Steel space frames built by tubular elements with thin-wall
circular cross-section are regularly employed in engineering
practice. The aim of the research is to formulate and develop an
algorithm for layout and connections optimization of steel tubular
space frames subject to multiple load cases and displacement,
minimum element length and stress constraints, in order to
provide minimization of manufacturing costs related to material
and connections. The manufacturing objective function has
connections cost proportional to the material cost, as a quadratic
variation between the costs of pinned and fully rigid connections.
The finite element formulation is developed by the direct
approach, assuming a linear model of connections with two
rotational springs at each end acting on the bending planes.
Considering the theory of von Mises, a failure criterion is
proposed specifically for the previously defined cross-sectional
type, forming an expression that accounts for the effect of shear
forces and allows the determination of the most critical point in
cross-sections of elements with variable length. As the numerical
optimization is performed by a gradient-based method, the
analytical sensitivity analysis is performed, being validated by
central finite differences. Despite the high number of design
variables, the proposed optimization problem is able to find
optimal solutions that simultaneously account for the lowest
manufacturing cost, based on the best cost-benefit between
material and connections cost, providing the necessary
mechanical strength and complying with local stiffness demands.
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ABSTRACT

Steel space frames built by tubular elements with thin-wall circular cross-section are regularly
employed in engineering practice. The aim of the research is to formulate and develop an
algorithm for layout and connections optimization of steel tubular space frames subject to
multiple load cases and displacement, minimum element length and stress constraints, in order
to provide minimization of manufacturing costs related to material and connections. The
manufacturing objective function has connections cost proportional to the material cost, as a
quadratic variation between the costs of pinned and fully rigid connections. The finite element
formulation is developed by the direct approach, assuming a linear model of connections with
two rotational springs at each end acting on the bending planes. Considering the theory of von
Mises, a failure criterion is proposed specifically for the previously defined cross-sectional type,
forming an expression that accounts for the effect of shear forces and allows the determination
of the most critical point in cross-sections of elements with variable length. As the numerical
optimization is performed by a gradient-based method, the analytical sensitivity analysis is
performed, being validated by central finite differences. Despite the high number of design
variables, the proposed optimization problem is able to find optimal solutions that
simultaneously account for the lowest manufacturing cost, based on the best cost-benefit
between material and connections cost, providing the necessary mechanical strength and

complying with local stiffness demands.

Key-words: Optimization, steel space frames, manufacturing costs, linear model of

connections, failure criterion, gradient-based method.






RESUMO

Porticos espaciais de ago construidos por elementos tubulares com se¢do transversal circular de
parede fina sdo estruturas regularmente empregadas na pratica de engenharia. O objetivo de
pesquisa ¢ formular e desenvolver um algoritmo para otimizar layout e conexdes de porticos
espaciais de aco sujeitos a multiplos casos de carregamento e restricdes de deslocamento,
comprimento minimo de elemento e tensao, visando possibilitar a minimizac¢ao de custos de
manufatura relativos aos custos de material e conexdes. A fungdo objetivo de manufatura possui
custo de conexdes proporcional ao custo de material, baseado em variagdo quadratica entre os
custos de conexdo rotulada e conexao totalmente rigida. A formulagdo do elemento finito ¢é
desenvolvida pelo método direto, assumindo um modelo linear para as conexdes com duas
molas rotacionais em cada extremidade, atuantes nos planos de flexdao. Considerando a teoria
de von Mises, um critério de falha ¢ desenvolvido especificamente para o tipo de secdo
transversal previamente definido, contabilizando o efeito dos esforgos cortantes e possibilitando
a determinagdo do ponto mais critico em se¢des de elementos com comprimento variavel. Como
a otimizagdo ¢ realizada por um método baseado em gradientes, a analise de sensibilidade
analitica ¢ desenvolvida, sendo validada por diferencas finitas centrais. Apesar da quantidade
elevada de varidveis de projeto, o problema de otimizagdo proposto possibilita o encontro de
solucdes dtimas capazes de simultaneamente agregar o menor custo de manufatura baseado no
melhor custo-beneficio entre custos de material e conexoes, fornecendo a resisténcia mecanica

necessaria e suprindo demandas locais de rigidez.

Palavras-chave: Otimizagdo, porticos espaciais de ago, custos de manufatura, modelo linear

de conexdes, critério de falha, método baseado em gradientes.






List of Figures

Figure 1.1 — Examples of (a) flat roof of a supermarket and (b) kart chassis. ..........c.cccueee.e. 32
Figure 1.2 — (A) Example of tubular joints with (1,2) bolted endplates, (3a) pinned connection

by earplates, (4) gusset plate and (5) coverplate and (b) a pinned connection between four

CLEIMCIILS. ...ttt ettt a ettt bbbt sa e b et e h e bttt eht e bt bt eatenae e 34
Figure 2.1 — Layout complexity of an optimal solution found by GSM approach. ................. 41
Figure 2.2 — Unsymmetrical truss as optimal solution found in Achtziger (2007). ................. 42
Figure 2.3 — Problem with overlapping elements in Hagishita and Ohsaki (2009).................. 43
Figure 2.4 — A study reproduced by Asadpoure et. al. (2015). .cccooeevieviieciinieeiieieeeeee e, 44
Figure 2.5 — Case study developed by Havelia (2016).........ccceeeeciiieeiieeniieeieeeiee e 45
Figure 2.6 — Steel space truss investigated in Tugilimana ez. al. (2018)......cccceevvevvrveerreennne. 46
Figure 2.7 — Case study developed by Deb and Gulati (2001)........cceeeveeiieniiinieniieieeieenee. 47
Figure 2.8 — Linear mathematical model vs. experimental curve of typical connections applied
1N the ENZINEETING PTACLICE. ..eecuvieeerireetieeiiieesteeesteeesteeesteeeesreesseeessseeessseeessseeessseeensseesnseeennses 49
Figure 2.9 — Linear mathematical model for semi-rigid connections............cccceeveeereveereneeennne. 50

Figure 2.10 — Difference between the column rotation and the rotation presented by the frame

element at the CONMECTION. ....ec..iiiiiiiiiiiieie ettt 50
Figure 2.11 — (a) Fully rigid vs. (b) semi-rigid cONNection. ..........cccccuveevrieerieeenieeerreeeeeeenes 51
Figure 2.12 — Physical meaning of the fixity factor. .........cccccvieviiieiiiieeeeeee e 52
Figure 2.13 — Non-linear relationship between rotational stiffness and fixity factor............... 53
Figure 2.14 — Linear variation of the connections COSt. .........cceeviiiviierieeiiienie e 55

Figure 2.15 — Structural problems treated by Xu and Grierson (1993): (a) a frame with

recommended semi-rigid connections and (b) a frame with rigid connections as the best solution

FOT MINTMAL COSE. ..ttt ettt et st e st e s abeesbeesaaeens 56
Figure 2.16 — Fourth case studied by Kartal et. al. (2010).....c.cccceveiiiiiiieiiiieeiieeieeeeeee e, 58
Figure 2.17 — Space frames investigated by Artar and Daloglu (2018). .......cocevveviinieriennene 58
Figure 2.18 — Specific quadratic variation adopted by Simdes (1996). .......ccccevevveevrieeenneennne. 60
Figure 2.19 — Reference system of Irles and Irles (2001). ....c.ooovveeeeiieeniieeieeeeeee e 65

Figure 3.1 — Nodal parameters of a 3D frame element. ...........cccoceviininiinieninnenieeeeee 68



Figure 3.2 — 3D frame element with semi-rigid CONNECtIONS. .......cccueveeruirierieniiienieieeieneene 69
Figure 3.3 — Spring for both rotational stiffness in Xy and XZ planes. ..........ccccceevvveerieerennene 69

Figure 3.4 — Signal convention for the local reference system, the DOF and internal forces in

28 o] L1 SO O S PRRP SRRSO 70
Figure 3.5 — Signal convention for the local reference system, the DOF and internal forces in
XZ PLANC. ..o ettt ettt e bt e at e et e e aaeeabeesaaeeabeeeateenbeenneas 70
Figure 3.6 — Internal bending moments in the (a) Xy and (b) XZ planes. .........cccceevvervrenennen. 71
Figure 3.7 — Cases to define the k;, terms in the Xy plane.........c.cocevvieviiieiiiniiniienieeeee, 72
Figure 3.8 — Signal convention of the distributed load and consistent nodal loads................... 78
Figure 3.9 — Node with m-elements connected. ...........cooeeierieriiiiiniiiiieneeeee e 80
Figure 3.10 — The constructive scheme for the connection between m-elements. ................... 80
Figure 3.11 — A particular case of m-elements connected to the same joint. ..........cccceceevuennen. 81
Figure 4.1 — Reference system adopted for the failure criterion formulation.............c..ccc.c...... 87

Figure 4.2 — Cross-section properties used in the deduction of the normal stress from the
DENAING MOMENLS. ...ecviiieiiieiiiieeiee ettt et e et e et eeetaeeetaeesbaeesaseeessseeessseeensseeensseeenssens 89

Figure 4.3 — Cross-section properties used in the deduction of the shear stress produced by the

SREAT TOTCES. ...ttt ettt et sb et st sb et et sbe e b 90
Figure 5.1 — Mathematical pattern defined for the quadratic variations. ...........cccecceeerveeennnennne 96
Figure 5.2 — Ranges of pinned and fully rigid connections. ..........cccceeevieeeciieencieeenciee e 98
Figure 5.3 — The iterative optimization process of the algorithm. ...........ccccoeveniininiinnnnn. 101

Figure 5.4 — Sensitivity of m-elements length related to iterative modifications in a given nodal

COOTAINALE X ™. oottt et e e e e eeeaeeeaeeeeaeeeeaeeeaeeeeeeeeeeeaeaaee 102

Figure 6.1 — Clamped DEAML. ......cc.eeiuiiiiiiiiiiiieieeeee et 108
Figure 6.2 — Numerical results (with the transverse shear stress) vs. analytical results (without
the tranSVerSe SHEAT SIIESS). ...uuiiiiuiieiiiieeiiieerieeeetee et et eete e et e e et e e s tae e s eeeesnaeeesnseeesnseeennns 109

Figure 6.3 — Normal, shear and equivalent stresses for lengths of (a) 20 mm and (b)

Figure 6.4 — The 2D optimization problem developed and highlight of the short element with

the highest Shear Stress Ty . .ouviuiuiviiiiiii 111
Figure 6.5 — Frame dome of Pedersen (1973)......ccccooiiiiiiiiiiiiiieiieeeeeee et 113



Figure 6.6 — Design variables and displacement constraints applied in LCO process........... 114
Figure 6.7 — Convergence analysis of the stress calculation at (a) the element 39, cross-section
1, and (b) the element 22, Cross-SECION 3. .....ceiieiiiieiiiieeiieeciee et e e eeeeeee s 115

Figure 6.8 — (a) The optimization process and final solution and (b) the fully stressed (red)

€1eMENtS OF STUAY (A). veeeiieiieiie ettt ettt e et e e et eesaaeebeessbeenbeessaesnseenenas 116
Figure 6.9 — Results about (a) convergence diagram of the objective function and (b) diagram
of the most stressed element at each LeTatiON. ......cccueeviiiiiiiriiiiiieiceeee e 117
Figure 6.10 — Comparison between the convergence of the objective function..................... 118

Figure 6.11 — The optimal solution when all connections are pinned, study (E), with the 36 fully
SEIESSEA CLEIMENLS. ....viiiiiieiiiie ettt ettt ettt ettt eaeesbe et eaeen 119
Figure 6.12 — The physical behavior of the optimization Process..........ccceeeevveeecveerireeercveennns 120
Figure 6.13 — Comparison between the optimal solutions of studies (E) and LCO and the
optimal solutions of the previous Studies (A-D)........cccceeriieriienieiiieieeeie e 122
Figure 6.14 — Results about convergence diagram of the actual study for (a) material cost, (b)
connections cost, (¢) manufacturing cost and (d) diagram of the most stressed element at each
J17C 218 (0 | DO OO SO PRSPPI 123
Figure 6.15 — (a) The optimal solution and the highlight of elements and specific locals with
semi-rigid connections (listed for further analysis) and (b) the fully stressed elements. ....... 124
Figure 6.16 — Convergence diagram for (a) material cost, (b) connections cost, (c)

manufacturing cost, (d) most stressed element and (e) the constrained DOF at each

G110 1 OO OO P SRRSO PRURRRPROPIPRRRPI 126
Figure 6.17 — Cantilever beam of Pedersen and Nielsen (2003). .......cccceeevievieniienienieenneenne. 129
FIigUre 6.18 — LOAA CASES. ..veiiieiiieiiieiiieeciiee et ete ettt e et e e s ae e e saaeeessaeeenaeeesaeesnsaeesnsaeenns 130
Figure 6.19 — Design variables and displacement constraint assumed...............ccceeerveerennenn. 131
Figure 6.20 — (a) Initial structure and (b) optimal SOIUtiON. .......cceeveieriieriiienieeiieiieeieeiee 132

