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ABSTRACT

This work studies the robust design of structures with minimum dynamic response (non-
resonant structures) and maximum dynamic response (resonant structures) considering
uncertainty in the excitation frequency, using topology optimization. The Monte Carlo
Simulation method with stratified sampling is used to model both the expected value and
standard deviation of the structural dynamic response, described by a density-weighted
norm. Results show that the proposed formulation leads to the design of structures with
optimized dynamic response and improved robustness, which is attested by comparison
with the deterministic approach.
Results also show that the mechanisms used to increase the robustness depend on the
target frequency. For minimization cases, at low frequencies, a mode separation mechanism
is preferred, while for higher frequencies, low energy resonant modes are used. For
maximization cases, there is also dependency on the excitation frequency, however, in
a lower scale. In general, subsequent high-energy resonances located before and after
the target excitation frequency improve response robustness while ensuring a resonating
behavior within the interval bounded by the mentioned subsequent resonant modes.

Key-words: Robust design. Topology optimization. Harmonic Response. Monte Carlo
Simulation. Density-weighted norm.



RESUMO

Este trabalho estuda o projeto robusto de estruturas com resposta dinâmica mínima (estru-
turas não ressonantes) e resposta dinâmica máxima (estruturas ressonantes) considerando
a incerteza na frequência de excitação, utilizando otimização topológica. O método de
simulação de Monte Carlo com amostragem estratificada é usado para modelar tanto o
valor esperado quanto o desvio padrão da resposta dinâmica estrutural, descrita por uma
norma de densidade ponderada. Os resultados mostram que a formulação proposta leva ao
projeto de estruturas com resposta dinâmica otimizada e maior robustez, o que é atestado
por comparação com a abordagem determinística.
Os resultados também mostram que os mecanismos utilizados para aumentar a robustez
dependem da frequência alvo. Para casos de minimização, em baixas frequências, um
mecanismo de separação de modo é preferido, enquanto para frequências mais altas, modos
ressonantes de baixa energia são usados. Para os casos de maximização, também há
dependência da frequência de excitação, porém em escala inferior. Em geral, ressonâncias
de alta energia subsequentes que são localizadas antes e depois da frequência de excitação
alvo melhoram a robustez da resposta, garantindo um comportamento ressonante dentro
do intervalo limitado pelos modos ressonantes subsequentes mencionados.

Palavras-chave: Projeto Robusto. Otimização topológica. Resposta harmônica. Simulação
de Monte Carlo. Norma de densidade ponderada.
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1 INTRODUCTION

This work proposes a formulation for the robust design of structures with either
minimum or maximum dynamic response considering uncertainties in the excitation
frequency. The objective is to optimize the dynamic response while minimizing its variance
with respect to a given target frequency. Low response variance configures the meaning of
the term robust for the objectives of this work.

Due to the non-linear nature of dynamic problems, small perturbations on the
excitation frequency might cause a large impact on the structural dynamic response. Such
dependency increases even more, specially close or at a resonance, due to the shifting of
energy expenditure inside the structure (potential and kinetic). This main characteristic
composes the challenge that motivated the development of this work.

Topology optimization (TO) is used in this work to determine the optimal material
distribution within a fixed domain to achieve the desired dynamic behavior. When the
objective is a non-resonant structure, the resultant design will have high-energy resonance
frequencies as far as possible of the excitation frequency. The opposite occurs when
maximization of dynamic displacements is targeted, such that the resultant structure will
resonate exactly at the excitation frequency.

Structures with a robust dynamic behavior offer the assurance that undesired
responses will not take place around a target excitation frequency. In the case of non-
resonant structures, the aimed dynamic response would demonstrate low and consistent
displacements. When it comes to resonant structures, a smoother response behavior around
resonance is desired, which is particularly useful for applications like energy harvesting
such that power generation improvements could happen in scenarios where the excitation
frequency is not precisely synchronized to the structure’s natural frequency.

Among many practical applications for non-resonant structures, one can devise the
design of a rotatory system (electric motor) with minimum vibration and less sensitive to
variations in the excitation frequency (for example, due to variations in the grid frequency)
or the design of a support structure to a measuring device, with minimum vibration
transfer for a given range of base excitation frequency. Thinking about resonant designs,
an eventual application is structures for energy harvesting purposes, where the generated
power is proportional to the displacements magnitude. In this context, the robust resonant
design should have high displacements at a frequency range, and not only at a specific
target frequency.

Such improved dynamic behavior can be achieved by the use of the robust approach
herein proposed for the design of structures less sensitive to changes in operation parameters,
as the excitation frequency, with lowest possible penalty in the dynamic response at a
given target excitation frequency.

1.1 STATE OF THE ART

There are different approaches used to optimize the structural dynamic behavior,
and the most common approaches found in the literature are based on modal analysis,
transient or harmonic dynamic response.

Reviewing the works based on modal analysis, efforts regarding dynamic response
minimization started with the work of Fox and Kapoor (1970), where truss structures
subjected to a given base motion were designed for minimum mass and controlled stress.
Also, Bendsøe and Olhoff (1985) addressed the maximization of the gap between two
subsequent resonant vibration modes with respect to a given frequency of interest for the
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optimal design of vibrating beams or shafts. However, parametric optimization is used in
these works instead of topology optimization. Works of Díaz and Kikuchi (1992), Krog and
Olhoff (1999), and Pedersen (2000) also discuss the maximization of the first resonance
frequency using topology optimization.

The work of Du and Olhoff (2007) investigated optimization problems involving
simple and multiple eigenfrequencies in order to maximize specific natural frequencies or
even create a gap between two resonances. Subsequently, Niels Olhoff and Jianbin Du
(2008) evaluated several different methods for reaching minimum dynamic response. The
ones related to the modal approach are the maximization of a higher order eigenvalue and
gap maximization between two resonances. Additionally, the minimization of sound power
radiation to an acoustic medium is evaluated.

Regarding the works based on harmonic dynamic displacements calculation, there
are several different approaches that were investigated. As a starting point, minimization
of dynamic compliance for harmonic topology optimization was studied by Ma, Kikuchi,
and Hagiwara (1993), targeting non-resonant structures. The caveats of using the dynamic
compliance are that it is not a positive-definite measure (NIU et al., 2018), which leads to
convergence problems, and also the necessity of considering static compliance to circumvent
disconnection of the structure from the supports. Also using the dynamic compliance
approach, Min et al. (1999) worked on its minimization using explicit direct integration
for different frequencies to design structures subjected to harmonic loads.

A different approach is proposed by the work of Jog (2002), in which the dynamic
compliance is redefined as a positive-definite measure in the presence of vibration and zero
when the structure is static, meaning that the minimization of the dynamic compliance
would drive the structure to a static state. Also, the work suggests a local approach for
vibration minimization, allowing the user to choose a certain area of the structure to
be non-resonant, without any concern to other areas. In addition, dynamic compliance
minimization is briefly discussed in the work of Niels Olhoff and Jianbin Du (2008).

Efforts on the maximization of harmonic response happened in parallel with the
ones made on the harmonic response minimization. First work on this area is signed by
Tcherniak (1999) in which the problem of structure disconnection from the boundary
conditions is reported. Static compliance has been added as a constraint to solve the issue.
Also, Dmitri Tcherniak (2002) denotes problems regarding modes existent in void regions
and proposes an external damper to ensure connection to the boundary conditions.

On the area of energy harvesting, Deng et al. (2015) built an objective function
with two parts. The first one ensures maximization of output displacement and the second
one ensures minimization of perpendicular stiffness so that the device would not touch the
surroundings. This second part of the objective function ends up increasing the static
stiffness and ensures a well connected structure.

Either input power and dynamic stiffness have been evaluated in the work of Silva
(2017) for the design of resonant structures, Again, static compliance has been added to
aid in structure connection to the supports.

The work of Silva, Neves, and Lenzi (2019) provides a critical evaluation of several
different ways of using the dynamic compliance in harmonic response minimization problems.
Furthermore, it shows that minimization of dynamic compliance leads to convergence
issues caused by antiresonances for designs that target frequencies above the first resonance,
since it may be difficult to move out from this point. In Silva, Neves, and Lenzi (2020), the
same authors suggest the use of the input power concept in this type of problem, resulting
in well-defined designs at any frequency range, however, still using static compliance in
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the objective function. Additionally, in Silva and Neves (2020), the use of complex input
power is proven to be a good alternative to overcome convergence issues in the design of
resonant structures, again considering static compliance in the formulation.

More recently, Montero, Silva, and Cardoso (2020) proposed a new measure, the
density-weighted norm, that has the capacity to precisely identify resonances and also
eliminates the presence of non-physical modes in regions where voids are located. These
two main characteristics are of great interest to the goals herein discussed. Therefore, the
formulation proposed by Montero, Silva, and Cardoso (2020) is the base for this work.
This measure, however, does not solve the known structural disconnection problem and
also requires the use of static compliance in the objective function.

Regarding the robust design methodology, Stockl (2001) developed a method for
the design of truss structures considering stochastic uncertainties on any characteristic of
the problem, such as material properties or loading. It is observed that robust designs
have additional bars when compared to the deterministic solution.

Kharmanda and Olhoff (2002) developed a concept of reliability-based topology
optimization, where a probabilistic term is added as a constraint while considering the
objective function as deterministic. This concept was also explored by Maute and Frangopol
(2003) and Jung and Cho (2004). The former work considers uncertainties in loading,
material properties and boundary conditions for the design of complaint mechanisms. In
Jung and Cho (2004), the deterministic topology optimization problem is modified so that
the objective function is defined as a probabilistic performance measure, which yields
the failure probability. As optimization constraint, a maximum allowable probability of
design violation is evaluated. Results provided by this work also show designs with extra
reinforcements when compared to the deterministic results.

The work of Chen, Chen, and Lee (2010) explored random field uncertainty in
loading and material properties for shape and topology optimization. In this work the
optimization problem is modeled for the minimization of an objective function composed
by two parts: mean value and standard deviation of the objective function under the
uncertainty field.

Works signed by Boyan Stefanov Lazarov, Schevenels, and Sigmund (2011) and
Boyan S Lazarov, Schevenels, and Sigmund (2012) explored manufacturing uncertainty,
accounting for geometrical variation using the collocation method. B. S. Lazarov, M.
Schevenels, and O. Sigmund (2012) also explores the use of the perturbation method as an
alternative for computational cost reduction.

More recently, further studies were done in the area of robust design by Wu et al.
(2016) for unknown-but-bounded design parameters, using the Chebyshev interval method.
Also, the work of Cardoso, Silva, and Beck (2019) investigated the robust design of
compliant mechanisms considering uncertainties in the output stiffness, where probabilistic
and non-probabilistic formulations are compared. The probabilistic approach presented in
Cardoso, Silva, and Beck (2019) is the base for the robust formulation of this work.

The robust design approach associated to the dynamic compliance minimization
was explored and evaluated in the work of Zhang, Kang, and Zhang (2016). Unknown-but-
bounded design inputs were treated using the non-probabilistic ellipsoid convex model.
The optimization process targets the design of structures for the worst case scenario given
by the input uncertainties. This is ensured by means of running two loops, being the
inner loop the responsible for seeking the worst case combination and the outer loop for
designing the structure for the combination found by the inner loop.

Using the results of these previous works as a basis, a formulation is proposed for the
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design of structures with robust dynamic behavior with respect to harmonic loading with
uncertainty in the excitation frequency. The proposal relies on the well-known Monte Carlo
Simulation method with stratified sampling, in combination with the density-weighted
norm. While the Monte Carlo Simulations provide data for robustness improvements,
the density-weighted norm precisely identifies resonances and hinders the appearance of
non-physical modes in void regions. Since the density-weighted norm does not solve the
well-known problem of discontinuous topologies, static compliance is added as a weighted
part of the objective function.

1.2 CONTRIBUTIONS

Main contributions are:

• Monte Carlo Simulation with Stratified Sampling method: in order to improve results
consistency while reducing computation cost of the Monte Carlo Simulation (MCS)
method, a modification has been made to the original MCS formulation (CARDOSO;
SILVA; BECK, 2019);

• Formulation for robust design of non-resonant structures: development of an effective
objective function, gathering a robust parcel and static compliance. The robust
term consists on minimizing both the expected value and standard deviation of
density-weighted norm;

• Formulation for robust design of resonant structures: development of an effective
objective function, gathering a robust parcel and static compliance. The robust term
consists on maximizing the expected value while minimizing the standard deviation
of density-weighted norm.

Discussions about the first and second topics have been gathered in the format
of a technical article. Its publication was accepted by the journal Computer Methods
in Applied Mechanics and Engineering (CMAME) in March 7th, 2021 (VALENTINI;
CARDOSO; SILVA, 2021).

1.3 THESIS OUTLINE

Chapter 1 provides an overall understanding and main motivation for the develop-
ment of this work. It also provides a summary about the history of studies related to the
topics herein evaluated, with highlights of the most important methods and outcomes of
the referred works.

In Chapter 2, an overview about elastodynamics and finite element discretization is
provided, followed by the definition of the harmonic problem.

The concepts about general optimization, optimality criteria and the Augmented
Lagrangian method are explored in Chapter 3.

Chapter 4 discusses the main ideas related to topology optimization applied to
harmonic problems. Thus, material parametrization is discussed, together with a description
of filtering and projection techniques. Additionally, one specific deterministic approach of
topology optimization related to harmonic problems is presented and discussed.

A description about uncertainty and its main related concepts is provided in Chapter
5, discussing the mathematical definitions of expected value and standard deviation,
measures of great importance for the formulation herein used. Such formulation and
respective sensitivity analysis are presented in Chapter 6.
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With these definitions, the objective function can be presented and discussed, as
well as the optimization method and its sensitivity analysis, in Chapter 7. Finally, in
Chapter 8, the design cases considered in this work are presented and evaluated.
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2 DYNAMIC EQUILIBRIUM PROBLEM

In this section, the finite element formulation is derived, the chosen finite element
type is presented and the harmonic problem is properly defined.

2.1 ELASTODYNAMICS

Applying the linear momentum conservation over an infinitesimal material portion of
a given body subjected to external and internal loads and a general acceleration dependent
on the time t, one has the resulting balance equation

∇ · σ(t) + b(t) = ρü(t), (1)

where σ(t) is the Cauchy stress tensor, b(t) is the body internal forces, ρ is the material
density, considered constant throughout the portion under study, and ü(t) is the acceleration
vector. Adding viscous forces contribution, a new term appears in the right side of Eq.
(1), such that

∇ · σ(t) + b(t) = ρü(t) + αρu̇(t), (2)

where α is a mass-proportionality constant and u̇(t) is the velocity vector.
The infinitesimal strain ε(t) actuating over the material portion can be defined as

a function of displacements u(t), as

ε(t) =
1

2

(
∇u(t)T + ∇u(t)

)
= L (u(t)) , (3)

where L(·) is a differential operator that carries information of about how two points
within the material domain move with respect to each other under loading. Similarly, the
strain rate ε̇(t) is defined as

ε̇(t) = L (u̇(t)) . (4)

Considering both elastic and viscous terms, the total actuating stress can be defined
as

σ(t) = σE(t) + σV (t) (5)

where σE(t) is the stress implied by the material elastic properties, therefore, related to
the strain ε(t). Also, σV (t) is related to viscous properties, which implies dependency
on the strain rate ε̇(t). Thus, the isotropic linear constitutive tensor D is defined as a
function of both the strain and the strain rate

σ(t) = D : (ε(t) + βε̇(t)) (6)

with the additional proportionality constant β.
Substituting Eqs. (3) and (4) in Eq. (6), and the resulting expression in Eq. (2),

the linear momentum equilibrium is more completely derived, such as

∇ · (D : (L (u(t) + βu̇(t)))) + b(t) = ρü(t) + αρu̇(t). (7)

For the solution of this second order differential equation, the weighted residues
method can be used. As a consequence, to obtain the weak form of the referred equation,
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an approximation of the displacements vector is defined as ũ(t), leading to the residue
r(t), defined as

r(t) = ∇ ·
(
D :

(
L
(
ũ(t) + β ˙̃u(t)

)))
+ b(t)− ρ¨̃u(t)− αρ ˙̃u(t). (8)

For the convergence, the inner product of the residue with a vector field test function
w must tend to zero, as∫

Ω

w · r(t) dΩ ⇀ 0, (9)

where Ω is the volume domain. Inserting Eq. (8) in Eq. (9) leads to∫
Ω

w ·
[
∇ ·

(
D :

(
L
(
ũ(t) + β ˙̃u(t)

)))]
dΩ +

∫
Ω

w · b(t)dΩ

−
∫

Ω

w · ρ¨̃u(t) dΩ−
∫

Ω

w · αρ ˙̃u(t) dΩ = 0.

