4, d5, d6, d7, γγγ1, γγγ2, w1, w2 and w3 using Eq. (601)

end

5.3 STABILITY OF THE SOLUTION DUE TO FIRST ORDER HS

Inspecting Eq. (526) and Eq. (594), one observes that both the homogeneous solution
and the particular solution due to first order HS share the same mathematical structure, i.e. the
multiplication of two exponential maps, exp(−At), by their respective vectors. It was proven
in Chapter 4 that, if the eigenvalues of A have positive real part, the solution is unconditionally
stable, consequently, no matter how large is the time step, ∆t, the solution is bounded. The
same applies here, for systems without classical normal modes, since the only difference is the
multiplication of the solvent of the Sylvester equation, X, in front of the term with exp(−F2,1,1t),
which is a constant matrix throughout the time domain.

It is important to stress that, as demonstrated in Chapter 4, the eigenvalues of F2,1,1 and
of
[
C̄−F2,1,1

]
are not a shortcoming of the method, either GIF nor HS, since those eigenvalues

are characteristic to the system to be solved and its modelling. For instance, as shown in Chapter
4 and in Appendix C.3, the Rayleigh damping can produce eigenvalues with negative real part,
which is, then, a form of negative damping, since it gives energy to the system instead of
dissipating it away.
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5.4 FINAL REMARKS OF THE CHAPTER

The solution to second order systems of linear ODEs with constant matrix coefficients
was tackled when such systems do not present classical normal modes. It was shown that the
solutions are consistent to the approach delivered in the previous chapters and that those solutions
are indeed particular cases of the newly presented ones. The main difference from the solutions
of this chapter to the previous ones is the accessory Sylvester equation, whose solution procedure
was discussed and it was stressed that it must be carried out only once in a preprocessing step.

Computational aspects of the solutions were discussed and it was shown that the
complexity analysis has not increased in order, which is especially important since the main
source of computational cost uses to be the iterative process along the time points. It was also
demonstrated that the multiplication of X by the exponential map can be carried out in a post-
processing step using State of the Art algorithms for multiplication between rectangular matrices,
instead of naively multiplying X in every single iteration.

Numerical experiments as the ones documented in Chapter 3 and in Chapter 4 are left for
future works. The future experiments will compare different approaches to solve the quadratic
matrix equation numerically too. Then, a picture of the total computational cost will be available.
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6 CONCLUSION

This work proposes a new family of methods to solve both one-dimensional and systems
of coupled linear ODEs of order n ≥ 2. This family is constructed upon a generalization of the
Leibniz integrating factor for first order linear differential equations. The method is a systematic
approach for order reduction that can systematically find analytical complete solutions of linear
ordinary differential equations with or without constant coefficients.

The methodology was applied to second-order ordinary differential equation, since this
type of ODE is of great importance in Applied Mathematics, Physics and Engineering. Special
care was devoted to the constant coefficient case for different types of excitations. Although,
successful examples were provided for ODEs with coefficients that are indeed functions of the
independent variable.

The solution procedure requires the particular solution of a sister nonlinear ODE, which
is a Riccati ODE in the case of second order ODEs, for one-dimensional and for systems of
coupled ODEs. It was shown that, for many important ODEs in Engineering, the particular
solution to the Riccati equation is easily found; as is the situation with constant coefficients,
when the nonlinear sister equation transforms into a simple quadratic algebraic equation.

The GIF method was proved to give the homogeneous and particular solutions
independently using double convolutions for second order ODEs. These double convolutions
were particularized for important cases of excitation functions in Engineering, such as continuous
functions - like periodic, exponential, and polynomial - and as discontinuous functions - like
Dirac’s delta and Heaviside step.

In the case of systems of coupled ODEs with constant coefficients, the homogeneous
solution and the particular solution due to discontinuous excitation functions were shown to be
made out of exponential maps. Due to the inherent computational cost of evaluating exponential
maps, an optimized way to calculate them in a discrete set of points was proposed to greatly
reduce computational effort. Thereby, important real-world problems can be analytically solved
by using the proposed approach.

The computational complexity of the proposed approach was compared to other analytical
and numerical methods. It was shown that the Laplace transform is not suitable to analytically
solve large problems due to the symbolic inverses. The complexity associated to matrix
exponentials, matrix multiplications and inverses also makes the State Variables approach
too costly when the dimensionality of the problem increases. Furthermore, a computational
experiment was carried out to compare evaluation time of the proposed approach to the State
Variables and to the Newmark-beta methods. It was shown that the proposed method reduced the
evaluation time considerably, thus, being a reliable and viable method for the analytical solution
and computational simulation of large systems.

Despite these advantages, sometimes it is not feasible to evaluate the double convolutions
to get the particular solutions or it is simply not desired to. In such cases, the GIF must be
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extended to cope with and, to this aim, the HS method was developed. The HS approach
approximates the original excitation function using a finite series of Heaviside steps multiplied
by polynomial terms, which has analytical solution using the GIF. Thus, the problem of solving
the double convolutions is substituted by a problem of approximating the original excitation, that
is done fairly easily.

It was demonstrated, both from algorithmic complexity analysis and through numeric
experiments, that the HS method kept the computational efficiency of the GIF. The HS also
presented astounding accuracy, with rates of convergence between 2 and 4 against the rates of 1
and 2 of Newmark-beta method. It was also proven that the HS is unconditionally stable if the
system is physically stable, i.e. the HS and the GIF methods do not have artificial numerical
damping and, consequently, do not hide ill-conditioned modelling.

Results of Chapter 3 and of Chapter 4 were derived using the hypothesis of classical
normal modes, which is widely used in most of vibration analysis. However, to demonstrate
that the proposed family of methods is not limited to this hypothesis, Chapter 5 was issued to
investigate the behavior and feasibility of the solutions when the system does not have classical
normal modes. It was shown that the solution procedure depends upon a Sylvester equation that
must be tackled only once. Besides, the computational cost per iteration is not increased much,
while further implementation suggestions were made.

