UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC CENTRO DE CIÊNCIA E TECNOLOGIA – CCT PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

ANDRES AVELINO BARRAL JUNIOR

SIMULAÇÃO NUMÉRICA DE CARGA DE LÍQUIDO EM POÇOS PRODUTORES

JOINVILLE

ANDRES AVELINO BARRAL JUNIOR

SIMULAÇÃO NUMÉRICA DE CARGA DE LÍQUIDO EM POÇOS PRODUTORES

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mecânica do Centro de Ciências Tecnológicas da Universidade do Estado de Santa Catarina como requisito parcial para obtenção do Título de Mestre em Engenharia Mecânica.

Orientador: Prof. Dr. Marcus Vinícus Canhoto Alves

Co-orientador: Prof. Dr. Antonio Marinho Barbosa Neto

JOINVILLE

Ficha catalográfica elaborada pelo programa de geração automática da Biblioteca Setorial do CCT/UDESC, com os dados fornecidos pelo(a) autor(a)

Avelino Barral Junior, Andres SIMULAÇÃO NUMÉRICA DE CARGA DE LÍQUIDO EM POÇOS PRODUTORES / Andres Avelino Barral Junior. -- 2022. 137 p.

Orientador: Marcus Vinícus Canhoto Alves Coorientador: Antonio Marinho Barbosa Neto Dissertação (mestrado) -- Universidade do Estado de Santa Catarina, Centro de Ciências Tecnológicas, Programa de Pós-Graduação em Engenharia Mecânica, Joinville, 2022.

Propriedades de fluido.
 Acoplamento poço-reservatório.
 Correlações de escoamento.
 Vinicus Canhoto Alves, Marcus.
 Marinho Barbosa Neto, Antonio.
 III. Universidade do Estado de Santa Catarina, Centro de Ciências Tecnológicas, Programa de Pós-Graduação em Engenharia Mecânica.
 IV. Titulo.

ANDRES AVELINO BARRAL JUNIOR

SIMULAÇÃO NUMÉRICA DE CARGA DE LÍQUIDO EM POÇOS PRODUTORES

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mecânica do Centro de Ciências Tecnológicas da Universidade do Estado de Santa Catarina como requisito parcial para obtenção do Título de Mestre em Engenharia Mecânica.

Orientador: Prof. Dr. Marcus Vinícus Canhoto Alves

Co-orientador: Prof. Dr. Antonio Marinho Barbosa Neto

BANCA EXAMINADORA

Prof. Dr. Marcus Vinícus Canhoto Alves
CCT/UDESC

Membros:

Prof. Dr. Roberto Wolf Francisco Jr. CCT/UDESC

Dr. Luis Fernando Lamas de Oliveira
PETEX – Petroloeum Experts/ Escócia

Joinville, 05 de Julho de 2022.

AGRADECIMENTOS

Agradecimentos especiais para meus pais, e todas as pessoas que me deram suporte para que este trabalho fosse possível.

Uma imensa gratidão ao meu orientador, Doutor Marcus Vinícus Canhoto Alves, pelos seus conselhos, empatia nos momentos difíceis, e orientações para que este trabalho fosse possível.

Agradecimentos a CAPES e a FAPESC, pelo suporte financeiro durante o mestrado.

RESUMO

No âmbito da indústria de petróleo, entender e prever o comportamento físico e químico do óleo e gás é de fundamental importância quando nos referimos à eficácia da exploração e produção em um campo de petróleo. As condições do fluido mudam constantemente tanto na composição do hidrocarboneto produzido quanto nas condições do fluxo de escoamento, assim, a utilização do modelo black-oil puro não fornece ao simulador a precisão adequada para se obter os resultados mais precisos possíveis. Tendo isso em mente, o objetivo deste trabalho é desenvolver um algoritmo partindo do trabalho realizado por Alves, R. (2020), para realizar a simulação do acoplamento do poço-reservatório em escoamento verticais, onde será utilizado um software externo para gerar uma tabela dinâmica das propriedades dos fluidos. Verificando assim, a influência de uma tabela dinâmica dentro do modelo black-oil nos resultados do sistema. Para isto, acoplou-se junto ao simulador desenvolvido previamente, um algoritmo que utiliza o software Multiflash e interpola os resultados para inferir ao simulador principal as novas propriedades do fluido a cada passo de tempo. As simulações se dividiram conforme as combinações de correlações de poço e fundo de poço, onde foi possível identificar que as curvas se comportam de maneira similar ao simulador original. As diferenças nos valores de pressão e produção variam conforme os grupos de correlação. Em alguns casos, a metodologia aplicada neste trabalho, aprimorou o comportamento do algoritmo em relação a algumas instabilidades das correlações, aumentando assim, a quantidade de passos de tempo que o simulador é capaz de realizar.