Figure 6.21 — Results about convergence diagram of the actual study for (a) manufacturing cost,
(b) diagram of the most stressed element at each iteration and (c) diagram of the constrained
DOF at €aCh TLEIAtION. ....ecueiitiiiiieiie ettt ettt ettt et e e e e 134
Figure 6.22 — (a) The behavior of the LCO process and (b) the optimal solution, the short
element and the highlight of the element with semi-rigid connections. ...........cccceeeuereeruennnee 135
Figure 6.23 — Results about convergence diagram of the actual study for (a) manufacturing cost,
(b) diagram of the most stressed element and (c) diagram of the constrained DOF at each

TEETATION. .ot e e e et e e e et e e e e e e e e et e e e e e e e e e e e e e eeeeeeeea e aeeeeeeeeeaannaaeseeeeereeennaaaaaens 137



Figure 6.24 — The elements with the highest shear stresses 7y, produced by the resulting shear

OTCR. ettt h ettt b ettt b ettt et eaean 139
Figure 6.25 — Summary of results about the convergence diagrams and the optimal solution of
20760090 ..ottt h bt e a e bttt e h e bt et e bt et et e saean 140
Figure 6.26 — Summary of results about the convergence diagrams and the optimal solution of
207309/0. ettt ettt ettt ettt e h e e bt e ateeat ettt e eneebeenteeneeseenseenean 141
Figure 6.27 — Summary of results about the convergence diagrams and the optimal solution of
B500D0. .ottt ettt ettt ettt et e h e et e ent et e e bt enteebeenteeneenteenneenean 143
Figure 6.28 — Mobile crane of Apostol ef. al. (1995). ..ccooviiiiiiiiieieeeeeeeeeee e 146
Figure 6.29 — Multiple 10ad CaSES. ......ccueeruiiiiieiieiiieiiecie ettt et 147
Figure 6.30 — Displacements constraints and design variables...........ccccceevevveercieerciieenveeennee. 147

Figure 6.31 — Optimal solutions and semi-rigid connections of the (a) SCO and (b) LCO
PTOCESSES. ..veeeuereeruureesuteeatteeateeestaeesteeessseeassseeensseeesseesnsseesssseesnsseesaseessnseeesnseeennseesnnseesnnseesnnns 151
Figure 6.32 — Results about the convergence diagram of the SCO and LCO studies for (a)
manufacturing cost and (b) diagram of the most stressed element at each iteration. ............. 152

Figure 6.33 — Short elements at the top of the 100f...........cccoviiiiiiiiii e, 153

Figure A.1 — Available items of the code showed by sections (a), (b), (c) and (d). ............... 169



List of Tables

Table 2.1 — Author’s and method’s formulations.............ccccovieriiiiiniiniiiinie 49
Table 3.1 — Necessary boundary conditions in X§ plane...........ccceeeeeeeierieeiiienieenienie e 73
Table 3.2 — Necessary boundary conditions in XZ plane...........ccccceevvveeciieecieesiieeeee e 73
Table 6.1 — Connectivity of the StIUCTUTE. ........ccciiiiiiiiieeiieieeeeee e 113
Table 6.2 — Optimal JOINt POSTEIONS. ....veeeiiieeiiieeiiieerieeereeeereeeeteeesteeesreeesreeessseesnsseesseeeans 121
Table 6.3 — Comparison of optimal areas related to the two studies of LCO, without (LCO,) and
with (LCO,) displacement constraints. The higher cross-section areas are highlighted......... 127
Table 6.4 — Semi-rigid connections of the optimal sOIUtion............cccveeviiieriieeiiieeieeeieene 128
Table 6.5 — Connectivity Of the STTUCTUIE. .....c.eeeviiiieiiiieciie e 129
Table 6.6 — Multiple load CONAItION. ........cccvieiiiiiiieiieeie et 130
Table 6.7 — Optimal JOINTt POSILIONS. ....eevieriiieiieeiieeiie e eieeeteeteeeee et e eebeeseaeebeesseeenbeenenas 136
Table 6.8 — Comparison of optimal areas related to the SCO and LCO processes. The higher
cross-section areas are highlighted. ..........cccooiiiiii e 136
Table 6.9 — Semi-rigid connections of the optimal solution for 20-60%. ............ccccveernennne 140
Table 6.10 — Semi-rigid connections of the optimal solution for 20-30%. ........ccccecvveeerenne 141
Table 6.11 — Semi-rigid connections of the optimal solution for 45-60%. ............ccceeueennee.. 142
Table 6.12 — Comparison between the costs of the optimal solutions. ...........ccccceeeevieernnenn. 143
Table 6.13 — Optimal areas and joint positions of the three LCO processes...........cccceeuueenee. 144
Table 6.14 — Connectivity Of the StrUCTUTE. ........ccueeviieiiieiieiieeee e 146
Table 6.15 — Multiple 10ad CaSES. ....cccviieiiiieiieeiee et aae e saee e 146
Table 6.16 — Data of semi-rigid connections of the SCO Process........cccccevevveeercieeerveesnneenns 149
Table 6.17 — Data of semi-rigid connections of the LCO process. .........cceeevvevueeveneenennns 150
Table 6.18 — Optimal joint positions of the LCO Process. ........ccoeveeeiieniieriieeniienieeiiesveeneenn 150

Table 6.19 — Comparison of optimal areas related to the SCO and LCO processes. The higher
cross-section areas are highlighted. ... 150

Table 6.20 — Comparison between the costs of the optimal solutions. .........ccccceeeveerienennene 153






List of Abbreviations

LP
FEM
GSM
SLP
SQP
FEA
DOF
AISC
GC

LO
SCO
LCO
LU
CFD
IMSL
DDLPRS

NLPQLP

Linear programming

Finite element method

Ground structure method

Sequential linear programming

Sequential quadratic programming

Finite element analysis

Degree of freedom

American Institute of Steel Construction

Global connector

Layout optimization

Sizing and connections optimization

Layout and connections optimization

Matrix decomposition

Central finite difference

Numerical library

Fortran subroutine to solve LP problems available on the IMSL
Numerical Library

Fortran subroutine for the SQP method developed and provided by
Schittkowski (2001)






List of Symbols

AC
AC
AC,

El

F

Fi, F,, F3, F, and F;
f(0)

fe

GJ

iter

Generic term of the element stiffness matrix
Cross-section area

Cross-section area above the z'-axis (arc)

Percentage of additional cost of connections
Percentage of additional cost of a pinned connection
Percentage of additional cost of a fully rigid connection
Generic term of the element stiffness matrix

Generic term for any function of the optimization problem
Index of rotational springs in a given element
Perpendicular distance of My to the angular position 8
Unknown variables of the elastic line v(X)

Cost per material

Cost per connection

Index for displacement constraints

Index for the expressions f,

Young’s modulus

Beam stiffness

Load vector

Different types of loads

von Mises stress calculation

Expressions as a function of the fixity factors of the element stiffness
matrix

Shear modulus

Beam torsional stiffness

Index for elements

Total number of iterations

Inertia moment

Inertia moment around y-axis

Inertia moment around Z-axis



lofa Moz and Nox

l m03~, and noy

oy»
loZa Myz and Nyz
m

M (%)

Moy (%)
M, (%)

Index for design variables

Polar moment of inertia

Index of cross-sections along the element length

Generic term of the element stiffness matrix

Global stiffness matrix

Global stiffness matrix of fully rigid 3D frame elements
Global stiffness matrix of the element

Local stiffness matrix of the element

Overall contribution of the rotational stiffness of all joints
Rotational stiffness

Rotational stiffness of the rotational spring in XZ-plane

Rotational stiffness of the rotational spring in Xy-plane

Index related to the number of load cases

Negligible length of rotational springs

Element length

Critical length

Lower bound for constrained element lengths

Direction cosines of the local X-axis

Direction cosines of the local y-axis

Direction cosines of the local Z-axis

Index for elements connected to a same node

Generic term for the distribution of internal bending moment along the
element length

Distribution of internal bending moment M,, along the element length
Distribution of internal bending moment M, along the element length
Term of the sum of the bending moments around node 2 in XZ-plane
Term of the sum of the bending moments around node 2 in Xy-plane
Torsion

Allowable value of torsion

Bending moment in XZ-plane

Bending moment in XZ-plane of node 1

Bending moment in XZ-plane of node 2



M, alw Allowable value of bending moment in XZ-plane
M, Bending moment in Xy-plane
M,, Bending moment in Xy-plane of node 1
M,, Bending moment in Xy-plane of node 2
M, .. Allowable value of bending moment in Xj-plane
My Resulting bending moment
n Index for iterations
ndv Total number of design variables
nec Total number of elements that have a given nodal coordinate
nel Total number of elements
N Matrix of interpolation functions
N Vxoz Interpolation functions in X¥Z-plane (four terms)
N Vxoy Interpolation functions in Xy-plane (four terms)
Nbx Interpolation functions of translation in X-axis (two terms)
Ntx Interpolation functions of rotation in yZ-plane (two terms)
N, Axial force

X alw Allowable value of axial force

Generic term of the element stiffness matrix

P Vector of expression that represent any load distribution
Pk Vector of consistent nodal loads in the local reference system
PEG Vector of consistent nodal loads in the global reference system
pe Perturbation factor of the CFD
Q Static moment
R Outer radius
R, Midline radius
t Thin-wall thickness
T Transformation matrix
u Translation in x-axis
Uy Translation in X-axis of node 1
Uy Translation in X-axis of node 2
u Nodal displacements in the local reference system
U Global nodal displacements

U+ Vector of approximate displacements



U, Approximation of translation in X-axis

Approximation of translation in y-axis

Vxoy
uty.., Approximation of translation in Z-axis
U, Approximation of rotation in yZ-plane
up, Vector with local axial displacements of the nodes
u,, Vector with local rotations in yZ-plane of the nodes
Vsoy Vector with local translation displacements in y-axis of the nodes
Vror Vector with local translation displacements in Z-axis of the nodes
U, and Uy Lower and upper bounds for constrained displacements
v Translation in y-axis
(2 Translation in y-axis of node 1
Uy Translation in y-axis of node 2
v(X) Distribution of translation in J-axis along the element length (elastic line)
v, Vector of design variables
Up, and Up, Lower and upper bounds of a given design variable
Vo, Vi and V, Coefficients of linear and quadratic variation of connections cost
4 Shear force in y-direction
v, Shear force in Z-direction
1/3,1 Shear force in y-direction of node 1
Vy2 Shear force in y-direction of node 2
|/ Shear force in Z-direction of node 1
Vzs Shear force in Z-direction of node 2
V, (%) Distribution of internal shear force 1, along the element length
V, (%) Distribution of internal shear force V, along the element length
Vr Resulting shear force
/%4 ’ Component of Vy in the auxiliary reference system (y')
Vi? ' Component of Vj in the auxiliary reference system (z")
Y atw Allowable value of shear force in y-direction
V2 atw Allowable value of shear force in Z-direction
w Translation in z-axis

wy Translation in Z-axis of node 1



w, Translation in Z-axis of node 2

w(X) Distribution of translation in Z-axis along the element length (elastic line)
w' Magnitude of a generic uniformly load distribution

Wy Magnitude of the uniformly load distribution in y-direction

Wy Magnitude of the uniformly load distribution in Z-direction

w Manufacturing objective function (cost)

Wsp Initial manufacturing cost

w; Material cost

w, Connections cost

X* Generic representation of joint positions

X,Y and Z Global nodal coordinates of joints

X,y and Z Coordinates related to the local reference system

x,yand z Coordinates related to the global reference system

Xy and XZ Bending planes

yZ Torsional plane

y' Distance of the z’-axis to the centroid of the arc

0 Index for current design point

0 Angular position in the outer radius of a circular thin-wall cross-section
0, Rotation in yZ-plane

0, Rotation in X¥Z-plane

0, Rotation in Xy-plane

0,(%) Distribution of internal rotation in Xy-plane along the element length
O1x Rotation in yZ-plane of node 1

05 Rotation in yZ-plane of node 2

01y Rotation in ¥Z-plane of node 1

02y Rotation in ¥Z-plane of node 2

01, Rotation in X¥j-plane of node 1

0,, Rotation in X¥j-plane of node 2

Oc Column rotation

Or Frame rotation

¢ Rotation due to connection flexibility

¢1, P2, P3 and ¢,  Rotation due to connection flexibility of case 1 for the formulation of the

element stiffness matrix



®s, Pg, P7 and g

®9, P10, P11 and ¢4,

P13, P14, P15 and Py

Vyz
Ym
Yv

Txy»> Txz and Ty,

YZmax

Rotation due to connection flexibility of case 2 for the formulation of the
element stiffness matrix

Rotation due to connection flexibility of case 3 for the formulation
of the element stiffness matrix

Rotation due to connection flexibility of case 4 for the formulation
of the element stiffness matrix

Angular deformation

Angle between the bending moments M,, and M,

Angle between the shear forces V), and V,

Multiaxial stress state

Yield stress

von Mises equivalent stress

Components of normal stress

Maximum normal stress

Normal stress produced by the axial force

Normal stress produced by the bending moment in XZ-plane

Normal stress produced by the bending moment in Xy-plane

Normal stress produced by My

Components of shear stress

Maximum shear stress

Shear stress produced by the torsion

Shear stress produced by the shear force in Z-direction

Shear stress produced by the shear force in y-direction

Shear stress produced by Vi

Shear stress produced by Vz” I

Shear stress produced by Vi ? ’

Correction factor to impose the shear effect in deflection

Correction factor to impose the shear effect in the deflection of ¥Z-plane
Correction factor to impose the shear effect in the deflection of Xy-plane
Fixity factor

Specific mass



Sub-matrix of the direction cosines

Axial strain

Angle between My and the outer radius line which pass though 6
Angle related to the auxiliary reference system y'z’

Stepsize of a given design variable

Percentage of the relationship between oy, . and Tyz, o

Parameter of the active set strategy on constraints
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Chapter 1

Introduction

Over the years, due to the scarcity of natural resources and the increased competitiveness
of the global market, engineers have been showing concern and facing the challenge of
designing reliable structures with the lowest manufacturing cost (SANT’ANNA et. al., 2001).

