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ABSTRACT

The drilling mud has an important role in Drilling Engineering because, during the wellbore
drilling, the drilling mud is required to be chemically stable, to cool, and lubricate the bit, to
stabilize the wellbore walls, and especially to carry the cuttings from the bottom-hole wellbore
to the surface. The flow of drilling mud inside the wellbore annulus is a knowledge target
all around the world since it is not completely comprehended. As the presence of cuttings
inside the annulus and drilling mud rheology leads to a robust model to solve the problem,
simplifications were applied and the study was developed focusing on the Reynolds number.
A literature review is performed to list previous works related to flow between cylinders -
especially the Taylor-Couette, and the lattice Boltzmann method. There are appointments and
characteristics about the methodology using velocity set �3&19, explicitly the regularization
process to boundary conditions, new boundary sites, Chapman-Enskog analysis to enlighten the
LB approach on solving the Navier-Stokes equations, as well as the use of forces in methodology.
First results are presented and compared with analytical solutions of White (2006) for both flows
inside parallel plates and concentric cylinders with the use of forces in the lattice Boltzmann,
where both forcing magnitude �6I = 1×10−7 and relaxation time g = 0.8 are fixed. Both velocity
and total volume rate present closer values for the numerical solution to the analytical one as
the mash is higher. Then, compared with the analytical solution of Mohammadipour, Succi, and
Niazmand (2018) establishing a bi-dimensional flow with different mesh grids at '4 = 10 and
radius ratio [ = 5/7, obtaining good results for the tangential velocity and pressure, despite the
tangential tensor derivatives equal to zero at inner cylinder were not be implemented. Finally, a
study of the Taylor-Couette flow contrasting with Ostilla et al. (2013) leads to the emergency of
rolls (toroidal vortices) at Taylor numbers 2.44×105 and 7.04×105. Values of the wavelength
of the rolls seem to be consistent. Thus, the obtained final results were satisfying, despite some
discrepancies and considering computational difficulties. Future works should focus on boundary
conditions with zero tangential tension at the inner cylinder wall and implementing simulations
for greater computational domains to improve results, verifying temperature behavior in the flow,
as well as including cuttings to obtain better knowledge about the mud flow inside the wellbore
annulus with its presence.
Keywords: Drilling mud. Wellbore annulus. Lattice Boltzmann method. Taylor-Couette flow.



RESUMO

O fluido de perfuração tem papel importante na Engenharia de Perfuração, pois durante a
perfuração do poço o fluido precisa ser quimicamente estável, resfriar e lubrificar a broca,
estabilizar as paredes do poço, e especialmente carregar o cascalho do fundo do poço à superfície.
O escoamento do fluido de perfuração no anular do poço é alvo de conhecimento em âmbito
mundial, uma vez que não está completamente compreendido. Como a presença de cascalho
no anular do poço e a reologia do fluido de perfuração determinam um robusto modelo para
solução do problema, simplificações foram feitas e o trabalho foi desenvolvido com foco no
número de Reynolds. Uma revisão de literatura é realizada para elencar trabalhos desenvolvidos
com estudos de escoamento entre cilindros - especialmente o de Taylor-Couette, e o método
do reticulado de Boltzmann. São apontadas considerações e características do método para
solução numérica utilizando conjunto de distribuição de velocidades �3&19, explicitando o
processo de regularização para condições de contorno, novas condições de fluido, análise de
Chapman-Enskog na solução das equações de Navier-Stokes, bem como aplicação de forças na
metodologia. Os primeiros resultados são dados em função de comparativos de soluções analíticas
de White (2006) para ambos escoamentos entre placas paralelas e cilindros concêntricos, tendo o
uso de forças no reticulado de Boltzmann e fixos a magnitude de força �6I = 1×10−7 e tempo de
relaxação g = 0.8. Ambas velocidade e volume de vazão total apresentam valores para solução
numérica cada vez mais próximos da solução analítica, na medida que os tamanho de malha
aumentam. Em seguida, comparou-se com a solução analítica de Mohammadipour, Succi e
Niazmand (2018) um escoamento bi-dimensional em diferentes malhas a '4 = 10 e razão de
raio [ = 5/7, obtendo-se bons resultados para velocidade tangencial e pressão, apesar de não ser
implementada a derivada igual a zero dos tensores tangenciais no cilindro interno. Finalmente, um
estudo do escoamento de Taylor-Couette contrastando com Ostilla et al. (2013) traz a formação
esperada de rolos (vórtices toroidais) para ambos número de Taylor 2.44× 105 e 7.04× 105.
Valores para comprimento de onda dos rolos demonstram estar consistentes. Desse modo, os
resultados finais obtidos foram satisfatórios, apesar de discrepâncias pontuais e considerando
dificuldades computacionais. Trabalhos futuros devem focar em aplicar derivadas de tensores
tangenciais iguais a zero na parede do cilindro interno e implementar simulações para domínios
computacionais maiores para aprimorar resultados, verificar o comportamento da temperatura no
escoamento, bem como levar em consideração a presença de cascalho para que seja conhecido
como se dá efetivamente o escoamento do fluido de perfuração no anular do poço.

Palavras-chave: Fluido de perfuração. Anular do poço. Método do reticulado de Boltzmann.
Escoamento de Taylor-Couette.
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1 INTRODUCTION

The petroleum industry comprehends a great and massive conglomerate of areas, as
reservoir engineering, onshore and offshore structures, production and completion engineering,
and one of most important, drilling engineering. Prospecting formations and exploring petroleum,
and considering offshore structures especially, is a hard and complex challenge that any oil
company has to meet.

Speaking particularly of drilling engineering, significant equipment, and human expertise
are required to explore the desired petroleum area. It is important to acquire knowledge about
rotary drilling, bits, drilling hydraulics, drilling mud, and other considerations that involves this
complex task. Considering drilling engineering, after all the definitions on the use of equipment
and considerations are made, while the bit is drilling inside the wellbore, cuttings result from it,
which have to be taken up to the surface.

The wellbore basically consists in the wall of the formation and the drill pipes which are
drilling and exploring it. Between this wall and the drill pipes, there is an empty space, which
we call annulus wellbore or just annulus. The cuttings mentioned above that results from the
drilling are brought to the surface through this space. Figure 1 shows, as an example, the drilling
system. Carrying the cuttings from the bottom-hole requires the right drilling mud because it is
necessary to evaluate the pressure, depth, and other characteristics that are going to facilitate it.

Even after more than a hundred years of petroleum exploration and advanced technologies,
full characterization of the flow of the drilling mud inside the annulus is yet to be accomplished.
As it is not completely established, and especially considering the presence of the cuttings, it
may be laminar or turbulent, and even the fluid may assume a Newtonian or non-Newtonian
behavior. Between main characteristics, the drilling mud must be chemically stable, stabilize
wellbore walls, cool and lubricate the bit and, especially, carry the cuttings from the bottom-hole
to the surface (THOMAS, 2004).

According to Mme and Skalle (2012, p. 130), the cuttings tend to sink through the
ascending fluid because of the gravity influence, withal when a sufficient volume of mud flows
fast enough to get over this effect, the cuttings are carried to the surface. Removing the cuttings
from the hole depends on some important factors, as fluid viscoelastic properties, annular velocity,
angle of inclination, drilled cuttings size and their shape.

To solve problems of Computational Fluid Dynamics (CFD), there are some known
methods to be evaluated here. Among them, we can enumerate the Finite Difference Method
(FDM), the Finite Volume Method (FVM), the Finite Element Method (FEM) and the Lattice
Boltzmann Method (LBM). The oldest method for a numerical solution is FDM (18th century),
and it is also the easiest to implement in simple geometries. According to Ferziger and Perić
(2001, p. 40), "in FDM discretization methods the grid is usually locally structured, i.e., each
grid node may be considered the origin of a local coordinate system, whose axes coincide with
gridlines".
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Figure 1 – Drilling scheme of a petroleum wellbore.

Source: Adapted from Mme and Skalle (2012).

The FVM appeared in the 1970s with strength on its connection to physical flow
properties. The basis of the method relies on the direct discretization of the integral form
of the conservation law (HIRSCH, 2007, p. 209). Compared to FDM, the great difference
between them is that on FDM the discretization is on the differential form, as opposed to FVM
which discretizes the integral form.

In the FEM, "the domain is broken into a set of discrete volumes or finite elements
that are generally unstructured; in 2D, they are usually triangles or quadrilaterals, while in 3D
tetrahedra or hexahedra are most often used" (FERZIGER; PERIĆ, 2001, p. 36). The method
uses a set of functions as base (elements), that are "located in space", to describe the solution.
Here a weight function is considered multiplied to the equations before they are integrated over
the entire domain.

The LBM consists basically of representing the fluid through particles, which themselves
may represent atoms, molecules, collections or distributions of molecules, or portions of the
macroscopic fluid, instead of attempting to solve the equations of fluid mechanics directly
(KRÜGER et al., 2017, p. 55).

To Krüger et al. (2017), the problem of solving equations of fluid mechanics is that it
represents a nonlinear simultaneous system where solutions can behave complexly, especially
when related to turbulent flow or complex geometries.
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It is important to say that here we will only consider the influence of the Reynolds number
on the drilling mud flow. The constitution (made by oil, water, and other compounds) will not be
taken into account in the analysis. That is because Reynolds number already has some physical
considerations, such as viscosity and velocity. In addition, for objectivity and to facilitate the
complexity of implementing this problem, at the first moment, we will not consider the presence
of the cuttings in the drilling mud. We must evaluate Reynolds number before we analyze other
complex factors such as particulate flow (cuttings) and rheology (non-Newtonian behavior).

The geometry with concentric cylinders is, at first sight, simple to implement and evaluate
the flow in the annulus. So, it could be done using other method to solve the problem, as
commented before. But, we use LBM in this work because it is the beginning of a long study,
where after the boundary sites and boundary conditions are defined, expressive knowledge about
the flow, especially the Taylor-Couette one and its instabilities are clear, the transition from
laminar to turbulent flow. The simulations will allow to insert the cuttings in the drilling mud
flow, and at this last mentioned step, is that LBM will take a robust advantage.

1.1 OBJECTIVES

The main objective in this thesis is to understand the behavior as a function of the
Reynolds number inside the wellbore annulus using the Lattice Boltzmann Method as a
computational solution method. To reach it, the specific objectives are as follows:

• To present a literature review and theoretical foundation to express the methodology that
will be used. Thus, it is possible to note what researchers are studying about similar
problems related to this work and comprehend how to use the lattice Boltzmann method
specifically to drilling mud flow inside the annulus;

• To determine boundary sites of the flow. As we are interested in what is happening inside
the annulus, and since the inner pipe rotates, we must consider a three-dimensional case to
observe the complex phenomena in more detail;

• To implement a high performance code for fluid flow simulation. With the use of the
Lattice Boltzmann Method, we have some advantages because it deals very well with
complex fluid flow, since the method does not solve the Navier-Stokes equations directly;

• To evaluate the potential and limitations of the computational solution for general cases.
Once the boundary conditions are determined, it is possible to generalize this current case,
allowing their application to different problems.

1.2 THESIS OUTLINE

The thesis consists of 5 chapters, divided as follow:
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• Chapter 1: presents the introductory theoretical context and the main objective, describing
some numerical methods usually applied to fluid dynamics, as well as presents the main
and specific objectives of the study.

• Chapter 2: describes previous studies related to the flow inside an annulus and the use of
the LBM to solve similar problems. Also, a contextualization about Taylor-Couette flow is
presented.

• Chapter 3: in this chapter, the LBM is described, and consequently the concepts of particle
are also presented. The Chapman-Enskog analysis is explained in order to clarify the
lattice Boltzmann method as a tool for obtaining numerical solution to the Navier-Stokes
equations. Forces are discussed, since they perform an important role in the present study.

• Chapter 4: the obtained results are presented and discussed in this chapter, introducing
the use of forces in the modeling and contrasting the analytical solutions to numerical ones,
bi-dimensional annulus flow at low '4 comparing analytical to the numerical solution,
and a Taylor-Couette flow comparison with another study.

• Chapter 5: finally, in this chapter, we point out the general considerations about the
current study, and suggestions for future works.



2 LITERATURE REVIEW

In this chapter, we bring a literature review of existing researches about drilling mud flow,
the use of LBM related to the same idea, and definitions that will be used throughout the work.
Approaches to rheology and the flow of fluids, as well as all the important definitions necessary
to comprehend this study, are given.

2.1 REYNOLDS NUMBER AND FLUIDS FLOW

There are two known main types of fluid flow regimes, which are laminar flow and
turbulent flow. Between those, there is the transitional flow. But, before we explain each one, it
is important to define what is the Reynolds number, which characterizes directly these types of
flow.

2.1.1 Reynolds Number

Osborne Reynolds (1842-1912), a British engineer, was who first proposed experimentally
the existence of the two types of flows. His experiment showed that fluid flowing in a circular
pipe of small-diameter or low-velocity, flows as laminar (or viscous flow). In high-velocity or
through a large-diameter pipe, the flow is characterized as turbulent (MACHADO, 2002, p. 13).