As final conclusion, one can say that the proposed family of methods is widely applicable
to solve real-world problems, most importantly, with greater accuracy and lower computational
cost. Future works are plenty: do numerical experiments with GIF and HS when the system
does not have classical normal modes, extend the HS method to nonlinear regime, investigate
applications in modal analysis and other computationally intensive problems, such as Structural
Optimization and BEA.
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APPENDIX A – AUXILIARY FORMULATION FOR THE GENERALIZED
INTEGRATING FACTOR FOR LINEAR ODES WITH A SINGLE DOF

A.1 FAMILIES OF RICCATI EQUATIONS WITH SIMPLE PARTICULAR SOLUTIONS
USING SUBSTITUTION

Although the Riccati sister equation, Eq. (34), is a nonlinear differential equation, for
many cases finding a particular solution is straightforward. Two cases will be addressed: when
the particular solution is a constant and when the particular solution is a polynomial of the
independent variable. The focus will be on Eq. (34), nonetheless, the analysis holds true for the
equation with f2,1,1.

A.1.1 Constant particular solution

To Eq. (34) admit a constant particular solution, the following conditions must hold:

c− ṁ = a, (605)

and,

km = b, (606)

where a and b are constants. Thus, Equation (34) is simplified to

f 2
2,1,2 = a f2,1,2 −b (607)

whose particular solutions are the roots of the above quadratic algebraic equation. The positive
root is chosen,

f2,1,2 =
a+

√
a2 −4b
2

. (608)

A.1.2 Polynomial particular solution

Let f2,1,2 and the differential equation coefficients be polynomials,

f2,1,2(t) = z0 + z1t + z2t2 + · · ·+ zata, (609)

m(t) = m0 +m1t +m2t2 + · · ·+mbtb, (610)

c(t) = c0 + c1t + c2t2 + · · ·+ cdtd, (611)

k(t) = k0 + k1t + k2t2 + · · ·+ kgtg. (612)



179

Consequentely the polynomial degree, D(p(t)), of each of these coefficients and particular
solution is: D( f2,1,2) = a, D(m) = b, D(c) = d and D(k) = g. When applying these polynomials
to Eq. (34), the degrees of the polynomials to be equal between the left hand side and the right
hand side, the degrees must satisfy the following relations:

a = b−1; d ≤ b−1; g ≤ b−2, or (613)

a = d; b ≤ d −1; g ≤ 2d −b, or (614)

a =
b+g

2
; b ≤ g+2; d ≤ b+g

2
. (615)

Thus, applying these polynomials into Eq. (34) and separating the squares of each coefficient of
the solution yields

z2
0 + z2

1t2 + z2
2t4 + · · ·+ z2

at2a − z2
0 − z2

1t2 − z2
2t4 −·· ·− z2

at2a + f 2
2,1,2 =(

m0 +m1t +m2t2 + · · ·+mbtb
)(

z1 +2z2t +3z3t2 + · · ·+azata−1)+(
c0 −m1 + t (c1 +2m2)+ t2 (c2 +3m3)+ · · ·

)(
z0 + z1t + z2t2 + · · ·+ zata)−

−m0k0 − t (m0k1 +m1k0)− t2 (m0k2 +m1k1 +m2k0)−·· · . (616)

The even powers of t on the left hand side can be matched to the equivalent terms on the right
hand side,

z2
0 + z2

1t2 + z2
2t4 + · · ·+ z2

at2a − z2
0 − z2

1t2 − z2
2t4 −·· ·− z2

at2a + f 2
2,1,2 =

m2z1t2 +2m3z2t4 + · · ·+amazbta+b−1 −m2z1t2 −2m3z2t4 −·· ·−amazbta+b−1 +

m ḟ2,1,2 + z0 (c0 −m1)+ z1t2 (c1 −2m2)+ z2t4 (c2 −3m3)+ · · ·− z0 (c0 −m1)

−z1t2 (c1 −2m2)− z2t4 (c2 −3m3)−·· ·+(c− ṁ) f2,1,2 −m0d0 −

t2 (m0d2 +m1d1 +m2d0)− t4 (m0d4 +m1d3 +m2d2 +m3d1 +m4d0)−·· ·+

m0d0 + t2 (m0d2 +m1d1 +m2d0)+ t4 (m0d4 +m1d3 +m2d2 +m3d1 +m4d0)+

· · ·−md. (617)

where from, one can derive the following independent relations,

z2
0 = z0 (c0 −m1)−m0d0,

z2
1 = z1 (c1 −m2)−m0d2 −m1d1 −m2d0,

z2
2 = z2 (c2 −m3)−m0d4 −m1d3 −m2d2 −m3d1 −m4d0,

..., (618)
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which form a set of independent second order algebraic equations. When the z coefficients are
applied into Eq. (34), all the even powers in the right hand side of the equation will cancel out
with the even powers in the left hand side. Thus, the coefficients given in Eq. (618) to be solution
of the Riccati sister equation, the coefficients of m, c and k must satisfy conditions given by the
odd powers, which form a set of a equations.

A.2 FAMILIES OF RICCATI EQUATIONS WITH SIMPLE PARTICULAR SOLUTIONS
USING INTEGRATION CONDITIONS

The given Riccati equation can be divided in 4 terms,

f 2
2,1,2︸︷︷︸
φ1

= m ḟ2,1,2︸ ︷︷ ︸
φ2

+(c− ṁ) f2,1,2︸ ︷︷ ︸
φ3

− md︸︷︷︸
φ4

. (619)

Therefore, one can solve this equation piecewise. E.g.,

• φ1 = φ2 and φ3 =−φ4

f 2
2,1,2 = m ḟ2,1,2 =⇒ f2,1,2 =

−1
a+

∫ 1
m dt

, (620)

in which, a is a constant, and

(c− ṁ) f2,1,2 = md =⇒ f2,1,2 =
md

c− ṁ
. (621)

Comparing both equations, one finds a condition for d,

d =
ṁ− c

m
(
a+

∫ 1
m dt
) . (622)

• φ1 = φ4 and φ2 =−φ3

m ḟ2,1,2 +(ṁ− c) f2,1,2 = 0 =⇒ f2,1,2 =
aexp

(∫ c
m dt
)

m
, (623)

and

f 2
2,1,2 =−md =⇒ f2,1,2 =

√
−md, (624)
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hence, the condition for d is

d =
aexp

(
2
∫ c

m dt
)

m3 . (625)

The negative sign and the square of constant a were omitted, since a can be any complex
number.