Historically, the interest in structural optimization began in the mid-19th century with
the study of Maxwell (1870) and years later, at the beginning of the 20th century with Michell
(1904). Both studies investigate analytically the optimal layout of structures, subject to a given
load case, in order to provide the lowest material volume.

From there, the development of structural design has become an engineering activity
that has been progressively improved by the use of mathematical tools, integrated to the
computational environment, capable of automating the repetitive alteration of the available
design parameters to define the best technical specification.

In 50’s decade, Livesley (1956) introduced the linear programming (LP) technique on
design of frames, a numerical method applicable on problems which the objective and design
constraints functions appear as linear functions of the design variables (RAO, 2009). Schmit
(1960 apud Muifioz-Rojas, 2013) presented the procedure of coupling non-linear optimization
techniques with the structural analysis using the finite element method (FEM), providing the
possibility to find optimal solutions in structural problems with a complexity not treated until
then. Thereafter, structural optimization procedures have been extensively developed and
investigated, due to the increasing demand for structures that respect design requirements
having feasible costs.

In the context of sizing, where cross-section areas are design variables, Dorn et. al.
(1964) developed the ground structure method (GSM), a topology optimization method that
aims to minimize the material cost from a dense initial mesh (discrete model) that fills the space
in which the structure may exist.

Since layout is a constructive aspect that influences the mechanical behavior of a

structure, Pedersen (1972) proposed the possibility to optimize layout of structures through a
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gradient-based method called by sequential linear programming (SLP), using cross-section
areas and joint positions as design variables. More recently, also using a gradient-based method,
Sergeyev and Pedersen (1996) presented the layout optimization of steel space frames with
tubular thin-wall elements subject to multiple load cases and displacement and stress
constraints.

The civil construction makes use of tubular thin-wall elements in several types of steel
space frames such as industrial sheds, catwalks, offshore structures and flat roof of stadiums,
road terminals and airports. The automotive industry also applies this type of structural element,
usually in chassis and protective cages of auto racing vehicles such as kart and Nascar. The Fig.

1.1 shows some of these applications.

Figure 1.1 — Examples of (a) flat roof of a supermarket and (b) kart chassis.

Source: Author’s production.

At these engineering sectors, the typical static design requirements are structural
integrity and stiffness. In addition, another design requirement of extreme importance to ensure
that a structure does not present catastrophic failure is the structural stability. In this context,
layout optimization is a useful procedure for finding optimal solutions that ensure these
requirements with manufacturing cost savings. However, local and global buckling can occur
not only due to the reduction of cross-sectional size but also to the appearance of long elements
(slender ratio).

Generally, according to Santos (1977), designers applying tubular elements because of

their aesthetic shape and the mechanical advantage of building joints between two or more
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elements. This type of element also provides other mechanical advantages such as high torsion
resistance, higher natural frequency and less wind resistance. However, there is a downside due
to the cost being higher than the cost of rolled sections.

A common practice adopted in most cases of design of frames is to neglect the effect of
the shear forces. However, when layout optimization is performed, it is important to have a
failure criterion suitable not only to the cross-sectional type but also considering the slender
ratio of the element. The joint positions change can produce elements with short length, in
which case this negligence may not be acceptable.

Sergeyev and Pedersen (1996) proposed a stress calculation based on the distribution of
normal and shear stresses as a function of all the internal forces of the 3D frame element.
However, since the location of the critical point of equivalent stress depends on both the cross-
sectional local coordinates and the local longitudinal coordinate, this process can be
computationally intensive.

To avoid complexity and computational cost, Carniel ez. al. (2008) also optimized layout
of steel tubular space frames and proposed an alternative failure criterion given by the
normalization of the internal forces in relation to the respective maximum forces. However, the
criterion assumes the worst case of a combined request of internal forces, where the effect of
all the stresses produced intensifies. The conservatism of this strategy can cause an oversizing
of the structure. Thus, it is evident the need to combine computational efficiency and
effectiveness in a stress-based failure criterion to optimize layout of this type of structure.

Returning to the scope of costs, although extensively investigated, optimization
procedures that counts only on the mass minimization may be insufficient for certain
applications. Two optimal structures with the same mass may present layouts with different
levels of complexity and mainly distinct manufacturing costs. The number of joints, elements
and layout complexity are particularities capable of making the structure unfeasible not only
due to the cost required for the manufacture procedure related to the connections, but also
because of the difficulty and consequent time required for manufacturing (ASADPOURE et.
al., 2015).

Recently, Asadpoure et. al. (2015) proposed a topology optimization process in discrete
models where the objective function incorporates the minimization of two independent types
of manufacturing cost: material and connections costs. By varying the difference between these
two types of cost, the study showed that the approach enables the determination of compromise

solutions through the controlled removal of elements (and consequently connections). The
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higher the cost of connections, the greater the removal of elements/connections and the lower
the final complexity of the structure.

On the construction point of view, it is well known that bolted and welded connections
are widely used in joints of tubular elements. As can be seen in Vigh and Dunai (2004), several
types of connections can be used, and there are cases where bolts and welds are used together
through secondary components, which makes it difficult to characterize their structural
behavior. The cost of any connection is directly related to the type and quantity of material and

the manufacturing process required. Figs. 1.2(a-b) show some practical examples of joints.

Figure 1.2 — (a) Example of tubular joints with (1,2) bolted endplates, (3a) pinned connection

by earplates, (4) gusset plate, (5) coverplate and (b) a pinned connection between four elements.

TUBULAR ELEMENTS ”

7 JOINT WITH KN
4 CONNECTIONS

(a) (b)

Source: Vigh and Dunai (2004) and Ghasemi et. al. (2010).

In preliminary stages of structural design, in order to simplify the finite element analysis
(FEA), another common practice is to idealize that all the connections between column-base,
beam-to-column or beam-to-beam members are either perfectly pinned or fully rigid. However,
as already commented, this is not an appropriate approach because each type of connection has
its own mechanical behavior. Also, several experimental investigations proved that pinned

connections have rotational stiffness and fully rigid connections show some degree of flexibility
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(CHEN, 2000). Thus, to avoid an inconsistent prediction of structural responses, it is important
to develop and apply a physical and mathematical model for connections.

Monforton (1962) developed a formulation for 3D frame elements accounting the effect
of semi-rigid connections through a model with rotational springs within the two bending
planes. The torsional flexibility was also addressed, but through a different approach. However,
none of the case studies evaluated by the author consider more than one element with semi-
rigid connection at the same joint. In fact, during the development of this research, only in
Kartal et. al. (2010) was found an investigation about the constructive concept of two or more
elements connected to the same joint, but within a case study of planar frame (i.e. coplanar
elements).

Xu and Grierson (1993) and Simdes (1996) investigated the effects caused by the
imposition of semi-rigid connections as design variables in structural optimization of planar
frames. The objective functions stated by the authors also accounts for material and connection
costs, but different from what is proposed in Asadpoure et. al. (2015), the connections cost of
a given element is related to their stiffness and is proportional to the material cost. Comparing
with processes where fixed fully rigid connections were assumed, these authors demonstrated
that better optimal solutions can be found when semi-rigid connections are considered. Xu and
Grierson (1993) also observed different performances of cost minimization when structures are
subjected to displacement constraints and external loads from different directions. However,
again no research found has addressed case studies with two or more elements connected to the
same joint.

Most researches about optimization of frames with semi-rigid connections has focused
on procedures based on heuristic methods (exploratory search to found the optimal solution),
with sizing optimization of planar frames through discrete design variables consistent with
cross-section areas of commercial profiles and experimentally characterized connections. To
the author’s knowledge, no research deals with thin-wall tubular elements and the constructive
concept of two or more non-coplanar elements connected to the same joint. Therefore, an
important contribution of this research work is precisely to enable simultaneous optimization
of layout and connections of steel tubular space frames with more complex joints through any
gradient-based method.

Taking into account gradient-based methods, none of the research found addresses
optimization of space frames with semi-rigid connections. Thus, through own procedure to
impose the effect of semi-rigid connections at 3D frame elements, this work aims to extend the

two-dimensional formulation of the objective function proposed by Simdes (1996). Despite
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having developed a formulation for 3D frame element with rotational stiffness in the three
planes of rotation, Monforton (1962) states that in practice it is feasible to assume infinite
stiffness for the torsional degree of freedom (DOF). Therefore, the formulation of this work
focuses only in the semi-rigidity of the two orthogonal bending planes, while the torsional
stiffness is assumed as fully rigid.

Based on steel buildings with commercial profiles different of tubular elements, in the
proposals of Xu and Grierson (1993) and Simodes (1996) the additional cost of a pinned
connection is always lower than that of a fully rigid connection, and the cost of an intermediate
semi-rigid connection is given by linear and quadratic variations between these two connection
cost, respectively. The extreme costs of pinned and fully rigid connections are based on
published data’s (not found). For simplicity, this work also assumes this type of range of
connections cost, but proposing a mathematical procedure to determine a behaved curve for the
quadratic variation. However, it should be noted that the cost of any connection depends not
only on the type of the cross-section of the connected elements, but also on the amount of
material required and the complexity of the manufacturing process. Therefore, perhaps this
assumption does not cover very well connections of tubular elements and different types of
space frames constructions. Unfortunately, no published data was found for tubular elements.

Solution techniques based on gradient-based methods have been considered not very
efficient for later technical specifications of large scale structures (HAYALIOGLU;
DEGERTEKIN, 2005). A discrete solution can be generated from the continuous solution by
approximation techniques (HAVELIA, 2016), but Camp et. al. (1998) observed that optimizing
with continuous design variables can cause optimal solutions with less quality or even infeasible
due to construction constraints found in regulatory standards. Despite the potential decrease on
the quality of the optimal solution, an advantage of deal with structures build by steel tubular
elements is that the optimal continuous solution is easily extrapolated to a very close discrete
solution, being important only to check later that the extrapolated solution continues to respect

all the design constraints.

1.1 Objectives

The main objective of this research work is to propose a new approach to optimize
layout and connections of steel tubular space frames through any gradient-based method. The

optimization problem aims to minimize manufacturing costs related to material and
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connections, with cross-section areas, joint positions and connections stiffness as design
variables, subject to multiple load cases and respecting displacement, minimum element length
and stress constraints.

The optimization procedure must be capable of identifying competitive design solutions
with continuous design variables that can be later extrapolated to a technical specification,
simultaneously evaluating stiffness, mechanical strength and manufacturing costs without
neglect the effect of connections and transverse shear stresses and releasing the existence of
joints with more complex constructive concept.

Based on the von Mises theory, the goal is to develop a new procedure to evaluate stress
in 3D frame elements with thin-wall circular cross-section area and variable length as a function
of the internal forces and geometric properties, accounting the transverse shear effect and
determining the critical point of each cross-section analyzed.

Layout optimization might lead to slender elements subject to the occurrence of local
and global buckling failures. For this reason, to apply stability constraints is essential to ensure
structural reliability at the optimal solutions. However, as a primary approach, this aspect is not

included in the scope of the research.

1.2 Outline

The research work consists of seven chapters organized as follows:

. Chapter 1 (Introduction): after a briefly contextualization of the research field
and motivations, the objectives and limitations of the research proposal are presented.

. Chapter 2 (Literature Review): this chapter presents the main contributions
correlated with structural optimization of structures, application of semi-rigid
connections in FEA and optimization problems and, finally, failure criteria, providing
the basis for the further formulations and implementation to be developed. Also, it is
important for the understanding of the environment in which the desired contribution is
inserted.

. Chapter 3 (Formulation of the Semi-Rigid Frame Element): in order to add
the effect of semi-rigid connections, the stiffness matrix of the 3D frame element is

formulated using the direct method, considering connections with rotational springs
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with respect to two orthogonal bending planes. Then, the procedure to calculate the
internal forces is presented.