According to White (2008), the Reynolds number is always important, both with or
without a free surface, and can be neglected only in flow regions away from high-velocity
gradients (solid surfaces, jets, or wakes). It is highlighted in the Navier-Stokes Equation as a
dimensionless parameter. The following equation shows its expression as a kinematic viscosity
function, relating the inertial effect with the viscous effect, as:

'4 =
�*

a
. (2.1)

where � is the channel dimension of flow (pipe diameter),* the mean axial velocity flow, and a
the kinematic viscosity. Here, it is possible to see that the flow tends to be turbulent when the
velocity increases or the fluid viscosity decreases. For a particular velocity and viscosity, there
will be a turbulent flow if the pipe diameter increases and, conversely, it will be laminar.

2.1.2 Laminar Flow in a pipe

In the laminar flow, the fluid layers move through streamlines, straights, or curves, parallel
to flow direction, without macroscopic mixture (MACHADO, 2002, p. 14). The maximum
velocity is concentrated in the axial axis (shear stress is zero) and equal to zero at the wall of the
pipe (shear stress is maximum). It is important to say that the necessary strength to maintain the
velocity gradient in a laminar flow increases with the viscosity of the fluid.
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2.1.3 Turbulent Flow in a pipe

The characteristic of turbulent flow is that a small mass of fluid has chaotic displacement
all along the pipe. There is a mixture between the layers, and velocity fluctuates around an average
value (MACHADO, 2002, p. 16). Fluid particles move randomly through curved trajectories.
Thus, point velocities change their values and direction all time.

In Figure 2, we can see the velocity profile for both profiles. It is possible to observe
that in laminar flow, the velocity profile is parabolic. The* parameter represents the local flow
velocity and*

<0G
represents the maximum velocity.

Figure 2 – Velocity profile of laminar (0) and turbulent (1) pipe flow.

Source: Adapted from White (2008).

As the Reynolds number classifies the corresponding flow, Table 1 shows how the
petroleum industry categorizes the fluid flow, considering drilling and completion fluids, slurry
density, fracturing fluids, petroleum, and derivatives:

Table 1 – Critical Reynolds number of fluids flow used in the petroleum industry.
Critical Reynolds Number Flow Type Fluid Type

2,100 laminar (<) Newtonian
3,000 turbulent (>) Newtonian

3,000-8,000 turbulent non-Newtonian
Source: Adapted from Machado (2002).

2.1.4 Transitional Flow in a pipe

Transitional flow is related to laminar and turbulent flow at the same time, with turbulence
acting in the center of the pipe and laminar flow near the edges (ENGINEERING TOOLBOX,
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2004). The fluid particles move with both flows. And, viscous and Reynolds stresses, are of
approximately equal magnitude. As we see in Table 1, the transitional flow is placed amidst
2,100 and 3,000, but in certain petroleum industry branches, the actual turbulent flow occurs
when Reynolds number overcomes 8,000, especially when it flows with non-Newtonian fluids.

2.2 PREVIOUS WORK

Differently of the flow in pipes of petroleum wellbores, e.g., churn and annular, the
behavior of the flow that takes place in the annulus is, up to this date, not very well understood
due to its flow complexity, including the presence of cuttings from drilling formation.

In 1993, Reed and Pilehvari (1993, p. 469) developed a new model for the flow of drilling
mud. According to them, "the method is valid in any flow regime and can be used to determine
whether a non-Newtonian flow is laminar, transitional, or turbulent". The model makes use
of an "effective" diameter, which is the "diameter of a circular pipe with the presence of a
non-Newtonian flow, that would have the identical pressure drop for the flow of a Newtonian
fluid with a viscosity equal to the "apparent" viscosity and the same average velocity as the
non-Newtonian flow" (REED; PILEHVARI, 1993, p. 470).

On the other hand, Ramadan, Skalle, and Johansen (2003) developed a mechanistic
model to determine the critical flow velocity required to initiate the movement of a spherical bed
of particles in inclined channels. The particles are the drilled cuttings, and the considerations
made here embrace a complex task because the angle of the wellbore will affect directly on the
carrying of these particles.

Accordingly to Hall, Thompson, and Nuss (1950, p. 45), "turbulence due to restrictions,
drill pipe vibration, and rotations, etc., may tend to alter the path of cuttings moving upward in
the annulus, but the ability of a drilling mud to effectively lift cuttings is not affected by these
factors". Then, if the drilling mud velocity is greater than the calculated slip velocity (of the
cuttings), cuttings between a size range will be lifted and not allowed to settle back down the
hole. It can be noted that the velocity and particle size ranges affect directly the flow of the
drilling mud(WILLIAMS JR.; BRUCE, 1951; EPELLE; GEROGIORGIS, 2018).

As a foundation to the present study, Hegele et al. (2018) developed a study
of high-Reynolds-number turbulent cavity flow (ALBENSOEDER; KUHLMANN, 2005;
LERICHE, 2006; BOUFFANAIS; DEVILLE; LERICHE, 2007). The study uses the LBM
to perform a direct numerical simulation of the flow with Reynolds number up to 50,000. For
two-dimensional flows (MONTESSORI et al., 2014), they noted that as the Reynolds number
are not so elevated, the velocity profile is presented uniformly.

As the Reynolds number increases considerably, the regime changes to transient.
Consequently, the vortex center created by the fluid moves towards the center of the cavity.
That justifies the difficulty of implementing a numerical simulation for confined flows, that is
because the fluid does not have where to flow (it needs to deform itself), producing an unstable
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model, using LBM. But, Hegele et al. (2018) found a boundary modeling that solves the problem
of this numerical instability.

2.2.1 Taylor-Couette Flow

An important factor that must be considered in this work is the Taylor-Couette flow.
According to Lueptow (2009), it "is the name of a fluid flow and the related instability that occurs
in the annulus between deferentially rotating concentric cylinders, most often with the inner
cylinder rotating and the outer cylinder fixed, when the rotation rate exceeds a critical value."

The flow between two concentric cylinders is of interest earlier than the petroleum
industry. In the 16th century, Isaac Newton used it to describe the circular motion of fluids in his
Principia. George G. Stokes, in the 18th century, considered this simple flow noting the difficulty
in modelling the boundary conditions at the wall of the cylinder, now taken for granted as the
no-slip boundary condition.

There are some crucial applications aspects concerning this flow, such as linear stability
analysis, low dimensional bifurcation phenomena, chaotic advection, absolute and convective
instabilities, and a host of other fundamental physical phenomenon and analytic approaches.
These instabilities can be related to the toroidal Taylor vortices stacked in the annulus and the
theoretical framework that describes them.

The stable flow for this geometry is known as cylindrical Couette flow. Lueptow (2009)
states that "as with all Couette-type flows, the flow is driven by the motion of one wall bounding
a viscous liquid." With the application of the Navier-Stokes Equations for an incompressible
Newtonian fluid, the accurate solution for infinite-length long cylinders is of the form (in
cylindrical coordinates (A, \, I)):

*A = 0, (2.2)

*\ = �A +
�

A
, (2.3)

*I = 0, (2.4)

m?

mA
= d

*2
A

A
, (2.5)

where *A , *\ , and *I are the radial, azimuthal, and axial components of velocity, ? is the
pressure, and d is the fluid density. � and � depend on the radius ratio [ = '1/'2 of the inner
cylinder radius '1 and the outer cylinder radius '2, and the rotational speed of the inner cylinder
Ω1, as:

� = −Ω1
[2

1−[2 , (2.6)

� = Ω1
'2

1
1−[2 . (2.7)
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Instability in the cylindrical Couette flow begins to appear as the rotational speed of the
inner cylinder increases resulting in pairs of counter-rotating, axisymmetric, toroidal vortices
that fill the annulus superimposed on the Couette flow (LUEPTOW, 2009). Figure 3 illustrates
these vortices. Each pair of vortices has a wavelength of approximately 2�, where � = '2−'1

is the gap between the cylinders.

Figure 3 – Vortex formation of Taylor-Couette flow.

Source: Adapted from Lueptow (2009).

High-speed fluid close to the rotating inner cylinder is carried outward in the outflow
regions between vortices, while low-speed fluid close to the fixed outer cylinder is carried inward
in the inflow regions between vortices, redistributing angular momentum of the fluid in the
annulus, because of the vortices. A small percentage of the surface speed of the inner cylinder is
related to the axial and radial velocities, with Taylor vortices (WERELEY; LUEPTOW, 1998).

The vortical flow comes from a centrifugal instability (stable cylindrical Couette flow is
geostrophic - when Coriolis’ force and pressure gradient are in balance), this centrifugal force
due to the azimuthal velocity is balanced by the radial pressure gradient force set up due to the
azimuthal velocity. If a fluid particle is perturbed (moved slightly) outward from its initial radius,
it reaches a region where the local restoring force due to the pressure gradient is slightly less
than the outward inertia of the particle, which is based on the particle’s initial position because
its angular momentum is conserved. As a consequence, a fluid particle perturbed outward will
continue outward. Analogously, if a fluid particle moved slightly inward from its initial radius
will continue inward as the local restoring force due to the pressure gradient is smaller than the
inward inertia of the particle (LUEPTOW, 2009). If the mass conservation guarantees a return
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flow with a toroidal vortex of Taylor-Couette flow-form, does not matter whether the initial
perturbation is inward or outward.

The viscosity can suppress the instability at low rotational speeds, damping out the
perturbations. This instability occurs only when the pressure gradient force decreases (because
of the decreasing azimuthal velocity) with increasing radius, as is the case for the inner cylinder
rotating with the outer cylinder fixed. If the only rotating cylinder is the outer one, the pressure
gradient force increases with increasing radius, and the flow remains stable (LUEPTOW, 2009).

Rayleigh (1917) quoted in Lueptow (2009) first put forth the inviscid (no viscosity)
approach to the instability based on an imbalance of the centrifugal force and pressure gradient
force. He explained that if the value for (A2Ω)2 decreases in the radial direction, as it does for an
inner rotating cylinder and a fixed outer cylinder, the flow should be unstable in cyclones taking
a fluid angular velocity Ω(A), for example. Rayleigh’s stability criterion predicts that regardless
of the speed of the inner cylinder, as long as the inner cylinder rotates within a stationary outer
cylinder, the flow should be unstable. That is not the case, since viscosity damps the perturbations
for low rotational speeds, preventing the vortices from forming (LUEPTOW, 2009).

Taylor (1923) quoted in Lueptow (2009) first showed how viscosity stabilizes the flow at
low rotational speeds using linear stability analysis. The analysis is based on small perturbations
of the velocity and pressure fields considering a perturbation including a sinusoidal variation of
the disturbance in the I-direction with axial wavenumber : (describes the axial periodicity of the
perturbation) and *A =*I = 0, a growth rate or amplification factor @ for the disturbance, and
amplitudes of the disturbance which are dependent on the radial position. The axial component
of the perturbation is zero where the other perturbations are maximum, and vice versa.

When applying those small perturbations expressions into the NSE followed by
linearizing the equations (discarding higher-order terms) results in a set of ordinary differential
equations. One way to solve these equations is transforming them into an eigenvalue problem,
setting the amplification factor to zero, so it will correspond to the onset of the instability. As a
result, the critical wavenumber, :2A8C , and the critical Taylor number, )02A8C (non-dimensional
number above which the instability occurs), are taken. (LUEPTOW, 2009). Below the critical
Taylor number, the flow is stable with no vortical structure; above, it is unstable with toroidal
vortices. It is possible to express the Taylor number when the inner cylinder rotates within a
fixed outer cylinder as follows:

)0 =

[
1−[
[

]
'42

\ , (2.8)

where '4\ = Ω1'1�/a is an azimuthal Reynolds number based on the surface velocity of the
inner cylinder as the velocity scale and the gap width as the length scale. It is essential to say
that )0 can also be measured as a function of Equation 2.1, which leads this parameter to two
degrees of freedom. In our case, we are considering that the axial Reynolds number '4I = 0,
this because mean axial velocity*I averaged over the annular cross-section, is in our parameter
range, independent of time and axial position, and given by the total through-flow.



29

The critical Reynolds number, '42A8C , which corresponds to the both critical Taylor
number and the associated wavenumber (defines the axial spacing of the vortices or wavelength,
_ = 2c/:2A8C) for the onset of vortices, depends on the radius ratio as can be observed in Table 2.
"Thus, since :2A8C = 3.13 for [ = 0.9, _ ≈ 2�, indicating that a counter-rotating pair of vortices
(one wavelength) has an axial wavelength that is twice the radial gap width. Thus, each vortex
tends to be circular (as opposed to elliptical), filling a region that is � ×�, consistent with
experiments" (LUEPTOW, 2009).

Table 2 – Critical Taylor and Reynolds number for transition to vortical flow.
[[[ )))000222AAA888CCC '''444222AAA888CCC :::222AAA888CCC

0.975 1,746.00 260.9 3.1270
0.900 1,924.69 131.6 3.1288
0.800 2,243.59 94.7 3.1326
0.700 2,708.02 79.5 3.1389
0.600 3,428.73 71.7 3.1483
0.500 4,649.33 68.2 3.1625

Source: Adapted from Recktenwald, Lücke, and Müller (1993) quoted in Lueptow (2009).

As the Taylor number becomes larger than the critical Taylor number, more instabilities
appear (higher-order) inside the annulus, with modified vortices. Wavy vortex flow appears first,
which is characterized by the azimuthal waviness of the vortices. We can see this transition in
Figure 4, which compared to Figure 3, neatly presents higher instabilities.