• φ1 = φ3 and φ2 = φ4

f 2
2,1,2 = (c− ṁ) f2,1,2 =⇒ f2,1,2 = c− ṁ, (626)

and,

m ḟ2,1,2 = md =⇒ d = ḟ2,1,2, (627)

thus,

d = ċ− m̈. (628)

Integration conditions, Eq. (622) and Eq. (625), can be more useful, since the constant a

in them generate an infinite number of possible functions d.

A.3 CONVOLUTION OVER DIRAC’S DELTA DISTRIBUTION

The convolution of a function over the Dirac’s delta is usually defined as (KANWAL,
2011)

∫
∞

−∞

f (t)δ (t − tk)dt = f (tk) . (629)

The integration limits can be split as

∫
∞

−∞

f (t)δ (t − tk)dt =
∫ 0

−∞

f (t)δ (t − tk)dt+
∫ t

0
f (t)δ (t − tk)dt+

∫
∞

t
f (t)δ (t − tk)dt, (630)

for tk strictly positive, the integral from −∞ to 0 is 0 by definition, thus, the integral from 0 to t

can be rewritten as
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∫ t

0
f (t)δ (t − tk)dt =

∫
∞

−∞

f (t)δ (t − tk)dt −
∫

∞

t
f (t)δ (t − tk)dt. (631)

The filter or sifting property of the delta of Dirac is due to the shape of this distribution,
i.e., it is null everywhere except in its discontinuity, thus, the function that multiplies the Dirac’s
delta is constant at this point, for the discontinuity of the delta distribution is infinitely close to
the tk point. Therefore, the value of the function can be taken out of the integral and the definition
of the Dirac’s delta is used to show that

∫
∞

−∞

f (t)δ (t − tk)dt =
∫ tk+τ

tk−τ

f (t)δ (t − tk)dt = f (tk)
∫ tk+τ

tk−τ

δ (t − tk)dt = f (tk), (632)

hence, Equation (631) can be rewritten to

∫ t

0
f (t)δ (t − tk)dt = f (tk)− f (tk)

0, t ≥ tk

1, t < tk
= f (tk)H (t − tk). (633)
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APPENDIX B – AUXILIARY FORMULATION FOR THE EXTENSION OF THE
GENERALIZED INTEGRATING FACTOR FOR SYSTEMS OF LINEAR ODES WITH

n DOFS

B.1 EVALUATION OF INTEGRATION CONSTANTS FOR COUPLED SYSTEMS OF
ODES WITH CONSTANT COEFFICIENTS

The homogeneous solution with constant coefficients and when C̄ and F2,1,1 commute is
given by Eq. (223) if C̄−2F2,1,1 is non-singular. The complete solution

y = yh +yp = exp(−F2,1,1t)C2 + exp
([

F2,1,1 − C̄
]

t
)

C1 +yp, (634)

and its derivative w.r.t. time is given by

ẏ =−F2,1,1 exp(−F2,1,1t)C2 +
[
F2,1,1 − C̄

]
exp
([

F2,1,1 − C̄
]

t
)

C1 + ẏp. (635)

Considering initial conditions at a time t0 yields

y(t0) = exp(−F2,1,1t0)C2 + exp
([

F2,1,1 − C̄
]

t0
)

C1 +yp (t0) , (636)

and

ẏ(t0) =−F2,1,1 exp(−F2,1,1t0)C2 +
[
F2,1,1 − C̄

]
exp
([

F2,1,1 − C̄
]

t0
)

C1 + ẏp (t0) (637)

which can be summarized in a linear system

[
exp
([

F2,1,1 − C̄
]

t0
)

exp(−F2,1,1t0)[
F2,1,1 − C̄

]
exp
([

F2,1,1 − C̄
]

t0
)

−F2,1,1 exp(−F2,1,1t0)

]{
C1

C2

}
=

{
u0 −yp (t0)

v0 − ẏp (t0)

}
.(638)

Hence, C1 and C2 can be found by solving the above linear system with standard
techniques, much alike the evaluation of C1 and C2 for a single degree of freedom problem.

The most common choice for t0 is 0 such that Eq. (638) reduces to

[
I I[

F2,1,1 − C̄
]

−F2,1,1

]{
C1

C2

}
=

{
u0 −yp (0)
v0 − ẏp (0)

}
. (639)

Pivoting, it further simplifies to

[
I I
0 C̄−2F2,1,1

]{
C1

C2

}
=

{
u0 −yp (0)

v0 − ẏp (0)−
[
F2,1,1 − C̄

]
(u0 −yp (0))

}
. (640)
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thus, it follows that

C2 =
[
C̄−2F2,1,1

]−1 (v0 − ẏp (0)−
[
F2,1,1 − C̄

]
(u0 −yp (0))

)
, (641)

and

C1 = u0 −yp (0)−C2. (642)

A very important particularization for previous equations is when evaluating the constants
C1 and C2 for excitations described by Dirac’s deltas, Heavisides and Heaviside series. As
discussed in Chapter 2, yp(t) and ẏ(t)p are zero for t ≤ tH , where tH is the first time with non
null excitation. Therefore, if t0 ≤ tH , both yp(t0) and ẏp(t0) are 0 in Eq. (638), Eq. (641) and in
Eq. (642) and there is no need to evaluate the derivative of the particular response with respect
to time.

B.2 COMMUTATIVITY OF POWERS OF TWO MATRICES

Let A and B be two square matrices n×n that commute. For positive integer powers a

and b, the following property holds

AaBb = BbAa. (643)

Proof.

AaBb = AAA . . .AAA︸ ︷︷ ︸
a times

BBB . . .BBB︸ ︷︷ ︸
b times

= AAA . . .AABABB . . .BBB

= AAA . . .ABABAB . . .BBB

= AAA . . .BABABA . . .BBB

= AAA . . .ABABAB . . .BBB
...

BBB . . .BBB︸ ︷︷ ︸
b times

AAA . . .AAA︸ ︷︷ ︸
a times

= BbAa.

B.3 COMMUTATIVITY OF INVERSE OF MATRIX

Let A and B be two n×n square matrices that commute and B be invertible. Then

AB−1 = B−1A. (644)
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Proof.

AB−1 = D,

A = DB.

BA = BDB = AB,

BD = A,

D = B−1A,

=⇒ AB−1 = B−1A.

B.4 EXPONENTIAL MAP

An exponential map is defined as (GALLIER, 2011),

exp(At) = I+At +
1
2

A2t2 + ... +
1
n!