. Chapter 4 (Failure Criterion): this section presents one of the central
contributions of this work. A novel procedure for calculating the von Mises failure
criterion taking into consideration the usually neglected transverse shear contributions
is developed for tubular elements. This way the criterion can be applied not only to long
elements but also to moderately short ones.

. Chapter 5 (Optimization Problem): the proposed optimization problem to
minimize manufacturing costs is stated, providing a new approach for simultaneously
optimizing layout and connections of steel space frames. Then, the most pertinent
features and details about the iterative process of the chosen gradient-based method are
presented. Thereafter, the sensitivity analysis of the objective function and design
constraints is performed analytically. As the length of the elements varies during the
optimization process, the failure criterion developed in Chapter 4 becomes important.

. Chapter 6 (Results and Discussion): investigations are carried out regarding
the structural behavior and the optimal solutions obtained by space frames with semi-
rigid connections, comparisons between different optimization procedures and the
specific failure criterion.

. Chapter 7 (Conclusions): recalling the objectives, developed formulations and
obtained results, final conclusions regarding the contribution achieved and suggestions

for future works are presented.
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Chapter 2

Literature Review

The field of structural optimization in discrete models can be decomposed into three
categories: sizing, shape and topology optimization. While sizing optimization deals with
geometric parameters of the elements (usually cross-section areas), shape optimization of
structures deals with the location of joints and topology optimization modifies the quantity and
connectivity of the elements (KICINGER et. al., 2005). In order to clarify the term used
throughout this research work, layout optimization incorporates sizing and shape optimization,
1.e. cross-section areas and joint positions as design variables. Furthermore, when semi-rigid
connections are available, parameters associated with the rotational stiffness level of the
connections may be introduced as design variables.

Basically, the sequence of engineering activities related to the design of a structure is
given by: definition of the topology based on functional requirements, technical experience and
predicted architecture, definition of the layout concept and calculation of dimensional
parameters. Analyzing individually, while the first two activities of topology and layout
influence significantly in the structural behavior, the sizing is the one that least impacts
(HAVELIA, 2016). However, it is important to note that both categories of optimization are
highly interdependent. When topology and/or layout changes are made, the distribution of
internal forces also changes, which impacts on the later sizing (ROZVANY, 1992).

Proceeding separately with the different types of optimizations facilitates the numerical
process but generally achieves sub-optimal solutions (ROZVANY et. al., 1995). When
compared to layout or topology optimization, sizing optimization produces less impact on final
cost and structural performance (LEE et. al., 2014).

In the next sections, studies that show different types of costs to build a structure are
presented. Then, contributions in the area of topology optimization are presented, since the

researches aggregates aspects related to minimization of manufacturing costs, use and behavior
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of different types of approaches (sizing and layout) inside topology optimization, characteristics

of optimal solutions and the effect of applying stability constraints.

2.1 Costs for Building Structures

Optimization problems for mass minimization of structures subject to displacement and
stress constraints has been extensively investigated since a long time, mainly through the
application of gradient-based methods within sizing or layout approaches. For example, see the
works of Moses and Onoda (1969), Pedersen (1972), Pedersen and Jogersen (1984), Yoshida
and Vanderplaats (1988), Sergeyev and Pedersen (1996) and Sergeyev and Mroz (2000),
Pedersen and Nielsen (2003), Sant’ Anna et. al. (2001) and Carniel ez. al. (2008). However, this
procedure is a useful procedure to be applied only at initial stages of design, since there are
other factors that directly influence in the final cost to build any structure (LIVESLEY, 1956).

In recent decades, while material cost has remained almost constant, other types of costs
in terms of manufacturing and erection processes of the elements and their connections have
increased (STEENHUIS et. al., 1997).

The total cost can be measured from the material acquisition, depending on the type and
size of the cross-section area, quantity of material required (related to the element size) and
market conditions (HAVELIA, 2016), up to costs that vary according to the quantity of
connections and even the complexity of the layout, which can make the manufacturing process
more difficult and expensive (ASADPOURE et. al., 2015).

Depending on construction features related to the type, size and geometry of the
elements, the connections cost can vary significantly. For example, according to Havelia
(2016), is common to see steel frames that have column members with continuous length
through joints related to beam connections, i.e. it is not necessary to account the connections
between the column members in FEA and optimization.

In this context, an accurate cost estimation is fundamental to design economical
structures (ALl et. al., 2009). Ali et. al. (2009) and Havelia (2016), for example, assume several
factors and sub-costs related to the costs of material, manufacturing, foundation and erection
procedures. A similar concerning can be seen in Hasangebi (2017), where the objective function
was formulated as a summation of five items: the material of elements, material and
manufacturing of semi-rigid connections, transportation, erection and extra costs. Regarding

manufacturing of connections, they included the costs of necessary materials for welding,
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bolting, stiffeners and plates and costs of welding and hole forming process. The extra costs

may be painting, flange aligning, surface preparation, among others.
2.2 Topology Optimization of Discrete Structures

The GSM proposed by Dorn et. al. (1964) was the beginning for the application of the
procedure of removing elements from a dense and discrete mesh of line elements. Removing
an element from a given structure does not only reduce the cost of material but also the quantity
and cost of the required connections.

After the initial sizing optimization, the procedure of the GSM consists of removing
elements that have cross-sectional area value below a pre-set removal value and reapply the
optimization with the new topology as a starting point (ASADPOURE et. al., 2015). According
to Hagishita and Ohsaki (2009), the initial mesh density and the nodes location influence the
quality of the solution. Case studies presented in Bendsee ef. al. (1994), see Fig. 2.1, also
demonstrate that there is a tendency to produce optimal solutions with considerably complex

layouts (TORII et. al., 2016).

Figure 2.1 — Layout complexity of an optimal solution found by GSM approach.

BN

Source: Bendsge et. al. (1994).

Since the GSM formulation, several researches developed and investigated topology
optimization of discrete structures based on sizing and layout approaches, such as Achtziger
(2007), Hagishita and Ohsaki (2009), Asadpoure et. al. (2015), Havelia (2016), Torii et. al.
(2016) and Tejani et. al. (2018). The main concern was the obtention of solutions with layout
too complex for practical purposes, since this complexity impacts in several manufacturing

costs of the final structure.
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A simple procedure commented by Bendsee et. al. (1994) to avoid complex structural
designs is to limit intuitively the domain of the design space through the connectivity, i.e. only
neighboring nodes are connected. Unfortunately, the performance of this strategy depends
heavily on the designer's experience.

Another procedure addressed in Bendsee et. al. (1994), Achtziger (2007) and He and
Gilbert (2015), is to use layout optimization into the topology optimization. Considering cross-
section areas and joint positions as continuous design variables, Achtziger (2007) demonstrated
that this proposal can provide good optimal solutions for problems of moderate size, i.e. without
the need to deal with many elements. Also, they observed a tendency to produce unsymmetric
trusses as optimal solutions, see Fig. 2.2, even with a symmetric load condition, fact directly
related to the use of a non-global optimization algorithm (any gradient-based method), the
occurence of a flat objective function and the no imposition of symmetry by additional

constraints.

Figure 2.2 — Unsymmetrical truss as optimal solution found in Achtziger (2007).

Source: Achtziger (2007).

About the fact that layout optimization induces computational difficulties, Achtziger
(2007) proposed the strategy where a feasible starting point is calculated with the fixed layout
before proceeding with the layout optimization. This separate optimization process was also
adopted in the first strategy discussed in He and Gilbert (2015). This strategy simplifies the
optimization process, but can lead to sub-optimal solutions, as Rozvany et. al. (1995) identified
in some studies performed by sequential optimization of topology and sizing.

Hagishita and Ohsaki (2009) have proposed and obtained satisfactory results with
strategies dedicated to adding and removing elements and nodes within layout optimization on

trusses subject to static (single or multiple) loading. The authors deal with melting of joints,
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remove of overlapping elements and initial meshes do not need to have a high number of
elements. To illustrate, a particular case studied and the optimal layout achieved is presented in

Fig. 2.3.

Figure 2.3 — Problem with overlapping elements in Hagishita and Ohsaki (2009).

—
’8  Optimization
process

Source: Adapted from Hagishita and Ohsaki (2009).

It is well known that structural optimization problems may have singular optimal
solutions that cannot be reached from an arbitrary starting point (SVED; GINOS, 1968).
Therefore, an important result achieved by Hagishita and Ohsaki (2009) is that singular
optimum solutions can be found for small trusses with stress constraints.

Asadpoure et. al. (2015) proposed a formulation to optimize the topology of trusses
using normalized areas as design variables and a continuous approximation of the Heaviside
function applied in the normalized areas. The formulation enables a process that identifies the
optimal solution by analyzing the manufacturing cost-benefit relationship between costs of
material and connections (two connections for each element), controlling the layout complexity
of the final structure.

The approximation of the Heaviside function is continuous and differentiable, which
enables the application of any gradient-based method. The results obtained by Asadpoure et.
al. (2015) have shown that, according to the adoption of different magnitudes for material (c,;)
and connections (cg) costs, different final layouts are achieved due to the ability to identify
“non-structural” elements automatically, reducing the dependence on “artificial” removal
factors and the computational cost within the optimization process. As can be seen in Fig. 2.4,
the higher the connections cost of the element, the greater is the element removal and

consequently lower layout complexity is achieved. Consider L as element length.
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Figure 2.4 — A study reproduced by Asadpoure et. al. (2015).

g < 1071 g = 107

10\’
m=\7 (all cases)

Cg > 101

Source: Adapted from Asadpoure et. al. (2015).

Torii et. al. (2016) also noticed that previous works are capable to reduce layout
complexity, but are not able to set a combined level between design complexity and structural
performance desired by the designer. Therefore, the authors presented another efficient method
to control layout complexity in sizing optimization of truss through any gradient-based method.

Based on two continuous and differentiable functions that measure the number of nodes
and elements, both are employed in the optimization process as a penalty into the objective
function. The penalization factor is responsible to enforce the desired level of complexity. Torii
et. al. (2016) observed the existence of local optimal solutions in some examples due to the
non-convexity characteristic of the measure functions.

Taking into account a frame structure, Havelia (2016) proposes a topology optimization
scheme that has discrete cross-section areas as design variables, connection costs associated
with construction features and a technique that recognizes continuity on desired elements,
minimizing material, manufacturing and erection cost. After calculating the maximum internal
stress and the total cost related to each element, it is produced a ranking that highlights the
elements that have a high cost and are not useful to the mechanical strength of the structure (i.e.
can be removed).

Havelia (2016) optimized a structure subject to lateral loads with mass and
manufacturing cost minimization procedures, see Fig. 2.5. When manufacturing and erection
costs are included in the optimization process, the author observed that the columns tend to be

heavier compared to the same in the optimal solution related to only mass minimization.
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Figure 2.5 — Case study developed by Havelia (2016).

Mass minimization Manufacturing cost minimization

Source: Adapted from Havelia (2016).

This increase of mass in the columns happens because brace elements (see Fig. 2.5, the
diagonal elements), which are mechanical efficiently in terms of mass minimization, are
removed from the initial topology, decreasing the capacity of resistance to lateral loads. On the
construction point of view, it is preferable to have fewer connections and consequently more
easy manufacturing and erection procedures.

More recently, Tugilimana et. al. (2018) worked with sizing and topology optimization
of steel space trusses made of tubular thin-wall elements, such as the large-scale truss dome
visualized in Fig. 2.6. Elements with cross-section areas that reach a lower bound are removed
from the initial topology.

Including global stability and local buckling constraints, the authors noted that some
previous optimization problems treated without these constraints produced unstable structures,
due to elements with small cross-sections in compression. In the optimal solution achieved for
the truss dome of Fig. 2.6, bracing elements appear and cross-section areas of elements at the
bottom are increased to ensure stability. For this case, the optimal design with stability
constraints has approximately 10X the total volume of the optimal design that not accounts

stability.
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Figure 2.6 — Steel space truss investigated in Tugilimana et. al. (2018).
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Source: Adapted from Tugilimana et. al. (2018).

Despite the knowledge that stability constraints are important to ensure truly secure
optimal solutions, this type of constraint typically has a high level of non-linearity that produces
difficulties at the optimization process (ROZVANY et. al., 1995). In the research of Wildemann
and Mufioz-Rojas (2004), the layout and topology optimization of space trusses is performed
by a gradient-based method, and several case studies were analyzed with and without local
buckling constraints, through the critical Euler load. The authors not only observed different
optimal solutions, but also noted that the optimization process encounters more numerical
difficulty for convergence when this type of stability constraint is considered, sometimes falling
into unfeasible regions.

Tejani et. al. (2018) also treated space trusses and presented a study with layout and
topology optimization through a heuristic method, mass minimization and subject to stress,
displacement and kinematic stability (no generation of a mechanism due to the topology)
constraints. For the removal of elements, they use a simple strategy for existence measure,
which is directly multiplied in the objective function. The strategy assumes discrete values 0-1
based on a conditional that evaluates whether the cross-section area is smaller or larger than a
critical value.