Figure 4 – Higher instabilities in the Taylor-Couette flow.

Source: Adapted from Lueptow (2009).
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King et al. (1984) quoted in Lueptow (2009) explain that "the waves travel around the
annulus at a speed that is 30-50% of the surface speed of the inner cylinder, depending on the
Taylor number and other conditions".

The perturbation is, theoretically, the sum of many normal modes, "but in practice, the
mode that dominates is the one for which the Taylor number at the stability limit is lowest"
(LUEPTOW, 2009). When considering the transition from axisymmetric toroidal Taylor vortices
to wavy vortices, is it known that its Taylor number is not tightly established. Serre, Sprague, and
Lueptow (2008) quoted in Lueptow (2009) proposed that the transition is theoretically predicted
to occur at)0/)02A8C = 1.1 for [ = 0.85 for infinitely long cylinders, whereas experiments indicate
a range of higher values between 1.14 and 1.31 for [ = 0.80−0.90, depending on experimental
conditions. As said Coles (1965) quoted in Lueptow (2009), the number of azimuthal waves is
usually less than 6 or 7.

Depending on the direction of deformation of a wavy vortex (upward or downward), it
will correspond to the direction of the (upward or downward) axial flow. Consequently, stream
tubes are destroyed leading to chaotic particle paths with intra-vortex mixing. We can observe
this phenomenon in Figure 5, where velocity vectors measured using particle image velocimetry
in a meridional (A − \) plane is showing intra-vortex flow between counter-rotating wavy vortices.
The vortical flow is strong enough to wrap the azimuthal velocity contours around the vortex
centers slightly and create relatively large regions across the annular gap where the azimuthal
velocity does not vary substantially (AKONUR; LUEPTOW, 2003).

By contrast, Lueptow (2009) states that "the axisymmetric cellular structure of non-wavy
Taylor vortex flow results in a set of nested stream tubes for each vortex with a dividing invariant
stream surface between adjacent vortices. The only mechanism for transport within a vortex or
between vortices is molecular diffusion."

The wavy vortices transition to modulated wavy vortices, evident upon flow visualization
as a slight flattening of the outflow boundary when the flow is at higher Taylor numbers. Lueptow
(2009) explains that the transition is easily distinguished from spectral analysis of a velocity
or reflected light measurement at a particular point in the flow. The Wavy vortex flow holds a
solitary peak at a frequency related to the passage of the azimuthal wave. Still, "the waviness
gives way to turbulence, which raises the spectral level at all frequencies. The vortices become
axisymmetric, but the flow is turbulent at small scales. At high enough Taylor number, the
turbulent vortices disappear, and the flow is fully turbulent" (LUEPTOW, 2009).

2.2.1.1 Taylor-Couette Flow Studies

Following the Taylor-Couette flow studies, Di Prima and Swinney (1985) proposed
many considerations about the stability and transitions of viscous incompressible flow between
concentric rotating cylinders for the increasing speed of one or both cylinders. They presented a
complex and robust study about the Taylor-Couette flow, comparing experiments and numerical
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Figure 5 – Velocity vectors in a meridional plane overlaid with azimuthal velocity. Color
corresponds to the azimuthal (\) velocity, with red corresponding to the velocity
of the inner cylinder (IC) on the left, and blue corresponding to the velocity of the
outer cylinder (OC) on the right. The azimuthal velocity contours are equally spaced
between 0 at the OC and 1.0'1Ω at the IC.

Source: Lueptow (2009).

models, especially evaluating the growth of Taylor vortices, wavy vortex flow, instability of
Couette flow, and higher instabilities and turbulence.

Other authors also have studied the instability of Taylor–Couette flow between concentric
rotating cylinders, such as Dou, Khoo, and Yeo (2008). Their study used the energy gradient
theory (proposed in their previous work), seeking the instability of Taylor–Couette flow between
concentric rotating cylinders. One important conclusion was that the energy gradient theory can
serve to relate the condition of transition in Taylor–Couette flow to that in plane Couette flow,
and also possibly for analysis of flow instability and turbulent transition.

Through a 3D direct numerical simulation of turbulent Taylor–Couette flow, Dong (2007)
investigated the dynamical and statistical features of turbulent Taylor–Couette flow ([ = 0.5) at
Reynolds numbers ranging from 1,000 to 8,000. In the three-dimensional space, they evidenced
a random distribution of Görtler vortices - secondary flows that show up in a boundary layer flow
along a concave wall (SARIC, 1994), in banded regions on the wall. These Görtler vortices lead
to streaky structures that form herringbone-like patterns near the wall.

Another approach related to Taylor–Couette flow, was studied, with an imposed
pressure-driven axial flow considering radius ratio [ = 0.83 and aspect ratio Γ = 47,
experimentally using particle image velocimetry in a meridional plane of the annulus
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(WERELEY; LUEPTOW, 1999). For both toroidal and helical vortices with the absence of
waviness, they demonstrate the axial flow winding around vortices in velocity vector fields.

Ostilla et al. (2013) implemented direct numerical simulations to reproduce turbulent
Taylor–Couette flow with inner and outer cylinders rotating independently, evaluating
analogously to a turbulent Rayleigh–Bénard flow. They found effective scaling laws for the
torque and other system responses. Also, it was possible to reach an optimum transport for
rotation at non-zero counter-rotation considering large enough )0 in the numerically accessible
range. Between many considerations, their study shows a comparison between different )0
simulations, where boundary layers for the angular velocities l transport become thinner with
increasing )0 indicating increased angular velocity transport, which will be discussed more of
in Chapter 4.

To prove the robustness of their boundary conditions in complex geometries,
Mohammadipour, Niazmand, and Succi (2017) simulated a laminar flow between two rotating
circular cylinders using LBM. It is visible that their approach for the boundary conditions
provided more accurate velocity prediction when compared to other studies. This because the
non-equilibrium component of distribution functions was approximated as a third-order power
series in the lattice velocities, and also, they formulated a procedure to obtain boundary node
distributions by using fluid variables.

Mohammadipour, Succi, and Niazmand (2018) simulated a flow governed by the force
balance between the centrifugal force and the pressure gradient in the radial direction using
LBM, presenting a comparison between their results with analytical solutions, which are the
tangential velocity and the pressure in dimensionless form, respectively:
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D\
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=
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)
, (2.9)

where l is the angular velocity, '★ = A
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where ? is the pressure, d the zero-order moment in LBM (will be discussed further) and ?★
'='1

the pressure in the inner cylinder.
White (2006, p. 110) presents many viscous flow solutions, but a pure Poiseuille flow

between plates is going to be a good similarity to validate the use of forces (will be presented
further in section 3.3) in our annulus study case. With a constant pressure gradient (d?

dG ) as
presented in Figure 6, simple equations to express the velocity and total volume rate of flow are
obtained, respectively, as follow:
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where*<0G is given by:

*<0G =

(
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)
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, (2.12)

and
& =

4
3
ℎ*<0G . (2.13)

Figure 6 – Pure Poiseuille flow between parallel plates.

Source: Adapted from White (2006, p. 98).

On the other hand, applying the viscous flow from White (2006, p. 114) studies directly
to concentric circular annulus (what we are most interested in), it is possible to express the
solutions to the velocity and total volume rate of flow, respectively:

* =
d?/dG

4`

[
'2

2 − A
2 + ('2

2 −'
2
1)

ln('2/A)
ln('1/'2)

]
, (2.14)

and

& =
c

8`

(
−d?

dG

) [
'4

2 −'
4
1 −
('2

2 −'
2
1)

2

ln('2/'1)

]
. (2.15)

The Taylor-Couette flow presented in this subsection is similar to the problem found in
the petroleum industry. We are considering that the inner cylinder is rotating, all along its length,
just like in drilling engineering. The outer cylinder will not rotate because, of course, represents
the formation (wellbore wall).



3 METHODOLOGY

The methodology that is applied in this thesis is the LBM, especially because it has a solid
physical foundation, is stable, and seeks to connect its dynamics to macroscopic conservation
equations of fluids, apart from having simple and efficient implementations (KRÜGER et al.,
2017). To present all the methodology development, we will divide this chapter into sections,
each one with its importance and contribution to the analysis.

3.1 THE LATTICE BOLTZMANN EQUATION

In this section, we will describe the particle distribution, velocity set, moments, and
important basic particularities that are required to understand the LBM.

3.1.1 Particle Populations

The density of particles are represented by the particle populations, also called as
discrete-particle distribution function 58(r, C) according to Equation (3.1), which is related to
velocity 222i at position r and time t. Moreover, there are velocity sets that are used to solve the
NSE, denoted by D3Q@ (where 3 is the number of spatial dimensions and @ is the velocity set
number), among which the most commonly used are D1Q3, D2Q9, D3Q15, D3Q19, and D3Q27
(KRÜGER et al., 2017):

58 (AAA + 2228, C +1) = 5 (4@)
8
(AAA, C) + (1− g−1) 5̂ (=4@)

8
(AAA, C), (3.1)

considering that 5 (4@)
8

is the equilibrium particle distribution and 5̂
(=4@)
8

is the regularized
non-equilibrium particle distribution, and g is the relaxation time. The last term in Equation 3.1 is
the Bhatnagar-Gross-Krook (BGK) regularized collision operator (Ω8). In this work the D3Q19
velocity set was used, this because we intend to study the 3D fluid flow inside the annulus.

It is also essential to express that, according to Hegele et al. (2018), the relaxation time
(g) is tuned to set the Reynolds number through the viscosity:

a =
g− 1

2

02
B

. (3.2)

Still, another indispensable parameter we use is the pressure (isothermal), which is
calculated by:

? = 22
Bd, (3.3)

where 2B is the speed of sound.

The equilibrium depends on the local quantities density and fluid velocity DDD, which is
found by:

DDD(AAA, C) = dD
DD(AAA, C)
d(AAA, C) , (3.4)
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where we can write:

d =
∑
8

58 =
∑
8

5
4@

8
, (3.5)

and

dDDD =
∑
8

582228 =
∑
8

5
4@

8
2228 . (3.6)

3.1.2 Particle Regularization and its Moments

To regularize the particle distribution function, Equation (3.7) define the moments of
this distribution, being zeroth-order (d), first-order (dDU) and second order (d< (2)

UV
), respectively.

The XUV term is the Kronecker delta, 0B the scaling factor (
√
(3) for the D3Q19 velocity set),

and 68 is the particle distribution function or regularized particle distribution function (LATT;
CHOPARD, 2006; MONTESSORI et al., 2014):{

d, dDU, d<
(2)
UV

}
=

∑
8

68
{
1, 28U, 28U28V − XUV/02

B

}
. (3.7)

The equilibrium particle distribution function 5 (4@) , is expressed by Equation (3.8)
applying Einstein notation (STOVER; WEISSTEIN, 2021) and considering the second-order
velocity expansion in the Hermite polynomials (ℋ) (PHILIPPI et al., 2006; SHAN; YUAN;
CHEN, 2006):

5
(4@)
8
(AAA, C) = dF8 (1+ 02

BDU28U +
1
2
04
BDUDVℋ

(2)
UV,8
), (3.8)

where F8 are the quadrature weights that depend on the direction 2228. The second-order moments
are expressed by:

5̂
(=4@)
8
(AAA, C) = 1

2
dF80

4
B

[
<
(2)
UV
−DUDV

]
ℋ
(2)
UV,8

. (3.9)

Finally, the regularization procedure is completed as Equation (3.10) (MATTILA;
PHILIPPI; HEGELE JR., 2017; COREIXAS et al., 2017):

5̂8 (AAA, C) = 5 (4@)8
(AAA, C) + 5̂8

(=4@) (AAA, C). (3.10)

One fundamental point to be highlighted is that in regularization, the particle distributions
are allocated to the subspace where they arrange themselves. It is a process that gives information
to each neighboring distribution. In addition, the high-order moments are filtered in this process.
So, e.g., the third- and fourth-order moments, when summed, respectively, they are equal to zero.
Taking all these considerations into account makes the use of the regularization process a great
advantage in dealing with high-Reynolds number simulations.

On the other hand, for the 58 (non-regularized), we do not modify the terms we use in the
way it arrives at the site. And, of course, the high-order moments are not filtered. When summed,
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they are not equal to zero, e.g., the third- and fourth-order moments. The non-regularized particle
distributions make use of the ”pure” BGK.

We must say that LBM solves the Boltzmann equation, which is at least in theory,
more general than the NSE. The NSE describes the behavior of fluid flow in the continuum
approximation, but the Boltzmann equation is a more detailed description of the behavior since
it is based on a statistical over the movement of fluid molecules. Therefore, it can be applied to
cases where the NSE are no longer accurate. Generally, the LBM has advantages over the NSE
solver for multi-phase flows, non-Newtonian flows, and small-scale flows where the continuity
approximation in the NS equation does not hold (KRÜGER et al., 2017).