Palavras chaves: Propriedades de fluido; Acoplamento poço-reservatório; Correlações de escoamento

ABSTRACT

In the petroleum industry, understanding and predicting the physical and chemical behavior of oil and gas is of fundamental importance when referring to the effectiveness of exploration and production in an oil field. Fluid conditions constantly change both in the composition of the produced fluid and in the flow conditions, thus, the use of the black-oil model does not provide the simulator an adequate precision to obtain the most accurate results possible. With this in mind, the objective of this work is to develop an algorithm based on the work developed by Alves, R. (2020), to perform the simulation of the coupling of the well-reservoir for vertical flow, using an external software to calculate the properties of the fluids. Verifying the influence of a dinamic table within the black-oil model on the system results. For this, an algorithm that uses the Multiflash software was coupled together with the previously developed simulator and interpolates the results to infer to the main simulator the new properties of the fluid at each time step. The simulations were divided according to the combinations of well and wellbore correlations, where it was possible to identify that the curves behave similarly to the original simulator. Differences in pressure and production values vary across correlation groups. In some cases, the methodology applied in this work improved the behavior of the algorithm in relation to some instabilities of the correlations, thus increasing the number of time steps that the simulator is capable of performing.

Key Word: Properties of the fluids; Well-reservoir coupling; Flow correlations

LISTA DE FIGURAS

Figura 1 – Esquema de geração de um reservatório	22
Figura 2 - Padrões de escoamento vertical ascendente (a) borbulhado, (b) pistonado (slu	ıg), (c) churn e
(d) anular	25
Figura 3 – Algoritmo para definição do padrão de escoamento para o modelo de Barbo	sa e Hewitt 40
Figura 4 - Volume Para o Padrão Slug	41
Figura 5 - Balanço de forças para o padrão Churn.	47
Figura 6 – Balanço de forças para o regime anular	50
Figura 7 - Algoritmo para cálculo do modelo anular	58
Figura 8 - Representação da célula de derivação da pressão	64
Figura 9 - Volume de controle	66
Figura 10 - Distribuição de pontos no ponto P	74
Figura 11- Distribuição de pontos no ponto P	75
Figura 12 - Representação de grid cilíndrico	75
Figura 13 - Algoritmo de acoplamento	97
Figura 14 - Produção de óleo para o caso 1	102
Figura 15 - BHP para o caso 1	103
Figura 16 - Produção Acumulada para o caso 1	103
Figura 17 - Produção de óleo para o caso 2	104
Figura 18 - BHP para o caso 2	104
Figura 19 - Produção Acumulada para o caso 2	105
Figura 20 - Produção de óleo para o caso 3	106
Figura 21 -BHP para o caso 3	107
Figura 22 - Produção Acumulada para o caso 3	107
Figura 23 - Produção de óleo para o caso 4	108

Figura 24 - BHP para o caso 4	108
Figura 25 - Produção Acumulada para o caso 4	109
Figura 26 - Produção de óleo para o caso 5	. 110
Figura 27 - BHP para o caso 5	111
Figura 28 - Produção Acumulada para o caso 5	111
Figura 29- Produção de óleo para o caso 6	112
Figura 30 - BHP para o caso 6	112
Figura 31 - Produção Acumulada para o caso 6	113
Figura 32 - Produção de óleo para o caso 7	114
Figura 33 - BHP para o caso 7	115
Figura 34 - Produção acumulada para o caso 7	115
Figura 35- Produção de óleo para o caso 8	116
Figura 36 - BHP para o caso 8	116
Figura 37 - Produção acumulada para o caso 8	117