Deb and Gulati (2001) performed the same strategy in two case studies, one of them
presented in Fig. 2.7. Developing two topology optimizations with layout and sizing
approaches, the authors compared the obtained results of mass minimization and observed that
the optimum solution of the layout optimization is 3% smaller than the optimum solution of the

sizing optimization.
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Figure 2.7 — Case study developed by Deb and Gulati (2001).
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Source: Adapted from Deb and Gulati (2001).

In this research work, manufacturing costs will be evaluated without application of
topology optimization, but rather with the use of layout and connections optimization. When
layout optimization is performed, slender elements can be subject to compressive load and,
consequently, may exhibit structural failure due to local or global buckling. The effect produced
in the optimization process and optimum solutions when stability constraints are applied it is
extremely important, as verified in Tugilimana et. al. (2018). However, according to research
such as Rozvany et. al. (1995) and Wildemann and Mufioz-Rojas (2004), this type of constraint
presents a high level of non-linearity that produces difficulties at the optimization process and
would require more time to investigate it. For this reason, stability constraints are not in the
scope of research.

Hereafter, contributions related to modeling of connections, objective function
proposals to minimize manufacturing costs with connections as design variables and the effects
caused by the addition of rotational stiffness in the structural response and optimization are

presented.
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2.3 Semi-Rigid Connections

Traditionally, to simplify the preliminary analysis and design of a steel frame, it is a
common procedure to idealize connections with pinned or fully rigid behavior. However, as
already commented, several experimental investigations demonstrated that pinned connections
have rotational stiffness and fully rigid connections show some degree of flexibility (CHEN,
2000). Furthermore, according to Pinheiro (2003) and Del Savio (2004), experiments with
several types of connections used in practice exhibited non-linear behavior due to the gradual
plasticity of components such as plates and bolts.

In this scenario, to neglect the rotational stiffness of connections avoids realistic
predictions of responses, such as displacements and internal forces distribution acting on the
elements of the structure, and consequently the design reliability (SAGIROGLU; AYDIN,
2015). Studies and analytical models have been developed for non-linear analysis of frames
that have several types of semi-rigid connections. In these models, among the various
parameters to be determined by empirical expressions, obtained by experimental investigations
allied to curve fitting techniques and to the steel connection database, is the initial rotational
stiffness (K,) of the connection (SEKULOVIC; SALATIC, 2001).

At initial stages of frame design, using a linear mathematical model to represent the
bending moment-rotation relation curve (M-¢) is useful, see Fig. 2.8, since the initial stiffness
of any type of connection is constant (PINHEIRO, 2003). Besides, when the goal is to analyze
frames with small displacements and strains, the linear model can be applied without major
problems, being the initial rotational stiffness the only parameter necessary to define the
connection stiffness during the FEA and/or structural optimization processes. Therefore,
iterative updating of this stiffness is not necessary as in non-linear models (PINHEIRO;
SILVEIRA, 2005).

For linear-elastic model, there are several formulations to incorporate the semi-rigidity
behavior of connections, for example Monforton (1962), McGuire et. al. (2000), Chan and Chui
(2000), Hairil Mohd et. al. (2016), among others presented at the master thesis of Pinheiro
(2003). The approaches are mentioned in Table 2.1.
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Figure 2.8 — Linear mathematical model vs. experimental curve of typical connections applied

in the engineering practice.
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Source: Adapted from Pinheiro (2003).

Table 2.1 — Author’s and method’s formulations.

Authors Method

Monforton (1962) Conjugate beam

_ Hybrid element composed by a frame
McGuire et. al. (2000)

Formulations ) element and rotational springs at the
Chan and Chui (2000) -
extremities
Hairil Mohd et. al. (2016) Potential energy approach

Source: Author’s production.

Based on linear-models, several researchers investigated the behavior and structural
optimization of frames with semi-rigid connections, such as Xu and Grierson (1993), Heringer
(1996), Simdes (1996), Csébfalvi (2007), Kartal et. al. (2010) and Artal and Daloglu (2018).

According to Sekulovic and Salatic (2001) and Del Savio (2004), in most steel structures
the effects of axial and shear forces on the deformation of the connections are insignificant
when compared to the effect caused by bending moments. At this context, a simple way of
modeling semi-rigid connections of a 2D frame element is to impose rotational flexibility
through rotational springs of negligible length [,,, and rotational stiffness K, at the two joints
(nodes 1 and 2) of intersection between columns and beam members. This physical model is

visualized in Fig. 2.9.
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Figure 2.9 — Linear mathematical model for semi-rigid connections.
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Source: Adapted from Chan and Chui (2000).

Two distinct rotations in the connection region coexist: a column rotation, 8., and a
frame rotation, 8, both shown in Fig. 2.10. Assuming that two elements are connected to the
same column, 6. is the combined rotation that guarantees the compatibility of the global nodal
displacements in FEM. However, depending on the internal bending moments transmitted, the

elements may have different rotations Og.

Figure 2.10 — Difference between the column rotation and the rotation presented by the frame
element at the connection.
K
\ HF

—-— o - - - — o s

Source: Adapted from Chan and Chui (2000).

By the infinite stiffness hypothesis, when the column has any rotation 6. the frame
element accompanies this rotation as shown in Fig. 2.11(a). However, due to the rotational
flexibility of the connection, a rotation ¢ of the frame element at the point of clamping occurs

in relation to the line orthogonal to the inclined column, exposed in Fig. 2.11(b).
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Figure 2.11 — (a) Fully rigid vs. (b) semi-rigid connection.
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Source: Adapted from Kartal ez. al. (2010).

The rotation of the 3D frame element at the connection, adopting the linear-elastic

model, is defined by the relation of

M
¢ =K 2.1)

where M is the concentrated bending moment acting in the connection. Hence, the real rotation

that the frame element will presents in the connection is

0 = 6 — . (2.2)

According to Chen et. al. (2011), the AISC (American Institute of Steel Construction,

2005) considers that semi-rigid connections have rotational stiffness in the range of

2EI 20E1
<K . <— 2.3
[ SKks— (2.3)
where E, [ and L represent, respectively, the Young’s modulus, the inertia moment and the
length of the element. Below and above these limit values, connections are considered pinned

and fully rigid, respectively. In addition, it is noteworthy that this information may vary
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according to the standard in use. Under the Brazilian standard ABNT NBR 8800 (2008), a
connection with % or less can be considered as pinned, whereas with ? or more can be

considered as fully rigid.

Several researches such as Sekulovic and Salatic (2001), Cabrero and Bayo (2005) and
Kartal et. al. (2010) used an initial rotational stiffness of semi-rigid connections defined as a
function of the beam stiffness (EI) and a parameter called by fixity factor (), which measures

the connections stiffness in the range (0,1]. Thus,

Q)E

T (2.4)

Kr:(l—a

where for pinned connections the fixity factor value is zero (K, = 0) and for fully rigid
connections the value is unitary (K, = o).

The relation between the rotational stiffness and the fixity factor was deduced through
the formulation developed by Monforton (1962), based on the conjugate beam method.
Basically, the physical meaning of the fixity factors is given by the quotient between the frame
element and column rotations, i.e. 8 and 6, represented in Fig. 2.12, due to an unitary bending
moment. Typically, according to Chen (2000), planar frames present connections with

evaluated fixity factors between the range of 0.77 and 0.94.

Figure 2.12 — Physical meaning of the fixity factor.

unitary
bending
moment /

Source: Adapted from Simoes (1996).

Manipulating equation (2.4) to investigate and understand some aspects related to the

relation between the fixity factor and the rotational stiffness,
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K.L  3a
El (1-a)f

(2.5)

KyL
and knowing that ﬁ presents values in the range of 10.0 and 50.0 at design of frames

(GERSTLE, 1988), the graph visualized in Fig. 2.13 is plotted. Note that the relationship
between « e K, is non-linear, especially in the region with a values above 0.5, where a small

increase in the fixity factor would correspond to an exaggerated increase in the rotational
' KyL
stiffness (CHEN, 2000). In the graph, Y correspond to ﬁ

Figure 2.13 — Non-linear relationship between rotational stiffness and the fixity factor.
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Source: Adapted from Chen (2000).

At the engineering practice, the introduction of the fixity factors is beneficial for the
static analysis of frames, since it allows previous investigations of structural responses coupled
with the physical notion of the level of rotational stiffness in the connections, as opposed to the
fictitious infinite stiffness (CHEN, 2000).

According to Monforton (1962), up to the mid-1960s there were few theoretical and
experimental investigations about the structural behavior related to connection rotations around

X (¥Z plane) and in the X¥Z plane on space frames, i.e. torsion and bending DOF (in this work,
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(13 2
~

the index refers to the local reference system). The author states that most types of semi-
rigid connections exhibit fully rigid behavior in torsion and pinned behavior in rotation at the
XZ plane. The main displacements in frames are rotations at the same plane of application of
the external loads (HERINGER, 1996).

With respect to the torsional DOF, in the study of Monforton (1962) the torsional
flexibility in the plane yZ is given by fixity factors directly proportional to the torsional stiffness
(G]) of the 3D frame element (G is the shear modulus and ] is the polar moment of inertia).

However, the author informs that connections between 3D frame elements can be considered

fully rigid in torsion.
2.4 Optimization of Frames with Semi-Rigid Connections

In the field of structural optimization, linear models of semi-rigid connections have also
been extensively applied and investigated in planar and space frames, with different
optimization methods.

Lui and Chen (1986) develop a study about connections flexibility in frames and
concluded that, generally, fully rigid idealization underestimate the displacements and
overestimate the strength. On the other hand, assuming pinned connection provides overdesign
of beam members and underdesign of columns.

Xu and Grierson (1993) present a procedure to minimize the combined cost of elements
and semi-rigid connections of planar frames. Using discrete American standard steel sections
and continuous rotational stiffness as design variables, a continuous-discrete optimization
algorithm is applied based on a gradient-based method, with stress and displacement

constraints. Thus, the objective function W is given by

nel 2
W= >"{ cupidili + (Z(Vo ¥ V1Kr6)> Cpiils (2.6)
i=1 .

c=1 i

where p is the specific mass and A is the cross-section area. The indexes i and nel represent
the sum of elements, c is related to each rotational spring of a given element and V,, and V; are

parameters that control the additional cost of the connections of each element, which is directly

related to the material cost. Also, remember that c,,; represent the material cost [%]
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The objective function of equation (2.6) verifies the cost of each connection based on
its rotational stiffness. Recently, Junior and Falcon (2019) also used this same expression to
minimize costs of planar frames with geometric non-linearity, but adapted to account separately
for the manufacturing costs of columns (material only) and beams (material and connections).

Xu and Grierson (1993) define the parameters V, and V; in such a way that the
connection cost are limited by pinned and fully rigid cases, the cost of a pinned connection
being lower than a fully rigid connection. By the polinomial degree characteristic, the
connections cost has linear dependence on the material cost. In an example, for W-sections, Xu
and Grierson (1993) assumed a suggestion informed by a published data (does not encountered)

for the linear range of the additional connection cost, given by

2
025p1AlLl < (Z(VO + VIKTC)) ,DiAiLi < 0-70piAiLi: (27)

c=1 i

the cost of each element is increased by 25% if it is pinned and by 70% if it is fully rigid
connected. Fig. 2.14 shows the linear variation of this additional cost, where AC is the

percentage of additional cost of connections.
Figure 2.14 — Linear variation of the connections cost.
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Source: Author’s production.
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Compared to rigid frames, Xu and Grierson (1993) observed that greater material cost
minimization is sometimes achieved when considering semi-rigid connections, especially when
vertical loadings imposed (external or self-weight) predominate, as the study presented in Fig.
2.15(a). This behavior is due to the reduction of the magnitude of the internal bending moment

distribution caused by the flexibility of the connection.

Figure 2.15 — Structural problems treated by Xu and Grierson (1993): (a) a frame with
recommended semi-rigid connections and (b) a frame with rigid connections as the best solution

for minimal cost.

(a)

Source: Adapted from Xu and Grierson (1993).

On the other hand, when a lateral load of considerable magnitude and lateral
displacements constraints are assumed, as in the structure of Fig. 2.15(b), fully rigid
connections are more recommended to provide greater lateral stiffness, especially in the sizing
of the columns. As can be seen in Heringer (1996), semi-rigid connections tend to have larger

horizontal displacements.
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Csébfalvi (2007) dealt only with material cost minimization of planar frames, using
discrete cross-section as design variables and displacement and stress constraints. Optimizing
with distinct magnitudes of rotational stiffness, he noted a different effect in optimal solutions
of different structural problems. While in one case rigid connections were recommended, in
another case a better solution was achieved by semi-rigid connections. Both problems had
lateral and vertical loads. Therefore, Csébfalvi (2007) concluded that the optimal solution may
have a dependence on the fixed structural layout coupled with the load condition assumed.

Recently, the influence of semi-rigid connections is also investigated in Krystosik
(2018), on structures subject to both vertical and lateral loads. The results obtained are
compared with the results of a rigid frame. The author verified reduction of the internal bending
moment distribution and critical buckling load in the columns but an increase in the lateral
displacements of beam members.