Still, another point in the use of LBM is the Chapman-Enskog analysis, which we will not
describe in a detailed way, but can be generally described as the analysis that shows the lattice
Boltzmann equation can be actually used to simulate the behavior of fluids, as described above.
While it was previously looked at the macroscopic behavior of the undiscretized Boltzmann
equation, and found that it behaves according to the continuity equation and a general Cauchy
momentum equation with an unknown stress tensor, Chapman-Enskog analysis developed similar
methods of finding macroscopic equations from the Boltzmann equation with Boltzmann’s
original collision operator (KRÜGER et al., 2017). We can say that this analysis establishes the
connection between the “mesoscopic” LBE and the macroscopic mass and momentum equations.

3.1.3 D3Q19 and Boundary Sites

By itself, the regularization procedure of LB does not necessarily address boundaries
(HEGELE et al., 2018). Thus, from the regularization procedure of particle distribution function,
boundary conditions may be found. (LATT et al., 2008; MALASPINAS; CHOPARD; LATT,
2011). With the sum of the still-unknown regularized distribution at the boundaries node, it
is possible to obtain the second-order particle moment from Equation (3.11), which is also
expressed with the regularized particle distribution function, as shows Equation (3.12).∑

8∈�B
58ℋ

(2)
UV,8
+
∑
8∉�B

5̂8ℋ
(2)
UV,8

= d<
(2)
UV
. (3.11)

d<
(2)
UV
=

∑
8∈�B

5̂8ℋ
(2)
UV,8
+
∑
8∉�B

5̂8ℋ
(2)
UV,8
, (3.12)

where �B is the incoming velocity set. Through second-order moment decomposition to
regularized particle distribution function (considering belonging and not belonging particle
distribution to an �B) combined to Equation (3.11), equivalence is established between the sum
of 58 function (regularized and not-regularized), according to Equation (3.13), leading to a set of
seven equations when using D3Q19 distribution.∑

8∈�B
58ℋ

(2)
UV,8

=
∑
8∈�B

5̂8ℋ
(2)
UV,8

. (3.13)
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In a nutshell, LBM consists of collision and streaming. The collision is simply an algebraic
local operator, which calculates the density (zeroth-order moment) and the macroscopic velocity
(first-order moment) to find the equilibrium distributions 5 (4@)

8
and then the post-collisional

distribution functions. After that, the resulting distribution is streamed to neighboring nodes
(KRÜGER et al., 2017).

When considering Dirichlet boundaries, the velocity DDD is known, in principle. Then, with
mass conservation during the process of particles collision, the boundaries are given by:

∑
8∈�B

58 (r, C) =
∑
8∈$B

58 (r+ c8, C +1) = (1− g−1)
∑
8∈$B

5̂8 (r, C) + g−1
∑
8∈$B

5
(4@)
8
(r, C). (3.14)

It is possible to see in Figure 7 the 3D simulation of hydrodynamic velocity set of �3&19.
Compared to �3&27, requires 40% less memory and computing power. Thus, its velocities and
weights are presented in Table 3.

Figure 7 – D3Q19 velocity sets. The cube origin of the system of coordinates is situated at the
center of the grid.

Source: Hegele et al. (2018).

Table 3 – D3Q19 velocity set in explicit form.
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
FFF8

1
3

1
18

1
18

1
18

1
18

1
18

1
18

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

2228G 0 +1 -1 0 0 0 0 +1 -1 +1 -1 0 0 +1 -1 +1 -1 0 0
2228H 0 0 0 +1 -1 0 0 +1 -1 0 0 +1 -1 -1 +1 0 0 +1 -1
2228I 0 0 0 0 0 +1 -1 0 0 +1 -1 +1 -1 0 0 -1 +1 -1 +1

Source: Krüger et al. (2017).

The incoming particles to the site index set �B are defined by �B ={i | r - 2228 is a fluid site},
and in the opposite direction we have the outgoing particles from the site index set $B is given by
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$B ={j | 222 9 = −−−2228, 8 ∈ �B} (HEGELE et al., 2018). An example of an outgoing corner boundary
site is shown in Figure 8, which is located at the point (G, H, I) = (0,0,0) with normal vectors
given by =̂==1 = (0,0,−1), =̂==2 = (−1,0,0) and =̂==3 = (0,1,0). It is expressed by an intersection of
three perpendicular planes defined by these normals.

Figure 8 – Outgoing vectors of a corner boundary site. Seen vectors set: � = {0,2,4,6,12,14,17}
and $B = {0,1,3,5,8,10,15}.

Source: Hegele et al. (2018).

It is possible to see an example of an edge boundary site, which is located at the point
(G, H, I) = (0,0,0) with normal vectors given by =̂==1 = (0,0,−1) and =̂==2 = (−1,0,0), on Figure 9.
It comprehends the intersection of two perpendicular planes, with these two normals.

Figure 10 and Figure 11 present an example of a face boundary site, which are located at
the point (G, H, I) = (0,0,0) with only one normal vector given by =̂==1 = (0,0,−1), such that are
outgoing and incoming vectors, respectively.

3.1.4 General Explicit Equations for the Moments

As explained by Hegele et al. (2018), Dirichlet-type of boundary conditions lead to a
system of equations for the unknown moments d and < (2)

UV
, and the known moments DG1 , DG2 and

DG3 , since 5̂ is only a function of d, DV and < (2)
UV

. Then, we can observe that a nonlinear system

of equations will be created, that is why we consider d< (2)
UV

.

Diagonal moments d�<
(2)
G1G1,�

, d�<
(2)
G1G1,�

and d�<
(2)
G1G1,�

, and non-diagonal moments
d�<

(2)
G1G2,�

, d�<
(2)
G1G3,�

and d�<
(2)
G2G3,�

come from Equation (3.13). For the first diagonal one,
d�<

(2)
G1G1,�

, considering the right-hand side of Equation (3.13), is solved relating the geometrical
parameters that form the boundaries, so:
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Figure 9 – Outgoing vectors of an edge boundary site. Seen vectors set: � =

{0,2,4,5,6,12,14,16,17,18} and $B = {0,1,2,3,5,7,8,9,10,15}.

Source: Hegele et al. (2018).

Figure 10 – Outgoing vectors of a face boundary site, which the set is $B =

{0,1,2,3,4,5,7,8,9,10,12,13,15,16}.

Source: Hegele et al. (2018).

d�<
(2)
G1G1,�

= d(%(1)123 +DG1%
(D)
123 +DG2(

(D)
123 +DG3(

(D)
132) + d<

(2)
G1G1%

(<)
123 + d<

(2)
G2G2(

(<)
123

+ d< (2)G3G3(
(<)
132 + d<

(2)
G1G2

1
6
;1;2 + d< (2)G1G3

1
6
;1;3− d< (2)G2G3

1
12
;2;3,

(3.15)

where:

%
(1)
?@A = −

1
12
+ 2

27
X̃;? +

1
54
X̃;? (X̃;@ + X̃;A ) −

1
108
(X̃;@ + X̃;A + X̃;@ X̃;A ), (3.16)
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Figure 11 – Incoming vectors of a face boundary site, which the set is �B =

{0,1,2,4,5,6,7,10,11,12,14,16,17,18}.

Source: Hegele et al. (2018).

%
(D)
?@A = ;?

(
2
9
+
X̃;@

18
+
X̃;A

18

)
, (3.17)

(
(D)
?@A = ;@

(
X̃;?

18
− 1

36
−
X̃;A

36

)
, (3.18)

%
(<)
?@A =

11
24
+ 2

9
X̃;? +

7
72
(X̃;@ + X̃;A ) +

X̃;?

18
(X̃;@ + X̃;A ) +

1
72
X̃;@ X̃;4 , (3.19)

(
(<)
?@A =

1
12
− 1

36
(X̃;? + X̃;@ + X̃;A ) −

1
36
(X̃;? + X̃;@ )X̃;A +

1
18
X̃;? X̃;@ , (3.20)

and the modified function X is given by:

X̃;: =


1, if ;: = 0,

0, otherwise,
(3.21)

where : = 1,2,3 assumes any permutation of the coordinates and ; 9 =±1 expresses the orientation
of the planes.

The Equations (3.16) to (3.20) depend exclusively on geometrical parameters given by
the definition of the boundary, and the indices {?, @, A} can assume all of the permutations of
the set {1, 2, 3}. Similarly, the two other diagonal moments can be determined, expressed as:

d�<
(2)
G2G2,�

= d(%(1)213 +DG2%
(D)
213 +DG1(

(D)
213 +DG3(

(D)
213) + d<

(2)
G2G2%

(<)
213 + d<

(2)
G1G1(

(<)
213

+ d< (2)G3G3(
(<)
231 + d<

(2)
G1G2

1
6
;1;2 + d< (2)G2G3

1
6
;2;3− d< (2)G1G3

1
12
;1;3,

(3.22)
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<
(2)
G3G3,�

= d(%(1)312 +DG3%
(D)
312 +DG1(

(D)
312 +DG2(

(D)
312) + d<

(2)
G3G3%

(<)
312 + d<

(2)
G1G1(

(<)
312

+ d< (2)G2G2(
(<)
321 + d<

(2)
G1G3

1
6
;1;3 + d< (2)G2G3

1
6
;2;3− d< (2)G1G2

1
12
;1;2.

(3.23)

In sequence, the non-diagonal moment, d�<
(2)
G1G2,�

, can be found as:

d�<
(2)
G1G2,�

= d(& (1)12 +DG1&
(D)
12 +DG2&

(D)
21 ) + d<

(2)
G1G1

1
12
;1;2 + d< (2)G2G2

1
12
;1;2

− d< (2)G3G3

1
24
;1;2 + d< (2)G1G2&

(<)
12 ,

(3.24)

where
&
(1)
?@ =

1
36
;?;@, (3.25)

&
(D)
?@ =

1
12
(1+ X̃;? );@, (3.26)

&
(<)
?@ =

1
4
(1+ X̃;? ) (1+ X̃;@ ). (3.27)

The Equations (3.25) to (3.27) depend exclusively on geometrical parameters given by
the definition of the boundary, as well as the diagonal moments. Analogously, the two other
non-diagonal moments can be determined based on symmetry arguments, written as:

<
(2)
G1G3,�

= d(& (1)13 +DG1&
(D)
13 +DG3&

(D)
31 ) + d<

(2)
G1G1

1
12
;1;3 + d< (2)G3G3

1
12
;1;3

− d< (2)G2G2

1
24
;1;3 + d< (2)G1G3&

(<)
13 ,

(3.28)

<
(2)
G2G3,�

= d(& (1)23 +DG2&
(D)
23 +DG3&

(D)
32 ) + d<

(2)
G2G2

1
12
;2;3 + d< (2)G3G3

1
12
;2;3

− d< (2)G1G1

1
24
;2;3 + d< (2)G2G3&

(<)
23 .

(3.29)

Last, the regularized 5̂8 and equilibrium 5
(4@)
8

particle functions, with mass conservation,
are expanded and summed up in the outgoing set index $B, obtaining:

d� = d('(1)123 +DG1'
(1)
123 +DG2'

(D)
231 +DG3'

(D)
312) + dl

(
D2
G1

04
B

2
%
(1)
123 +D

2
G2

04
B

2
%
(1)
231

+D2
G3

04
B

2
%
(1)
312

)
+DG1DG20

4
B&
(1)
12 +DG1DG30

4
B&
(1)
13 +DG2DG30

4
B&
(1)
23 + (1−l)(

d<
(2)
G1G1

04
B

2
%
(1)
123 + d<

(2)
G2G2

04
B

2
%
(1)
231 + d<

(2)
G3G3

04
B

2
%
(1)
312 + d<

(2)
G1G2

04
B

2
&
(1)
12

+d< (2)G1G3

04
B

2
&
(1)
13 + d<

(2)
G2G3

04
B

2
&
(1)
23

)
,

(3.30)
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then:

'
(1)
?@A =

7
12
+ 1

9
(X̃;? + X̃;@ + X̃;A ) +

1
36
(X̃;? X̃;@ + X̃;? X̃;A + X̃;@ X̃;A ), (3.31)

'
(D)
?@A = −

1
3
;? (1+

1
4
(;@ + ;A)). (3.32)

3.1.5 Explicit Solution for the Boundary Conditions

To make it clear, in this subsection, the boundary conditions are presented explicitly,
especially considering the corners, edges, and faces, which are given in the following
sub-subsections.

3.1.5.1 Corners

The corners can be represented by the signs of ;1, ;2 and ;3. Therefore, as a function of
the modified Kronecker delta, X̃;1 = X̃;2 = X̃;3 = 0. For zeroth-order moments, the corner solutions
are:

d = d�
1�

3�
, (3.33)

where

1� =
1
24
(1−l)

(
<
(2)
G1G1,�
+< (2)

G2G2,�
+< (2)

G3G3,�
−2;1;2< (2)G1G2,�

−2;1;3< (2)G1G3,�

−2;2;3< (2)G2G3,�

)
,

(3.34)

and

3� =4+10l+ (4l−12)
(
;1DG1 + ;2DG2 + ;3DG3

)
−9l

(
D2
G1 +D

2
G2 +D

2
G3

)
+6l

(
;1;2DG1DG2 + ;1;3DG1DG3 + ;2;3DG2DG3

)
.