(10)

Integrating by parts the first term of Eq. (10), results in∫
Ω

w ·
[
∇ ·

(
D :

(
L
(
ũ(t) + β ˙̃u(t)

)))]
dΩ =

∫
Γ

w · tcdΓ

−
∫

Ω

L (w) : D :
(
L
(
ũ(t) + β ˙̃u(t)

))
dΩ

(11)

where Γ is the boundary of Ω. After simplifications and using the quadratic form vector
equivalent, the complete form of the weak problem is derived. Using Voigt notation and
u(t) in place of ũ(t) for simplifying the notation, the resultant expression is given as

∫
Ω

LV (w) ·DLV (u(t) + βu̇(t)) dΩ +

∫
Ω

w · ρü(t) dΩ +

∫
Ω

w · αρu̇(t) dΩ

=

∫
Ω

w · b(t) dΩ +

∫
Γ

w · tc dΓ.

(12)

where the differential operator is represented in Voigt notation as LV and the constitutive
tensor D is a matrix.

2.2 FINITE ELEMENT DOMAIN DISCRETIZATION

Consider a domain Ω which is divided in a finite number of smaller sections, being
these sections called the finite elements. Thus, consider one finite element e and the related
field vector uint(t), dependent on the time t, which describes the displacements within the
element, such that

uint(t) = Nue(t) (13)

where N is a matrix with interpolation functions and ue(t) contains the nodal discrete
values of displacements implied by the surroundings. Analogously, the vector field w,
velocities u̇int(t) and accelerations üint(t) are also described by the interpolation functions
of N, in the form

w = NWe, (14)
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u̇int(t) = Nu̇e(t) (15)

and

üint(t) = Nüe(t). (16)

Inserting these expressions in Eq. (12), gives∫
Ωe

LV (NWe) ·DLV (Nue(t) + βNu̇e(t)) dΩe +

∫
Ωe

NWe · ρNüe(t) dΩe

+

∫
Ωe

NWe · αρNu̇e(t) dΩe =

∫
Ωe

NWe · b(t) dΩe +

∫
Γe

NWe · tc dΓe.

(17)

where Ωe and Γe are, respectively, the volume and boundary of element e. Taking advantage
of the fact that Voigt notation is used, it is possible to write w · uint as wT · uint. Eq. (17)
can be rewritten as

WT
e

∫
Ωe

LVN
TDLVNue(t) dΩe + WT

e

∫
Ωe

LVN
TDLV βNu̇e(t) dΩe

+WT
e

∫
Ωe

NTρNüe(t) dΩe + WT
e

∫
Ωe

NTαρNu̇e(t) dΩe =

WT
e

∫
Ωe

NTb(t) dΩe + WT
e

∫
Γe

NT tc dΓe,

(18)

or in its compact form

WT
eMeüe(t) + WT

eCeu̇e(t) + WT
eKeue(t) = WT

e fe(t), (19)

where Me, Ke and Ce are, respectively, the mass, stiffness and damping matrices of the
element and fe(t) is the force vector. Each of these local matrices and vector are defined
as

Me =

∫
Ωe

NTρN dΩe, (20)

Ke =

∫
Ωe

LVN
TDLVN dΩe, (21)

Ce = αMe + βKe (22)

and

fe(t) =

∫
Γe

NT tc dΓe +

∫
Ωe

NTb(t) dΩe. (23)

From Eq. (18), which is written for a single element e, it is possible to define a
global equation, that models the entire domain Ω. To this goal, an operator He can be
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defined to map the local element vectors into global domain vectors. As an example, local
displacements ue(t) are mapped to the domain global displacements vector u(t), such as

ue(t) = Heu(t). (24)

Thus, applying the operator in Eq. (19) and making the summation, results in

ne∑
e=1

(HeW)T MeHeü(t) + (HeW)T CeHeu̇(t) + (HeW)T KeHeu(t) =

ne∑
e=1

(HeW)T fe(t),

(25)

where ne is the number of elements in the domain.
Simplifying the notation, Eq. (25) can be rewritten as

WTMü(t) + WTCu̇(t) + WTKu(t) = WT f(t), (26)

with the global mass, damping and stiffness matrices, respectively

M =
ne∑
e=1

HT
eMeHe, (27)

C =
ne∑
e=1

HT
eCeHe (28)

and

K =
ne∑
e=1

HT
eKeHe. (29)

Additionally, the global force vector is defined as

f(t) =
ne∑
e=1

HT
e fe(t). (30)

Since WT exists in all terms of Eq. (26), it can be further simplified to the linear
system

Mü(t) + Cu̇(t) + Ku(t) = f(t). (31)

2.2.1 Finite Element Definition

Incompatible elements are chosen for the domain discretization because of improved
accuracy, specially for modeling bending of slim reinforcements, which avoids the necessity
of using higher order elements and the consequent higher computational cost (BATHE,
2014).

A four-node quadrilateral isoparametric element, defined by Chandrupatla et al.
(2002), is herein used considering 2 complementary nodes from where the additional
displacements α, size 4× 1, are computed (BATHE, 2014). Thus, instead of 8 DOFs as



22

Figure 1 – Finite Element
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the regular element, the incompatible element has 12 DOFs. The additional information
derived from the 2 additional nodes is used to improve the displacements computed by
the regular 4 nodes, giving to the element higher capability of providing a more accurate
description of the material behavior under loading.

The element is depicted in Fig. 1 and its interpolation functions are defined as

Ni =
1

4
(1± r) (1± s) i = 1..4, (32)

N5 = 1− r2 (33)

and

N6 = 1− s2. (34)

From the classic definition of the local stiffness matrix,

Ke =

∫
Ωe

BTEeBdΩ, (35)

where Ee is the elasticity tensor, Ωe is the element domain and B is the strain-displacement
matrix, defined as

B =
[
Bd Bα

]
, (36)

with

Bd =
[
B1
e B2

e B3
e B4

e

]
. (37)

which refers to the 4 standard nodes and

Bα =
[
B5
e B6

e

]
(38)

that refers to the 2 additional nodes. Thus, the expanded local stiffness matrix K0
exp, size

12× 12, is defined as

K0
exp =

[
Kdd(8×8)

Kdα(8×4)

Kαd(4×8)
Kαα(4×4)

]
, (39)
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where Kdd refers to the regular 4 nodes, Kdα = KT
αd and Kαα is related to the additional

nodes.
Considering that there is no loading associated to the additional nodes, the equilib-

rium problem can be written as[
Kdd(8×8)

Kdα(8×4)

Kαd(4×8)
Kαα(4×4)

](
q
α

)
=

(
f
0

)
, (40)

from which one can define

Kαdq + Kααα = 0. (41)

Solving for α leads to

α = −K−1
ααKαdq. (42)

Thus, finalizing the Static Condensation process by inserting Eq. (42) in Eq. (40),
the condensed local stiffness matrix, size 8× 8, can be obtained as

K0 =
[
Kαα −KdαK

−1
ααKαd

]
, (43)

which considers information from the incompatible modes and is used to build the global
stiffness matrix of the structure.

2.3 HARMONIC PROBLEM DEFINITION

The discrete form of the equilibrium equation for an n Degrees of Freedom (DOFs)
linear elastic problem is described by Eq. (31). Thus, consider a structure with linear
response with respect to an excitation loading. When it is harmonic,

f(t) = Feiωt, (44)

with amplitude F and angular frequency ω, the permanent response has the same frequency
as the excitation and is given by

u(t) = Ueiωt, (45)

where U is the complex vector of displacement amplitudes.
Equations (44) and (45), together with the velocity u̇(t) = iωUeiωt and the acceler-

ation ü(t) = −ω2Ueiωt, can be then inserted in Eq. (31) resulting in(
−ω2M + iωC + K

)
Ueiωt = Feiωt. (46)

From Eq. (46), with further simplification, it is possible to notice the linear system

KDU = F, (47)

where KD is the dynamic stiffness matrix

KD = −ω2M + iωC + K, (48)

which has a non-linear dependency on the excitation frequency ω. Thus, small perturbations
on ω can lead to large changes in the dynamic response U, impacting the effectiveness of
any design obtained for a specific excitation frequency value. This is the main motivation
of this work: the design of structures less sensitive to variation with respect to ω.

Additional harmonic loads F with different phases could be considered, however, in
this work a system with a single harmonic load is evaluated for simplicity.
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3 GENERAL OPTIMIZATION

Optimization is a set of methods that objectives finding the extreme value of a
function evaluated in a given domain while complying with one or more constraints. In the
following subsections, the generals of optimization and optimality criteria are described
followed by a discussion about the optimization method used in this work.

3.1 OPTIMIZATION PROBLEM DEFINITION AND OPTIMALITY CRITERIA

The format of a general optimization problem is defined by Jasbir S Arora (2007)
as

minimize
x

f(x)

subject to hk(x) = 0 k = 1..Nh,

gj(x) ≤ 0 j = 1..Ng,

xl ≤ x ≤ xu.

(49)

where f(x) is the objective function, dependent of the design variables x, and subjected
to Nh equality constraints and Ng inequality constraints. Also, xl and xu are, respectively,
the vectors with the lower and upper bounds of the design variables.

From the general optimization problem, it is possible to write the equivalent
Lagrangian function, according to Jasbir S Arora (2007), as

L(x,λL,µ) = f(x) +

Nh∑
k=1

λLjhk(x) +

Ng∑
j=1

µjgj(x), (50)

where λL is the vector of Lagrange multipliers related to each equality constraint and µ is
the vector with the Kuhn-Tucker multipliers related to each inequality constraint.

Such problem can be considered solved when a stationary point is found, in which
the Karush-Kuhn-Tucker (KKT) conditions are satisfied. Thus, making the assumption
that f(x), hk(x) and gj(x) are twice differentiable at the local optimum point x∗, the
KKT conditions are satisfied when the following conditions are achieved:

• Stationarity: derivative of the Lagrangian function equals to zero

df(x∗)

dxm
+

Nh∑
k=1

λL
∗
j

dhk(x
∗)

dxm
+

Ng∑
j=1

µ∗j
dgj(x

∗)

dxm
= 0 (51)

• Primal feasibility: Constraints satisfied

hk(x
∗) = 0, ∀ k; (52)

gj(x
∗) ≤ 0, ∀ j; (53)

• Dual feasibility: Multipliers greater than or equal to zero

µ∗j ≥ 0, ∀ j; (54)
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• Complementary Slackness: product of the Lagrange multipliers and the inequality
constraints is zero

µ∗jgj(x
∗) = 0, ∀ j; (55)

• Regular Point: The gradients of the active constraints are linearly independent.

The design point x∗ is a local optimum if all these conditions are satisfied.

3.2 SOLUTION STRATEGY

According to Jasbir Singh Arora (2004), an optimization process consists in itera-
tively update the design variables until the local minima is identified, such that

xk+1 = xk + αkdk (56)

where αk > 0 is the step in the optimization search direction dk.
Also, Jasbir Singh Arora (2004) defines that, to be accepted as the next optimal

point, it must satisfy the condition

f(xk+1) = f(xk + αkdk) < f(xk), (57)

which can be written as a linear expansion via Taylor’s series, such that

f(xk) +∇f(xk) · αkdk < f(xk). (58)

Thus, it is possible to use the sensitivity analysis of the objective function to define
the search direction dk. The most obvious choice for it is named as Steepest Descent,
defined as

dk = −∇f(xk). (59)

The computation of the next optimal point as per Eq. 56 depends also on
the solution of αk. For unconstrained problems, it can be simply defined as αk =
argmin

(
f(xk + αkdk)

)
, however, since in this work side constraints are considered, the

following considerations shall be made:

• The step size shall not cause violation of any side constraint;

• In case a design variable is already at one of the limit boundaries and the gradient
imposes that the variable violates the side constraint, the gradient at this position
must be blocked.

In this work, the optimization step αk is determined using the Armijo’s Backtracking
technique (ARMIJO, 1966), such that

f(x̃k+1) ≈ f(xk) +∇f(xk) · |∆xk|S = f(xk) +∇f(xk) · |αkdk|S, (60)

where the operator | · |S is responsible for blocking variables at their side constraints. The
optimization step αk is accepted when

f(xk + |αkdk|S) ≤ f(xk) + c∇f(xk) · |αkdk|S, (61)

with c ∈ [0, 1]. In case the condition is not satisfied, the step is reduced by αk+1 = ταk,
where τ ∈ [0, 1], until the condition is achieved.
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3.3 AUGMENTED LAGRANGIAN METHOD

The Augmented Lagrangian (AL) method is chosen to be used in this work, such
that a constrained optimization problem, as the one defined in Eq. (49), can be rewritten
as a sequence of unconstrained optimization problems by the addition of all constraints
into the Lagrangian function by the use of Lagrangian multipliers and penalization factors.

For further clarification, consider the optimization problem given by Eq. (49), but
with only inequality constraints and considering the constraint limit value ḡj

minimize
x

f(x)

subject to gj(x) ≤ ḡj j = 1..Ng,

xl ≤ x ≤ xu.
(62)

The referred optimization problem can be rewritten as

L(x,µ, r) = f(x) +
1

2

Ng∑
j=1

rj

〈
µj
rj

+ gj(x)− ḡj
〉2

, (63)

which is one of the Augmented Lagrangian forms discussed in the literature (BIRGIN;
MARTÍNEZ, 2014). In the equation, rj is a penalization factor related to the j-th constraint
and 〈a〉 = max(a, 0).

According to Birgin and Martínez (2014), the AL problem is preferably solved by
the use of an inner and an outer loop. In the inner loop, the problem is solved with both
the Lagrange multipliers and the penalization factors kept constant up to the moment in
which the optimum is found. Once it happens, both the penalty factor and the Lagrange
multipliers are updated in an outer loop such that the inner loop can be reinitialized. This
process happens multiple times up to the moment in which the optimum is finally found.

Following Birgin and Martínez (2014), the multipliers update is done according to

µ
(q+1)
j =

〈
µqj + r(q) (gj(x)− ḡ)

〉
, (64)

where q is the number of the current outer iteration. Furthermore, also according to
Birgin and Martínez (2014), the update of the penalization factors is dependent on the
computation of

V q = max

(
gj(x),−µj

rj

)
, (65)

such that the update is done when V q > V q−1, as per

r
(q+1)
j = κr

(q)
j , κ > 1, (66)

where κ is a constant larger than unity. It is important to notice that κ and r
(0)
j are

generally not defined by a fixed rule and depend on the type of problem and constraints.
Thus, experiments are required for each problem to choose these parameters.