Using different levels of fixity factors, Kartal ez. al. (2010) analyzed planar frames with
a distinct layout, semi-rigid connections and load aspects. First, assuming a frame with semi-
rigid connections only at the foundations and subject to lateral and vertical loads, the authors
evaluated the variation of lateral displacements, bending moment, shear and axial forces in the
frame system. In this case, they noted that connections that are more rigid increased the bending
moment in the columns of foundations, while the shear presented no variation. The axial forces
also presented variation only at the bottom of the structure, with higher magnitudes when
pinned connections are assumed. At the top of the frame, greater lateral displacement was
observed for pinned connections.

In the second frame, semi-rigid connections are considered only in beam-to-column
joints and lateral loads are applied. With pinned connections, the clamping region has the
highest bending moments and the lowest axial forces. On the other hand, with fully rigid
connections, this region is subject to the highest axial forces.

In the third case, a frame containing additional (related to the second frame) X-braced
elements with semi-rigid connections presented an interesting result: no changes in the
variations of the analyzed forces and lateral displacement, that is, the global structural behavior
does not present variations although different stiffness levels of semi-rigid connections are
assumed.

The last case study, shown in Fig. 2.16, consists of a truss system with semi-rigid
connections between all the elements and subject to vertical and lateral loads. To the author’s
knowledge, this is the only work that investigated a case study with two or more elements

connected to the same node. The results obtained demonstrate no change in the axial forces.
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However, greater connections stiffness provided a decrease in vertical displacements and

increases in the bending moment and shear force diagrams.

Figure 2.16 — Fourth case studied by Kartal et. al. (2010).

Source: Adapted from Kartal ez. al. (2010).

Artar and Daloglu (2018) presented optimizations studies performed by a heuristic
method coupled to a FEM software of space frames, with discrete W-sections as design
variables and subject to lateral wind loads (see examples in Fig. 2.17). Each optimization
process is developed with fixed and distinct semi-rigid connections, similar to the approach

applied by Csébfalvi (2007).

Figure 2.17 — Space frames investigated by Artar and Daloglu (2018).
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Source: Adapted from Artar and Daloglu (2018).

According to the results obtained, the structures with semi-rigid connections obtained

less material cost minimization mainly due to the increase of the lateral displacements of the
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structure, caused by the reduction of the lateral stiffness. Consequently, the cross-section
profiles are increased to overcome the absence of the lateral stiffness.
Simoes (1996) developed a study similar to Xu and Grierson (1993), but modified the

previous objective function formulation of the equation (2.6) to

nel 2
W= z cmPidiL; + < Vo + Viac + Vzacz)) cmPiAiL; |, (2.8)
: . ,

i=1 =1 i

using fixity factors as continuous design variables and imposing the parameter V, to assume
additional connections cost with quadratic dependence on the material cost.
Considering IPE cross-sections for the beams, Simdes (1996) assumed that the cost is

increased by 20% for pinned connections and 60% for fully rigid connections, that is

2
OZOpLAlLL < (Z(VO + Vlac + Vz(lcz)> PiAiLi < 06OplAlLl (29)

c=1 i

As Xu and Grierson (1993), Simdes (1996) also assumed the cost of a pinned connection
being lower than a fully rigid connection. To the author’s knowledge, this is the only research
that proposes the use of quadratic variation of the connections cost. Simdes (1996) argues that
the adoption of this type of variation provides greater accuracy on the prediction of the
additional cost of connections. However, there is no standard procedure described for defining
the constant coefficients.

Analyzing mathematically, it was possible to note that the quadratic variation adopted
by Simdes (1996) has the pattern visualized in Fig. 2.18. With this convex configuration,
Simodes (1996) assumes that the cost of semi-rigid connections of up to 0.60 is less than the
cost of pinned or fully rigid connections. Therefore, as expected, the results obtained by the
author in two case studies show optimal semi-rigid connections with intermediate values of this
interval, since not only do these semi-rigid connections offer greater lateral stiffness so that the
structures do not violate the imposed displacement constraints, but also by the lower cost
associated. The author does not justify this proposal for additional costs.

Developing these two case studies, which had vertical and lateral loads and lateral
displacement and stress constraints, Simdes (1996) noted that optimal solutions that account

for semi-rigid connections are lighter than the optimal solutions achieved by frames with fixed
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fully rigid connections. However, in this case, as already evidenced, this is directly related to

the curve adopted for the variation of the connections cost.

Figure 2.18 — Specific quadratic variation adopted by Simdes (1996).
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Source: Author’s production.

Returning to the context of the studies developed by Csébfalvi (2007) and Artar and
Daloglu (2018), note that the conflicting result achieved by Simdes (1996) — lightweight
structures with semi-rigid connections even with lateral loads and displacement constraints —
may depend on the range and variation of the connections cost and the type of problem
analyzed, relative to the different geometric properties of the cross-sections assumed, the fixed
structural layout or even the magnitude ratio between the lateral and vertical loads applied.
Also, it may be related to how design variables represent the semi-rigid connections (continuous
or discrete values, fixity factors or rotational stiffness).

Interesting results were also obtained by researchers that used nonlinear models for the
connections, about the effect of semi-rigid connections on the structural behavior.

Sekulovic and Salatic (2001) studied the effects of flexible connections in planar frames
with geometric nonlinearity, adopting a nonlinear connection model. The authors observed that
with increased stiffness on the connections, the lateral displacement at beam members and the
bending moment at the column-base are reduced. In a particular case developed without
geometric nonlinearity, the structural behavior was similar for different load levels. Considering
another nonlinear connection model, Pinheiro and Silveira (2005) investigated the same
structural problems and achieved similar results.

Cabrero and Bayo (2005) developed a methodology to elastic and plastic practical

design of semi-rigid frames. Through this procedure, the authors observed that the cost
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estimation of semi-rigid frames is smaller compared to frames with pinned or fully rigid
connections.

Hayalioglu and Degertekin (2005) used genetic algorithm and the same approach of Xu
and Grierson (1993) for the connections cost dependence with material cost, but semi-rigid
connections of beam-to-column and column-base were treated separately in the objective
function. Only discrete W-sections are assumed as design variables. With lateral displacement
and stress constraints of standard specifications and structures subject to vertical and lateral
loads, the authors reached the same behavior of lateral displacement and cost minimization
observed by Xu and Grierson (1993).

Also based on a genetic algorithm, Ali et. al. (2009) formulated an optimization problem
configured with discrete cross-sections, beam-to-column and column-base connections as
design variables. As mentioned in the beginning of this chapter, a different objective function
was assumed by these authors, containing four types of costs: material, manufacturing, erection
and foundation costs.

Compared to traditional frame design, frames with semi-rigid connections in the
approach of Ali et. al. (2009) have a greater cost reduction, mainly obtained in manufacturing
and erection costs. In addition, the better distribution of internal bending moments decreases
the cost related to the foundation and less structural weight is achieved. Besides, the authors
noted that connections cost may represent more than 20% of the total cost of a steel frame.

Truong et. al. (2017) optimized space frame using discrete cross-section areas and semi-
rigid connections as design variables. As well as in Artar and Daloglu (2018), it became evident
the need to increase the cross-section profiles to provide lateral stiffness when lateral loads are
considered. In addition, comparing optimization processes that used only one type of semi-rigid
connection with a process that used mixed semi-rigid connections, all constant during the
processes, Truong et. al. (2017) also observed that the space frame with mixed connections had
better performance in mass minimization. However, on a construction point of view, the authors
concluded that it is more prudent to use only one type of semi-rigid connection.

All these contributions show that, in structural optimization, is extremely important to
take into consideration that with a connection model that poorly represents the physical
phenomenon, perhaps the final optimal solution will not be able to realistically respect the
imposed design constraints.

While the 3D frame element formulation procedure is presented in Chapter 3, the
formulation of the optimization problem is found in Chapter 5. The results obtained are

presented and discussed in Chapter 6. In the next section, after presenting different failure
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criteria already developed and applied in structural optimization surveys, specific failure

criteria for tubular elements are displayed and analyzed.

2.5 Failure Criteria

Considering truss or frame elements, as explained in Vanderplaats and Salajegheh
(1989), it is preferable to treat stress as a function of internal forces, in order to ease the
necessary derivation to apply stress constraints within gradient-based methods. As the internal
forces can be approximated with respect to section properties and other parameters that can be
design variables, the authors demonstrated that this procedure provides computational
efficiency within the optimization process, due to the reduction in the level of nonlinearity of
the stress functions. In addition, the use of section properties is a technical advantage since most
of them are physical variables commonly treated in the engineering practice.

Researchers such as Sheu and Schmit Jr. (1971), Saka (1990), Sant’ Anna et. al. (2001)
and Pedersen and Nielsen (2003) adopted the axial stress failure criterion as design constraint
in truss optimization. On the topology optimization field, Hagishita and Ohsaki (2009) and He
and Gilbert (2015) used this strategy directly in the tensile and compressive forces.

Pedersen and Nielsen (2003) inserted the axial stress constraint using Danish standards
for specific cross-section profiles and adding buckling constraint. Saka (1990) developed a
similar treatment, adhering to the United States and German standards specific to steel trusses.
Most countries have standards which specify the allowable stress level that needs to be satisfied
in structural design (PEDERSEN; NIELSEN, 2003).

While bar elements have mechanical resistance evaluated simply through the
transmitted axial stress component at each element, frame elements have stresses associated to
axial, bending, shear and torsion internal forces, with different distributions and critical cross-
section points. Therefore, in order to determine the point that has the highest equivalent stress
in a frame element, it is recommended to perform a detailed analysis of the stress state at several
points of a given cross-section along the longitudinal axis of each element (CARNIEL et. al.,
2008).

Moses and Onoda (1969) studied frames composed by beam members subject to
concentrated and distributed loads, assuming the bending stress as design constraint based in
the British standard. Xu and Grierson (1993) used the same approach but considering bending

moments affected by the effect of semi-rigid connections.
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Pedersen e Jorgensen (1984) also disregarded the shear effects and defined a failure
criterion based on the calculation of von Mises stress in the one-dimensional stress state,
considering only the normal stresses produced by axial forces N, and bending moments M, (Xy
plane) and specifically at the top and bottom extremities of the desirable cross-sections. Simdes
(1996) assumed the same failure criterion, but in IPE sections and, just as Xu and Grierson
(1993), imposing the effect of semi-rigid connections. Csébfalvi (2007) also used a similar
approach, but both normal stresses related to N, and M,, are divided by an allowable stress and
the sum cannot exceed a unitary value. In Havelia (2016), the normal stress produced by the
bending moment M,, (¥Z plane) is also computed and the extreme case is considered, where the
three normal stresses are summed.

In the context of space frames, Hayalioglu and Degertekin (2005) and Artar and Daloglu
(2018) respect requirements defined by the manual of steel construction developed by the AISC.
Sagiroglu and Aydin (2015) design space frames based on combined stress constraints detailed
in the Turkish Building Code for Steel Structures.

In the research of Yoshida and Vanderplaats (1988) four extremities points in
rectangular and I-profiles, at the ends of the elements, are evaluated by the von Mises equivalent
stress measured by normal and shear stresses associated with all the internal forces of a 3D
frame element. However, more detailed information is not available, since the authors make
use of “black-box” (designation used by the authors) in FEA and optimization.

Specific for 3D tubular thin-wall elements subject to any combination of all possible
internal forces, Sergeyev and Pedersen (1996) also presented a failure criterion based on
equivalent stress o,4. The criterion is given by the stress calculation referring to the hypotheses

of Tresca (S = 4) or von Mises (S = 3) in the form

aeqi‘k(a?, y,2) = \/axxl.’kz + STyZi,kZ' (2.10)

where oy, and 7,, represent the normal and shear stresses, respectively, and the index k
represent any cross-section along the element length. Note that the stress calculation is
dependent of the three local coordinates X, ¥ and Z of the element. This criterion was also used
by Sergeyev and Mro6z (2000). It is observed that when considering the normal stresses together
with the shear stresses, is necessary to determine the location of the most critical point, both
along the longitudinal X-axis and in the cross-section plane yZ. This process can be

computationally intensive.
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To reduce complexity and computational cost in layout optimization, Carniel et. al.
(2008) have proposed an alternative failure criterion that does not investigate the stress state

and is given by

N,. . - M,. V. M,.
i,k + i,k + i,k + i,k + i,k + i,k < 1, (2'11)
Nx alw Yalw VZ alw Mx alw Yalw Zalw

where V,, and V, are the shear forces in § and Z directions, M, is the torsion in the jZ plane and

N M M

aw My g, Mz i |4 |74 and M, are allowable values for, respectively, the axial

alw’ Zalw

force, the bending moments, the shear forces and torsion, which cause failure in a given cross-
section of the element when acting individually. As design constraint, the criterion is applied at
the ends and the center of the element length.

The failure criterion of Carniel et. al. (2008) assumes the worst case of a combined
solicitation, where all stresses intensify. The conservatism of this strategy may decrease the
effectiveness of the design constraint.