(3.35)

For the second-order moments, we have:

d<
(2)
G1G1,�

=
1
3
d�

(
10< (2)

G1G1,�
−2< (2)

G2G2,�
−2< (2)

G3G3,�
−6;1;2< (2)G1G2,�

−6;1;3< (2)G1G3,�

−6;2;3< (2)G2G3,�

)
+ 2

3
d(1−2;1DG1 + ;2DG2 + ;3DG3).

(3.36)

By symmetry and in analogous way, it is possible to express the terms for d< (2)
G2G2,�

and d< (2)
G3G3,�

.
Taking, for example, d< (2)

G2G2,�
, and swapping indices 1 and 2, but leaving index 3 alone.

For the cross terms,

d<
(2)
G1G2,�

=
1
3
d�

(
−3;1;2< (2)G1G1,�

−3;1;2< (2)G2G2,�
+3;1;2< (2)G3G3,�

+17< (2)
G1G2,�

−;2;3< (2)G1G3,�
− ;1;3< (2)G2G3,�

)
− 2

9
d(;1;2 + ;1DG2 + ;2DG1 + ;1;2;3DG3).

(3.37)

Also by symmetry and in analogous way, it is possible to express the terms for d< (2)
G1G3,�

and
d<
(2)
G2G3,�

. It can be done by taking, for example, d< (2)
G1G3,�

, and swapping indices 1 and 3, but
leaving apart index 2.
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3.1.5.2 Edges

The edges can be represented by the orientations ;1 and ;2. Thus, as a function of the
modified Kronecker delta, X̃;1 = X̃;2 = 0 and X̃;3 = 1 with ;3 = 0. For zeroth-order moments, the
edges solutions are:

d = d�
1�

3�
, (3.38)

where

1� = 1656−216(l−1)
[
8< (2)

G1G1,�
+8< (2)

G2G2,�
−2< (2)

G3G3,�
−19;1;2< (2)G1G2,�

]
(3.39)

and

1� =720−660(;1DG1 + ;2DG2) +l(430−30(;1DG1 + ;2DG2) +414;1;2DG1DG2

−690(D2
G1 +D

2
G2) −69D2

G3).
(3.40)

And then, for the second-order moments, the expressions are:

d<
(2)
G1G1,�

=
1
23
d�

(
47< (2)

G1G1,�
+< (2)

G2G2,�
−6< (2)

G3G3,�
−34;1;2< (2)G1G2,�

)
− 2

69
d(−8+15;1DG1 +8;2DG2),

(3.41)

and

d<
(2)
G3G3,�

=
2
69
d�

(
−9< (2)

G1G1,�
−9< (2)

G2G2,�
+54< (2)

G3G3,�
+30;1;2< (2)G1G2,�

)
− 4

69
d(1+ ;1DG1 + ;2DG2).

(3.42)

By the symmetry, the relation for d< (2)
G2G2,�

comes from Equation 3.41 exchanging indices 1 and
2.

The cross-terms are given by:

d<
(2)
G1G2,�

=
1
23
d�

(
;1;2

(
−17< (2)

G1G1,�
−17< (2)

G2G2,�
+10< (2)

G3G3,�

)
+118< (2)

G1G2,�

)
− 19

69
d(;1;2 + ;1DG2 + ;2DG1),

(3.43)

and
d<
(2)
G1G3,�

= 2d�< (2)G1G3,�
− 1

3
;1dDG3 . (3.44)

By the symmetry, the relation for d< (2)
G2G3,�

comes from Equation 3.43 exchanging indices 1 and
2.

3.1.5.3 Faces

The faces can be represented by ;1 ≠ 0 (the orientation of the face is defined by its sign)
only, then ;2 = ;3 = 0. Thus, as a function of the modified Kronecker delta, X̃;2 = X̃;3 = 1 and
X̃;1 = 0. For zeroth-order moments, the faces solutions are:

d = d�
9(1−l)< (2)

G1G1,�
+12

l(1−6D2
G1) −3;1DG1 (1+l) +9

. (3.45)



44

Finally, for the second-order moments, the expressions are given by:

d<
(2)
G1G1,�

=
3
2
d�<

(2)
G1G1,�
− 1

2
;1dDG1 +

1
6
d, (3.46)

d<
(2)
G2G2,�

=
4
33
d� (10< (2)

G2G2,�
−< (2)

G3G3,�
), (3.47)

and

d<
(2)
G3G3,�

=
4
33
d� (10< (2)

G3G3,�
−< (2)

G2G2,�
). (3.48)

It can be noted that the second-order moments of Equation 3.47 and Equation 3.48 are similar,
due to symmetry.

At last, for the cross-terms,

d<
(2)
G1G2,�

= 2d�< (2)G1G2,�
− 1

3
;1dDG2 , (3.49)

d<
(2)
G1G3,�

= 2d�< (2)G1G3,�
− 1

3
;1dDG3 , (3.50)

d<
(2)
G2G3,�

= d�<
(2)
G2G3,�

. (3.51)

It can be seen that the second-order moments of Equation 3.49 and Equation 3.50 are similar,
due to symmetry.

To clarify the difference between this work from the Hegele et al. (2018) one, we are
going to explain how do we have calculated the new 256 different boundary sites in the following
subsection.

3.1.6 New Boundary Sites

As we showed above, Hegele et al. (2018) presented 12 edges, 8 corners and 6 faces,
which give 26 different boundaries. But, in order to improve their work and define boundary
sites that could deal with more general cases, we found 256 different boundaries. The lattices
take role as fluid or solid, and our velocity sets are established from 8 normal vectors: {(-1, -1,
-1), (-1, -1, 1), (-1, 1, -1), (-1, 1, 1), (1, -1, -1), (1, -1, 1), (1, 1, -1), (1, 1, 1)}. By that, we go for
28 = 256.

To determine the new boundary sites, initially, the zeroth- and first-order moments were
established. After calculating the Hermite polynomials, it was consequently possible to found
the non- and regularized second-order moments.

Further, to observe which of these velocities sites were belonging to a certain boundary, it
was necessary to associate each cubic normal vector, as showed above, to direction sets (direction
list). For example, the (-1, -1, -1) relates every associated direction that evolves both numbers −1
and 0, but not the number 1.
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With this, it was possible to value the velocity sites attached to the new boundary sites,
where 7 velocity sites were present in 8 boundaries, 10 velocity sites in 12 boundary sites, 12
velocity sites in 12 boundary sites, 13 velocity sites in 28 boundary sites, 14 velocity sites in 6
boundary sites, 15 velocity sites in 24 boundary sites, 16 velocity sites in 40 boundary sites, 17
velocity sites in 54 boundary sites, 18 velocity sites in 36 boundary sites, and the massive 19
velocity sites were present in 35 boundary sites. These determinations give a complex of 255
boundary sites, but of course, we have the totally solid one (which is boundary number 0) and
improve to a total of 256 boundary sites. The boundary number 255 corresponds to the total fluid
one.

To elucidate, if we get, for example, cubic {(-1, -1, -1), (-1, 1, -1), (1, -1, -1)}, following
the order presented in the beginning of this subsection, we have 20 + 22 + 24 = 21, which is
corresponding to the boundary site number 21, as we see in Figure 12.

Figure 12 – Region plot of the boundary site number 21. Yellow corresponds to the fluid, and
white to the solid.

Source: Elaborated by the author (2021).

The determination of these 256 boundary sites is a decisive improvement on the work of
Hegele et al. (2018). This is because the authors only deal with faces, edges, and corners, which
are also took into account in the present work.

Still, taking cubic {(-1, -1, -1), (-1, -1, 1), (-1, 1, -1), (1, 1, -1)}, we have 20+21+22+26 =

71, corresponding to the boundary site number 71, as follows Figure 13.
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On the other hand, with cubic {(-1, -1, 1), (1, 1, 1)}, we have 21+27 = 130, corresponding
to the boundary site number 130. Figure 14 illustrates this boundary.

Figure 13 – Region plot of the boundary site number 71. Yellow corresponds to the fluid, and
white to the solid.

Source: Elaborated by the author (2021).

Figure 14 – Region plot of the boundary site number 130. Yellow corresponds to the fluid, and
white to the solid.

Source: Elaborated by the author (2021).
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Finally, with cubic {(-1, -1, -1), (-1, -1, 1), (1, -1, 1), (1, 1, -1), (1, 1, 1)}, the expression
20 +21 +25 +26 +27 = 227 leads to the boundary site number 227, as shows Figure 15.

Figure 15 – Region plot of the boundary site number 227. Yellow corresponds to the fluid, and
white to the solid.

Source: Elaborated by the author (2021).

Expressing these new boundary sites in general and explicit equations is tough and
complex work, especially because there are too many different terms and boundaries themselves.
So, for objectivity, we chose to do not to write them here.

3.2 BOUNDARY AND INITIAL CONDITIONS

As well as other CFD methods, LBM calls for proper boundary and initial conditions to
be specified to solve the considering problem, determining the existence and uniqueness of the
solution. On the other hand, from a physical standpoint, although a general theoretical framework
to model fluid flows relies on the same set of the equation, i.e., the NSEs, the formulation of the
physical problem remains incomplete as the NSEs by themselves have no information about
the particular flow one. This information is contained in the boundary and initial conditions
(KRÜGER et al., 2017).

We can see a typical cycle of the LBM algorithm in Figure 16, which expresses the
importance of boundaries consideration in the implementation, even though they are applied to
a small portion of the fluid domain. Compared to other traditional numerical methods, LBM
presents a difficult task to define the correct boundaries because the degrees of freedom in the
system of mesoscopic variables (more populations 58) are higher than the macroscopic ones
(moments).
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Figure 16 – Overview of a typical cycle of the LBM algorithm, where the initial conditions are
intrinsically considered in the initialization.

Source: Krüger et al. (2017).

Krüger et al. (2017) bring that LBM presents two groups which the discretizations of the
boundary conditions belong, despite having considerable methods to define boundaries:

• Link-wise: boundary lies on lattice links;

• Wet-node: boundary is located on lattice nodes.

The link-wise shifts the boundary nodes from a physical boundary approximately midway
between the solid and the boundary nodes (the exact boundary location is not fixed). It has the
advantage that having the lattice nodes located at the center of the computational cells, its surface
will coincide with the borders of the physical domain. By contrast, wet-node lies on the physical
boundary, having the vertices set in the computational cells to ensure it will coincide with the
borders of the physical domain (KRÜGER et al., 2017). Figure 17 shows these two different
schemes at the same domain. But, in this work, we consider the regularization process for the
boundaries, as explained in subsection 3.1.2.

Nonetheless, the complexity of boundary conditions in a 3D simulation consists
specifically in the numerical implementation rather than the mathematical concept. This is
because the 3D lattice contains lots of discrete velocity vectors more than 2D ones (more
unknown population). We can observe these differences more clearly in the Table 4:

Table 4 – Unknown populations in different lattices and boundary configurations.
Configuration D2Q9 D3Q15 D3Q19 D3Q27

Face - 5 5 9
Edge (concave) 3 8 9 15

Corner (concave) 5 10 12 17
Source: Adapted from Krüger et al. (2017).

According to Krüger et al. (2017), the two techniques presented above are not equally
simple to extend to 3D:
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Figure 17 – Discretization scheme of a domain. Fluid nodes are the (◦) ones, and boundary nodes
the (•) ones.

Source: Krüger et al. (2017).

• Link-wise: specify the missing populations based on simple reflection rules (naturally
extend to 3D);

• Wet-node: based on specific rules incorporating the consistency with bulk dynamics, and
also often modify just the unknown boundary populations (non-trivial extension to 3D).
Formulations that replace all populations are simpler to implement in 3D.

Finally, dealing with initial conditions requires a general step, called initialization
(as we can see in Figure 16). The initial conditions are set by the physics of the problems
(time-dependent), and the initialization is required even in steady problems (part of the numerical
procedure, regardless of the time-dependence). No matter what about the simulation using LBM
is, we have the following categories which it occurs (KRÜGER et al., 2017):

• Steady flows: LBM is generally not well suited for a steady problem, taking a larger
number of iteration steps compared to methods tailored for steady problems. All unphysical
transients caused by the initial state decay after some time;

• Unsteady flows after long times: LBM deals very well in unsteady problems like
suspension flows, flow instabilities, or fluid mixing. The statistical long-time behavior of
such systems is usually independent of the initial state;

• Time-periodic flows: Fully converged time-periodic flows do not depend on the details of
initialization, but it can take a long time until undesired transients have decayed. Womersley
flow is an example of time-periodic flow;

• Initialization-sensitive flows: In some situations, the entire simulation depends on the
initial state, where any error in this one can propagate in time and detrimentally affect the
accuracy of the entire simulation.
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Last, the implementation of the algorithm consists of starting the simulation with the
initialization followed by collision, as the way the Boltzmann equation is discretized. The
equilibrium distribution, which is used for collision, is calculated using the known velocity and
pressure fields, then the streaming is performed. Still, the equilibrium and non-equilibrium parts
of the populations after initialization assume a state compatible with the state after streaming,
but before the collision.

3.3 FORCES

Forces are an important factor in many hydrodynamic problems, which comprehends
mostly as force density instead of forces. They can be obtained with the integral operator at
surface stresses or bulk force densities. Gravitational acceleration 666, for example, can be related
into a force density ���6, such as ���6 = d666. When two fluids with different densities are mixed or
the temperature in a fluid is non-homogeneous, density gradients in the gravitational field lead
to buoyancy effects and phenomena like the Rayleigh-Bénard instability (convection patterns
develop when warmed fluid rises from a hot surface and falls after cooling) or Rayleigh-Taylor
instability (layer of denser fluid descends as lower-density fluid below it rises) (KRÜGER et al.,
2017).