Antn =
∞

∑
j=0

1
j!

A jt j, (645)

with time-derivative given by

d
dt

[exp(At)] = A+A2t + ... +
1

(n−1)!
Antn−1 =

∞

∑
j=0

1
j!

A j+1t j. (646)

By direct comparison of Eq. (645) to Eq. (646), one immediately gets

d
dt

[exp(At)] = Aexp(At) = exp(At)A. (647)

B.5 EFFICIENT EVALUATION OF exp(At)

One critical component of the proposed formulation is the efficient evaluation of exp(At)

for various values of t. According to (APRAHAMIAN; HIGHAM, 2014), the following relation
holds,

exp(A)α = exp(αA) ∀ α ∈ Z, (648)

for general matrix A
Assuming that the time span t ∈ [ti, t f ] is discretized in nt intervals ∆t, it is possible to

write t = k∆t such that

E (t) = exp(At) = exp(k∆tA) = exp(∆tA)k , (649)
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where k ∈ Z. Hence, the exponential map, E (t), in a discrete set of time can be evaluated through
the following recursion

t1 : E (t1) = exp(∆tA)

t2 : E (t2) = E (t1)exp(∆tA)

t3 : E (t3) = E (t2)exp(∆tA)
...

tk : E (tk) = E (tk−1)exp(∆tA) , (650)

where matrix exp(∆tA) has to evaluated just once.

B.6 COMMUTATIVITY OF EXPONENTIAL MAP AND MATRIX

Let A and B be two n×n square matrices. If A and B commute, then

exp(A)B = Bexp(A) . (651)

Proof. By definition

exp(A)B =

[
I+At +

1
2

A2t2 + ... +
1
n!

Antn
]

B

= IB+ABt +
1
2

A2Bt2 + ... +
1
n!

AnBtn

(652)

such that

exp(A)B = BI+BAt +
1
2

BA2t2 + ... +
1
n!

BAntn = Bexp(A) .
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APPENDIX C – AUXILIARY FORMULATION FOR THE HEAVISIDE SERIES
METHOD

C.1 CONDITIONS FOR THE SINGULARITY OF C̄−2F2,1,1

Using Eq. (239), the matrix C̄−2F2,1,1 is simplified to

C̄−2F2,1,1 = C̄− C̄−
√

C̄2 −4K̄ =−
√

C̄2 −4K̄. (653)

Using proportional damping and Eq. (680), one yields

C̄−2F2,1,1 =−
√

α2I+2αβ K̄+β 2K̄−4K̄ =−
√

α2I+(2αβ −4)K̄+β 2K̄ (654)

which, by recollecting Eq. (681), expands to

C̄−2F2,1,1 =−
√

α2I+(2αβ −4)ΦΦΦΛΛΛΦΦΦ
−1 +β 2ΦΦΦΛΛΛ

2
ΦΦΦ

−1. (655)

As ΦΦΦIΦΦΦ
−1 = ΦΦΦΦΦΦ

−1 = I by definition, Equation (655) is simplified to

C̄−2F2,1,1 =−
√

ΦΦΦ

(
α2I+(2αβ −4)ΛΛΛ+β 2ΛΛΛ

2
)

ΦΦΦ
−1 (656)

according to (HIGHAM, 2008), f
(
XAX−1)= X f (A)X−1, thus,

C̄−2F2,1,1 =−ΦΦΦ

√
α2I+(2αβ −4)ΛΛΛ+β 2ΛΛΛ

2
ΦΦΦ

−1. (657)

As the matrix of eigenvalues, ΛΛΛ, is diagonal, Equation (657) can be further simplified
using the property for diagonal matrix f (diag(Ak)) = diag( f (Ak)), (HIGHAM, 2008),

C̄−2F2,1,1 =−ΦΦΦdiag
(√

α2 +(2αβ −4)λk +β 2λ 2
k

)
ΦΦΦ

−1, (658)

where λk is each one of the eigenvalues of K̄. One realizes that the eigenvalues of the matrix of
the RHS of Eq. (658) are the values in the diagonal. As the LHS and RHS are similar matrices
to each other, they share the same eigenvalues, hence, C̄−2F2,1,1 is singular if and only if the
square root is null for some λk, i.e.,

C̄−2F2,1,1 singular ⇐⇒ α
2 +(2αβ −4)λk +β

2
λ

2
k = 0; k ⊆ {1,2, . . . ,n}. (659)

Since Equation (659) is a quadratic equation, it admits at most two roots, given by
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λ0 =
2−αβ ±2

√
1−αβ

β 2 . (660)

As the eigenvalues are the natural frequencies squared in the context of FEM analysis, λk = ω2
k ,

it is not physical to have complex natural frequencies. A first and straightforward result is

αβ > 1 =⇒ C̄−2F2,1,1 non-singular. (661)

Nevertheless, one might conclude that, if proportional damping is used, at most two
eigenvalues will be null if two natural frequencies match exactly with the square root of these
two possible values of λ0. Thus, another way of looking at Eq. (659) is substituting Eq. (692)
into it,

α
2 +(2αβ −4)λk +β

2
λ

2
k = (α +βλk)

2 −4λk =
(
2ζiωi +

(
λk −ω

2
i
)

β
)2 −4λk

=
(
λk −ω

2
i
)2

β
2 +4ζiωi

(
λk −ω

2
i
)

β +4
(
ζ

2
i ω

2
i −λk

)
, (662)

it immediately follows that, if k = i, Equation (662) will be zero if ζi = 1, which characterizes
critical damping. It is straightforward to prove that the same is true if k = j and ζ j = 1, since α

can be constructed in terms of the j-th natural frequency by α = 2ζ jω j −ω2
j β .

For nontrivial conditions to which Eq. (662) is null, one might find its roots as

β = 2
ζiωi ±ωk

ω2
i −ω2

k
, (663)

that is almost equal to Eq. (691). Therefore, one can observe that, if C̄−2F2,1,1 is indeed singular,
a minor change in ζi or ζ j is enough to avoid the singularity and, consequently, the expensive
usage of Jordan canonical form.