After testing, the method proposed by Birgin and Martínez (2014) for calculation
of r(0)

j presented good results and was incorporated to this work. Per the referred method,

r
(0)
j = 2

f(x)∑Ng
j=1 〈gj(x)〉2

. (67)
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One note to be taken is that in the AL first external loop, all Lagrange multiplies
are set to zero, leading to a pure penalization optimization process. The update only
happens when starting the second loop.

For the AL problem solution, a gradient-based approach is used. Thus, the derivative
of the AL equation is demanded,

dL(x,µ, r)

dxm
=
df(x)

dxm
+

Ng∑
j=1

rj

〈
µj
rj

+ gj(x)− ḡj
〉
dgj(x)

dxm
. (68)

With this derivative, an optimization strategy such as the one described in Section
3.2 can be used to find the best optimization path in each iteration of the inner loops.

The process is ideally stopped when all KKT conditions are met, which is not always
possible since a numerical problem is solved. For this work, the first order conditions are
verified for confirming if the optimum point candidate can be confirmed to be stationary,
such thatwwwwwdf(x∗)

dxm
+

Ng∑
j=1

µ∗j
dgj(x

∗)

dxm

wwwww ≤ εAL. (69)

In case the derivative of the AL function is smaller or equal to εAL, with εAL > 0, the
point is stationary. Such condition is defined as sufficient to confirm optimality to the
goals of this work.



28

4 TOPOLOGY OPTIMIZATION FOR HARMONIC PROBLEMS

Topology optimization is a form of structural optimization that consists in deter-
mining the optimal material distribution within a predetermined fixed domain subjected
to natural and essential boundary conditions (BENDSØE; KIKUCHI, 1988).

Following Sections contain definitions about key factors in the topology optimization
subjected to harmonic loads, such as material definition, length scale filtering and projection
and, finally, the damping modeling. Also, the deterministic formulation is presented and
discussed.

4.1 MATERIAL PARAMETRIZATION

Since the problem herein solved is dependent on material stiffness and mass charac-
teristics, these two distinct material parametrizations need to be defined. Regarding the
stiffness modeling, the SIMP (Solid Isotropic Material with Penalization) parametrization,
described by Bendsøe and Sigmund (1999), is used, such that the effective constitutive
tensor at the finite element e, De, is given by

De = ρpeD
0, (70)

where D0 is the constitutive tensor of the base material, ρe is the relative density at
element e and p is a positive exponent. Thus, as the relative density ρe is constant in each
finite element, its stiffness matrix can be written as

Ke(ρe) = (ρl + (1− ρl) ρpe)K0
e, (71)

where K0
e is the stiffness matrix of the base material, ρl a lower bound used to prevent

singularities in the finite element model. The global stiffness matrix is then

K(ρ) =
ne∑
e=1

He
TKe(ρ)He, (72)

where ne is the number of elements, ρ is the vector containing all the relative densities,
He is a localization matrix and Ke is the local stiffness of element e.

Regarding the mass parametrization, using a SIMP-like strategy does not produce
satisfactory results, as discussed by Pedersen (2000) and Dmitri Tcherniak (2002). The
problem is that, if p > 1 and ρe gets close to zero, the mass-stiffness ratio tends to infinity,
leading to unrealistic dynamic responses in void regions.

Based on these previous works, Niels Olhoff and Jianbin Du (2008) proposed a
modification in the mass parametrization targeting a relaxed mass-stiffness ratio and a
smooth transition for the mass derivative at a given threshold point. The original stiffness
parametrization is kept the same while splitting the mass modeling at ρe = ρ̄, as suggested
by Pedersen (2000). The proposed model, based on the work of Niels Olhoff and Jianbin
Du (2008), is

Me(ρe) =

{
(ρl + (1− ρl) ρe)M0

e, if ρ̄ < ρe ≤ 1.0

(ρl + (C1ρ
6
e + C2ρ

7
e))M

0
e, if ρe ≤ ρ̄,

(73)

where M0
e is the mass matrix of the base material and the constants C1 and C2 are given

by

C1 = −6ρl − 6

ρ̄5
(74)
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and

C2 =
5ρl − 5

ρ̄6
, (75)

with ρ̄ = 0.1 (PEDERSEN, 2000). This is the mass parametrization used in this work.

4.2 FILTERING AND PROJECTION

The traditional linear spatial filter, defined in Sigmund (2007), is used to impose a
minimum length scale and eliminate checkerboard patterns. Also, the Heaviside projection,
studied in Wang, Lazarov, and Sigmund (2011), is used to ensure crispy black and white
designs. Thus, the real set of design variables used is given by x ∈ Rne, which is filtered
by the linear spatial filter

ρ̃e =

∑
i∈ϑe weixi∑
i∈ϑe wei

. (76)

where ϑe is the set of neighbors of element e within a given radius R. Also, the weights
wei are defined as

wei = max (0, R− ‖ci − ce‖) , (77)

where the centroidal coordinates of elements e and i are given by ce and ci. Intermediate
variables ρ̃ are then transformed by a Heaviside-like nonlinear operator

ρe =
tanh (βHηH) + tanh (βH (ρ̃e − ηH))

tanh (βHηH) + tanh (βH (1− ηH))
, (78)

where ηH is a threshold value (0.5 in this manuscript) (WANG; LAZAROV; SIGMUND,
2011). For this work, the parameter βH is subjected to a continuation strategy, as described
in Section 8.

Even though the mathematical design variables are given by x, all equations are
presented as a function of ρ, given the fact that sensitivities and equilibrium equations are
solved with respect to the relative densities. The only modification is the need to apply a
correction to the sensitivities before solving the optimization problem (SIGMUND, 2007;
WANG; LAZAROV; SIGMUND, 2011). Thus, the sensitivity of a generic function f(ρ)
with respect to xm is evaluated as

df(ρ)

dxm
=
∂f(ρ)

∂ρi

∂ρi
∂ρ̃j

dρ̃j
dxm

, (79)

with implicit sum along indexes i and j.

4.3 DAMPING MODELING

The well-known Rayleigh damping model is written as a linear combination of the
global mass and stiffness matrices, in the form C = αM + βK. Generally, fixed values
for the constants α and β are defined to match a given dynamic behavior in a specific
problem. However, when it comes to topology optimization this is not possible since both
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the mass and stiffness matrices are in constant modification along the solution process,
making both α and β a function of the current design.

For the definition of α and β during a topology optimization process, the work
of Montero, Silva, and Cardoso (2020) proposes a generalization of the original strategy
developed by Silva, Neves, and Lenzi (2020). It consists in a structural damping method
(α = 0) that ensures a reasonable structural damping behavior while always leading to a
sub-critical damped system. Thus, the strategy proposed by Montero, Silva, and Cardoso
(2020) is defined as

C =
2ζ

ω
K. (80)

This method has the convenience of allowing the damping coefficient configuration
with the physical parameter ζ, as defined by Montero, Silva, and Cardoso (2020), which is
particularly useful in case damping continuations are adopted for the optimization process,
as is the case of this work.

Specially in the initial iterations of the optimization process, the dynamic behavior
of the structure is not yet defined and there might be events in which two different
resonant modes swap positions, as described in the work of Montero, Silva, and Cardoso
(2020). This event creates numerical instabilities due to the ill-conditioning of the dynamic
stiffness matrix KD, specially if the structure is slightly damped. To overcome this issue,
a continuation strategy is used in this work, starting the optimization process with a
relatively high value for ζ and continuously decreasing it up to the specified value for the
problem.

The problem is solved with NLA external loops of the AL method, as described
by the flowchart depicted in Fig. 4. For each AL iteration q in the interval defined by
1 ≤ q ≤ Nζ , a continuation approach of damping coefficient ζ is performed. The effective
ζq at iteration q is given by

ζq = max

(
ζtarget,

q − 1

Nζ − 1
(ζtarget − ζini) + ζini

)
, (81)

where ζini is the initial (large) value for ζ and ζtarget is the desired value for ζ.
For this work, the optimization starts with initial damping parameter ζini = 0.3,

(30%), and the target value is ζtarget = 0.05, (5%). The number of continuation steps Nζ is
defined for each design case in the results section.

4.4 SENSITIVITY ANALYSIS OF HARMONIC PROBLEMS

The solution of an optimization problem involving harmonic displacements compu-
tations demand the evaluation of the sensitivity of the structure with respect to the design
variables. Such methodology was originally proposed by Tortorelli and Micharelis (1994)
and Jensen and Pedersen (2005).

The process starts with the adjoint problem definition,

Φ(ρ,UD(ρ),U∗D(ρ)) = Φ(ρ) +
1

2
λT1 (KD(ρ)UD(ρ)− F0(ρ))

+
1

2
λT2 (K∗D(ρ)U∗D(ρ)− F∗0(ρ)) .

(82)
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In the equation, Φ is the dynamic function and λ1 and λ2 are the adjoint vectors
that multiply either the conjugate and non-conjugate dynamic equilibrium equations, being
the conjugate terms represented by the "*" sign.

After developing the equations and executing a series of mathematical maneuvers,
as detailed in the work of Montero, Silva, and Cardoso (2020), the resulting expression
can be defined as

dΦ

dρm
=

∂Φ

∂ρm
−Re

(
λT

dF0

dρm

)
+Re

(
λT

dKD

dρm
U

)
, (83)

where λ is the resulting adjoint term, resultant from a simplification applied to λ1 and λ2.
As can be seen, to solve the derivative, it is necessary to calculate the expression

∂Φ/∂ρm. Also, it is required to solve the adjoint problem, defined by

KDλ =

(
i
∂Φ

∂UI

T

− ∂Φ

∂UR

T)
. (84)

4.5 DETERMINISTIC APPROACH FOR DYNAMIC DISPLACEMENTS OPTIMIZA-
TION

The work of Montero, Silva, and Cardoso (2020) proposes a formulation for either
minimizing or maximizing dynamic responses, based on a linear combination of the density-
weighted norm NmwdB and the well-known static compliance ΥS = FTUS. The proposed
optimization problem can be defined as

minimize
ρ

γ1
NmwdB(ρ, ω)

N0
mwdB

+ γ2
ΥS(ρ)

Υ0
S

subject to KD(ρ, ω)U(ρ, ω) = F,

K(ρ)US(ρ) = F,

V (ρ) =
ne∑
e=1

ρeV
0
e ≤ V̄ ,

ρl ≤ ρ ≤ ρu,

(85)

where NmwdB and ΥS are weighted by the constants γ1 and γ2, such that |γ1|+ γ2 = 1.
Constant γ1 is defined as 0 < γ1 ≤ 1 when non-resonant structures are targeted and as
0 > γ1 ≥ −1 otherwise.

Both functions are scaled by their initial values N0
mwdB and Υ0

S, so that their order
of magnitude is similar and dimensionless. Also, V (ρ) is the volume and V̄ is its limit
value. Additionally, the equilibrium equations KDU = F and KUS = F are automatically
satisfied during the optimization, since the objective function demands the solution of
both equations (the static equilibrium equation is needed to compute ΥS and the dynamic
equilibrium equation is needed to compute NmwdB).

According to Montero, Silva, and Cardoso (2020), the density-weighted norm has
great capacity of localizing resonances even for high damping coefficients and the measure
is also insensitive to antiresonances, avoiding related premature convergence issues (SILVA;
NEVES; LENZI, 2019). Finally, it is able to disregard void regions in the computation of
dynamic displacements, eliminating disturbance of the optimization process by eventual
high displacements of meaningless modes located at the almost zero-stiffness areas of the
domain.
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The density-weighted norm is defined as

Nmw(U(ω)) =

(∑
j∈S

(
u∗jajuj

)m
2

) 1
m

, (86)

where ω is the target angular frequency, uj is the j − th component of U and u∗j is its
complex-conjugate counterpart. In this work the set S is comprised of all degrees of freedom
of the finite element mesh. The exponent m is always even and aids in the identification
of the resonances. The authors recommend that the value of m is carefully chosen to
not make it unnecessarily high, which would impose increased non-linear behavior and
eventual accuracy problems (MONTERO; SILVA; CARDOSO, 2020).

The term aj is the responsible for weighting each DOF j by the relative density of
the neighbor elements and is written as

aj =

∑
vj∈Sj

ρwvj

 1
w

, (87)

where vj is the set of elements containing the DOF j and w is a positive exponent.
According to Montero, Silva, and Cardoso (2020), the logarithmic form is preferred,

specially for higher excitation frequencies, in which the associated displacements and
derivatives are very small. Thus, Eq. (86) is rewritten as

NmwdB = c0 + 10 log10(Nmw), (88)

where the factor c0 is chosen to make the function positive for values of Nmw larger than
1× 10−c0/10. As proposed by Montero, Silva, and Cardoso (2020), a value of 100 is used in
this work, such that the function is positive for Nmw larger than 1× 10−10.

As discussed in the work of Montero, Silva, and Cardoso (2020), this formulation
leads to well defined topologies, with extreme dynamic response. However, as any deter-
ministic optimization approach, the process leads to solutions that are really optimized
only at the target frequency, not ensuring a smooth, well-behaved dynamic response at
neighbor frequencies, as intended in the present work. Thus, a modified formulation is
proposed, aiming the design of structures with robust dynamic behavior.

4.5.1 Sensitivity Analysis of the Density-Weighted Norm

The derivative of Eq. (86) with respect to the design variables ρ is detailed in the
work of Montero, Silva, and Cardoso (2020), however is integrally presented herein for
clarity. The derivative is given as

dNmw

dρm
=
ã

2

∑
j

b̃j
d

dρm

(
u∗jajuj

)
, (89)

with

ã =

(∑
j

(
u∗jajuj

)m
2

) 1
m
−1

(90)
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and

bj =
(
u∗jajuj

)m
2
−1
. (91)

Also, uj is defined as

uj = Lj
TU (92)

and u∗j is written as

u∗j = Lj
TU∗ (93)

where Lj is a localization vector. This leads to

dNmw

dρm
=
ã

2

∑
j

bj

(
ujajL

T
j

dU∗

dρm
+ u∗j

daj
dρm

uj + u∗jajL
T
j

dU

dρm

)
, (94)

and splitting the complex displacement vector into its real and imaginary components, it
gives that

dNmw

dρm
=
ã

2

∑
j

bj

[(
ujR + iujI

)
ajL

T
j

(
dUR

dρm
− idUI

dρm

)
+
(
uj

2
R + uj

2
I

) daj
dρm

+
(
ujR − iujI

)
ajL

T
j

(
dUR

dρm
+ i

dUI

dρm

)]
.

(95)

Deriving Eq. (87), results in

daj
dρm

=
1

w

∑
vj

ρwvj

 1
w
−1

w
∑
vj

(
ρw−1
vj

dρvj
dρm

)
(96)

where vj is defined as a list of first order elements that are neighbors of the degree-of-freedom
j.

Further exploring Eq. (96), it can be simplified as

daj
dρm

= Aj
∑
vj

(
ρw−1
vj

δvm

)
, (97)

where

Aj =

∑
vj

ρwvj

 1
w
−1

(98)

and

δvm =

{
1, if v = m,

0, if v 6= m.
(99)
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Inserting Eq. (97) in Eq. (95) and with further simplification

dNmw

dρm
= ã

∑
j

bj

[
ujRajL

T
j

dUR

dρm
+ ujIajL

T
j

dUI

dρm

+
1

2

(
uj

2
R + uj

2
I

)
Aj
∑
vj

(
ρw−1
vj

δvm

) . (100)

It is possible now to split the terms as required by the sensitivity analysis for general
dynamic problems, given by Eq. (84), as

∂Nmw

∂UR

= ã
∑
j

bjujRajL
T
j , (101)

and

∂Nmw

∂UI

= ã
∑
j

bjujIajL
T
j . (102)

Thus, the adjoint problem can be written as

KDλN =

(
i
∂Nmw

∂UI

− ∂Nmw

∂UR

)T
. (103)

Substituting Eq. (100) into (103) and reorganizing terms,

KDλN = −ã
∑
j

bjuj
∗ajLj. (104)

The remaining term is directly added to the derivative, resulting in

dNmw

dρm
=
ã

2

∑
j

bj
(
uj

2
R + uj

2
I

)
Aj
∑
vj

(
ρw−1
vj

δvm

)
+Re

(
λN

T dKD

dρm
U

)
−Re

(
λN

T dF0

dρm

)
.