We can also evaluate forces in a rotating fluid, charged or magnetic particles immersed in
a fluid, driving mechanisms of the pressure gradient field (in incompressible fluids). Especially
working with LBM, forces are treated, in general, as presents Figure 18. With a BGK collision
operator, we determine the force density ��� for the time step; compute the fluid density and
velocity as:

d =
∑
8

58, DDD =
1
d

∑
8

582228 +
���ΔC

2d
; (3.52)

and posteriorly the equilibrium populations to obtain the collision operator:

Ω8 =
1
g

(
58 − 5 4@8

)
; (3.53)

iterate the source term:

(8 =

(
1− ΔC

2g

)
F8

(
28U

22
B

+
(28U28V − 22

BXUV)DV
24
B

)
�U, (3.54)

where source (8 and forcing �8 terms are related as (8 =
(
1− 1

2g

)
�8; apply collision and source to

get the post-collision particle distribution:

5★ = 58 + (Ω8 + (8)ΔC; (3.55)

propagate them; and place a new time step.

It is important to point that ��� depends on the physics and is not given by the LB algorithm
itself. Still, the velocity DDD enters the equilibrium distributions and is also the macroscopic fluid
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Figure 18 – Overview of a typical cycle of the LBM algorithm, considering forces but not
boundary conditions.

Source: Krüger et al. (2017).

velocity (can be interpreted as average velocity in the time step). For this relation, we explore the
discretization in velocity space and space and time one, respectively, in the following subsections,
considering the force schemes as Guo, Zheng, and Shi (2002) proposed above (also Hermite
expansion). They analyzed the lattice effects attached to the presence of a force, especially
pointing that the considerations they had in their study removed undesired derivatives in the
continuity and momentum equation due to time discretization artifacts.

3.3.1 Forcing terms representation

As we apply the forcing term to the LBE, we get the new modified particle distribution
function 5 8 (AAA, C) as:

5 8 (AAA + 2228, C +1) = 5 8 (AAA, C) +l!�
(
5
(4@)
8
(AAA, C) − 5 8 (AAA, C)

)
+

(
1− l!�

2

)
�8 (AAA, C), (3.56)

where l!� = 1/g is the modified collision frequency, and g = g + � is the modified relaxation
time (� = 0.5 is a model dependent parameter).

Also, we can express the �8 term as:

�8 = F8

(
02
B�U28U + 04

B�UDVℋ
(2)
UV,8

)
, (3.57)

where we can rewrite �UDV as sum of its symmetric and anti-symmetric counterparts since it
contracts with the symmetric tensor ℋ (2)

UV,8
:

�UDVℋ
(2)
UV,8

=

(
1
2
(�UDV +�VDU) +

1
2
(�UDV −�VDU)

)
ℋ
(2)
UV,8

=
1
2
(�UDV +�VDU)ℋ (2)

UV,8
, (3.58)

then �8 goes by:

�8 = F8

(
02
B�U28U +

1
2
04
B (�UDV +�VDU)ℋ

(2)
UV,8

)
. (3.59)
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Consequently, we have new moments for the 5 8 parameter, which are:

d(AAA, C) =
∑
8

5 8d(AAA, C), (3.60)

d(AAA, C)DU (AAA, C) =
∑
8

5 8 (AAA, C)28U, (3.61)

and
d(AAA, C)< (2)

UV
(AAA, C) =

∑
8

5 8 (AAA, C)ℋ
(2)
UV,8

. (3.62)

To make it clear, we must show that the hydrodynamical velocity is expressed as:

DU = DU +
1

2d
�U . (3.63)

After this, we can also apply the regularization procedure to the modified distribution
function with the forcing term, denoted as 5̂ 8 (AAA, C). So:

5̂ 8 (AAA, C) = dF8
(
1+ 02

BDU28U +
1
2
04
B<
(2)
UV
ℋ
(2)
UV,8

)
, (3.64)

and Equation 3.56 goes by:

5 8 (AAA + 2228, C +1) = (1−l!�) 5̂ 8 (AAA, C) +l!� 5
(4@)
8
(AAA, C) +

(
1− l!�

2

)
�8 (AAA, C), (3.65)

or
5
′
8 = (1−l!�) 5̂ 8 +l!� 5

(4@)
8
+

(
1− l!�

2

)
�8 . (3.66)

Following the short form in Equation 3.66, we explicitly write the three moments. The
zeroth-order moment is:

d′ =
∑
8

5
′
8 = d, (3.67)

the first-order moment:

d′D′U =
∑
8

5
′
828U = (1−l!�)dDU +l!�dDU +

(
1− l!�

2

)
�U, (3.68)

where:
dDU = dDU −

�U

2
, (3.69)

also, dDU is the hydrodynamical used for the equilibrium distribution, and the one used for
streaming:

d′D′U = dDU +
�U

2
, (3.70)

then
d′D′U = dDU +�U, (3.71)

and for the second-order moment:

d′< (2)
′

UV
=

∑
8

5
′
8 (AAA, C)ℋ

(2)
UV,8

= (1−l!�)d< (2)UV +l!�dDUDV +
(
1− l!�

2

)
(�UDV +�VDU). (3.72)
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3.3.2 General Observations

In a general form, based on second-order velocity and space-time discretizations, we can
express LBE as:

58 (GGG + 2228ΔC, C +ΔC) − 58 (GGG, C) = [Ω8 (GGG, C) + (8 (GGG, C)]ΔC, (3.73)

often called Guo forcing. The fluid velocity in the presence of a force must be redefined to
guarantee the second-order space-time accuracy:

DDD =
1
d

∑
8

582228 +
���ΔC

2C
. (3.74)

As the Equation (3.74) enters the equilibrium distribution 5
4@

8
= 5

4@

8
(d,DDD) and therefore

the BGK collision operator Ω8 = −( 58 − 5 4@8 )/g, we can say that the fluid velocity in and the
equilibrium velocity DDD4@ are equivalent to Guo forcing. It is possible to generalise the forcing
method as:

DDD4@ =
1
d

∑
8

582228 + �
���ΔC

d
. (3.75)

If � value is deviated, the collision operator is modified, so to maintain the sumΩ8+(8 unchanged,
(8 also must be modified. In particular, � = 0 would lead to a term ∝ ∇∇∇ · ��� in the continuity
equation and another term ∝ ∇∇∇ · (DDD��� +���DDD) in the momentum equation.

3.4 QUANTIFYING ACCURACY FOR THE NUMERICAL SOLUTION

Statistically speaking, a simple procedure to quantify the error of a numerical simulation
consists in comparing it with a know analytical solution or even other simulation that is dealing
with the same problem, in a different mesh, for example. One of this procedures is the !2 error
norm, that consists on comparing the analytically (or other simulation) known quantity @0 (GGG, C),
which is generally a function of space and time, and the numerical simulation you implemented
@= (GGG, C), given as:

n@ (C) =

√∑
G (@= (GGG, C) − @0 (GGG, C))2∑

G @
2
0 (GGG, C)

. (3.76)

The sum runs over the entire spatial domain where @ is defined, and !2 error is sensitive to any
deviation from @0. It can also be used as a criterion for convergence to steady flows. As close as
the !2 error is to zero, means that both @s are accurate.



4 RESULTS AND DISCUSSIONS

In this chapter, we present the results of the simulations to evaluate and discuss the flow
inside an annulus using the LBM. We focused on validating our boundary conditions to the
proposed domain and compared them with some early works that also studied the problem.

We start discussing our results with forces. So, we have implemented it in a flow between
parallel plates with a pure Poiseuille flow to compare results to the analytical solutions of
velocity and volume rate of flow, according to Equation 2.11 and Equation 2.13 (WHITE, 2006),
respectively. We have fixed both �6I = 1×10−7 and g = 0.8. Also, we define 2ℎ = �. The stopping
criteria for all the simulations are always based on the observation of kinetic energy behavior. In
the first comparison, we noted that at the time step 250,000 with � = 200, the simulation had
already reached the steady-state, as follows Figure 19.

Figure 19 – The kinetic energy of a flow between parallel plates with � = 200.
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Source: Elaborated by the author (2021).

The velocity plot is illustrated in Figure 20, where the numerical solution presents to be a
little smaller than the analytical one. Still, the chosen �6I is considerably lower than the one set
by Krüger et al. (2017, p. 255), this because the select parameter was the best fit in this problem
simulations. The calculated total volume rate of the numerical solution is &=D< = 0.6567 and
analytical &0=0 = 0.6667.
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Figure 20 – Velocity flow between parallel plates with � = 200.
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Source: Elaborated by the author (2021).

The second geometry have reached the steady state at time step 1,000,000, which can be
observed in Figure 21.

Figure 21 – The kinetic energy of a flow between parallel plates with � = 400.
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In Figure 22, on the other hand, numerical velocity is closer to the analytical one. It
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is possible to note that the maximum velocity is four times higher than the one shown with
the � = 200 grid, doubling the mesh. The numerical total volume rate is &=D< = 5.2943 and
analytical &0=0 = 5.3333.

Figure 22 – Velocity flow between parallel plates with � = 400.

0 50 100 150 200 250 300 350 400

D

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

U
z

Source: Elaborated by the author (2021).

Figure 23 – The kinetic energy of a flow between parallel plates with � = 800.
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The kinetic energy with � = 800, can be seen in Figure 23. The steady state is reached at
time step 4,000,000.

Following the earlier idea, Figure 24 indicates an increased velocity, four times higher
than the one with � = 400, doubling again, the mesh grid. The valued total volume rate to this
numerical solution is &=D< = 42.5348 and analytical &0=0 = 42.6667.

Figure 24 – Velocity flow between parallel plates with � = 800.
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With Equation 3.76 we might evaluate the !2 norm to quantify the error of the numerical
simulation. It consists of comparing results with the analytical solution of the flow between
parallel plates simulations, where Table 5 presents that with � = 200, n@*I

is a high result, despite
Figure 20 seems to not express such big difference between numerical and analytical solutions,
and the n@& , on the other hand, explicit a low value. With � = 400, n@*I

decreases but yet still
a high value, and n@& also decreases presenting a good parameter. Finally, with � = 800, n@*I

decreases considerably if compared with � = 200 grid, as well as n@& . With this, we see that the
velocity presents reasonable results and the total volume rate seems a better resultant.

Table 5 – !2 error norm of a flow between parallel plates.
��� nnn@@@***III

nnn@@@&&&
200 0.1283 0.0149
400 0.0880 0.0073
800 0.0475 0.0031

Source: Elaborated by the author (2021).

White (2006) have also determined analytical solution of a flow between concentric
cylinders, which the velocity is expressed in Equation 2.14 and the volume rate of flow in
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Equation 2.15. Using same terms as in the flow between parallel plates, both �6I = 1×10−7 and
g = 0.8 were fixed. To a first comparison, kinetic energy is presented in Figure 25, which have
reached the steady state near the time step 4,000 with � = 25.

Figure 25 – Annulus flow: kinetic energy with � = 25.
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Figure 26 – Annulus flow: velocity with � = 25.
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Source: Elaborated by the author (2021).

The numerical solution presented a lower velocity than the analytical one, as we can
see in Figure 26. The narrow geometry is our first consideration to justify that results are away
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between both solutions. Once LBM works with Cartesian coordinates, the velocity faces lattice
corners impediment to enabling the fluid flow with the streaming and collision of particles. The
total volume rate of the numerical solution is &=D< = 0.2501 and analytical &0=0 = 0.2769.

Figure 27 – Annulus flow: kinetic energy with � = 50.
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Figure 28 – Annulus flow: velocity with � = 50.
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Doubling the mesh, another grid was implemented. The kinetic energy with a gap � = 50
is plotted in Figure 27. The steady-state is reached about the 16,000 time step. Numerical
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solution with � = 50 presented to be closer to the analytical one, when compared with � = 25,
but still with reasonable results. Figure 28 The valued total volume rate of the numerical solution
is &=D< = 4.4675 and analytical &0=0 = 4.6854.

The last simulation, which we have implemented using forces, takes a gap with � = 100,
where the kinetic energy is observed in Figure 29 reaching state steady near of time step 65,000.

Figure 29 – Annulus flow: kinetic energy with � = 100.

0 2 4 6 8 10

Time Step 104

0

1

2

3

4

5

6

7

K
in

e
ti
c
 E

n
e
rg

y

10-5

Source: Elaborated by the author (2021).

Figure 30 – Annulus flow: velocity with � = 100.
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The velocity is now better placed and closer in the numerical solution to the analytical
one. As a consequence, the total volume rate of the numerical solution is &=D< = 75.2504 and
analytical &0=0 = 77.0462.

To measure how close the numerical solution is to the analytical one, Table 6 shows the
!2 norm. With � = 25, it is clear that the geometry was too tight, leading to a high value of
error. n@& presented better results, but still greater than expected. As the mesh doubled, little
improvement was observed for the velocity and total volume rate, where n@*I

and n@& to the gap
with � = 50 seems lower. Last, with � = 100, the !2 norm of velocity and total volume rate still
decreasing when compared to the first two simulations.