C.2 INITIAL CONDITIONS AND THE HEAVISIDE SERIES

Let a system of second order coupled ODEs have a function f̄(t) multiplied by a Heaviside
step as excitation function,

Iÿ(t)+ C̄ẏ(t)+ K̄y(t) = f̄(t)H (t − tH) , (664)

which is the same as solving two systems of ODEs,

Iÿ1(t)+ C̄ẏ1(t)+ K̄y1(t) = 0, if t ≤ tH

Iÿ2(t)+ C̄ẏ2(t)+ K̄y2(t) = f̄ (t). otherwise
, (665)
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It is straightforward that this holds true even when tH → 0. Therefore, all solutions
given by Eq. (447), i.e. using HS as excitation function, have yp(t) = 0 and ẏp(t) = 0 as fixed
initial conditions. Thus, the imposition of non-homogeneous initial conditions, y(t0) = u0 and
ẏ(t0) = v0, at t0 ≤ tH gets even simpler, through the following system of linear equations if
C̄−2F2,1,1 is non-singular (Appendix C.1),

[
exp
([

F2,1,1 − C̄
]

t0
)

exp(−F2,1,1t0)[
F2,1,1 − C̄

]
exp
([

F2,1,1 − C̄
]

t0
)

−F2,1,1 exp(−F2,1,1t0)

]{
C1

C2

}
=

{
u0

v0

}
. (666)

which, particularized for t0 = 0, simplifies to

[
I I[

F2,1,1 − C̄
]

−F2,1,1

]{
C1

C2

}
=

{
u0

v0

}
. (667)

Pivoting, it further simplifies to

[
I I
0 C̄−2F2,1,1

]{
C1

C2

}
=

{
u0

v0 −
[
F2,1,1 − C̄

]
u0

}
. (668)

whose solution is

C2 =
[
C̄−2F2,1,1

]−1 (v0 − ẏp (0)−
[
F2,1,1 − C̄

]
(u0 −yp (0))

)
, (669)

C1 = u0 −yp (0)−C2. (670)

Thus, the constants C1 and C2 can be evaluated without any knowledge about the
derivative of the particular response. If F∗

2,1,1 =
[
C̄−F2,1,1

]
, where ∗ is the complex-conjugate

operator, however, the relation between C1 and C2 is even simpler. To derive it, let C2 be
substituted into C1 and the term

[
C̄−2F2,1,1

]−1 be factorized,

C1 =
[
C̄−2F2,1,1

]−1 [[C̄−2F2,1,1
]
(u0 −yp (0))−v0 + ẏp(0)

−
[
C̄−F2,1,1

]
(u0 −yp(0))

]
. (671)

If F∗
2,1,1 =

[
C̄−F2,1,1

]
, then

[
C̄−2F2,1,1

]
= F∗

2,1,1 −F2,1,1 and, using the properties

C1 =
[
F∗

2,1,1 −F2,1,1
]−1 [[F∗

2,1,1 −F2,1,1
]
(u0 −yp (0))−v0 + ẏp(0)−F∗

2,1,1 (u0 −yp(0))
]
,

(672)

which simplifies to
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C1 =
[
F∗

2,1,1 −F2,1,1
]−1

[−v0 + ẏp(0)−F2,1,1 (u0 −yp (0)))] . (673)

Applying the complex-conjugate over Eq. (673), one gets

C∗
1 =

[
F∗

2,1,1 −F2,1,1
]−1 [v0 − ẏp(0)+F∗

2,1,1 (u0 −yp (0)))
]
= C2, (674)

hence, if F∗
2,1,1 =

[
C̄−F2,1,1

]
, one can calculate C2 using Eq. (669) and applying the conjugacy

relation from Eq. (674) to evaluate C1. From the conjugacy relation between exponential maps
explored in Chapter 3, the homogeneous response, Eq. (223), is

F∗
2,1,1 =

[
C̄−F2,1,1

]
=⇒ yh (t) = exp(−F2,1,1t)C2 + exp(−F2,1,1t)∗C1, (675)

which, by using Eq. (674), simplifies to

F∗
2,1,1 =

[
C̄−F2,1,1

]
=⇒ yh (t) = exp(−F2,1,1t)C2 +(exp(−F2,1,1t)C2)

∗

= 2ℜ(exp(−F2,1,1t)C2) . (676)

C.2.1 Efficient computational evaluation of the homogeneous response

As discussed in Chapter 3 and in Appendix B.5, the exponential maps of the homogeneous
responses can be evaluated in time points equally spaced from the point t0 = 0, such that, for
t = ti = i∆t,

exp(Ati)b = exp(∆tA)i b. (677)

Using this result, the evaluation of the homogeneous response can be summarized in Alg. 7.



191

Algorithm 7: Evaluation of the homogeneous response, yh, at equally spaced time
points tk
Calculate K̄, C̄, F2,1,1, exp(−F2,1,1∆t) and C2
if
[
C̄−F2,1,1

]
= F∗

2,1,1 then
exp
(
−
[
C̄−F2,1,1

]
∆t
)
= exp(−F2,1,1∆t)∗

Evaluate the response at t0
yh (t0) = 2ℜ(C2)
for i=1,2,. . . ,nk

Update the vector C2
C2 = exp(−F2,1,1∆t)C2
Calculate the homogeneous response
yh (ti) = 2ℜ(C2)

end
else

Calculate exp
(
−
[
C̄−F2,1,1

]
∆t
)

and C1 using Eq. (669)
Evaluate the homogeneous response at t0
yh (t0) = C1 +C2
for i=1,2,. . . ,nk

Update the vectors C1 and C2
C1 = exp

(
−
[
C̄−F2,1,1

]
∆t
)

C1
C2 = exp(−F2,1,1∆t)C2
Calculate the homogeneous response
yh (ti) = C1 +C2

end
end

C.3 EIGENVALUES OF F2,1,1 AND OF C̄−F2,1,1

The objective of this section is to prove to which conditions the eigenvalues of F2,1,2 and
of C̄−F2,1,1 have positive real part. This is a necessary condition to the stability of the solution,
since eigenvalues with negative real parts imply in negative damping.