(105)

Adapting the resultant equation to the logarithmic scale, Eq. (105) is redefined as

dNmwdB

dρm
= 10

1

ln(10)Nmw

dNmw

dρm
. (106)
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5 UNCERTAINTY

Many real-life systems present behavior variation patterns. The spreading rate of a
biological disease, the monetary exchange rate fluctuations over a semester, or loadings
due to the wind or by earthquakes are examples of external events with uncertain behavior
(VANMARCKE, 2010).

Thus, depending on the variations that a physical system is subjected to, a deter-
ministic calculation approach might be insufficient to ensure an accurate representation
of the application (SUDRET; DER KIUREGHIAN, 2000). Uncertain parameters can
be classified in two distinct groups: aleatoric and epistemic (HORA, 1996). Aleatoric
uncertainties are caused by the randomness of a certain event with inherent variability, such
as a coin flipping exercise. Epistemic (or systematic) uncertainties are related to the lack
of knowledge of a certain event, but with further information or improved modeling, could
be mitigated. In other words, aleatoric uncertainties cannot be reduced while epistemic
uncertainties can (SHAKER; HÜLLERMEIER, 2020).

There are two main ways of dealing with uncertainties in a given problem: the
probabilistic and the non-probabilistic methods. This work considers the probabilistic
approach, where the uncertainties are added to the problem as random variables (AGAR-
WAL, 2004). The concepts related to random variables will be further explored in the
next subsections of this Chapter.

Since the non-probabilistic method is not covered by this work, the interested reader
can refer to the work of Agarwal (2004) for further information.

For engineering applications where uncertain input parameters are adopted, the
understanding of their influence on the system response is mandatory for correct interpre-
tation of the results. To this goal, consider a mechanical system Ms : xp → yp subjected to
the uncertain input parameters contained in the random variable Xp. The system response
Yp is

Yp = Ms (Xp) , (107)

where Yp contains the response for each uncertain input contained in Xp.
The understanding of the probabilistic content of the response vector Yp is the

main goal of the solution methods of probabilistic problems (SUDRET, 2007). According
to Sudret (2007), an option for the computation of such response is the application of
probabilistic methods of uncertainty propagation, that can generally be divided in three
subgroups: complete characterization, response variability and reliability (LOPEZ; BECK,
2013).

Methods related to complete characterization allow for the definition of the prob-
ability density such that a very complete understanding of the input data is provided
(LOPEZ; BECK, 2013). Katzgraber (2009) defines that a well-known method of complete
characterization is the Monte Carlo Simulation (MCS), which is considered a baseline for
verification of any other method. The system response characterization is often done by
these methods via evaluation of the expected value and a deviation measure, such as the
standard deviation, of the function response. These concepts will be explored in Section
5.1.

According to Lopez and Beck (2013), methods that evaluate the response variability
have the main goal of determining measures like the expected value and standard deviation
of the system response under uncertain input parameters. One can refer to the perturbation
method as an example related to this approach (SILVA; CARDOSO, 2016).
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Response reliability based methods evaluate measures associated to failure, that
could be used as a design constraint, for instance. Examples of reliability based methods
are the FORM (First Order Reliability Method) and SORM (Second Order Reliability
Method) (DITLEVSEN; MADSEN, 1996).

Following items in this Section define basic fundamentals related to uncertainties,
such as the definition of random variable. Also, the related concepts of expected value,
variance and standard deviation will be explored. Finally, an overview on the Normal
distribution probability function is provided.

5.1 RANDOM VARIABLE

Consider the probability space (Ωp,F, P ), where Ωp is a sample space that collects
all possible events, F is a subset of possible events contained in Ωp, and P is a general
probability distribution function that describes how often an event might occur. Consider
also (Ω′p,F

′) as a subspace of the complete probability space. Then, for every mapping
X : Ωp → Ω′p, a real number X(ωp) is associated, called a realization of X, with ωp ∈ Ωp.
So, according to Bauer and Burckel (2011), the mapping function X is called a random
variable.

In simpler terms, a random variable is a function that maps, for any event in a
partition of the sample space Ωp, an unique real number, such that X : Ωp → R.

Bauer and Burckel (2011) state that the event {X ∈ F} is configured when "X
lies in F" and P{X ∈ F} is the probability of such. Thus, to each mapping event, a
positive real number P{X ∈ F} ≥ 0 exists, which represents its probability of occurrence.
Additionally, listing all possible realizations X(ωp) with its associated probability gives
the probability distribution of X, defined as PX .

Moreover, associated to a probability distribution PX , there is a cumulative distri-
bution FX(x), defined as

FX(x) = PX(X ≤ x) = PX(ωp ∈ Ωp : X(ωp) ≤ x), (108)

for all x ∈ R. A random variable X is defined as continuous when a non-negative function
fX(x) exists, such that

FX(x) =

∫ x

−∞
fX(x)dx, (109)

for all x ∈ R, where fX(x) is the probability density function of the random variable X.
Considering FX(x) as differentiable, then the probability density function associated to a
random variable X can be defined as

fX(x) =
dFX(x)

dx
, (110)

when

• fX(x) ≥ 0,

• For the interval [x1, x2], where x1, x2 ∈ Ωp,

PX = P (X ∈ [x1, x2]) =

∫ x2

x1

fX(x)dx, (111)

such that the probability of a random variable X ∈ [x1, x2] is defined by the integral
of its probability density function evaluated in the referred interval.
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• Probability of a random variable X ∈ [−∞,+∞] is defined as

PX = P (X ∈ [−∞,+∞]) =

∫ +∞

−∞
fX(x)dx = 1 (112)

The probability P{X ∈ F} can be computed by the distribution PX and one does
not need to explicitly know the eventually complicated probability space (Ωp,F, P ) for
such (BAUER; BURCKEL, 2011). Also, Bauer and Burckel (2011) define that several
"probability-theoretic concepts" can be derived from their distributions.

One of such concepts is the expected value of a random variable X, E[X]. Thus,
considering that the random variable X ∈ (Ωp,F, P ), the expected value of a random
variable is defined by Bauer and Burckel (2011) as

E[X] :=

∫
XdPX . (113)

One important property of the expected value is that

E [|X|] < +∞, (114)

which is equivalent to the integrability of the random variable X (BAUER; BURCKEL,
2011). The expected value can also be written considering the deterministic function of a
random variable Φ(X), as

E[Φ(X)] =

∫ +∞

−∞
Φ(x)fX(x)dx. (115)

A general case of Eq. (115) is to consider Φ(X) = Xk, with k ≥ 0. If k = 0, then
E[X0] = E[1] = 1, which is the total probability of X ∈ Ω. When k > 0, the k-th moment
of E[.] is defined, such that

mk = E[Xk] =

∫ +∞

−∞
xkfX(x)dx, (116)

where the expected value itself is the first moment of a random variable.
Another way of expressing the moments of X is to consider E

[
(X − E[X])k

]
,

defined as the central moment of X,

m̄k = E
[
(X − E[X])k

]
=

∫ +∞

−∞
(x− E[X])k fX(x)dx. (117)

The central moment, considering k = 0, leads to E
[
(X − E[X])0] = E[1] = 1.

Also, the first central moment, defined for k = 1, is E
[
(X − E[X])1] = E[X]− E[X] = 0.

According to Bauer and Burckel (2011), the second central moment, m̄2, is of great
importance and is called variance, represented by

V ar[X] = E
[
(X − E[X])2] =

∫ +∞

−∞
(x− E[X])2 fX(x)dx. (118)

Another important definition, as defined by Bauer and Burckel (2011), is related to
the standard deviation of X, defined as

Std[X] =
√
V ar[X]. (119)

Thus, the expected value is defined as measure of average whereas the variance and
standard deviation define how scattered the random variables are around the average.
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5.2 NORMAL PROBABILITY DENSITY FUNCTIONS

Normal probability density functions are often used in the uncertainty modeling
in engineering problems, as is the case of this work. Thus, its main characteristics and
properties are presented in this topic.

The Normal distribution function is a continuous differentiable function, with
X ∈ R, defined as

fX(x) =
1

Std[X]
√

2π
exp−

1
2(x−E[X]

Std[X] )
2

. (120)

One can verify that the distribution is totally defined by the expected value E[X]
and standard deviation Std[X]. Figure 2 depicts the regular shape of a Normal distribution,
where the percentage values represent the quantity of the samples of X contained in each
interval, defined as a function of E[X] and Std[X].

Figure 2 – Normal distribution

 0

E[X] - 3Std[X] E[X] - 2Std[X] E[X] - Std[X] E[X] E[X] + Std[X] E[X] + 2Std[X] E[X] + 3Std[X]

99.7%

95.5%

68.5%

Source: Author production.

A regular Normal distribution, as the one shown in Fig. 2, can be defined as
X ∼ N (E[X], Std[X]).

The definition of a Normal distribution vector is given as

fX(X) =
1√

(2π)Ndet (|S|)
exp−

1
2

(x−E[X])TS−1(x−E[X]), (121)

which depends on the expected value E[X] and on the covariance matrix S, defined as

S = E
[
(X − E [X]) (X − E [X])T

]
. (122)
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It is important to highlight that variations of the regular Normal distribution are
also common in engineering applications. One of such variations is the truncation of the
distribution, such that instead of being defined in the interval [−∞,+∞], it is defined
according to a lower limit a and an upper limit b, such that the new interval is [a, b]. In
this case, the distribution is defined as X ∼ N (a, b, E[X], Std[X]).

A truncated Normal distribution is used in this work, as discussed in Section 8.
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6 PROBABILISTIC ROBUST OPTIMIZATION

Components designed by considering the deterministic approach normally have high
sensitivity to variations in input parameters such that uncertainties on material properties
and in loading can highly affect the part’s reliability in operation. Thus, a robust approach
targets a solution for the optimization problem with reduced sensitivity, or improved
robustness, with respect to changes in one or more input parameters (CARDOSO; SILVA;
BECK, 2019; SILVA; CARDOSO, 2016; DA SILVA; BECK; CARDOSO, 2018).

In general, a robust optimization problem considers the minimization of the linear
combination of the expected value E[.] and the standard deviation Std[.] of a function
(response) with respect to a given (and uncertain) input data (CARDOSO; SILVA; BECK,
2019). The optimization problem can be defined as

minimize
ρ

Φ[ρ, r] = ψE[f(ρ, r)] + ϕStd[f(ρ, r)]

subject to gj(ρ) ≤ ḡj j = 1..Ng,

ρl ≤ ρ ≤ ρu,
(123)

where r ∈ R is a vector with the realizations of a given random variable X, f(ρ, r) is
a generic function dependent on ρ and r, constants ψ and ϕ are weighting factors for
the expected value E[.] and the standard deviation Std[.], respectively. Thus, a large ϕ
increases the importance of Std[.] in the objective function, theoretically leading to a more
robust solution.

There are several different approaches to compute E[.] and Std[.] and some of these
methods are further described as follows:

• MCS method: According to Katzgraber (2009), Monte Carlo methods can be defined
as a class of techniques for randomly sampling an N -dimensional space to esti-
mate a probability distribution. Furthermore, the method is particularly useful for
high-dimensional distributions given the fact that it can accurately capture their char-
acteristics, being the challenge to correctly choose the random samples to minimize
both the numerical effort and the inherent approximation errors (KATZGRABER,
2009). Problems aimed by the Monte Carlo method, as described by MacKay (1998),
are to generate samples from a given distribution and to estimate expectations of
functions under this distribution.

• Perturbation Method: consists in applying a small perturbation value on the chosen
random variables and evaluating the expected value E[.] and covariance Cov[.], which
has a direct relation with Std[.], of the problem response. Considering, as an example,
a classic elastic structural problem where the understanding of the impacts in the
static displacements is desired, each term of the governing equation KU = F can
be written as second-order Taylor expansions around the mean value. Using such
information from the Taylor expansions, one can compute E[.] and Cov[.] as defined
in the work of Silva and Cardoso (2016). The caveat of this method is the limitation
in the uncertainty level that can be considered (SILVA; CARDOSO, 2016).

• Unknown-but-bounded: allows for the design of components considering uncertain
parameters with a defined variation interval, but not knowing how the probability
distribution is. Using such information, the method is developed considering the
solution of a double-loop problem. An inner loop is responsible for determining the
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worst case scenario and an outer loop is used to optimize the structure for the design
case defined in the first loop. According to Zhang, Kang, and Zhang (2016), the
double-loop problems solutions are generally time consuming and derivative of the
outer loop tends to be relatively complex since there in no implicit dependency. Also
according to Zhang, Kang, and Zhang (2016), many researchers studied possibilities
of solving the problem with a single-loop problem, but, to date, the double-loop
problem solution is still the more reasonable choice.

• Collocation Method: can be defined as a MCS method modified with the goal of
increasing computational efficiency and is feasible, in comparison to the MCS method,
up to a threshold of 50 random variables (LAZAROV, Boyan S; SCHEVENELS;
SIGMUND, 2012). The method targets the calculation ofE[.] and Std[.] by computing
the deterministic problem at certain "collocation" points, which reduces the quantity
of overall computation effort. The main challenge is to specify the collocation points
such that the balance between computational cost and approximation accuracy is
reached.

The MCS method is the baseline for accuracy verification of other methods and
can be used regardless of the probability distribution of the input data. Therefore, the
MCS method is used in this work, although the proposed optimization problem can also
be used with any other method.

The expected value E[.] can be written as the mean value of the evaluations of the
function f with respect to the design variables ρ and realizations of the random variable,
given in r,

E[f(ρ, r)] =
1

N

N∑
i=1

f(ρ, ri), (124)

and Standard deviation of f , Std[f(ρ, r)], can be evaluated in parallel with the expected
value as

Std[f(ρ, r)] =

√√√√ 1

N − 1

(
N∑
i=1

(f(ρ, ri)− δ)2 − (
∑N

i=1 f(ρ, ri)− δ))2

N

)
. (125)

where δ = f(ρ, E[r]) is an offset used to address numerical cancellation errors (CARDOSO;
SILVA; BECK, 2019).

Generally, a large number of samples is needed to be taken from the distribution to
increase the accuracy of the method. Inevitably, the evaluation of very similar samples
happens many times along the process, creating results that could be interpreted as
"repetitions" or clusters of previously computed results.

To overcome this undesired behavior, the general robust problem formulation
defined in Cardoso, Silva, and Beck (2019) is modified in this work. Such modification is a
particular variation of the Stratified Sampling method, described by Shields et al. (2015),
and consists in discretizing, in Nbins parts, the histogram generated by a highly populated
realizations vector, with N events, following the distribution of interest. For each bin, the
number of events, Nei , and the simple average of the samples r̄i are computed, as depicted
in Fig. 3.

As an outcome, both the expected value and the standard deviation of f are
evaluated using the average of the samples in each interval and the associated number of
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Figure 3 – Stratified sampling.
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samples. Thus, the expected value E[.] is redefined as

E[f(ρ, r)] =
1

N

Nbins∑
i=1

f(ρ, r̄i)Nei , (126)

where f(ρ, r̄i) is evaluated considering the design variables ρ and the average value of the
samples of r inside bin i.