Table 6 – !2 error norm of a flow in an annulus, using forces.
��� nnn@@@***III

nnn@@@&&&
25 0.1861 0.0971
50 0.1466 0.0465

100 0.1037 0.0233
Source: Elaborated by the author (2021).

After presenting and discussing the results using forces in the modeling, we are now
going to evaluate the flow between concentric cylinders, with the inner pipe rotating. At first,
a bi-dimensional annulus flow with fixed '4 = 10 for a constant [ = 5

7 was implemented. The
first analysis consists on comparing the numerical solution with the analytical one, following
Equation 2.9 and Equation 2.10 presented by Mohammadipour, Succi, and Niazmand (2018).

Figure 31 – Kinetic energy of a bi-dimensional annulus flow at '4 = 10.
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To start the comparison, we can check Figure 31 to observe the kinetic energy behavior.
We have implemented four different geometries varying the gap � but maintaining [ fixed. For
all four simulations, the kinetic energy behaves with close results. Close to the time step 20,000,
all four simulations have already reached a steady state.

As we are especially interested in the '4 number, a good parameter to evaluate is the
tangential velocity D\ . In Figure 32, the normalized tangential velocity for both numerical and
analytical solutions versus the dimensionless radial distance '★ are plotted. In general, they
kept a very close and straight profile all along the annulus grid, which seems to be an assertive
implementation. And of course, it is getting better and accurate as � increases, with � = 200 not
so easily discern for both solutions, presenting to be a good match.

Figure 32 – Normalized tangential velocity at '4 = 10.
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Source: Elaborated by the author (2021).

It is possible to remark a grid view of the tangential velocity for different �, as follow
Figure 33. For all the four simulations, the maximum velocity is different from each other, where
we believe that the geometry impacts significantly on the implementations. Another point is that,
just with � = 25 we obtained the expected velocity pipe imposed at '1, which is D?8?4 =Ma∗ 2B.
So, possibly an option that might be considered to improve the results is to implement tangential
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tensor derivatives equal to zero at the inner cylinder.

Figure 33 – Grids of a bi-dimensional annulus flow at '4 = 10.

Source: Elaborated by the author (2021).

Nevertheless, pressure is also an important parameter to be evaluated, once the drilling
mud and the wellbore are directly affected by it. For the pressure, we can observe the comparison
between numerical and analytical solutions in Figure 34.

With � = 25, the numerical solution presents five points that are discrepant from the
whole profile of the analytical one. Once more the tangential tensor derivatives equal to zero at
the inner cylinder would bring better results. Another point is that the pressure depends on d,
as presented in Equation 3.3. Despite that d is constant, the pressure is not, but it varies just a
little bit. Following this idea and because of that, the pressure accumulates for some points in the
annulus.

As � increases, fewer discrepant points appear, as � = 50 shows three of them, � = 100
presents two, and with � = 200 geometry, we do not observe this situation. We obtain better
results for the numerical solution once it gets very close to the analytical one.

In addition, in order to compare !2 error norm, Table 7 potentially presents particularities
for the tangential velocity and pressure. For the tangential velocity, lower !2 norm results appear,
as the gap � increases. Although the values with � = 25 and � = 50 are high, with � = 100 and
� = 200 the n@D\ values are good results.

On the other hand, the !2 norm of pressure n@? behaves with distinct results, despite
some discrepant points presented before. As mentioned, even with pressure depending on d, it
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varies a little bit, so n@? for all the four gaps were perfectly low, decreasing significantly, as �
increases. Notwithstanding that some results were a step aside from accurate, in a general view,
we assume that boundary conditions worked perfectly.

Figure 34 – Pressure at '4 = 10.
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Table 7 – !2 error norm of different gaps at '4 = 10.
D nnn@@@DDD\\\

nnn@@@???
25 0.0365 1.0218×10−4

50 0.0326 4.6202×10−5

100 6.8010×10−3 3.1985×10−5

200 5.2552×10−3 1.2961×10−5

Source: Elaborated by the author (2021).

As discussed in Chapter 2, Taylor-Couette presents particularities that can lead us to
understand and take essential considerations to the flow of the drilling mud inside an annulus.
As we see that the new fluid conditions are dealing well with the problem, we have implemented
simulations to compare it with Ostilla et al. (2013).

To evaluate velocity, we define 〈l〉I = D\
A

as the I-averaged angular velocity where D\ is
the tangential velocity and A the radial coordinate. Ã = (A−'1)

('2−'1) is the normalized radius.
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For the simulations, we have considered the same parameters as Ostilla et al. (2013),
where the aspect ratio is Γ = 2c, radius ratio [ = 5/7 and gap � = 20. The bottom and top of
the cylinder is closed in our implementations, instead of Ostilla et al. (2013) apply periodic
boundary conditions. It is crucial to say that we sought for comparing more )0 numbers, but
the two lower ones did not present rolls, and the other three greater were too turbulent for the
geometry used, so we have not taken consistent results. Another point is that, at first moments,
we have simulated both cylinders with periodic boundary conditions to different )0 numbers
with the same parameters above but all of them would not present any rolls, justifying our chosen
closed cylinders implementations.

In Figure 35, kinetic energy is plotted in order to establish stopping criteria at a )0 =
2.44×105 simulation. It looks like at time step 80,000 had reached the steady state.

Figure 35 – Kinetic energy at )0 = 2.44×105.
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With a flow at )0 = 2.44× 105, Figure 36 shows that data presents a profile different
than the Ostilla et al. (2013). Near both '1 and '2, 〈l〉I vary less as increases Ã, while Ostilla
et al. (2013) with periodic boundary conditions vary a lot in a descending way for the 〈l〉I as Ã
increases. On the other hand, in the middle of the flow in the current gap, 〈l〉I presents a profile
similar to the one in Ostilla et al. (2013).
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Figure 36 – I−averaged angular velocity at )0 = 2.44×105.
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We can assure that Taylor-Couette flow governs this implementation, checking Figure 37.
It is possible to observe that three rolls (pairs of toroidal vortices) comprehended this respective
simulation. This way, we confirm what was explained in section 2.2.1 especially by Di Prima
and Swinney (1985), Wereley and Lueptow (1998) and Lueptow (2009).

Figure 37 – Streamlines at time step 100,000 at )0 = 2.44×105.

Source: Elaborated by the author (2021).

The second comparison, with kinetic energy plotted, is shown in Figure 38, where also
near time step 80,000, steady-state has been reached. Figure 39 contrast the I−averaged angular



67

velocity following the same behavior to what was presented in Figure 36. But, even though it can
be seen that is this respective )0 = 7.04×105, this work presents results farther than the Ostilla
et al. (2013), clearly because of )0 number is greater than the first simulation.

Figure 38 – Kinetic energy at )0 = 7.04×105.
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Figure 39 – I−averaged angular velocity at )0 = 7.04×105.
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Streamlines at the )0 = 7.04×105 simulation can be seen in Figure 40. Again, three rolls
are illustrated, maintaining coherence with theoretical and experimental previous studies. We
must also highlight the velocity magnitude, which is greater in this respective )0 number, once
the flow is expected to be more unstable, whereas the gap is fixed.

Figure 40 – Streamlines at time step 100,000 at )0 = 7.04×105.

Source: Elaborated by the author (2021).

In Table 2, it is possible to be noted that the critical )0 number for this implemented [
is a little less than )02A8C ≈ 2.7×103. So, theoretically, the simulations with periodic boundary
conditions would present rolls. But, in our simulations,we did not reach it. To complement, it is
important to say that we have simulated combined rotating inner cylinder and use of forces in
many different study cases but in all of them, the modeling did not present stable results of the
Taylor-Couette flow.

From what was showed in Figure 37 and Figure 40, it is possible to calculate the
wavelength _, since we have the critical wavenumber :2A8C from Table 2. Once our [ = 5/7 = 0.71,
we took [ = 0.70 as an approximation. Table 8 exhibits the values of _, remembering that, as
Lueptow (2009) states, it assumes _ ≈ 2�, matching values as planned.

Table 8 – Wavelength _ for the respective )0 numbers.
)))000 Calculated Lueptow (2009) This Work

2.44×105 40.05 42 42
7.04×105 40.05 42 42

Source: Elaborated by the author (2021).

It is possible to remark in Figure 41 a longitudinal slice comparison between the two
)0 number implementations, reinforcing what we discussed above, where rolls have resulted
for both simulations. Figure 41 a) shows that the three rolls, and more specifically the pair of
toroidal vortices, are well distinct from each other. Figure 41 b) also present well distinct rolls,
but near the two closed lids, the toroidal profiles are more unstable than in the first case.
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Figure 41 – Longitudinal slices of Taylor-Couette flow for different )0 numbers.

Source: Elaborated by the author (2021).



5 CONCLUSIONS

Even with years of studies about the flow between concentric cylinders, it was possible
to understand and verify the complex modeling necessary to implement and simulate this type
of flow. Further, once the lattice Boltzmann method does not work directly with the cylindrical
coordinates, this adds a new difficulty to one already complex problem. one more difficult step
to deal with. But, the results obtained in this proposed work were good, using the referenced
methodology as a computational solution method to implement the flow inside an annulus to
observe its behavior.

The first and principal objective proposed to this work was reached, once results and
extensive discussions about the flow between concentric annulus were presented. Also, a literature
review and theoretical foundation helped to understand what we were modeling and would face.

Based on Hegele et al. (2018), we successfully have determined new 256 boundary
sites, improving coverage to general and complex cases in which the previous study could not
implement robust modeling. The use of 8 cubic normal vectors facilitates understanding how the
boundary conditions could be determined, and some examples of them were presented in the
respective subsection.

The forcing terms simulations were resolved to a pure Poiseuille flow between parallel
plates and an annulus, and compared to the analytical solutions by White (2006), fixing for both
cases �6I = 1×10−7 and g = 0.8. The flow between parallel plates was implemented in large
gaps, once did not require much computational resource. !2 norms for n@*I

decreased for the
velocity while � increased, as well as n@& showed good results for the total volume rate.

Conversely, the modeling with forces for the comparison of an annulus flow required
more computational resources, so we had to implement thinner meshes than the one used in the
parallel plates. But, !2 norm n@*I

decreased as expected for the velocity while � increased, as
well as n@& for the total volume rate.

Comparisons with the analytical solution of Mohammadipour, Succi, and Niazmand
(2018) for a bi-dimensional flow at '4 = 10 with the inner cylinder rotating, clarify the application
of boundaries, with tangential velocity reaching close profile for numerical and analytical
solutions. It can be noted that, while the gap was getting higher, the tangential velocity decreased
as expected. The pressure parameter evidences that implementing tangential tensors derivatives
equal to zero at the inner cylinder would bring better results.

As introduced and discussed by Di Prima and Swinney (1985), Wereley and Lueptow
(1998) and Lueptow (2009), instability begins to appear as the rotational speed of the inner
cylinder increases. Results at )0 = 2.44×105 and )0 = 7.04×105 show rolls formation in our
work, having agreement with the previous works. Also, I−averaged angular velocity near both
'1 and '2, vary less as increases Ã , while Ostilla et al. (2013) with periodic boundary conditions
vary a lot in a descending way as Ã increases for the two implemented )0 numbers. But, in the
middle of the flow, I−averaged angular velocity presents a profile similar to the Ostilla et al.



71

(2013) one.
It was not possible to evaluate the transitional flow, as firstly desired. This because, as

we already discussed, computational limitations and modeling improvement were required. So,
this is a suggestion for future works. Also, another crucial parameter to be evaluated is the
temperature, once it is a fundamental part of understanding the behavior of the flow inside the
annulus.

Another suggestion for future works is to implement the modeling considering the
presence of cuttings mixed with the drilling mud. As explained at the beginning of this study,
despite it is robust and complex, that is how Drilling Engineering faces daily in exploration and
production of the petroleum industry.
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FERZIGER, J. H.; PERIĆ, M. Computational Methods for Fluid Dynamics. 3. ed. Berlin:
Springer, 2001. P. 426. ISBN 3-540-42074-6.

GUO, Z.; ZHENG, C.; SHI, B. An extrapolation method for boundary conditions in lattice
Boltzmann method. Physics of Fluids, v. 14, n. 6, p. 2007, Mar. 2002. DOI: 10.1063/1.
1471914.