If C and K commute,

F2,1,1 =
1
2

(
C̄+

√
C̄2 −4K̄

)
, (678)

hence,

C̄−F2,1,1 =
1
2

(
C̄−

√
C̄2 −4K̄

)
. (679)

Assuming proportional damping, C̄ can be rewritten to

C̄ = M−1 (αM+βK) = αI+βM−1K = αI+β K̄. (680)
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Matrix K̄ has the same eigenvalues of the generalized eigenvalue problem defined by
(K−λM)φφφ = 0, where λ = ω2. Thus, the eigenvalues λ are real and positive (ZIENKIEWICZ;
TAYLOR; ZHU, 2013). Nevertheless, the matrix K̄ can be written in its diagonal form,

K̄ = ΦΦΦΛΛΛΦΦΦ
−1, (681)

where ΦΦΦ is the matrix of eigenvectors and ΛΛΛ is the diagonal matrix of eigenvalues.
Substituting Eq. (681) into Eq. (678), it yields

F2,1,2 =
1
2

(
αΦΦΦΦΦΦ

−1 +βΦΦΦΛΛΛΦΦΦ
−1 +

√
α2ΦΦΦΦΦΦ

−1 +(2αβ −4)ΦΦΦΛΛΛΦΦΦ
−1 +β 2ΦΦΦΛΛΛ

2
ΦΦΦ

−1
)
, (682)

which is further simplified to

F2,1,2 =
1
2

ΦΦΦ

(
αI+βΛΛΛ+

√
α2I+(2αβ −4)ΛΛΛ+β 2ΛΛΛ

2
)

ΦΦΦ
−1. (683)

From Eq. (683), one notices that F2,1,2 and the matrix between ΦΦΦ and ΦΦΦ
−1 are similar, thus,

they share the same eigenvalues. As the eigenvalues λ in the diagonal of ΛΛΛ are equal to ω2,
ω2

1 < ω2
2 < · · ·< ω2

n , Equation (683) can be simplified and the eigenvalues of F2,1,2 are

γk =
1
2

α +βω
2
k︸ ︷︷ ︸

R

+
√

α
2 +(2αβ −4)ω

2
k +β

2
ω

4
k︸ ︷︷ ︸

∆

 , k ∈ {1,2, . . . ,n}. (684)

The same procedure can be done for the eigenvalues of C̄−F2,1,2, κ , with the only difference
being the negative sign before the square root,

κk =
1
2

α +βω
2
k︸ ︷︷ ︸

R

−
√

α
2 +(2αβ −4)ω

2
k +β

2
ω

4
k︸ ︷︷ ︸

∆

 , k ∈ {1,2, . . . ,n}. (685)

As ∆ is always a real quantity, its square root can be either fully real either fully complex.
Thus, by inspecting Eq. (684) and Eq. (685), the R term cannot be negative, otherwise the
eigenvalues κ would not have positive real part. Nonetheless, if R is positive, again because of κ ,
the following condition must hold true,

α
2+(2αβ −4)ω

2
k +β

2
ω

4
k <

(
α +βω

2
k
)2

= α
2+2αβω

2
k +β

2
ω

4
k =⇒ −4ω

2
k < 0, (686)

which is indeed true, since ωk is a real quantity. Another interesting fact is that, from Eq. (686),
for R2 = ∆ and

[
C̄−F2,1,1

]
be a singular matrix, ωk would have to be null, which is not physical,
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thus,
[
C̄−F2,1,1

]
is always non-singular for a physically acceptable system. Hence, for the

eigenvalues to have positive real part,

α +βω
2
k > 0 =⇒ ℜ(γk)> 0,ℜ(κk)> 0;k ∈ {1,2, . . . ,n}. (687)

Condition from Eq. (687) can be viewed as a polynomial function of ωk,

p(ωk) = βω
2
k +α, (688)

that has one positive root and another negative root or both roots equal to zero. However, as in
physical problems structural frequencies ω are always bigger than zero, just the positive root is
of interest,

ωk =

√
−α

β
. (689)

According to (RAO, 2017), the proportional coefficients α and β are determined by the
linear system of equations defined by

α +ω
2
i β = 2ζiωi

α +ω
2
j β = 2ζ jω j, (690)

where ω1 ≤ ω j < ωi ≤ ωn. Solution is

β = 2
ζiωi −ζ jω j

ω2
i −ω2

j
, (691)

α = 2ζiωi −ω
2
i β = 2ζiωi −2ω

2
i

ζiωi −ζ jω j

ω2
i −ω2

j
; (692)

or for particular cases,

α = 0 =⇒ β = 2ζi
ωi
,

β = 0 =⇒ α = 2ζiωi;
(693)

it is trivially observed that, for this particular cases, Equation (687) holds true, thus,

α = 0 =⇒ β = 2ζi
ωi
,

β = 0 =⇒ α = 2ζiωi;
=⇒ ℜ(γ)> 0,ℜ(κ)> 0. (694)
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The extreme point of p(ωk) (either maximum or minimum) is unique and is located at 0,
which is not a physical natural frequency. Thus, for the eigenvalues γ and κ to have real positive
part, p(ωk)> 0 in the interval [ω1,ωn]. With some reasoning about a quadratic curve, one must
realize that, if α ̸= 0 and β ̸= 0, there are three possible cases,

1. The curve has upward concavity and cross the vertical axis above zero, i.e. α > 0 and
β > 0;

2. The curve has upward concavity and crosses the vertical axis below 0, thus, the curve must
cross the horizontal axis before the first natural frequency, i.e. α < 0,β > 0 =⇒

√
−α

β
<

ω1;

3. The curve has downward concavity and crosses the vertical axis above 0, thus the curve
must cross the horizontal axis after the last natural frequency, i.e. α > 0,β < 0 =⇒√

−α

β
> ωn;

summarizing and taking out the square root,


I) α > 0,β > 0,

II) α < 0,β > 0 =⇒ −α

β
< ω2

1 ,

III) α > 0,β < 0 =⇒ −α

β
> ω2

n .

(695)

The quotient of the damping coefficients can be expanded using Eq. (691) and (692),

−α

β
=

ω2
i β −2ζiωi

β
= ω

2
i −

2ζiωi

β
= ω

2
i −ζiωi

ω2
i −ω2

j

ζiωi −ζ jω j
. (696)

C.3.1 Case I, α > 0 and β > 0

The term ω2
i −ω2

j is always positive since ωi > ω j, therefore, for β to be positive,

ζiωi > ζ jω j. (697)

For α , on the other hand,

ζiωi >
ω2

i

ω2
i −ω2

j

(
ζiωi −ζ jω j

)
, (698)

rearranging the terms,

ζiωi

(
1− ω2

i

ω2
i −ω2

j

)
= ζiωi

(
ω2

i −ω2
j −ω2

i

ω2
i −ω2

j

)
>− ω2

i

ω2
i −ω2

j
ζ jω j. (699)
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As ω2
i −ω2

j is positive,

−ζiωiω
2
j >−ζ jω jω

2
i ; (700)

finally,

ζi <
ωi

ω j
ζ j; (701)

that, with Eq. (697), results in

I)
ω j

ωi
ζ j < ζi <

ωi

ω j
ζ j. (702)

Trivially, if ζi = ζ j, condition I is true and the eigenvalues have all positive real parts.