Standard deviation of f , Std[f(ρ, r)], is also redefined accordingly, such that

Std[f(ρ, r)] =

√√√√ 1

N − 1

(
Nbins∑
i=1

(f(ρ, r̄i)− δ)2Nei −
[
∑Nbins

i=1 (f(ρ, r̄i)− δ))Nei ]
2

N

)
. (127)

The presented formulation allows data sourcing from a highly populated vector
of realizations of the random variable while ensuring relatively low computational cost,
since it is proportional to the choice of the parameter Nbins and not to the number of
realizations N , considering N � Nbins. Additionally, it is important to mention that this
approach does not account for any refinement of the number of bins based on some error
measure of the outcomes of the MCS. Thus, numerical experiments are needed to choose
Nbins in advance for a particular problem.

Equations (126) and (127) are evaluated using parallel processing in the computer
implementation used in this work. This is a straightforward task due to the embarrassingly
parallel nature of the Monte Carlo Method and also by the capabilities provided by a
modern programming language like Julia, where a loop can be easily spawned to multiple
processes (BEZANSON et al., 2017).

6.1 SENSITIVITY ANALYSIS OF A PROBABILISTIC ROBUST PROBLEM

The sensitivity of function Φ defined in Eq. (123) w.r.t. a design variable ρm is

dΦ(ρ, r)

dρm
= ψ

dE[f(ρ, r)]

dρm
+ ϕ

dStd[f(ρ, r)]

dρm
. (128)
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Dealing with the two parts at the right side of equation separately, one has

dE[f(ρ, r)]

dρm
=

1

N

N∑
i=1

df(ρ, ri)

dρm
. (129)

Continuing with the second part of the equation (128), it is given that

dStd[f(ρ, r)]

dρm
=

d

dρm

[ 1

N − 1

( N∑
i=1

(f(ρ, ri)− δ)2 − (
∑N

i=1 f(ρ, ri)− δ))2

N

)] 1
2
. (130)

Further developing the derivative, results in

dStd[f(ρ, r)]

dρm
=

1

2

[( N∑
i=1

(f(ρ, ri)− δ)2 − (
∑N

i=1 f(ρ, ri)− δ))2

N

)]− 1
2

1

N − 1

[
N∑
i=1

2(f(ρ, ri)− δ)
df(ρ, ri)

dρm
−

∑N
i=1 2(f(ρ, ri)− δ)

∑N
i=1

df(ρ, ri)

dρm
N

]
.

(131)

Simplifying the notation and reorganizing terms, the final derivative for Std[f(ρ, r)]
is defined as

dStd[f(ρ, r)]

dρm
=

1

2

1

Std[f(ρ, r)]

1

N − 1

[
N∑
i=1

2(f(ρ, ri)− δ)
df(ρ, ri)

dρm

−

∑N
i=1 2(f(ρ, ri)− δ)

∑N
i=1

df(ρ, ri)

dρm
N

]
.

(132)

Analogously, the sensitivity for the modified robust problem formulation, defined
in Eqs. (126) and (127), is given as

dE[f(ρ, r)]

dρm
=

1

N

Nbins∑
i=1

df(ρ, ri)

dρm
Nei (133)

and

dStd[f(ρ, r)]

dρm
=

1

2

1

Std[f(ρ, r)]

1

N − 1

[
Nbins∑
i=1

2(f(ρ, r̄i)− δ)Nei

df(ρ, r̄i)

dρm

−

∑Nbins

i=1 2(f(ρ, r̄i)− δ)Nei

∑Nbins

i=1

df(ρ, r̄i)

dρm
Nei

N

]
.

(134)

Thus, for each sample r̄i, it is necessary to evaluate the sensitivity df(ρ,r̄i)
dρm

. Equations
(133) and (134) are evaluated using parallel processing in the computer implementation
used in this work, since the computation of sensitivities for each r̄i can be carried out
independently.
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7 PROPOSED FORMULATION

The proposed formulation aims the design of continuum structures with optimized
dynamic response and improved behavior robustness with respect to uncertainties in the
excitation frequency ω, considering volume constraint.

By optimized dynamic displacements with improved robustness, the author means
resonant and non-resonant structures with minimized variation in the dynamic response
around a given target frequency. Thus, in case of non-resonant structures are targeted,
the dynamic displacements shall be relatively small (without the presence of high-energy
resonances close to the target frequency) and consistently similar around the target
frequency. When resonant structures are targeted, the objective is to create designs with
high dynamic displacements and also with low variation in the dynamic response around a
target excitation frequency.

The objective function is defined as a linear combination of two terms: the robust
design formulation presented in Section 6 and the static compliance. The problem is
defined as

minimize
ρ

Φ(ρ,ω) = R(ρ,ω) + γ2
ΥS(ρ)

Υ0
S

subject to KD(ρ,ω)U(ρ,ω) = F,

K(ρ)US(ρ) = F,

V (ρ) =
ne∑
e=1

ρeV
0
e ≤ V̄ ,

ρl ≤ ρ ≤ ρu,

(135)

with

R(ρ,ω) =
γ1E[NmwdB(ρ,ω)] + |γ1|ϕStd[NmwdB(ρ,ω)]

E[NmwdB(ρ,ω)]0 + ϕStd[NmwdB(ρ,ω)]0
, (136)

where E[NmwdB(ρ,ω)] and Std[NmwdB(ρ,ω)] are the expected value and standard deviation
of the density-weighted norm NmwdB as a function of the vector of design variables ρ. The
vector ω contains N realizations of the random variable X(ω), which is the excitation
frequency, such that each ω contained in ω is used in the MCS process. The weighting
factor ϕ is used to set the relative importance of the expected value and the standard
deviation (ψ from Eq. (123) is assumed as 1.0).

Weight constants γ1 and γ2 are defined in the same way as presented in Section 4.5.
The caveat is that γ1 multiplies both the expected value and the standard deviation in
Eq. (136) however, its module is adopted together with Std[.] to ensure that the standard
deviation is always minimized independently of the signal of γ1.

Both equilibrium equations are identically satisfied during the finite element
computations, such that the only functional constraint is the (deterministic) volume
V (ρ) =

∑
ρeV

0
e ≤ V̄ .

Optimization problem defined in Eq. (135) can be solved by using many traditional
methods, like the Method of Moving Asymptotes (SVANBERG, 1987), for example.
However, the Augmented Lagrangian (AL) method, presented in Section 3.3, is used in
this work. Thus, the constrained optimization problem defined in Eq. (135) is rewritten
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as a sequence of unconstrained optimization problems as

minimize
ρ

Lq(ρ,µq, rqp,ω) = Φ(ρ,ω) +
rp
q

2

〈
µq1
rpq

+
V (ρ)

V̄
− 1

〉2

subject to ρl ≤ ρ ≤ ρu,
(137)

where q is the AL iteration, µq1 is the Lagrange multiplier associated to the volume
constraint, rpq is a penalty factor and 〈a〉 = max(a, 0). The same procedure used in
Montero, Silva, and Cardoso (2020) is used here, with the only difference being the robust
part of the objective function Φ(ρ,ω).

The sensitivity of Lq with respect to a design variable ρm is

dLq(ρ,µq, rqp,ω)

dρm
=
dΦ(ρ,ω)

dρm
+ rp

q

〈
µq1
rpq

+
V (ρ)

V̄
− 1

〉
1

V̄

dV (ρ)

dρm
, (138)

where

dΦ(ρ,ω)

dρm
= T

(
γ1
dE[NmwdB(ρ,ω)]

dρm
+ |γ1|ϕ

dStd[NmwdB(ρ,ω)]

dρm

)
+
γ2

Υ0
S

dΥS(ρ)

dρm
(139)

and

T =
1

E[NmwdB(ρ,ω)]0 + ϕStd[NmwdB(ρ,ω)]0
. (140)

Derivatives dE[NmwdB(ρ,ω)]
dρm

and dStd[NmwdB(ρ,ω)]
dρm

are evaluated using Eqs. (133) and
(134) and the derivative of NmωdB with respect to ρm is presented in Section 4.5.1. The
Central Finite Difference method was used for validating the computational implementation
of the derivative, considering different perturbation levels for numerical convergence
assurance.

Regarding the solution procedure, the realizations of the excitation frequency
are generated in the very beginning of the process and the exact same realizations are
considered in all the iterations. This strategy is commonly referred in the literature as the
Common Random Numbers method. Figure 4 shows the flowchart of the optimization
procedure using the Augmented Lagrangian approach.
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Figure 4 – Optimization algorithm flowchart.
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8 RESULTS

This section presents the outcomes from the various cases in which the proposed
formulation has been tested. Results for non-resonant and resonant structures are demon-
strated in Sections 8.2 and 8.3, respectively.

Four-node incompatible bilinear isoparametric elements are used in the finite element
discretization to better represent bending behavior, specially in slender reinforcements
(PIAN; WU, 2005), which is discussed in details in Section 2.2.1. The linear spatial filter and
the Heaviside projection are used to ensure minimum length scale, avoid mesh dependency,
checkerboard patterns and to obtain crispy black and white topologies (SIGMUND, 2007;
WANG; LAZAROV; SIGMUND, 2011). Additionally, damping modeling and the related
continuation strategy are described in Section 4.3.

Regarding the robust problem modeling, the use of the MCS method makes
it possible to consider different distributions for ω. Nonetheless, a truncated normal
distribution is used in this work. The truncation is justified by the fact that a normal
distribution can, theoretically, result in negative realizations or even unrealistic high
frequencies. These two scenarios would have no physical meaning for the context of this
work since: 1) the frequency is a positive measure, and 2) an unrealistic high frequency
would be too far from the frequency of interest.

The truncation is defined as an interval ±∆ω around the mean ω̄, such that at
least 99.7% of the realizations of the non-truncated distribution with the same mean and
standard deviations is represented by the truncated distribution. Thus, the frequency ω is
modeled as

ω ∼ N (ωl, ωu, ω̄, η) , (141)

where ωl and ωu are the lower and upper bounds of ω, ω̄ is the mean value and η the
standard deviation. The limits are defined as

ωu,l = ω̄ ± ∆ω

2π
, (142)

where ω̄, η and ∆ω are defined for each one of the cases studied in this section.
Reference vector ωω̄,η is obtained with N = 1× 106 realizations of Eq. (141) for

each combination of ω̄, η and ∆ω studied in this section. This vector is used as input to
the pre-processing discussed in Section 6, used in the optimization procedure. The number
of bins used in the pre-processing was found after a careful evaluation of the errors for the
expected value, standard deviation and the Inf norm of gradient for the worst case (larger
η and small ϕ), i.e., with large output standard deviation of NmωdB. Table 1 shows the
relative differences obtained when using a regular MCS with low number of realizations
and for the modified approach, for different values of Nbins. The reference is the regular
MCS with N = 1× 106 realizations. Based on these results, Nbins = 30 is used to perform
all the optimizations in this section.

8.1 DESIGN MODELS

Two different design models were evaluated in this work with the objective to check
the formulation behavior under different conditions. Thus, in Sections 8.1.1 and 8.1.2,
they are defined and their main characteristics are described.
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Table 1 – Relative differences for expected value, standard deviation and Inf norm of
sensitivities with respect to the reference MCS with 1× 106 realizations.

Case E Std Gradient

Regular MCS, N = 250 0,001% 0,278% 0,347%
Modified MCS, Nbins = 5 0,000% 4,358% 0,051%
Modified MCS, Nbins = 10 0,000% 1,159% 0,013%
Modified MCS, Nbins = 30 0,000% 0,130% 0,002%
Modified MCS, Nbins = 50 0,000% 0,046% 0,001%
Modified MCS, Nbins = 75 0,000% 0,046% 0,001%
Modified MCS, Nbins = 100 0,000% 0,000% 0,000%
Modified MCS, Nbins = 150 0,000% 0,000% 0,000%
Modified MCS, Nbins = 250 0,000% 0,000% 0,000%

Source: Author production.

8.1.1 Cantilever beam with central loading

The first test case is related to structures with symmetry in geometry, load and
boundary conditions, as shown in Fig. 5. The load is homogeneously applied along edge c
and the relative densities of all elements on this region are kept constant and equal to 1.0
during the optimization.

Figure 5 – Definition of Problem 1.
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Ԧ𝐹

Source: Author production.

Relevant data used in this test case are presented in Tab. 2.
Also, following the work of (MONTERO; SILVA; CARDOSO, 2020), mean fre-

quencies of ω̄ = 365, ω̄ = 700, ω̄ = 1135 and ω̄ = 1440 Hz are studied in the next
subsections.

8.1.2 Cantilever beam with bottom loading

A second test case is used to assess if the proposed formulation can increase
robustness without exploring the symmetry of the geometry, loading and boundary
conditions. Thus, the load application point is changed to an asymmetric location, as
shown in Fig. 6 and the height of the domain is slightly increased to change the initial
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Table 2 – Problem data - Test case 1.

Data Value Unit

Height a 0.5 [m]
Length b 1.0 [m]
Edge length c 0.1 [m]
Thickness 1.0 [m]
Young Modulus 210 [GPa]
Poisson 0.3 [−]
Mass density 7860 [kg/m3]
Harmonic Load 10000 [N ]

Source: Author production.

frequency response. The load is again applied along edge c and the relative densities of all
elements on this region are also kept constant and equal to 1.0 during the optimization.

Figure 6 – Definition of Problem 2

a

b

c

Ԧ𝐹

Source: Author production.

Relevant data for this test case are presented in Tab. 3.

Table 3 – Problem data - Test case 2.

Data Value Unit

Height a 0.625 [m]
Length b 1.0 [m]
Edge length c 0.1 [m]
Thickness 1.0 [m]
Young Modulus 210 [GPa]
Poisson 0.3 [−]
Mass density 7860 [kg/m3]
Harmonic Load 10000 [N ]

Source: Author production.

To define the target frequencies for this case, the dynamic response of the structure
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is evaluated using the dynamic compliance, such that resonances and antiresonances can
be identified. The design domain is configured with V̄ = 100% and the resultant frequency
response is shown in Fig. 7.

Figure 7 – Frequency response of the Problem 2.
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Based on the frequency response, the target frequencies ω̄ are the first resonance
(420 Hz), an intermediate frequency between the first resonance and one antiresonance
(700 Hz), an antiresonance (930 Hz) and the second resonance (1425 Hz). It is important
to highlight that the selected frequencies are the closest multipliers of 5 Hz of the actual
resonances and antiresonances.

8.2 DYNAMIC RESPONSE MINIMIZATION

Two distinct design situations, demonstrated in Sections 8.2.1 and 8.2.3, are
investigated with the objective of evaluating the proposed formulation.

For all cases, the parameters γ1 and V̄ from Eq. (137) are defined as 0.99 and 0.5|Ω|,
respectively, where |Ω| is the volume of the design domain. Also, the same initial design
point is used in all optimizations, which is selected to violate the volume constraint in
10%, such that the penalty parameter rp, from Eq. (137), can be automatically computed
with Eq. 67. Thus, results presented as "Before Optimization" in this section are obtained
with an homogeneous material distribution given by ρi = 0.5 ∗ 1.1, ∀i, that is, considering
the starting point.

Finally, exponents from the density-weighted norm, presented in Eqs. 86 and 87,
are defined as m = 2.0 and w = 2.0 (MONTERO; SILVA; CARDOSO, 2020). It is
worth stressing that the smaller is the γ2, the smaller is the contribution from the static
compliance. Thus, as γ2 = |γ1| − 1 = 0.01, the results obtained in this work are mainly
influenced by the dynamic norm, as desired.