HALL, H. N.; THOMPSON, H.; NUSS, F. Ability of Drilling Mud To Lift Bit Cuttings. Journal
of Petroleum Technology, v. 2, n. 2, p. 469–482, Feb. 1950. DOI: 10.2118/950035-G.

https://doi.org/10.1063/1.1556615
https://doi.org/10.1016/j.jpc.2004.12.024
https://doi.org/10.1016/j.jpc.2004.12.024
https://doi.org/10.1063/1.2723153
https://doi.org/10.1063/1.2723153
https://doi.org/10.1017/S0022112065000241
https://doi.org/10.1103/PhysRevE.96.033306
https://doi.org/10.1017/S0022112007007367
https://doi.org/10.1017/S0022112007007367
https://doi.org/https://doi.org/10.1016/j.ijthermalsci.2007.12.012
https://www.engineeringtoolbox.com/laminar-transitional-turbulent-flow-d_577.html
https://www.engineeringtoolbox.com/laminar-transitional-turbulent-flow-d_577.html
https://doi.org/10.1016/j.petrol.2018.06.041
https://doi.org/10.1063/1.1471914
https://doi.org/10.1063/1.1471914
https://doi.org/10.2118/950035-G


73

HEGELE, L. A.; SCAGLIARINI, A.; SBRAGAGLIA, M.; MATTILA, K. K.; PHILIPPI, P. C.;
PULERI, D. F.; GOUNLEY, J.; RANDLES, A. High-Reynolds-number turbulent cavity flow
using the lattice Boltzmann method. Phys. Rev. E, American Physical Society, v. 98, p. 043302,
4 Oct. 2018. DOI: 10.1103/PhysRevE.98.043302. Available from: <https://link.aps.
org/doi/10.1103/PhysRevE.98.043302>.

HIRSCH, C. Numerical Computation of Internal and External Flows. 2. ed. Burlington, MA:
Elsevier, 2007. P. 680. ISBN 978-0-7506-6594-0.

KING, Gregory P.; LEE Y. LI, W.; SWINNEY, Harry L.; MARCUS, Philip S. Wave speeds
in wavy Taylor-vortex flow. Journal of Fluid Mechanics, Cambridge University Press, v. 141,
p. 365–390, 1984. DOI: 10.1017/S0022112084000896.

KRÜGER, T.; KUSUMAATMAJA, H.; KUZMIN, A.; SHARDT, O.; SILVA, G.; VIGGEN,
E. M. The Lattice Boltzmann Method: Principles and Practice. Berlin: Springer, 2017. P. 694.
ISBN 978-3-319-44647-9. DOI: 10.1007/978-3-319-44649-3_1.

LATT, J.; CHOPARD, B. Lattice Boltzmann method with regularized pre-collision distribution
functions. Mathematics and Computers in Simulation, v. 72, n. 2-6, p. 165–168, Sept. 2006.
DOI: 10.1016/j.matcom.2006.05.017.

LATT, J.; CHOPARD, B.; MALASPINAS, O.; DEVILLE, M.; MICHLER, A. Straight velocity
boundaries in the lattice Boltzmann method. Physical Review E, v. 77, n. 5, p. 056703, May
2008. DOI: 10.1103/PhysRevE.77.056703.

LERICHE, E. Direct Numerical Simulation in a Lid-Driven Cubical Cavity at High Reynolds
Number by a Chebshev Spectral Method. Journal of Scientific Computing, v. 27, n. 1-3,
p. 335–345, June 2006. DOI: 10.1007/s10915-005-9032-1.

LUEPTOW, R. M. Taylor-Couette flow. Scholarpedia, v. 4, n. 11, p. 6389, 2009. revision
#91854. DOI: 10.4249/scholarpedia.6389.

MACHADO, J. C. V. Reologia e Escoamento de Fluidos: Ênfase na Indústria do Petróleo.
Rio de Janeiro: Interciência, 2002. P. 258. ISBN 85-7193-073-2.

MALASPINAS, O.; CHOPARD, B.; LATT, J. General regularized boudary condition for
multi-speed lattice Boltzmann models. Computer & Fluids, v. 49, n. 1, p. 29–35, Oct. 2011.
DOI: 10.1016/j.compfluid.2011.04.010.

MATTILA, K. K.; PHILIPPI, P. C.; HEGELE JR., L. A. High-order regularization in
lattice-Boltzmann equations. Physics of Fluids, v. 29, n. 4, p. 046103, Apr. 2017. DOI: 10.
1063/1.4981227.

MME, U.; SKALLE, P. CFD Calculations of Cuttings Transport through Drilling Annuli at
Various Angles. International Journal of Petroleum Science and Technology, v. 6, n. 2,
p. 129–141, 2012. ISSN 0973-6328. Available from: <http://www.ipt.ntnu.no/~pskalle/
files/TechnicalPapers/44_CFDcuttings.pdf>.

https://doi.org/10.1103/PhysRevE.98.043302
https://link.aps.org/doi/10.1103/PhysRevE.98.043302
https://link.aps.org/doi/10.1103/PhysRevE.98.043302
https://doi.org/10.1017/S0022112084000896
https://doi.org/10.1007/978-3-319-44649-3_1
https://doi.org/10.1016/j.matcom.2006.05.017
https://doi.org/10.1103/PhysRevE.77.056703
https://doi.org/10.1007/s10915-005-9032-1
https://doi.org/10.4249/scholarpedia.6389
https://doi.org/10.1016/j.compfluid.2011.04.010
https://doi.org/10.1063/1.4981227
https://doi.org/10.1063/1.4981227
http://www.ipt.ntnu.no/~pskalle/files/TechnicalPapers/44_CFDcuttings.pdf
http://www.ipt.ntnu.no/~pskalle/files/TechnicalPapers/44_CFDcuttings.pdf


74

MOHAMMADIPOUR, O. R.; NIAZMAND, H.; SUCCI, S. General velocity, pressure, and
initial condition for two-dimensional and three-dimensional lattice Boltzmann simulations.
Physical Review E, American Physical Society, v. 95, p. 033301, 3 Mar. 2017. DOI: 10.1103/
PhysRevE.95.033301. Available from: <https://link.aps.org/doi/10.1103/PhysRevE.
95.033301>.

MOHAMMADIPOUR, Omid Reza; SUCCI, Sauro; NIAZMAND, Hamid. General curved
boundary treatment for two- and three-dimensional stationary and moving walls in flow and
nonflow lattice Boltzmann simulations. Phys. Rev. E, American Physical Society, v. 98,
p. 023304, 2 Aug. 2018. DOI: 10.1103/PhysRevE.98.023304. Available from: <https:
//link.aps.org/doi/10.1103/PhysRevE.98.023304>.

MONTESSORI, A.; FALCUCCI, G.; PRESTININZI, P.; LA ROCCA, M.; SUCCI, S.
Regularized lattice Bhatnagar-Gross-Krook model for two-and three-dimensional cavity flow
simulations. Physical Review E, v. 89, n. 5, p. 053317, May 2014. DOI: 10.1103/PhysRevE.
89.053317.

OSTILLA, R.; STEVENS, R. J. A. M.; GROSSMANN, S.; VERZICCO, R.; LOHSE, D. Optimal
Taylor–Couette flow: direct numerical simulations. Journal of Fluid Mechanics, Cambridge
University Press, v. 719, p. 14–46, 2013. DOI: 10.1017/jfm.2012.596.

PHILIPPI, Paulo C.; HEGELE, Luiz A.; SANTOS, Luís O. E. dos; SURMAS, Rodrigo. From
the continuous to the lattice Boltzmann equation: The discretization problem and thermal models.
Phys. Rev. E, American Physical Society, v. 73, p. 056702, 5 May 2006. DOI: 10.1103/
PhysRevE.73.056702. Available from: <https://link.aps.org/doi/10.1103/PhysRevE.
73.056702>.

RAMADAN, A.; SKALLE, P.; JOHANSEN, S. T. A mechanistic model to determine the critical
flow velocity required to initiate the movement of spherical bed particles in inclined channels.
Chemical Engineering Science, v. 58, n. 10, p. 2153–2163, 2003. DOI: 10.1016/S0009-
2509(03)00061-7.

RAYLEIGH, L. On the Dynamics of Revolving Fluids. Proceedings of the Royal Society
of London. Series A, Containing Papers of a Mathematical and Physical Character, The
Royal Society, v. 93, n. 648, p. 148–154, 1917. ISSN 09501207. Available from: <http:
//www.jstor.org/stable/93794>. Visited on: 24 Mar. 2020.

RECKTENWALD, A.; LÜCKE, M.; MÜLLER, H. W. Taylor vortex formation in axial
through-flow: Linear and weakly nonlinear analysis. Physical Review E, American Physical
Society, v. 48, p. 4444–4454, 6 Dec. 1993. DOI: 10.1103/PhysRevE.48.4444.

REED, T. D.; PILEHVARI, A. A. A New Model for Laminar, Transitional, and Turbulent Flow
of Drilling Muds. Society of Petroleum Engineers, SPE paper 25456, p. 469–482, Mar. 1993.
DOI: 10.2118/25456-MS.

https://doi.org/10.1103/PhysRevE.95.033301
https://doi.org/10.1103/PhysRevE.95.033301
https://link.aps.org/doi/10.1103/PhysRevE.95.033301
https://link.aps.org/doi/10.1103/PhysRevE.95.033301
https://doi.org/10.1103/PhysRevE.98.023304
https://link.aps.org/doi/10.1103/PhysRevE.98.023304
https://link.aps.org/doi/10.1103/PhysRevE.98.023304
https://doi.org/10.1103/PhysRevE.89.053317
https://doi.org/10.1103/PhysRevE.89.053317
https://doi.org/10.1017/jfm.2012.596
https://doi.org/10.1103/PhysRevE.73.056702
https://doi.org/10.1103/PhysRevE.73.056702
https://link.aps.org/doi/10.1103/PhysRevE.73.056702
https://link.aps.org/doi/10.1103/PhysRevE.73.056702
https://doi.org/10.1016/S0009-2509(03)00061-7
https://doi.org/10.1016/S0009-2509(03)00061-7
http://www.jstor.org/stable/93794
http://www.jstor.org/stable/93794
https://doi.org/10.1103/PhysRevE.48.4444
https://doi.org/10.2118/25456-MS


75

SARIC, W. S. Görtler Vortices. Annual Review of Fluid Mechanics, v. 26, n. 1, p. 379–409,
1994. DOI: 10.1146/annurev.fl.26.010194.002115.

SERRE, E.; SPRAGUE, M. A.; LUEPTOW, R. M. Stability of Taylor–Couette flow in a
finite-length cavity with radial throughflow. Physics of Fluids, v. 20, n. 3, p. 034106, 2008. DOI:
10.1063/1.2884835.

SHAN, X.; YUAN, X.-F.; CHEN, H. Kinetic theory representation of hydrodynamics: a way
beyond the Navier-Stokes equation. Journal of Fluid Mechanics, v. 550, p. 413–441, Mar. 2006.
DOI: 10.1017/s0022112005008153.

STOVER, Christopher; WEISSTEIN, Eric W. Einstein Summation. 2021. Available from:
<https://mathworld.wolfram.com/EinsteinSummation.html>. Visited on: 18 Jan. 2021.

TAYLOR, G. I. Stability of a Viscous Liquid Contained between Two Rotating Cylinders.
Philosophical Transactions of the Royal Society of London. Series A, Containing Papers
of a Mathematical or Physical Character, The Royal Society, v. 223, p. 289–343, 1923. ISSN
02643952. Available from: <http://www.jstor.org/stable/91148>. Visited on: 24 Mar.
2020.

THOMAS, J. E. Fundamentos da Engenharia de Petróleo. 2. ed. Rio de Janeiro: Interciência,
2004. P. 272. ISBN 978-8571930995.

WERELEY, S. T.; LUEPTOW, R. M. Spatio-temporal character of non-wavy and wavy
Taylor–Couette flow. Journal of Fluid Mechanics, v. 364, p. 59–80, June 1998. DOI: 10.
1017/S0022112098008969.

. Velocity field for Taylor–Couette flow with an axial flow. Physics of Fluids, v. 11,
n. 12, p. 3637–3649, 1999. DOI: 10.1063/1.870228.

WHITE, F. M. Fluid Mechanics. 6. ed. New York, NY: McGraw-Hill, 2008. P. 864. ISBN
978-0-07-293844-9.

. Viscous Fluid Flow. 3. ed. Singapure: McGraw-Hill Education, 2006. P. 656. ISBN
978-0072402315.

WILLIAMS JR., C. E.; BRUCE, G. H. Carrying Capacity of Drilling Muds. Journal of
Petroleum Technology, v. 3, n. 4, p. 111–120, Apr. 1951. DOI: 10.2118/951111-G.

https://doi.org/10.1146/annurev.fl.26.010194.002115
https://doi.org/10.1063/1.2884835
https://doi.org/10.1017/s0022112005008153
https://mathworld.wolfram.com/EinsteinSummation.html
http://www.jstor.org/stable/91148
https://doi.org/10.1017/S0022112098008969
https://doi.org/10.1017/S0022112098008969
https://doi.org/10.1063/1.870228
https://doi.org/10.2118/951111-G

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of symbols
	Contents
	INTRODUCTION
	Objectives
	Thesis Outline

	LITERATURE REVIEW
	Reynolds Number and Fluids Flow
	Reynolds Number
	Laminar Flow in a pipe
	Turbulent Flow in a pipe
	Transitional Flow in a pipe

	Previous Work
	Taylor-Couette Flow
	Taylor-Couette Flow Studies



	METHODOLOGY
	The Lattice Boltzmann Equation
	Particle Populations
	Particle Regularization and its Moments
	D3Q19 and Boundary Sites
	General Explicit Equations for the Moments
	Explicit Solution for the Boundary Conditions
	Corners
	Edges
	Faces

	New Boundary Sites

	Boundary and Initial Conditions
	Forces
	Forcing terms representation
	General Observations

	Quantifying Accuracy for the numerical solution

	Results and Discussions
	Conclusions
	REFERENCES