C.3.2 Case II, α < 0, β > 0

The condition for positive β was already stated in Eq. (697) and is simplified to

ζi >
ω j

ωi
ζ j. (703)

However, for negative α ,

ζiωi <
ω2

i

ω2
i −ω2

j

(
ζiωi −ζ jω j

)
; (704)

making the exact same steps from Eq. (699) to Eq. (701), the result is

ζi >
ωi

ω j
ζ j. (705)

Hence, if Equation (705) is true, so is Equation (703).
The second condition is

−α

β
= ω

2
i −ζiωi

ω2
i −ω2

j

ζiωi −ζ jω j
< ω

2
1 . (706)

As β is positive,

(
ω

2
i −ω

2
1
)(

ζiωi −ζ jω j
)
< ζiωi

(
ω

2
i −ω

2
j
)

; (707)
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separating by ζi,

ζiωi
(
ω

2
1 −ω

2
j
)
>−ζ jω j

(
ω

2
i −ω

2
1
)
. (708)

If ω j = ω1, both conditions in Eq. (705) and in Eq. (708) are true. Otherwise, ω j > ω1 =⇒
ω2

1 −ω2
j < 0, thus,

ζiωi
(
ω

2
j −ω

2
1
)
< ζ jω j

(
ω

2
i −ω

2
1
)

; (709)

and, finally,

ζi < ζ j
ω j
(
ω2

i −ω2
1
)

ωi

(
ω2

j −ω2
1

) . (710)

For Equation (705) and Equation (710) to make sense together, the following statement
must hold,

ω j
(
ω2

i −ω2
1
)

ωi

(
ω2

j −ω2
1

) >
ωi

ω j
, (711)

which is rearranged to

ω
2
j
(
ω

2
i −ω

2
1
)
> ω

2
i
(
ω

2
j −ω

2
1
)
, (712)

thus,

ω
2
j ω

2
1 < ω

2
i ω

2
1 , (713)

that is true and, consequently,

II)

ω j = ω1 =⇒ ζi >
ω j
ωi

ζ j,

ω j ̸= ω1 =⇒ ζ j
ωi
ω j

< ζi < ζ j
ω j(ω2

i −ω2
1)

ωi(ω2
j −ω2

1)

. (714)

C.3.3 Case III, α > 0, β < 0

It is straigthforward to see from Eq. (692) that, if β is negative, then, α is positive, so

ζi <
ω j

ωi
ζ j =⇒ α > 0. (715)
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Thereby, the remaining condition is

−α

β
= ω

2
i −ζiωi

ω2
i −ω2

j

ζiωi −ζ jω j
> ω

2
n , (716)

that is rearranged to

ω
2
i −ω

2
n > ζiωi

ω2
i −ω2

j

ζiωi −ζ jω j
, (717)

and, once more, to

ω
2
n −ω

2
i < ζiωi

ω2
i −ω2

j

ζ jω j −ζiωi
. (718)

Now, both sides of the inequality can be multiplied by the denominator,

(
ω

2
n −ω

2
i
)(

ζ jω j −ζiωi
)
< ζiωi

(
ω

2
i −ω

2
j
)

; (719)

again, trivially, if ωn = ωi, both conditions are true if only Eq. (715) is true. Otherwise,
rearranging,

ζiωi
(
ω

2
n −ω

2
j
)
>
(
ω

2
n −ω

2
i
)

ζ jω j, (720)

and, finally,

ζi >
ω j
(
ω2

n −ω2
i
)

ωi

(
ω2

n −ω2
j

)ζ j. (721)

As ωi > ω j,

ω
2
n −ω

2
i < ω

2
n −ω

2
j =⇒ ω2

n −ω2
i

ω2
n −ω2

j
< 1, (722)

so Equation (715) and Equation (721) work together and, henceforth,

III)

ωn = ωi =⇒ ζi <
ω j
ωi

ζ j,

ωn ̸= ωi =⇒ ζ j
ω j(ω2

n−ω2
i )

ωi(ω2
n−ω2

j )
< ζi < ζ j

ω j
ωi

. (723)
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C.3.4 ω j = ω1 and ωi = ωn

In C.3.2 and in C.3.3, conditions regarding when ω j = ω1 and ωi = ωn appeared
separately and independently, but the question of what happens when both equalities are true
simultaneously remains. To answer this question, let the solutions of α and β , Eq. (692) and Eq.
(691), respectively, be rewritten in terms of ω1 and ωn,

β = 2
ζiωn −ζ jω1

ω2
n −ω2

1
, (724)

α = 2ω1ωn
ζ jωn −ζiω1

ω2
n −ω2

1
, (725)

and, finally the quotient −α

β
, Eq. (696),

−α

β
= ω1ωn

ζiω1 −ζ jωn

ζiωn −ζ jω1
. (726)

With these equations set, the three previous cases can be addresses separately again.

C.3.4.1 ω j = ω1 and ωi = ωn, case I

From Eq. (724), one observes that

ζiωn > ζ jω1 =⇒ ζi > ζ j
ω1

ωn
=⇒ β > 0, (727)

and, from Eq. (725),

ζiω1 < ζ jωn =⇒ ζi < ζ j
ωn

ω1
=⇒ α > 0, (728)

consequently,

ζ j
ω1

ωn
< ζi < ζ j

ωn

ω1
=⇒ α,β > 0. (729)

C.3.4.2 ω j = ω1 and ωi = ωn, case II

From Eq. (725), follows that

ζiω1 > ζ jωn =⇒ ζi > ζ j
ωn

ω1
=⇒ α < 0, (730)



199

and adding to Eq. (727),

ζi > ζ j
ωn

ω1
=⇒ α < 0,β > 0. (731)

Going back to the quotient condition in Eq. (695) and using Eq. (726), one observes that

−α

β
= ω1ωn

ζiω1 −ζ jωn

ζiωn −ζ jω1
< ω

2
1 . (732)

The inequality can be multiplied in both sides by ζiωn−ζ jω1
ω1

without any prejudice of sign, since
β is positive, which means that the ζiωn −ζ jω1 > 0,

ωn
(
ζiω1 −ζ jωn

)
< ω1

(
ζiωn −ζ jω1

)
, (733)

which can be simplified to

−ζ jω
2
n <−ζ jω

2
1 , (734)

and, by multiplying both sides by −1,

ζ jω
2
n > ζ jω

2
1 , (735)

that is true since ωn > ω1.