LISTA DE TABELAS

Tabela 1 - Derivadas de $\lambda 1$ para ϕ	88
Tabela 2 - Derivadas de λ2 para φ	88
Tabela 3 – Derivadas de $\lambda 3$ para φ , $\beta = 0$	89
Tabela 4 - Derivadas de $\lambda 4$ para ϕ , $\beta = 0$	89
Tabela 5 - – Derivadas associadas ao reservatório	90
Tabela 6 - Numeração dos casos para as simulações utilizando os 4 fluidos	101
Tabela 7 - Diferença de passo de tempo Casos 5 e 6	106
Tabela 8 – Diferença de passo de tempo Casos 5 e 6	109

LISTA DE SIMBOLOS

A	Área	$[m^2]$
$A_{w,p}$	Fator associado a integração do método de volumes finitos	[ms]
$A_{ au,p}$	Fator geométrico associado a orientação do contorno do ponto P	[ms]
A_{fan}	Coeficiente para cálculo do fator de Fanning	[-]
B_{fan}	Coeficiente para cálculo do fator de Fanning	[-]
ВНР	Pressão de fundo de poço	[Pa]
C_{fan}	Coeficiente para cálculo do fator de Fanning	[-]
$C_{lB\&B}$	Fração volumétrica de líquido no escoamento principal	[-]
C_{Il}	Fração volumétrica de líquido no escoamento radial	[-]
D	Diâmetro do duto	[m]
D_{crit}	Diâmetro crítico	[m]
D_{max}	Diâmetro máximo de bolha no escoamento	[m]
E_l ;	Liquid old-up	[-]
F	Fator de fricção	[-]
g	Aceleração da gravidade	$\left[\frac{m}{s^2}\right]$
GOR	Taxa de produção de gás-óleo	$\left[\frac{m^3std}{m^3scf}\right]$
G_p	Produção acumulada de gás	$\left[\frac{scf}{dia}\right]$
h	Entalpia	$\left[\frac{j}{kh}\right]$
C_p	Capacidade Calorifica	$\left[\frac{j}{K}\right]$
k	Permeabilidade relativa	[mD]
K	Permeabilidade absoluta:	[mD]

L	Coordenada do fundo do poço do fundo para o topo	[-]
M	Número de pontos na direção radial	[-]
N_p	Produção acumulada de Líquido	$\left[\frac{bbl}{dia}\right]$
p	Pressão	[Pa]
P	Perímetro	$[m^2]$
P_{surf}	Pressão na cabeça do poço	[Pa]
PWB	Pressão no poço;	[Pa]
$p_{lpha, au}$	Pressão da fase α na vizinhança do ponto p	[Pa]
$p_{lpha,p}$	Pressão da fase α ponto p	[Pa]
Q	Fluxo total do escoamento no poço	$\left[\frac{kg}{m^2s}\right]$
q_I	Fluxo interno por comprimento	$\left[\frac{kg}{ms}\right]$
R	Posição radial	[-]
R_{af}	Taxa de gradientes de aceleração e fricção	[-]
R_{af}	Taxa de gradiente direcional e de aceleração	[-]
Re	Número de Reynolds;	[-]
r_e	Raio externo do reservatório	[m]
Re_w	Número de Reynolds na parede	[m]
R_{gf}	Taxa de gradiente gravitacional e de fricção	[-]
Rs_{eta}	Taxa da fase α dissolvida na fase β	[-]
R_{M}	Razão massa por vazão	$\left[\frac{lbm}{bbl}\right]$
r	Coordenada radial do reservatório	[-]
r_w	Raio do poço	[m]
S	Saturação	[-]
$S_{B\&B}$	Coeficiente do modelo de Beggs and Brill	[-]
T	Temperatura	[K]
t	Tempo	[s]