In the Brazilian standard ABNT NBR 8800 (2008), there is a specific section for tubular
elements with circular cross-section. When the torsion is greater than 20% of the allowable

torsion, the following equation is recommended

2

N, M, . M, . V,. V,. M,.
( Xik + Yik + Zik > + ( Yik + Zik + xl,k) <1 (2'12)
Nxalw Myalw Mzalw Vyalw Zalw anlw

Note that the failure criterion of equation (2.12) is slightly less conservative than the
criterion of Carniel et. al. (2008), enabling combinations of internal forces with higher
magnitudes, positive or negative (different signals, i.e. directions). Greater weight is given to
the internal forces that produce normal stresses. However, when internal forces that produce
the same type of stress (normal or shear) have the same signals, it still allows only one internal
force with magnitude of the respective critical internal force.

Using the reference system shown in Fig. 2.19, Irles and Irles (2001) presented elastic
interaction diagrams for the case where the cross-section is submitted simultaneously to shear,

bending and torsion internal forces.
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Figure 2.19 — Reference system of Irles and Irles (2001).
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Source: Adapted from Irles and Irles (2001).

As the critical equivalent stress in this type of cross-section is encountered necessarily
in the outer radius, Irles and Irles (2001) characterized the stress distributions associated with
each internal force as a function of the angular position 6. Then, they used the von Mises failure
criterion to formulate the stress calculation f(6) and the subsequent global surfaces of elastic

interaction. Therefore,

o My, Ricos 6y o Vi o Rim;” sin 0 MR o
Myix — I; ’ Vzik — I; ’ Meie = J '

2 ’ 2.14

F@ik = |om, 2 +3 (T + i) (2.14)

f®)ix < oe, (2.15)

where R is the outer radius, R,, is the midline radius, o, is the yield stress (allowable), Om,, is

the normal bending stress at the local j-axis, 7y, and 7, are shear stresses of the shear force
V, and torsion M,, respectively. Both shear stresses are tangential to the outer radius and

therefore can be summed.
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After developing the elastic interaction diagrams, Irles and Irles (2001) identified that it
is possible to determine the critical stress point when the bending moment and the shear force
coexist in the cross-section.

As the works of Sergeyev and Pedersen (1996) and Carniel et. al. (2008) proved the
need to combine computational efficiency and effectiveness in a stress-based failure criterion
to optimize layout of space frames, the von Mises stress evaluation strategy developed by Irles
and Irles (2001) can be beneficial to solve these limitations. Thus, it will be explored in Chapter
4, where the new procedure to calculate the von Mises failure criterion of tubular elements is
presented. Hereafter, the case studies presented in Chapter 6 demonstrate the importance of

considering this failure criterion as a stress constraint within the layout optimization.
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Chapter 3

Formulation of the Semi-Rigid Frame
Element

This chapter presents all the formulations developed to comply with the scope of the

research. To begin, the following initial hypotheses were assumed:

. Space frames subject to small displacements and strains;
. Each element has two connections, one at each end, and the connections have

rotational stiffness in the Xy and XZ (local) planes of bending.

Initially, the 3D frame finite element with semi-rigid connections is formulated using
the direct method, determining the interpolation functions and the local stiffness matrix of the
element. Then, applying the interpolation functions, the consistent nodal loads are determined
in the case of a uniformly distributed load over the length of a given element. Finally, the

calculation procedure of the internal forces is presented.
3.1 3D Frame Finite Element

The initial procedure for calculating nodal displacements U of a structure is given by

the numerical resolution of the equilibrium equation,

KU = F, 3.1)

where K is the global stiffness matrix and F is the load vector.
Once the global displacements are known, internal forces and stresses can be determined

by formulations that will be presented.
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Unlike trusses which have pinned connections between the structural components,
frames are characterized by having a union of the components by welded and bolted
connections. When subjected to any external loads, these types of connections are responsible
not only for the transmission of axial force between the components but also bending moments,
shear forces and torsion.

Extrapolating the above concept to FEM, the 3D frame element is a line finite element
that has two nodes and contains six DOF per node, associated to three translational and three
rotational, which are: u, v and w (translation) and 6,, 6, and 6, (rotation) in global x, y and z
axes, respectively. Each node has six internal forces, being an axial (N,,) and a torsion (M, ) on
the X-axis and two shears (1}, and V;) and two bending moments (M,, and M) on the J and Z

axes, respectively. All these nodal parameters are shown in Fig. 3.1.

Figure 3.1 — Nodal parameters of a 3D frame element.
VA
A

i 4 (2) —v,1,,

Source: Author’s production.

According to the number of DOF, the element stiffness matrix Ky, in the local reference
system has a 12x12 dimension. To represent it in the global reference system, i.e. Kg, the
transformation matrix T is applied, which has the same dimension and is constructed through
the sub-matrix Q referring to the direction cosines of the arbitrary local reference system in

relation to the global reference system. Thus,
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loa? Moz MNox g 3- 8 8

Q= l037 Moy Moy, T = 0 0 ol (3-2)
loZ Myz Moz 0 0 0 Q

Kg = TTK, T, (3.3)

where [,z, m,z € n,z represent the direction cosines of the local X-axis of the element in relation
to the global coordinate system. The same is valid for the local ¥ and Z axes. Details about the
direction cosines can be found in Chandrupatla and Belegundu (2002).

To formulate the 3D frame finite element, the linear mathematical model is adopted. As
can be seen in Fig. 3.2, the model is extended to space frames adding two rotational springs at

each connection, related to the two planes Xy (K, ) and ¥Z (K, y) that have the bending moments

M, and M,, and the rotations 6, and 8, respectively.

Figure 3.2 — 3D frame element with semi-rigid connections.

l, =0 7 %
| y
Vs
K;  (a1)
node 1 _@7‘1_ 3DFrarnee1ement _____________
Krly(a3)

Source: Adapted from Chan and Chui (2000).

The formulation is valid for any type of connection, i.e. beam-to-column, beam-to-beam
and column-base. Also, to facilitate the representation of the semi-rigid connections, both
springs having rotational stiffness in the Xy and XZ planes are represented by the symbol of a

single spring (see Fig. 3.3).

Figure 3.3 — Spring for both rotational stiffness in Xy and XZ planes.

N\
&)

— - MM
o

Source: Author’s production.
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To begin the procedure to formulate the one-dimensional finite element, consider the
3D frame element with semi-rigid connections shown in Fig. 3.2. According to Figs. 3.4 and
3.5, respectively, the element has length L and translations and rotations in in Xy and XZ planes.
The free body diagrams of Figs. 3.4 and 3.5 also demonstrate the signal convention of the local

reference system adopted for the DOF and internal forces, consistent with Fig. 3.1.

Figure 3.4 — Signal convention for the local reference system, the DOF and internal forces in

Xy plane.
MZl MZZ
61, ) L N\,

node 1 B node 2
V1 IVyl | P Vyzl 1%

Source: Author’s production.

Figure 3.5 — Signal convention for the local reference system, the DOF and internal forces in

XZ plane.
~ (s
01 r\ 92
y .MM y

L
node 1 5 node 2
W1 ] IlZl LPJ? I/Zz l WZ

Source: Author’s production.

The thin-wall circular cross-section is considered, allowing simplification by the
symmetry of the moments of inertia around the y and z axes (I,, and I,) for the moment of
inertia around the neutral line (I).

Based on the direct method, the terms k, 5, of the stiffness matrix of any finite element
can be physically interpreted as the necessary force in the DOF "a" to promote a unitary
displacement in the DOF "b".

By making a cut in any place within the length of the element, it is known that the

expression of the internal bending moments in Xy and XZ planes, as a function of a local

coordinate X along the length, as can be seen in Figs. 3.6(a-b), are represented by
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(a) Z M, =0 (> +), ) Z My, =0 (= +), (3.4)
Moy (R) + My =V, 5=0,  Mpy(®—M, —V,%=0, (3.5)
Mo (R) = —M,, +V, %, Moy(®) = M, +V,,% (3.6)

Figure 3.6 — Internal bending moments in the (a) Xy and (b) XZ planes.

%Z\l €N\M,, (%) % N\M,,, (%)
" I ol s I
VJHI'L, cutting lelL’ cutting
(a) (b)
Source: Author’s production.
Then, by static equilibrium,
@) My =0(2 4, (B)) Myy =0 (), 67
M, +M,,—V, L=0, M, +M, +V,L=0. (3.8)
(@) z =004, (&) z v, =0(T4), (3.9)
Y, +%, =0, V,, +V,, =0. (3.10)

Considering that the beam stiffness EI is constant throughout the length, the two
expressions given by equation (3.6a) and equation (3.6b) are applied in equation (3.11) of the

Euler-Bernoulli model,

d*v(%) M%)
dx¥*> ~ EI’

(3.11)

and defining the boundary conditions that separately represent the four possible cases of unitary
displacements in the DOF of each plane, we can define the necessary internal forces to produce
such displacements. Therefore, by analogy of the direct method, the terms of the stiffness matrix
of the element are defined. It is noteworthy that the rotations ¢, and consequently the resulting

fixity factors, are always aligned with local axes of the element.
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The four cases of the Xy plane are characterized in Fig. 3.7 and Tables 3.1 and 3.2
represent the four cases of the Xy and XZ planes. Note that the procedure is done separately for
each plane, and each curve represents the interpolation functions N**o¥ and NV*oz, The rotations
¢ in all cases are represented by the equation (2.1), with the associated rotational stiffness and

bending moment, and the signal is related to the local reference system.

Figure 3.7 — Cases to define the k, j, terms in the X¥ plane.

7
K2z CASE 1 T_, .

CASE 2

CASE 3 ks

k212 CASE 4 kg2

Source: Author’s production.
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Table 3.1 — Necessary boundary conditions in Xy plane.

Boundary Case 1 Case 2 Case3 Case 4
conditions: v, =1 0., =1 v, =1 0,,=1
0,(% = 0) 0-¢, 1-¢, 0- ¢, 0-¢,
8;,( = L) 0-¢, 0-9, 0-¢, 1-¢,
v,(¥ =0) 1 0 0 0
v,(X¥ =1L) 0 0 1 0

Source: Author’s production.

Table 3.2 — Necessary boundary conditions in X¥Z plane.

Boundary Case 5 Case 6 Case 7 Case 8
conditions: w; =1 0,y = —1 w, =1 0, =—1
0,,(% = 0) 0+ ¢, -1+¢,, 0+¢,, 0+¢, .
0,,(X = L) 0+¢,, 0+¢,, 0+¢,, -1+¢,,
wy (X = 0) 1 0 0 0

wy (¥ =1L) 0 0 1 0

Source: Author’s production.

To illustrate, the calculation procedure for case 1 described in Table 3.1 is demonstrated.
The other cases are solved by a similar treatment.
Applying the Euler-Bernoulli model of equation (3.11) in equation (3.6a) and

integrating twice,

1 (V&
6, (%) =E< > —leaz+cl>, (3.12)

V(%) = N, "o =

1 (%% M, %
_ 7 3.13
EI< . T GX+ G, (3.13)

we find the equations representing the rotation 8,(%) and the vertical translation v(X) in any
arbitrary point X along the element length. Moreover, after the determination of the expressions

of the unknown variables V, , M.,
1 1

C; and C,, equation (3.13) represents the interpolation
function N;"*°¥ of the case 1. The other interpolation functions are found analogously.

With equations (3.12) and (3.13) of the rotation and elastic line, and equations (3.8a)
and (3.10a) of static equilibrium, there are six unknowns in the problem: the four internal forces

of the extremities and the constants C; and C,. Recalling expression (2.1) for the rotations ¢
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and equation (2.4) for the rotational stiffness K, at the extremities of the element, the boundary
conditions of case 1 are imposed in equations (3.12) and (3.13). By making possible

simplifications,

(3.14)

E Yy, (-, +(L)c ()e -0
6EI) Y1\ 2EI gr) g2 =0

Grouping the system of equation (3.14) with the equations (3.8a) and (3.10a) of static
equilibrium, the result is a linear system with six unknowns and the same amount of equations,

given as follows

1— 1
(O)Vy1 + (O)Vy2 + (%) .+ O)M, (E) Cc;+(0)C, =0,
12 L (1—a,)L 1
(ﬁ) Yy + (O, (_E> Mz, + ( 3E1az > <E >C1 +0)E =0,
1
0y, + (OV,, + (0OM, + (DM, + (0)C; + (E) =1, (3.15)

PN vow (- E\m s oom (L)c (1)0—0
6EI] V1 Y2 2EI) 71 22 T\g7) 1 T \gg ’

=LV, + OV, + M;, + M, + (0)C; + (0)C;, =0,

Vy, +Vy + (0)My, + ()M, + (0)Cy + (0)C; = 0.

Solving the linear system (3.15),
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12El a1 + a, + aqa,
Wy = ez =75 ( )

4 - alaz
6El (201 + aq,
My =kez = L2 ( 4 —aia, )'
U = _ 12E1 (al +a, + a1a2>
Yo TOET3 4 —aya, (3.16)

6EIl (20, + a1,

Mzy = K122 = L2 ( 4 —aa, )
2El (2040 — ay + aja, — 2

€= L ( 4 —qa, )'

C, = EI,

fours terms kg j are defined. Developing an analogous procedure for the other cases, all the
terms related to beam DOF at the Xy and XZ planes can be found.