C.3.4.3 ω j = ω1 and ωi = ωn, case III

From Eq. (724), follows that

ζiωn < ζ jω1 =⇒ ζi < ζ j
ω1

ωn
=⇒ β < 0, (736)

and adding to Eq. (728),

ζi < ζ j
ω1

ωn
=⇒ α > 0,β < 0. (737)

Going back to the quotient condition in Eq. (695) and using Eq. (726), one observes that

−α

β
= ω1ωn

ζiω1 −ζ jωn

ζiωn −ζ jω1
> ω

2
n . (738)
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The inequality can be multiplied in both sides by ζiωn−ζ jω1
ωn

and have its comparison operator
flipped, since β is negative, which means that the ζiωn −ζ jω1 < 0,

ω1
(
ζiω1 −ζ jωn

)
< ωn

(
ζiωn −ζ jω1

)
, (739)

which can be simplified to

ζ jω
2
1 < ζ jω

2
n , (740)

which is true since ω1 < ωn.

C.3.5 Final remarks

One can verify in Eq. (691) and in Eq. (692), respectively, that

ζi = ζ j
ω j

ωi
=⇒ β = 0 =⇒ α > 0, (741)

ζi = ζ j
ωi

ω j
=⇒ α = 0 =⇒ β > 0, (742)

which, according to Eq. (694), implies that

ζi = ζ j
ω j
ωi

=⇒ β = 0 =⇒ α > 0

ζi = ζ j
ωi
ω j

=⇒ α = 0 =⇒ β > 0
=⇒ ℜ(γ) ,ℜ(κ)> 0. (743)

Adding this information to the results found in Eq. (702), Eq. (714) and in Eq. (723), it yields
that



i. ωi ̸= ωn,ω j ̸= ω1 =⇒ ζ j
ω j(ω2

n−ω2
i )

ωi(ω2
n−ω2

j )
< ζi < ζ j

ω j(ω2
i −ω2

1)
ωi(ω2

j −ω2
1)
,

ii. ωi = ωn,ω j ̸= ω1 =⇒ ζi <
ω j
ωi

ζ j,

iii. ω j = ω1,ωi ̸= ωn =⇒ ζi >
ω j
ωi

ζ j,

iv. ω j = ω1,ωi = ωn =⇒ ℜ(γ) ,ℜ(κ)> 0

=⇒ ℜ(γ) ,ℜ(κ)> 0. (744)

To prove that the first interval is consistent,

(
ω2

i −ω2
1
)(

ω2
j −ω2

1

) >

(
ω2

n −ω2
i
)(

ω2
n −ω2

j

) ; (745)

as both denominators are positive by construction,
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(
ω

2
i −ω

2
1
)(

ω
2
n −ω

2
j
)
>
(
ω

2
n −ω

2
i
)(

ω
2
j −ω

2
1
)
, (746)

and expanding both sides,

ω
2
i ω

2
n −ω

2
i ω

2
j −ω

2
1 ω

2
n +ω

2
1 ω

2
j > ω

2
n ω

2
j −ω

2
n ω

2
1 −ω

2
i ω

2
j +ω

2
i ω

2
1 . (747)

Which, by rearranging the terms, becomes

ω
2
n
(
ω

2
i −ω

2
j
)
> ω

2
1
(
ω

2
i −ω

2
j
)
, (748)

that is a true statement.
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APPENDIX D – AUXILIARY FORMULATION FOR THE EXTENSION OF THE GIF
AND THE HS METHODS FOR NON-CLASSICAL NORMAL MODES

D.1 SYLVESTER EQUATION WHEN THE MODES ARE CLASSICAL NORMAL

Let Equation (523) be rearranged and the definition for X from Eq. (522) be substituted
into it,

[
C̄−F2,1,1

]
X− exp

(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt

exp(F2,1,1t)F2,1,1 = I. (749)

It was shown in Chapter 3 that if the system of equations given by Eq. (1) has classical normal
modes, the quadratic matrix equation from Eq. (514) has a solution of the form of Eq. (515) and
that F2,1,1 and C̄ commute. It was also proven in Appendix B.6 that if two matrices commute, so
does one of these matrices with the exponential of the other. For this reason, it is clear that

F2,1,1C̄ = C̄F2,1,1 =⇒
[
C̄−F2,1,1

]
X−F2,1,1 exp

(
−
[
C̄−F2,1,1

]
t
)∫

exp
([

C̄−F2,1,1
]

t
)

exp(−F2,1,1t)dt exp(F2,1,1t) = I. (750)

Henceforth,

F2,1,1C̄ = C̄F2,1,1 =⇒
[
C̄−F2,1,1

]
X−F2,1,1X =

[
C̄−2F2,1,1

]
X = I, (751)

which implies that

F2,1,1C̄ = C̄F2,1,1 =⇒ X =
[
C̄−2F2,1,1

]−1
. (752)

Equation (752) means that the original Sylvester equation, Eq. (523), has the above
unique solution when the the system presents classical normal modes. However, for this solution
to exist, the inverse of

[
C̄−2F2,1,1

]
must also exist, and this matrix has to be non-singular.

Conditions for this matrix to be singular were already discussed in Chapter 4 and it was
observed that these conditions relate to the system being critically damped. As it was said
prior, for a Sylvester equation to have a unique solution, the coefficients cannot share eigenvalues
(BARTELS; STEWART, 1972), thus, it is hypothesized that, when the system does not have
classical normal modes and it is critically damped,

[
C̄−F2,1,1

]
and F2,1,1 will share one or more

eigenvalues. The motivation for this hypothesis is in Eq. (752), since the matrix
[
C̄−2F2,1,1

]
is

singular when
[
C̄−F2,1,1

]
and F2,1,1 share eigenvalues.
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