THP	Pressão na cabeça do poço	[Pa]
U	Velocidade	$\left[\frac{m}{s}\right]$
v	Velocidade do fluido	$\left[\frac{m}{s}\right]$
x	Coordenada do poço	[-]
X_e	Largura do reservatório	[m]
Y_e	Largura do reservatório paralelo ao eixo horizontal do poço	[m]
Z	Coordenada de profundidade do reservatório	[-]
Z	Coordenada de posição vertical	[-]
δ	Espessura do filme de líquido	[m]
Δt	Passo de tempo	[dia]
$\Delta Z_{p, au}$	Valor absoluto de profundidade entre os pontos p e $ au$	[m]
€	Rugosidade	[-]
η	Coeficiente de Joule-Thompson para as equações da difusividade hidráulica do reserv	atório e
as equ	uações do poço	[-]
θ	Inclinação do poço ou coordenada angular do reservatório	[°]
μ	Viscosidade	[<i>Pa s</i>]
ho	Densidade	$\left[\frac{kg}{m^3}\right]$
σ	Tensão superficial	$\left[\frac{N}{m}\right]$
$ au_w$	Estresse do filme na parede do duto	$\left[\frac{N}{m^2}\right]$
γ	Ângulo do fluxo de escoamento interno	[°]
$(K_w)_{i}$	$_{p, au}$ Permeabilidade absoluta no contorno entre os pontos p e $ au$	[mD]

LISTA DE SUBINDICES

0	Ponto mais profundo dentro do poço
BT	Bolha de Taylor
d	Adimensional
e	Contorno na coordenada oeste
E	Posição na coordenada oeste
f	Filme de líquido
fS	Freição no Slug
fΒ	Fricção na Bola de Taylor
F	Posição na coordenada posterior
g	Gás
h	Horizontal
i	Propriedades interfacial, posição no grid ou passo de tempo do reservatório
I	Fluxo de escoamento interno
init	Condição inicial do reservatório
l	Líquido
L	Longitudinal
m	Mistura
n	Contorno na coordenada Norte
N	Posição na coordenada Norte
p	Ponto do reservatório no grid
r	Coordenada radial do reservatório

- res Reservatório
- S Contorno na coordenada Sul
- S Posição na coordenada Sul
- t Tempo
- Turbulento
- v Vertical
- w Contorno na coordenada Leste
- W Posição na coordenada Leste
- z Coordenada axial do reservatório
- α Representa a fase do fluido
- β Representa a fase que o fluido está dissolvido na simulação do reservatório
- θ Coordenada angular do reservatório
- τ Vizinhança do reservatório no grid no ponto p na orientação τ
- Old Variaveis em condições não atualizadas

SUMARIO

1. INTRODUÇÃO	19
1.1. Objetivos	20
2. REVISÃO BIBLIOGRÁFICA	21
2.1. Reservatório	21
2.2. Poço	22
2.2.1. Padrões Para Escoamento Verticais	23
2.2.2. Padrões para escoamento horizontais	25
2.2.3. Correlações de Poço	26
2.3. Fundo de Poço	27
3. METODOLOGIA	28
3.1. Poço	28
3.1.1. Pressão e temperatura do poço	29
3.1.2.1. Correlação de Hagedorn & Brown	30
3.1.2.1.1. Modificação da correlação de Hagedorn & Brown	33
3.1.2.2. Correlalação de Chexal-Lellouche	34
3.1.2.3. Correlação de Barbosa & Hewitt	37
3.1.2.3.1. Padrão Borbulhado	41
3.1.2.3.2. Padrão Slug	41
3.1.2.3.3. Padrão Churn	46
3.1.2.3.4. Padrão Anular	49
3.1.2.4. Correlação de Beggs & Brill	59
3.2. Fundo de poço	63
3.3. Integração do fundo de poço	63
3.4.1.1. Modelo de uma fase de Ouyang	65
3.4.1.2. Modelo homogêneo de duas fases de Ouyang	69
3.4.1.3. Beggs & Brill modificado	71

3.5. Modelagem do reservatório	73
3.5.1. Método de volumes finitos	74
3.5.2. Grid do reservatório	74
3.5.3. Método de volumes finitos	76
3.5.4. Condições de contorno	91
3.5.5. Matriz solução	93
3.6. Acoplamento	95
3.6.1. Método de acoplamento	96
3.7. Propriedades do fluído	97
4. RESULTADOS	100
4.1. Simulações Para os 4 fluidos	101
5. CONCLUSÕES	118
REFERENCIAS	120
APENDICE A	126
APENDICE B	128
B.1 PROPRIEDADES DO RESERVATÓRIO	128
B.2 CÁLCULO DAS PROPRIEDADES DO FLUIDO SEM O USO DO FLASH	129