The problem is solved with NAL = 15 external loops where the first Nζ = 10
iterations are used to effectively solve the problem and to apply the continuation procedure
for ζ, Eq. (81). The last 5 AL iterations are used to reduce the occurrence of intermediate
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Figure 8 – Topologies obtained with the deterministic approach, Eq. (85), for the test
case depicted in Fig. 5.
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Source: Author production.

relative density values, so that the initial value of the Heaviside projection parameter
βH = 1.5 is updated along the optimization process as

βk+1
H =

{
1.5, if 1 ≤ k ≤ Nζ

βkH + 7.5, if Nζ < k ≤ NAL.
(143)

Three basic parameters are used to assess the formulation. The first one is ϕ, defined
in Eq. (136), responsible for weighting the importance of the standard deviation in the
objective function. The second parameter is the expected value of the excitation frequency,
ω̄, and the third one is its standard deviation η and the associated ∆ω. Optimized topologies,
evaluation of robustness 1, analysis of the frequency response and an investigation about the
mechanisms used by the optimizer to impose the robustness are discussed in all examples.

8.2.1 Cantilever beam with central loading

The first test case is related to structures with symmetry in geometry, load and
boundary conditions, as defined in Section 8.2.1, considering a mesh of 72× 36, giving
a total of 2592 elements, and spatial filter radius R = 0.031 m. In such configuration,
vibration modes presenting low contribution to the global response can be weakly activated
due to possible asymmetries in the design or due to a load vector F quasi-orthogonal to U.
Consequently, low-energy resonances can appear close to the frequency of interest and this
mechanism can be used to increase the robustness of the design.

For reference and further comparison to the robust designs, the topologies obtained
using the deterministic approach for each investigated frequency are shown in Fig. 8.

For each central frequency ω̄ defined in Section 8.1.1, deviations of η = 2.0, η = 5.0
and η = 10 Hz are studied, with corresponding values of ∆ω of 20, 20 and 30 Hz, respectively,
to account for at least 99.7% of the original frequency (not truncated) content.

8.2.1.1 Results at 365 Hz

The first investigation is performed at the target frequency of 365 Hz, which presents
a dynamic behavior with high dependency on the stiffness (OLHOFF, N.; DU, J., 2009).
Resulting topologies obtained with different values of η and ϕ, are depicted in Fig. 9.

1The histograms computed for the robustness evaluations and depicted in the following subsections
refer to the absolute number of realizations, and not to the relative number of realizations. Same strategy
is used in the maximization cases, described in Section 8.3.
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Figure 9 – Topologies obtained at 365 Hz, for different values of η and ϕ.
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Table 4 – Expected values E[NmωdB] at 365 Hz, for different values of η and ϕ.

ϕ η = 2.0 Hz η = 5.0 Hz η = 10.0 Hz

0.0 67.7007 67.7028 67.7099
5.0 67.5667 67.4196 67.8839
10.0 67.6042 67.8453 68.1752
15.0 67.5534 68.0176 68.2413
20.0 68.0189 68.2350 67.9966

Source: Author production.

Table 5 – Standard deviations Std[NmωdB] at 365 Hz, for different values of η and ϕ.

ϕ η = 2.0 Hz η = 5.0 Hz η = 10.0 Hz

0.0 0.0303 0.0758 0.1505
5.0 0.0216 0.0258 0.0396
10.0 0.0110 0.0034 0.0123
15.0 0.0051 0.0035 0.0121
20.0 0.0082 0.0034 0.0099

Source: Author production.

The topology is the same for all cases, with good connectivity and with very small
presence of intermediate densities. The difference observed in the designs is in the shape
and size of the main features. The robustness of the resulting topologies are assessed by
evaluating NmωdB (ρ?,ωω̄,η), where ρ? corresponds to the relative densities of each one of
the designs shown in Fig. 9 and ωω̄,η is the reference vector with the realizations of the
random variable X(ω) (N = 1× 106) with the associated η and ∆ω values. The resulting
histograms are shown in Fig. 10 and the corresponding expected values and standard
deviations are shown in Tables 4 and 5. First lines of these two tables, relative to ϕ = 0.0,
present the expected values and standard deviations of the deterministic design when
subjected to ωω̄,η. The same strategy is used for all subsequent test cases and frequencies
of interest.

As expected, while designs with low values of ϕ or η tend to the deterministic
dynamic behavior, designs obtained with higher values of these same parameters lead to
important improvements in the robustness. Also, the expected value increases while the
standard deviation decreases. Increasing parameters η and ϕ, in general, lead to increased
robustness designs.

The design obtained with ϕ = 15 and η = 10 Hz is selected for further evaluation.
Its frequency response is presented in the left side of Fig. 11. It can be seen that the
optimization process relocated the first two resonances so that the frequency plot of the
displacement norm is quasi-flat exactly at the target frequency (b). In relatively low
frequencies, the optimization process can lead to an adequate separation between the
adjacent resonances, which makes this type of result possible. This is an extremely efficient
dynamic solution to the purposes of this work. Frequency plots for both the initial design
and deterministic approach are also presented, where it is easy to notice the large difference
with respect to the robust solution.

The absolute value |U(ω)| of the displacement fields at the first two resonances
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Figure 10 – Histograms of NmωdB comparing the robust and deterministic designs at 365
Hz, for different values of η and ϕ. Histograms in green are relative to deterministic

designs and the histograms in grey are relative to robust designs.
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Figure 11 – Frequency response for the robust design (η = 10 Hz and ϕ = 15.0) and for the
deterministic design (left) and topology with dynamic displacement fields (absolute values)
at three different frequencies for the same robust design (right), obtained at 365 Hz.
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Table 6 – Expected values E[NmωdB] at 700 Hz, for different values of ϕ and η.

ϕ η = 2.0 Hz η = 5.0 Hz η = 10.0 Hz

0.0 63.5415 63.5417 63.5429
5.0 63.5705 63.5160 63.7672
10.0 63.5443 63.7877 63.8879
15.0 63.5432 63.8691 64.0785
20.0 63.7988 63.8671 64.1072

Source: Author production.

and at the excitation frequency are also illustrated in Fig. 11, where it is clear the
smaller magnitudes in displacement at 365 Hz when compared to the adjacent resonance
frequencies.

8.2.1.2 Results at 700 Hz

Figure 12 shows the topologies obtained for a target frequency of 700 Hz. Resulting
topologies show a tendency for mass accumulation close to the loading edge, with slender
cross-shaped reinforcements. At some specific cases, the mesh discretization used was
insufficient to properly allow for their formation and hinges started to appear. Nonetheless,
the dynamic response of the structures around and at the target frequency of 700 Hz does
not rely in such hinges and, therefore, the topologies are considered acceptable for the
intentions of this work.

Histograms of NmωdB for the results are shown in Fig. 13 and the associated
expected values and standard deviations are shown in Tables 6 and 7.

An interesting aspect of the resultant topologies is that an abrupt change in the
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Figure 12 – Topologies obtained at 700 Hz, for different values of η and ϕ.
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Table 7 – Standard deviations Std[NmωdB] at 700 Hz, for different values of ϕ and η.

ϕ η = 2.0 Hz η = 5.0 Hz η = 10.0 Hz

0.0 0.0260 0.0651 0.1286
5.0 0.0263 0.0613 0.0263
10.0 0.0258 0.0080 0.0116
15.0 0.0256 0.0044 0.0086
20.0 0.0033 0.0057 0.0163

Source: Author production.
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Figure 13 – Histograms of NmωdB comparing the robust and deterministic designs at 700
Hz, for different values of η and ϕ. Histograms in green are relative to deterministic

designs and the histograms in grey are relative to robust designs.
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Figure 14 – Frequency response for the robust design (η = 10 Hz and ϕ = 15.0) and for the
deterministic design (left) and topology with dynamic displacement fields (absolute values)
at three different frequencies for the same robust design (right), obtained at 700 Hz.
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design trend can be noticed at combinations of higher values of η and ϕ. An extremely
abrupt change in the structures robustness is also observed at the exact same design points
(Fig. 13). This fact confirms the high nonlinearity of the problem with respect to both
η and ϕ. Frequency response of the design obtained with ϕ = 15.0 and η = 10.0 Hz is
presented in Fig. 14. It can be seen that a low-energy resonance appears after the target
frequency, making the frequency plot of the displacement norm quasi-flat at the region of
interest. This is a different mechanism than the one used to increase the robustness at 365
Hz, but also effective in making the dynamic response robust for all samples of the vector
with the realizations of X(ω). The robustness improvement is noticeable when compared
to the result obtained with the deterministic approach. Deformed topology and forced
displacement fields are also depicted in Fig. 14, where it is observed that the external
loads are placed at a "nodal region" of the vibration mode related to that low-energy
resonance (Fig. 14, line c), which has great influence on the structure behavior at the
excitation frequency (Fig. 14, line b). This "weak" mode, almost orthogonal to the load
vector, is not dangerous for amplifying the global vibration and is useful to improve the
robustness of the displacement norm around the excitation frequency.

It should be stressed that the damping ratio has a large impact in the shape
of all resonances. Thus, different values of ζ can alter the shape of this "weak" mode.
Nonetheless, the only matter is to slightly relocate this resonant frequency to cope with
this modification.

8.2.1.3 Results at 1135 Hz

Resultant topologies for 1135 Hz are depicted in Fig. 15, where it can be noticed
that the results also present mass accumulation close to the loading edge.
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Figure 15 – Topologies obtained at 1135 Hz, for different values of η and ϕ.
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Table 8 – Expected values E[NmωdB] at 1135 Hz for different values of η and ϕ.

ϕ η = 2.0 Hz η = 5.0 Hz η = 10.0 Hz

0.0 59.4141 59.4142 59.4146
5.0 59.3992 59.3985 59.3877
10.0 59.4031 59.3833 59.7844
15.0 59.3929 59.7755 59.8370
20.0 59.3987 59.7765 59.8449

Source: Author production.

Table 9 – Standard deviations Std[NmωdB] at 1135 Hz for different values of η and ϕ.

ϕ η = 2.0 Hz η = 5.0 Hz η = 10.0 Hz

0.0 0.0154 0.0384 0.0758
5.0 0.0152 0.0380 0.0737
10.0 0.0153 0.0375 0.0094
15.0 0.0152 0.0036 0.0050
20.0 0.0152 0.0026 0.0038

Source: Author production.

Slight differences can be noticed among the designs obtained with higher values of
ϕ and η. Histograms of the dynamic responses are presented in Fig. 16 and the expected
values and standard deviations of each histogram are presented in Tables. 8 and 9.

The cases with higher values of ϕ and η show an improvement in their robust
behavior in comparison to the other evaluated cases, even with the relatively small topology
differences observed in Fig. 15. Figure 17 shows the dynamic response for the design
obtained with η = 10.0 Hz and ϕ = 15.0.

Again, a low-energy resonance is close to the target frequency, creating a range
of frequencies where the displacement norm presents almost no variation. This weakly
activated mode is clearly responsible for the improved robustness of the structure. In Fig.
17, the deformed structures and forced displacement fields for three frequencies, including
the "weak" neighboring resonance, indicate the referred dynamic behavior, which is also
used at 700 Hz.

8.2.1.4 Results at 1440 Hz

Fig. 18 shows the topologies obtained at 1440 Hz for different values of η and ϕ.
The trend of mass accumulation near the loading edge is very clear in the designs and
slender beams provide the connection of the mass to the support. Some slight differences
are seen in the designs, like the formation of secondary and very slender reinforcements
close to the base, connecting the lateral beams to the cross-shape reinforcements.

Histograms of the dynamic responses are shown in Fig. 19. Expected values and
standard deviations of the responses of the deterministic (ϕ = 0.0) and robust designs
are shown in Tables 10 and 11. Also, the same behavior observed at 700 and 1135 Hz is
presented in these results. The nonlinearity of the problem with respect to η and ϕ causes
an abrupt transition in the response trend when the setup parameters are large. Fig. 20
shows the frequency response of the design obtained with ϕ = 15 and η = 10 Hz.
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Figure 16 – Histograms of NmωdB comparing the robust and deterministic designs at 1135
Hz, for different values of ϕ and η. Histograms in green are relative to deterministic

designs and the histograms in grey are relative to robust designs.
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Table 10 – Expected values E[NmωdB] at 1440 Hz, for different values of ϕ and η.

ϕ η = 2.0 Hz η = 5.0 Hz η = 10.0 Hz

0.0 57.4073 57.4073 57.4075
5.0 57.3964 57.3795 57.4057
10.0 57.4025 57.3797 57.8179
15.0 57.3876 57.4867 57.8299
20.0 57.3962 57.8386 57.9132

Source: Author production.
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Figure 17 – Frequency response for the robust design (η = 10 Hz and ϕ = 15.0) and for the
deterministic design (left) and topology with dynamic displacement fields (absolute values)
at three different frequencies for the same robust design (right), obtained at 1135 Hz.
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Figure 18 – Topologies obtained at 1440 Hz, for different values of ϕ and η.
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Figure 19 – Histograms of NmωdB, comparing the robust and deterministic designs at 1440
Hz, for different values of ϕ and η. Histograms in green are relative to deterministic

designs and the histograms in grey are relative to robust designs.
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Table 11 – Standard deviations Std[NmωdB] at 1440 Hz, for different values of ϕ and η.

ϕ η = 2.0 Hz η = 5.0 Hz η = 10.0 Hz

0.0 0.0124 0.0310 0.0612
5.0 0.0124 0.0308 0.0611
10.0 0.0124 0.0308 0.0080
15.0 0.0124 0.0245 0.0046
20.0 0.0124 0.0023 0.0038

Source: Author production.
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Figure 20 – Frequency response for the robust design (η = 10 Hz and ϕ = 15.0) and for the
deterministic design (left) and topology with dynamic displacement fields (absolute values)
at three different frequencies for the same robust design (right), obtained at 1440 Hz.
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Also in this case, a low-energy resonance close to the target frequency ensures the
increased robustness of the designs. An interval of frequencies is affected by this new mode
and a quasi-flat behavior is noticed at this interval. In Fig. 20, the forced displacement
field at frequency "c)", and the deformed topology, demonstrates the "weak" resonance,
responsible for the improvement in robustness.

8.2.2 Convergence analysis

Given the highly nonlinear behavior of the objective function and the projection
operator, as well as numerical issues associated to resonances, the authors opted to use
two continuation strategies. Previous tests performed without the damping continuation,
defined in Section 4.3, led to situations where the optimizer cannot relocate the resonances
to improve the robustness, as opposed to the results obtained with the continuation
procedure for the damping ratio. Additionally, the Heaviside projection continuation,
defined in Eqs. (78) and (143), is also recommended since premature large increments on
the parameter βH can lead to drastic modifications in topology, such that it is usually
used after the convergence of the original problem.

The convergence of the optimization process for the case with ω̄ = 1135 Hz, η = 10
Hz and ϕ = 15 is therefore selected to exemplify the convergence and evolution of the
proposed formulation. The result is summarized in Fig. 21, where the solid line shows the
normalized value of the Lagrangian Function and the dotted line the volume constraint,
for each external iteration. Intermediate topologies and a zoom of the frequency response
in the range [935, 1400] Hz are shown for iterations 1, 5, 10, 11 and 13, and the associated
values of ζ and βH are indicated by the tuples (ζ, βH) over each topology. Iterations 1 to
10 are used to perform the continuation approach for the damping ratio ζ, linearly varying



65

Figure 21 – Convergence for the Lagrangian Function (solid line), volume constraint
(dotted line) and intermediate topologies and frequency responses at some external

iterations. Tuples over each topology indicate the pair (ζ, βH).
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from 0.3 to 0.05, but with a fixed βH equal to 1.5. Iterations 11 to 15 are used to perform
the continuation approach of the projection operator, but with a fixed damping ratio
ζ = 0.05. From this figure, it is possible to verify that the convergence is very smooth,
leading to a feasible solution. Also, it is possible to verify that the continuation for the
damping ratio allows for a smooth formation of the "weak" activated modes along the
external iterations. Also, it is possible to verify the efficacy of the continuation approach
for the projection, as the grey areas are removed along iterations 11 to 15. The final
topology and the complete final frequency response for this case are depicted in Fig. 17.

8.2.3 Cantilever beam with bottom loading

Results in the previous sections show that the appearance of weakly activated
modes is the basis for increasing robustness at higher frequencies. Therefore, a second
test case is used to assess if the proposed formulation can increase robustness with an
asymmetric disposition of the loading and boundary conditions, as shown in Fig. 6. A
mesh of 72× 45 was considered, giving a total of 3420 elements, in combination with the
spatial filter radius R = 0.031 m.

Based on the results obtained for the symmetric case, only results obtained with
ϕ = 15.0 and η = 10.0 Hz are presented. The resulting topologies are shown in Fig. 22.

Design differences between deterministic and robust solutions are noticed for all
evaluated cases, specially at lower frequencies, i.e. close to the first resonance frequency of
the non-optimized design.

The topology obtained for 420 Hz present the largest difference when comparing
the deterministic to the robust formulations. The absence of the dynamic absorber in
the robust design is the most notable difference, while a very thin and slender load path
connects the loading to the rest of the topology.

At 700 Hz, there is also a relatively large modification, even though the main
characteristics of the design presented in the deterministic approach are conserved. One
noticeable difference, however, is related to the cross-shaped reinforcement, that appeared
in the robust design.

Structural modifications between deterministic and robust designs are less noticeable
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Figure 22 – Topologies obtained for the asymmetric loading test case, for different target
frequencies and for ϕ = 15.0 and η = 10.0 Hz.

ω/(2π) Deterministic Robust

420.0Hz

700.0Hz

930.0Hz

1425.0Hz

Source: Author production.
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Figure 23 – Frequency response for the robust design (η = 10 Hz and ϕ = 15.0) and for
the deterministic design (left) and displacement fields (absolute values) at three different

frequencies for the same robust design (right), obtained at 420 Hz.
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at 930 Hz and 1425 Hz, and are basically related to slightly different mass distribution
throughout the domain. The common characteristic of mass accumulation at the loaded
end is seen in both deterministic and robust designs.

Frequency responses and displacement fields are depicted in Figs. 23, 24, 25 and 26.
Additionally, the histograms comparing the robust designs to the deterministic designs
outputs are shown in Fig. 27.

The histograms shown in Fig. 27 confirm the efficacy of the proposed formulation
for all evaluated cases, since structures designed with the proposed formulation present
increased robustness.

Regarding the physical mechanism used for the robustness improvements, by the
evaluation of the frequency response charts given in Figs. 23, 24, 25 and 26, it is clear that
the trends noticed for the symmetrically loaded cases are also observed herein. For 420 Hz,
the mechanism is to relocate the first and second resonances to obtain a quasi-flat dynamic
response at the neighborhood of the target frequency. For the other three frequencies,
the same mechanism used in the symmetric cases is also observed. Again, a low-energy
resonance mode is created close to the target frequency, influencing the surroundings and
also making the frequency response quasi-flat in this region. Such strategy is considered
very efficient and leads to highly-robust designs with very low design modifications with
respect to the deterministic approach.

8.3 DYNAMIC RESPONSE MAXIMIZATION

The problem related to maximization cases is, generally speaking, of higher com-
plexity in comparison to the ones related to minimization since the resultant design will
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Figure 24 – Frequency response for the robust design (η = 10 Hz and ϕ = 15.0) and for
the deterministic design (left) and displacement fields (absolute values) at three different

frequencies for the same robust design (right), obtained at 700 Hz.
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Figure 25 – Frequency response for the robust design (η = 10 Hz and ϕ = 15.0) and for
the deterministic design (left) and displacement fields (absolute values) at three different

frequencies for the same robust design (right), obtained at 930 Hz.
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Figure 26 – Frequency response for the robust design (η = 10 Hz and ϕ = 15.0) and for
the deterministic design (left) and displacement fields at three different frequencies for the

same robust design (right), obtained at 1425 Hz.
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Figure 27 – Histograms of NmωdB for different frequencies and for ϕ = 15.0 and η = 10.0
Hz. Histograms in green are relative to deterministic designs and histograms in grey are

relative to robust designs.

420 Hz 700 Hz 930 Hz 1425 Hz

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 65  65.5  66  66.5  67  67.5
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 62  62.5  63  63.5  64
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 59.5  60  60.5  61  61.5
 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 56  56.5  57  57.5  58

Source: Author production.



70

likely have a resonance at or close to the target excitation frequency. At this condition, the
dynamic stiffness matrix is close to singular and critically ill-conditioned, causing instabili-
ties in the derivatives and consequent difficulties to the optimization process. Moreover,
in this work, the design of resonant structures is combined with a probabilistic robust
formulation, which presents itself a high nonlinear behavior with respect to the design
variables. Therefore, such combination, that targets the design of resonant structures
with robust dynamic behavior, increases both the complexity and the nonlinearity of the
problem.

The related challenges, however, were addressed after deep investigation of several
design cases and fine tuning of the formulation parameters such that, in this Section, the
major outcomes are presented and discussed.

The formulation is evaluated by its application on the design of resonant structures
at the symmetric case, described in Section 8.1.1, considering for the majority of the cases
a mesh of 100× 50 elements and spatial filter radius R = 0.0155 m. An specific situation
at 700 Hz demanded a finer mesh, as described in Section 8.3.2.

Thus, in comparison to minimization results herein presented, all maximization
cases demanded a finer mesh and smaller filter radius R since initial formulation testing
revealed such necessity for meeting the design goals. As will be seen, the robustness
improvements in maximization cases are dependent on slender reinforcements and slight
compliant mechanisms, that can only be properly modeled in a well-discretized domain
and with an adequate length scale radius R.

For all cases, the parameters γ1 and V̄ from Eq. (137) are defined as 0.75 and
0.5|Ω|, respectively. Thus, γ2 = |γ1| − 1 = 0.25. The higher value of γ2 in comparison to
the minimization cases increases the importance of the static compliance in the solution,
however, the overall picture is still dominated by the dynamic norm, as is desired.

Also, exactly in the same way as done for the minimization cases, the initial design
point is selected to violate the volume constraint in 10%, such that the penalty parameter
rp, from Eq. (137), is automatically computed with Eq. 67. Therefore, also in the following
cases, results presented as "Before Optimization" are obtained with an homogeneous
material distribution given by ρi = 0.5 ∗ 1.1, ∀i, that is, considering the starting point.

Exponents from the density-weighted norm, presented in Eqs. 86 and 87, are
defined as m = 8.0 and w = 2.0. A higher value of the exponent m helps the dynamic
norm to identify the resonances in the structures dynamic responses (MONTERO; SILVA;
CARDOSO, 2020).

The problem is solved with NAL = 15 external loops where the first Nζ = 10
iterations are used to effectively solve the problem and to apply the continuation procedure
for ζ, Eq. (81). The last 5 AL iterations are used to reduce the occurrence of intermediate
relative density values, so that the initial value of the Heaviside projection parameter
βH = 1.5 is updated along the optimization process as

βk+1
H =

{
1.5, if 1 ≤ k ≤ Nζ

min
(
βkH + 10.0, 2.5βkH

)
, if Nζ < k ≤ NAL.

(144)

The only exception is one single case at 365 Hz, that demanded 10 extra damping
continuations, as is discussed and justified in Section 8.3.1. The projection continuation
defined for the maximization cases is smoother than the one used in the minimization
cases, Eq. 143, due to the higher problem complexity and more sensitive solution stability.
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Figure 28 – Topologies obtained with the deterministic approach, Eq. (85), and standard
parametrization for the test case depicted in Fig. 5.

365.0 Hz 700.0 Hz 1135.0 Hz 1440.0 Hz

Source: Author production.

Figure 29 – Topologies obtained with the deterministic approach, Eq. (85), and modified
parametrization for the test case depicted in Fig. 5.

365.0 Hz, modified 700.0 Hz, modified

Source: Author production.

Again, the parameters ϕ, ω̄ and η with the associated ∆ω are used to study the
formulation. Resultant topologies, evaluation of robustness, analysis of the frequency
response and an investigation about the mechanisms used by the optimizer to impose the
robustness are discussed in all studied examples.

For mean frequencies ω̄ defined in Section 8.1.1, a single deviation of η = 20 Hz
is studied, with corresponding value of ∆ω of 60 Hz to account for at least 99.7% of the
original frequency (not truncated) content.

As a reference for further comparison with the robust designs to be presented
in the next Sections, Figs. 28 and 29 present the deterministic topologies obtained for
maximization case with Eq. (85).

Fig. 28 shows the designs computed with the standard parametrization (mesh with
100× 50 elements and NAL = 15).

As previously mentioned in this Section, it was necessary to use modified parametriza-
tion for two specific cases. Thus, Fig. 29 shows the designs obtained with the deterministic
approach and modified parametrization, where the case at 365 Hz was calculated with
higher number of damping continuations (Nζ = 20 and NAL = 25) and the case at 700 Hz
was calculated with finer mesh (140× 70).

It is important to highlight that the deterministic problem did not demand such
modified parameters, but the robust problem did. Therefore, the related advantages will
only be noticed in the robust results, as described in Sections 8.3.1 and 8.3.2.

8.3.1 Results at 365 Hz

Fig. 30 depicts the topologies obtained at 365 Hz for different values of ϕ and with
a fixed value of η = 20 Hz. The case with ϕ = 50.0 needed 10 extra AL iterations, such
that only for this specific case Nζ = 20 and NAL = 25. The reason for the additional
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Figure 30 – Topologies obtained for maximization at 365 Hz, for different values of ϕ and
η = 20 Hz.

ϕ = 10.0 ϕ = 20.0 ϕ = 50.0

Source: Author production.

iterations is related to the topology definition, being the issue solved with a smoother
damping continuation.

Deterministic-like topologies were originated by the use of lower values of ϕ, however,
it is clearly seen in the design obtained with ϕ = 50 that a different local minima was
identified, such that the originated design has a different overall shape, disposition of
reinforcements and visible different stiffness in the connection arrangement to the supports.

It is very important to highlight that the design computed with ϕ = 50 must be
compared with the deterministic case at 365 Hz shown in Fig. 29, while the other two
designs must be compared with the topology shown in Fig. 28. Thus, comparisons related
to robustness performance are done meeting this premiss.

The first evaluation consists in a frequency response comparison among the deter-
ministic (NAL = 15) and the three robust designs, as shown in 31.

Figure 31 – Frequency response of the deterministic design (NAL = 15) and robust design
cases at 365 Hz, where Robust Design 1, 2 and 3 correspond to ϕ = 10.0, 20.0 and 50.0,

respectively.
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The dynamic responses of the designs evaluated with ϕ = 10.0 and ϕ = 20.0 did
not present any important modification with respect to the frequency response of the
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Figure 32 – Histograms of NmωdB, comparing the robust and deterministic designs for
maximization at 365 Hz, for different values of ϕ and η = 20 Hz. Histograms in green are
relative to deterministic designs and the histograms in grey are relative to robust designs.
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Table 12 – Expected values E[NmωdB] and standard deviations Std[NmωdB] at 365 Hz of
the deterministic design (ϕ = 0.0) and the robust designs, for different values of ϕ and

η = 20.0 Hz.

ϕ = 0.0 ϕ = 10.0 ϕ = 20.0 ϕ = 50.0

E[NmωdB] 65.4653 65.2921 65.1581 64.8539
Std[NmωdB] 1.2140 1.1888 1.1876 0.4671

Source: Author production.

deterministic design, corroborating with the topology evaluation. However, a relevant
difference is noticed in the frequency response of the design computed with ϕ = 50.0,
where two resonance modes are seen before and after the target frequency.

Such unusual dynamic response seen for the case obtained with ϕ = 50.0 explains
the difficulties related to its topology definition, since the optimization problem had to
deal with two subsequent resonances close to each other together with the typically low
dissipation energy existent at lower frequencies (close to the first resonance frequency of the
non-optimized design). Since structural damping is considered in this work, the dissipation
energy is proportional to the deformation energy. As a consequence, more significant
effects appear at higher frequencies, where wave lengths are smaller and, consequently,
deformations throughout the structure are higher.

In order to evaluate eventual impacts in the dynamic response robustness related
to each frequency response shown in Fig. 31, histograms were calculated according to
Section 8 and are depicted in Fig. 32.

Additionally, expected values E[NmωdB] and standard deviations Std[NmωdB], ex-
tracted from the histograms presented in Fig. 32, related to the deterministic design (with
NAL = 25) and the three robust designs are given in Tab. 12, for further clarity in the
results interpretation.

Robustness behaviors of the designs obtained with ϕ = 10.0 and ϕ = 20.0 had slight
improvements in comparison to the deterministic design, as expected after evaluation of
the topologies and their frequency responses. Also, slight reduction in E[NmωdB] is seen in
both cases.

On the other hand, the different local minima obtained with ϕ = 50.0 caused an
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Figure 33 – Frequency response for the robust design (η = 20 Hz and ϕ = 50.0) and for
the deterministic design obtained with NAL = 25 (left) and topology with dynamic

displacement fields (real values) at three different frequencies for the same robust design
(right), obtained for maximization at 365 Hz.

Frequency Response Displacement Field

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0  100  200  300  400  500  600  700  800  900

a)

b)

c)

D
is

pl
ac

em
en

t 
N

or
m

 [
lo

g(
10

) 
m

]

Frequency [Hz]

Before Optimization
Robust

Deterministic
a) First Resonance  (350 Hz)

b) Target Frequency (365 Hz)
c) Second Resonance (385 Hz)

a)

b)

c)

Source: Author production.

abrupt change in the robustness behavior of the dynamic response, leading to a considerably
smaller Std[NmωdB] with slight reduction in E[NmωdB] when compared to the deterministic
design. Thus, to further evaluate the physical mechanism that caused such improvement,
the frequency response of this design is studied in deeper detail, together with the dynamic
displacement fields around the target frequency, as shown in Fig. 33.

Analyzing the frequency response of the robust design, it is possible to notice that
the two subsequent high-energy resonances close to the target frequency result in high
dynamic displacements within the frequency interval bounded by them. Additionally, a
small valley is seen between the referred modes, which is resultant from the characteristic
low dissipation energy at lower frequencies, such that a flat region on top of the frequency
response could not be created, as will be seen for higher frequencies in the Sections to
come.

The dynamic modes seen around the target frequency are global, and rely on
the compliant connection originated close to the base, confirming the importance of the
drastic change of the design. Additionally, the modes shown in frequencies "a)" and
"c)" are asymmetric, meaning that they are different in shape, however, very similar in
displacements amplification, which helps to form peaks in the frequency response chart
with similar displacement levels.

8.3.2 Results at 700 Hz

The resultant topologies are given in Fig. 34, where the case obtained with ϕ = 50.0
demanded a finer mesh discretization. Thus, for this case, the mesh was defined as 140×70,
giving a total of 9800 elements. The motivation for the improved mesh is related to the
necessity, for this case, of a slender and compliant connection between the loaded edge
and the rest of the structure, that needs smaller elements for a proper modeling.
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Figure 34 – Topologies obtained for maximization at 700 Hz, for different values of ϕ and
η = 20 Hz.

ϕ = 10.0 ϕ = 20.0 ϕ = 50.0

Source: Author production.

All three designs presented the basic same overall topology, being the differences
related to the stiffness of the reinforcements. It is possible to notice that the design
obtained with ϕ = 50.0 presents a more compliant connection to the load application point
in comparison to the other two designs.

Given the difference in mesh discretization, the design computed with ϕ = 50
must be compared with the deterministic case at 700 Hz shown in Fig. 29, and the
other two designs shall be compared with the one depicted in Fig. 28. Therefore,
subsequent comparisons with respect to robustness performance are done according to this
determination.

Frequency responses of the deterministic case shown in Fig. 28 and the three robust
designs herein presented are shown in Fig. 35.

Figure 35 – Frequency response of the deterministic design (mesh 100× 50 and NAL = 15)
and robust design cases at 700 Hz, where Robust Design 1, 2 and 3 correspond to

ϕ = 10.0, 20.0 and 50.0, respectively.
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The frequency responses of the designs obtained with ϕ = 10.0 and ϕ = 20.0
presented slightly lower dynamic displacements in comparison to the deterministic design,
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Figure 36 – Histograms of NmωdB, comparing the robust and deterministic designs for
maximization at 700 Hz, for different values of ϕ and η = 20 Hz. Histograms in green are
relative to deterministic designs and the histograms in grey are relative to robust designs.
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Table 13 – Expected values E[NmωdB] and standard deviations Std[NmωdB] at 700 Hz of
the deterministic design (ϕ = 0.0) and the robust designs, for different values of ϕ and

η = 20.0 Hz.

ϕ = 0.0 ϕ = 10.0 ϕ = 20.0 ϕ = 50.0

E[NmωdB] 66.9829 66.7073 66.4030 59.3238
Std[NmωdB] 0.5843 0.5689 0.5694 0.1222

Source: Author production.

which is expected since material is being used also in the attempt to improve robustness,
and not only in increasing the displacements. A big difference in the dynamic response is
clearly identified in the design computed with ϕ = 50.0, where a low-energy resonance
takes place close to the target excitation frequency and the high-energy mode was relocated
at a higher frequency.

In order to understand how each of the dynamic responses translate into behavior
robustness, histograms assessment is done for each design, comparing to the equivalent
deterministic structure. The histograms are shown in Fig. 36.

Additionally, numeric values of E[NmωdB] and Std[NmωdB] related to the dynamic
responses of the deterministic design, computed with 140× 70 elements, and the three
robust designs are given in Tab. 13.

As expected, the designs obtained with ϕ = 10.0 and ϕ = 20.0 demonstrate
very small improvements in their dynamic behavior robustness when compared to the
deterministic design. However, the design obtained with ϕ = 50.0 resulted in an important
improvement in the robustness, but with the expense of a reduced level of dynamic
displacements in the interval of interest.

Thus, the last case is chosen for a deeper evaluation by the interpretation of the
frequency response chart together with the dynamic displacement fields within the domain
at certain frequencies of interest, as given in Fig. 37.

Differently from what was identified at 365 Hz, here the mechanism is a low-energy
resonance, such as the ones identified in the minimization cases. However, one can clearly
see that, when comparing to the dynamic response of the structure prior to the optimization,
dynamic displacements have increased considerably and so has the robustness, which
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Figure 37 – Frequency response for the robust design (η = 20 Hz and ϕ = 50.0) and for
the deterministic design obtained with 140× 70 elements (left) and topology with

dynamic displacement fields (absolute values) at three different frequencies for the same
robust design (right), obtained for maximization at 700 Hz.
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classifies the obtained result as valid and successful in meeting the design goals herein
proposed. It is important to mention that the higher dissipation energy noticed at this
frequency helped in the origination of such quasi-flat pattern in the frequency response.

Thus, the more compliant connection between the structure and the load application
edge leads to the low-energy resonance right after the target frequency, creating an almost
flat region on the dynamic response chart exactly at 700 Hz, substantially improving the
robustness. Analyzing the dynamic displacement fields within the design domain, it is
clear that specially the modes seen in frequencies "a)" and "b)" are quite similar and
rely on reinforcements at a considerable portion of the right end of the structure, where
displacements are seen throughout the domain, but more concentrated at the tip.

The mode seen at frequency "c)", which is a high-energy resonance, is more localized
at the right end of the structure and more dependent on the stiffness of the slender beams
that connect the loaded edge to the rest of the structure.

8.3.3 Results at 1135 Hz

The results at 1135 Hz reveal topologies very similar to the deterministic design,
being the main difference the disposition of reinforcements at the center of the part and
also the stiffness of the tip. Figure 38 shows the topologies obtained with different values
of ϕ and a fixed η = 20 Hz.

Frequency responses of the three robust designs depicted in Fig. 38 are presented
together with the response of the deterministic design in Fig. 39.

All frequency responses of robust designs present the same main difference in
relation to the response of the deterministic design, which is the presence of a pair of
high-energy resonance modes before and after the target frequency. A quasi-flat region is
noticed on the frequency response of the three robust cases, with the expense of lower
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Figure 38 – Topologies obtained for maximization at 1135 Hz, for different values of ϕ and
η = 20 Hz.

ϕ = 10.0 ϕ = 20.0 ϕ = 50.0

Source: Author production.
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Figure 39 – Frequency response of the deterministic design (mesh 100× 50 and NAL = 15)
and robust design cases at 1135 Hz, where Robust Design 1, 2 and 3 correspond to

ϕ = 10.0, 20.0 and 50.0, respectively.

dynamic displacements in relation to the deterministic design.
In order to confirm the robustness improvements, histograms with the dynamic

responses of each design are presented in Fig. 40. Additionally, the corresponding values
of E[NmωdB] and Std[NmωdB] are presented in Tab. 14.

For all designs, important improvements are observed in their robustness levels
when comparing to the deterministic design. Incrementally, the results are more robust
as ϕ increases, however, it is possible to see that a significant drop in E[NmωdB] happens
when such parameter gains too much importance in the objective function.

Since it represents the most robust result achieved in this case, the design obtained
with ϕ = 50.0 is chosen for a deeper evaluation so that the physical mechanism can be
properly understood. Therefore, the frequency response chart and dynamic displacements
fields calculated from the referred design are demonstrated in Fig. 41.

As already mentioned, two high-energy resonances are present in the neighborhood
of the target excitation frequency. The first one, defined in the chart as "a)" took place
right before 1135 Hz, whereas frequency "c)" appears right after 1135 Hz. Thus, given the
high dissipation energy resultant at high frequencies, a quasi-flat region in seen on the
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Figure 40 – Histograms of NmωdB, comparing the robust and deterministic designs for
maximization at 1135 Hz, for different values of ϕ and η = 20 Hz. Histograms in green are
relative to deterministic designs and the histograms in grey are relative to robust designs.
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Table 14 – Expected values E[NmωdB] and standard deviations Std[NmωdB] at 1135 Hz of
the deterministic design (ϕ = 0.0) and the robust designs, for different values of ϕ and

η = 20.0 Hz.

ϕ = 0.0 ϕ = 10.0 ϕ = 20.0 ϕ = 50.0

E[NmωdB] 66.5418 65.3816 65.2500 64.6816
Std[NmωdB] 0.2865 0.0403 0.0368 0.0360

Source: Author production.

Figure 41 – Frequency response for the robust design (η = 20 Hz and ϕ = 50.0) and for
the deterministic design (left) and topology with dynamic displacement fields (absolute
values) at three different frequencies for the same robust design (right), obtained for

maximization at 1135 Hz.
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Figure 42 – Topologies obtained for maximization at 1440 Hz, for different values of ϕ and
η = 20 Hz.

ϕ = 10.0 ϕ = 20.0 ϕ = 50.0

Source: Author production.

frequency response chart, connecting the two subsequent modes. Such result is extremely
efficient in both improving the robustness and leading to a resonant structure at an interval
defined by the mentioned subsequent resonances.

More specifically about the dynamic displacements seen in the two modes, they
are symmetric and with approximately the same displacements amplification capacity.
Symmetric modes generally appear at the exact same frequency, but can be generated
with some offset in case of slight asymmetries in the topology.

The symmetric modes are easily spotted in the dynamic displacement fields shown
in Fig. 41. At frequency "a)", it is possible to see that the upper leg is more strongly
activated by the mode, and at frequency "c)" the opposite leg is more strongly activated.
Therefore, the slight asymmetries existent in the design are actually the artifice that
the optimization process used to create the subsequent symmetric modes increasing the
dynamic behavior robustness.

8.3.4 Results at 1440 Hz

Figure 42 presents the topologies resultant from the formulation investigation at
1440 Hz, obtained with different values of ϕ and with a fixed η = 20 Hz.

Topologies obtained with ϕ = 10.0 and ϕ = 20.0 are well-defined and are relatively
similar to the deterministic design, shown in Fig. 28, being the main difference in the
reinforcements arrangement at the center of the part, close to the loaded edge.

Design originated with ϕ = 50.0 presented convergence problems, with grey regions
in the domain even with the 5 heaviside projection continuations. Thus, for this case
in specific, the combination of ϕ = 50.0 and η = 20.0 Hz does not produce satisfactory
results. The issue is explained by instabilities in the AL function derivative caused by the
high multiplication factor at the parcel related to the Std[.]. This result is herein presented
as an outcome from the formulation, but cannot be considered a success case.

Frequency responses of the deterministic and the three robust designs are presented
in Fig. 43.

All three robust designs present an important difference in the shape of the frequency
response close to 1440 Hz, originated by two subsequent high-energy resonance modes, in
the same way as in the case at 1135 Hz. It is also easy to see that the higher is the value
of ϕ, the lower are the resonance peaks around the target frequency, since, in theory, more
material is being employed in robustness improvements.

Histograms are used to assess the robustness of each design, as shown in Fig. 44,
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Figure 43 – Frequency response of the deterministic design (mesh 100× 50 and NAL = 15)
and robust design cases at 1440 Hz, where Robust Design 1, 2 and 3 correspond to

ϕ = 10.0, 20.0 and 50.0, respectively.
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Table 15 – Expected values E[NmωdB] and standard deviations Std[NmωdB] at 1440 Hz of
the deterministic design (ϕ = 0.0) and the robust designs, for different values of ϕ and

η = 20.0 Hz.

ϕ = 0.0 ϕ = 10.0 ϕ = 20.0 ϕ = 50.0

E[NmωdB] 66.4483 65.3945 64.5492 64.0160
Std[NmωdB] 0.1912 0.0222 0.0160 0.0169

Source: Author production.

and the values of E[NmωdB] and Std[NmωdB], extracted from the histograms, are presented
in Tab. 15.

Noticeable improvements in robustness are seen in all presented designs, while
keeping consistently high values of E[NmωdB], specially in cases with ϕ = 10.0 and ϕ = 20.0.
For these two cases, incremental reduction in Std[NmωdB] is noticed, however, also with
incremental reduction in E[NmωdB], as an expense. Additionally, slight degradation in
robustness is evidenced for the case obtained with ϕ = 50.0 together with a more significant
drop in E[NmωdB], which can be explained by the issues related to the problem convergence.

Thus, for verifying and properly analyzing the reason for the robustness improve-
ments, design obtained with ϕ = 20.0 is further investigated, such that its frequency
response chart and dynamic displacement fields are given in Fig. 45.

In the same way as seen at 1135 Hz, two subsequent high-energy resonances were
created before and after the target excitation frequency. Therefore, also taking advantage
of the high dissipation energy present at higher frequencies, an almost flat region is noticed
exactly at 1440 Hz, drastically improving the robustness while ensuring high dynamic
displacements at the frequency interval bounded by the referred modes.

At higher frequencies, such as 1135 Hz and 1440 Hz, localized modes are more
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Figure 44 – Histograms of NmωdB, comparing the robust and deterministic designs for
maximization at 1440 Hz, for different values of ϕ and η = 20 Hz. Histograms in green are
relative to deterministic designs and the histograms in grey are relative to robust designs.
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Figure 45 – Frequency response for the robust design (η = 20 Hz and ϕ = 20.0) and for
the deterministic design (left) and topology with dynamic displacement fields (absolute
values) at three different frequencies for the same robust design (right), obtained for

maximization at 1440 Hz.
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easily originated throughout the structures. In this specific case, one can see two different
resonance modes, such that at frequency "a)" the mode is described as local bending
of the tip and at frequency "c)" the tip is twisting. The dynamic displacements at the
target excitation frequency, "b)", are also presented where a local rotation of the center
reinforcement is noticed. Thus, the association of these three modes produce the desired
effect, significantly increasing the dynamic behavior robustness.
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9 CONCLUSIONS

A formulation is proposed for the robust design of structures with optimized dynamic
response with respect to uncertainties in the excitation frequency. The objective function
is based on the expected value and standard deviation of the density-weighted norm,
accompanied by the well-known static compliance to aid in structural connectivity.

The proposed formulation was applied to the design of structures under symmetric
and asymmetric loading in relation to the boundary conditions and design domain,
considering the variation of the parameters ϕ and η. Results presented in this work
show that the proposed formulation leads to well-defined topologies with robust dynamic
behavior.

Results from dynamic displacements minimization show that the physical mecha-
nisms used for the robustness improvements are different and are related to the target
frequency. For low frequencies, the mechanism is to relocate the first and second resonances
to obtain a quasi-flat dynamic response at the neighborhood of the target frequency. For
higher frequencies, a low-energy resonance mode is created close to the target frequency,
influencing the surroundings and also making the frequency response quasi-flat in this
region. These vibration modes present low contribution to the global response of the
structure and are weakly activated in case of eventual asymmetries in the design or due to
load vector F quasi-orthogonal to the displacement vector U. Consequently, low-energy
resonances are originated close to the frequency of interest.

For dynamic displacements maximization, the physical artifice employed by the
optimization process was also the development of resonances located close to the target
frequency, leading to high dynamic displacements together with a robust dynamic behavior.
At 365 Hz, the energy dissipation was not high enough for producing a flat region connecting
the two subsequent resonant modes. At higher frequencies, such as 1135 and 1440 Hz, the
mechanism was essentially the same as the one noticed at 365 Hz, being the main difference
the presence of enough energy dissipation in the structure to allow for a quasi-flat region
connecting the two high-energy resonances. Particularly at 1135 Hz, symmetric modes
were noticed. Results at 700 Hz differ from the others, such that the feasible solution was a
low-energy resonance that did improve the behavior robustness and dynamic displacements
magnitude, however, not in the same levels compared to the other evaluated frequencies.

Finally, the author highlights that the use of excessively high values for the param-
eters ϕ and η may lead to robustness degradation due to the nonlinearity of the problem.
Thus, in order to avoid related issues, the definition of the input parameters needs to
be done with care and with physical meaning. The convergence issue presented in the
maximization of dynamic displacements at 1440 Hz, with ϕ = 50.0, is an example of such
difficulty.

9.1 FUTURE WORK

The following items were identified as eventual improvement points for future works:

• Further study examples of maximization of dynamic displacements, exploring cases
with finer meshes and filter radius, since studied examples show high dependency on
such parameters for meeting the design goals;

• Evaluate results with different damping coefficient levels to confirm results feasibility,
specially in lower damping scenarios;
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• Add local stress constraints to the formulation and reassess all the design cases
herein studied;

• Study other methods for computing E[.] and Std[.] with the target of reducing
the computational cost, such as the collocation method (LAZAROV, Boyan S;
SCHEVENELS; SIGMUND, 2012) or the perturbation method (SILVA; CARDOSO,
2016).

The achievements of the mentioned improvement opportunities would enhance
the understanding of the highly nonlinear problem herein solved (deeper evaluation of
maximization cases and different damping levels), enhance the formulation capabilities
(stress constraints) and improve the solution speed (alternative methods).
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