Improving the Euler-Bernoulli model with Timoshenko’s theory, consider that {,, and
{, are correction factors to impose the shear effect in deflection of the Xy and XZ planes. The
correction factors depend on the type of cross-section considered and the effective shear areas
in both directions. For circular sections, these two factors can be simplified to a single factor ¢
because the effective area will be the same. More details about the inclusion of these factors on
the stiffness matrix can be found in Filho (2000).

The bar and shaft elements formulations, described in Cardoso et. al. (2007), are inserted
by superposition to add the DOF of translation and rotation in the X¥-axis into the stiffness matrix

of the 3D frame element. Therefore, returning with the indexes, considering the following terms

E;A; GiJ; E;l; 1
a;=——, 0; = —, b; = ( ), 3.17
: L; ' L; ' Li3 (1 + {l) ( )
!
and the fcd expressions
1 oty tagan; . O3t ay tazay, 3 2aq; +ag;0;
fei = » fe5 = » f i E g (3.18)
4 —ay;a, 4 —az,ay; 4 —ay;ay;
s 20y tajan; s 2a3; tas;ay; 6 204, T azay;
A el T N i sr S A1)
—ay;ay; — Q3;Qy; — Q3,Qy;
3aq;a;,; 3as.ay; 3aq;
o= i i (3.20)
4—a1i6¥2i 4—0l3l.0l4l. 4—a1i6¥2i
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3ay; 11 3as; 12 3aty,
Jei = 4 —as;ay;’ i = 4— g4 2D

10
foi =

-
4 - aliazi

the stiffness matrix K of the 3D frame element is assembled by equation (3.22).
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Formally, a distributed load on the length L of any i-element is decomposed into

consistent nodal loads through the following standard expression
Ly
f N;"P; d%, (3.23)
0

remembering that N is the matrix that contains the interpolation functions and P is the vector
with the mathematical expressions that represent the distribution of the load, which can be
uniform, linear and quadratic, for example.

If there is a uniformly distributed load on the length, either in ¥ or Z directions with
magnitudes wy and w; of the local reference system, Chandrupatla and Belegundu (2002) show

that it can be decomposed into consistent nodal loads as

2 21T
Wf’iLi WZiLi 0 — WZiLiZ Wfil‘i Wfil‘i WZiLi WZiLiZ _ Wf’iLi
2 2 12 12 2 2 12 12

pe, = |o (3.24)

)

for the frame element with connections of infinite stiffness. The signal of wy and w; must be

consistent with the local reference system adopted, see Figure 3.8.

Figure 3.8 — Signal convention of the distributed load and consistent nodal loads.

!

axis 2 . w L
axis 1 —
A 2
axis 2'
w' _
2 W’L
L
1 axis 1

Source: Adapted from Chandrupatla e Belegundu (2002).

Then, to represent the consistent nodal loads in the global reference system (Pgg), Pg

is multiplied by the transposed transformation matrix T

Pec; = Ti P, (3.25)
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If the element has semi-rigid connections, the bending moments of the ends must be
corrected due to the effect of the existing rotational stiffness. Therefore, using the interpolation

functions, considering loadings in the ¥y and XZ planes and integrating,

Ly
f [N, "%or N4l.”’“’y]TwZid5c', (3.26)
0

Li
f [N, o N4l-vx"Z]TW3~,idJZ, (3.27)
0

we arrive at the following correction expressions for the bending moments, which need to be

replaced in equation (3.24).

2 2
_ Wy Li” (3a1,(2 — az,) and M.. = — Wy Li” (3a5,(2 — ay,) (3.28)
Zli 12 4—0l1ia2i Zzi 12 4—0l1ia2i ’
w;, L 3a3.(2 - a4.) wy,L;* 30(4.(2 - oc3.)
M, =-—— L . d M, =— L 1. (3.29
Vi 12 < d—agay ) 0 T 12\ d—apa., (3:29)

Semi-rigid connections with characteristic close to the pinned connection condition in
the Xy and XZ planes are possible through fixity factors with values close to null. On the other
hand, fully rigid connections imply infinite stiffness which is not achievable and obtained only
approximately. Most of the reviewed works study planar frames have only beam-to-column
and/or column-base connections, which will always have a rigid part (column or base). In this
context, the procedure to constraint the nullity and the unity of fixity factors is not uncommon,
since values near the extremes are also physically interpretable as pinned and fully rigid
connections. Kartal ez. al. (2010), for example, investigate four planar frames with semi-rigid
connections which have fixity factors within the range of 0.01 and 0.99.

Usually, steel space frames have two or m-elements neighborhood of connectivity, as
can be seen in Fig. 3.9, and consequently a given joint can have 2m-rotational springs referring

to the connected elements.
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Figure 3.9 — Node with m-elements connected.

Source: Author’s production.

In this situation, the structural behavior of all the joints can be understood through the
stiffness matrix. Since K, refers to the global stiffness matrix produced by 3D frame elements
with fully rigid connections, the overall contribution K of the rotational stiffness of all joints

can be calculated by

K, = K — Ky,, (3.30)

that is, with the addition of the fixity factors in the 3D frame element formulation, each joint
becomes an additional element of the structure, having all the necessary rotational stiffness
portions.

Disregarding manufacturing and assembly difficulties, the connection between m-
elements can be represented by the constructive scheme of Fig. 3.10. The local rotational
stiffness of each element are absorbed by a "global connector" (GC) which is rigid. The GC is
illustrated as a cube and in the node 2 it has only two elements connected to him. If more
elements are connected in a non-coplanar form, each element must be connected with the local

longitudinal axis ¥ orthogonal to a given surface of the GC.

Figure 3.10 — The constructive scheme for the connection between m-elements.

T Qs oy A3, L P p—
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Source: Author’s production.
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To understand the constructive concept of Fig. 3.10, look at the particular case depicted

in Fig. 3.11, where the pair of fixity factors a,  and a,  are null and the pair a,,, and a3,

have a certain degree of rotational stiffness at node 2.

Figure 3.11 — A particular case of m-elements connected to the same joint.

rotation at a given bending plane
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Source: Author’s production.

If any rotation occurs at node 2, acting on either of the bending planes, the element 2
provides portions of rotational stiffness related to both end rotational springs and to the element
itself, and bending moment transmission occurs along the element length. On the other hand,
while the left connection of the element 1 offers rotational stiffness, the connection in the right
side offers no resistance to the rotation. Even so, the element 1 will also presents bending
moments, since the left connection is semi-rigid (except in the labeled local, where the bending

moment will be null).

3.2 Calculation of Internal Forces

In order to calculate the internal forces — axial force, shear forces, bending moments and
torsion — in any cross-section, it is necessary to use the interpolation functions assumed in the
element formulation, to define the displacement field along the length of the element. Thus, it
is possible to predict local displacements at any point X.

The displacement field is given by an approximation directly related to the local nodal
displacements and to the polynomial degree of the interpolation functions. Local nodal
displacements are determined by the global displacements mapped and rotated by the

transformation matrix T.
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As can be seen in equations (3.31)-(3.39), linear interpolation functions are adopted to
the translation and rotation in the X¥-axis, while cubic interpolation functions characterize the
translation in y and z axes, related to the cases exhibited in the Tables 3.1 and 3.2. Therefore,

X

%
NP =N =1-m, N =Ny = (3.31)
l

L

are the interpolation functions of translation (N?*) and rotation (N**) in ¥-axis,

. : Q. 2ay; Ay, 204, —ay; Ay — 2
Ny Pro = %(0{1[ +ay; + a11a21>23 _i( ay; + ‘111‘12[) 2 +L£< Qy; — 0z, + a1,0y; )3? +1, (3.32)
i

Li 4—a1i0(2i Liz 4‘—a1ia2i 4‘—a1ia2i
PSRV WAV P LY 533
L; 4— a0, Li\4 —aj;ay,; 4— a0y,
NyPeor = _%(ali +ay; + aliazl.) 23 +iz<2a1i + alia2i> 22 _3(20{11. -y + a0, - 2> % (3'34)
L; 4 — a0, L; 4— a0y, L; 4— a0y,
N, Pxoy = %(—Zazi - a“““) 73— 3(—0{“% >az2 +2 <—a“a2i — azi) %, (3.35)
Li 4_a1ia2i Li 4_a1ia2i 4_a1ia2i

are the interpolation functions of the displacements in plane Xy (NVx*°¥) and

Ny o = i<a3i +ay; + a3ia4i> 5 i<2a3i + a3ia4i> 4 £<2a3i =yt az;0; — 2>f i1 (3.36)

L3 4 — a3,y L2\ 4 - asa., L; 4 —az;ay,
1 (2as; +as;ay, 6 as; 3.0, — 4as,
NZ%Z:__2< 3; T a3, 4L>f3+—< 3 >f2+< 304 3L>f, (3.37)
L; 4 —az;ay; Li\4 —az;ay; 4 —asz;ay;
NyPeor = _é<a3i +ay; + a3ia4i> 2 +iz<2a3i + a3ia4i> 2 _£<2a3i —ay; +as;a; — 2) % (3.38)
L; 4 —az;ay; L; 4 —asz;ay; L; 4 —asz;ay;
1 [(2ay; + az,ay; 3 3.0y, 3.0, — Ay,
NyPeor = __2< 4 T g, 4L>£3 +_< 3;%4; >fz 3 2( 3i%4; 41)2, (3.39)
L; 4—asz;ay; Li\4 —az;ay; 4 —az;ay,

are the interpolation functions of the displacements in plane ¥Z (N "xoz). As already mentioned,
the interpolation functions N"*°¥ and NVxoz are determinated by the procedure explained in
equation (3.13).
Considering these interpolation functions, the distributions of the translational
displacements on the three cartesian axes (Up,, Uy, and U,, ) and the rotation around the X-
y X0z
Ua

axis (U, ), along the length of the element, can be approximated (U%,_, U* and

VUxoy? VUxoz

U?, ., respectively) as follows
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Uabxi = N1bxu1l- + szxuzi' (3.40)
Ua‘l)xoyl' = N;™Yv;; + N,"*Y0,,, + N3"™*Yv, + N,"*v0,,., (3.41)
UavaZi — vaxozwli + NZonzglyi + Ngvxozwzi + N4VXO202yl-J (3.42)
U, = Ni%6yy; + Ny 0,y . (3.43)

In matrix form, the set of equations (3.40)-(3.43) is described by the linear combination

Ual' = Nl-ui, (344)

where U? is the vector of aproximate displacements at the i-clement, N is the matrix of the
interpolation functions and u is the vector of nodal displacements in the local reference system.
The procedure to calculate the internal forces is analogous to the procedure presented in
Carniel et. al. (2008), only with distinct interpolation functions that incorporate the effect of the
semi-rigid connections.
Returning with the index k for a given cross-section and based on the definitions of the
axial strain €, the Hooke's law and the basic equation to calculate the normal stress gy,

produced by an axial force,

by;
by, = —h (3.45)
Guxy = Eitxy, (3.46)

N (3.47)

differentiating equation (3.45) with respect to equation (3.40) and replacing equations (3.45)

and (3.47) in equation (3.46), the calculation of axial forces N, is performed as follows

Ny, = (Elth> -1 11{us,,} (3.48)

where uy, is the vector with the local axial displacements of nodes 1 and 2.

Considering the known relationship between the shear and bending moments,
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N d?v(%); _ dM,, (%),
Moy, (%); = EiliTz‘, v, (%); = —%, (3.49)
5 d?w(%); 3 dM,, (%); (3.50)
M,y (%); = EiliTzl; V,(%); = —%,

being the translations in ¥ and Z axes approximated by equations (3.41) and (3.42) and using

the second and third derivatives of the interpolation functions viewed in equations (3.32)-(3.39),

given by
AN, "oy 12 fag; +ap Fagap;\ | 6 (204, + gy, 3N Py 12 [(ag, + ag, + @q,ay;
——=— I—-— —— ==t ")
dx? L; 4—aqy,ay, L2\ 4—ayay; dx3 L; 4 —ay,ay,
d*N,"oy 6 (204, +ag;a; 12 ay; d3N,"0y 6 (20, + aq;ay;
=3 F-—r——) — |
dx* L2\ 4—ayay Li \4 — ay,ay, dz3 L2\ 4—ayay
d?N,Pxoy 12 (aq; + oy +agan\ 6 (204, + ay,ay, d3N,Vxoy 12 (ay; + @y, + ay,a5;
—_—— - ——— ¥+ — =—— 41t 1)
dx? L3 4— a0y, L%\ 4— a0y dx® L3 4 -y,
d2N4ony 6 <2a2i + alia2i> ~ 6 ( “11‘“21' ) d3 ony 6 (2(121 + a11a21>
—— = F——(—), — = —t =
azt I, 1.2 4—aq;ay; Li\4— ay;a,, az® L2 @y, (3 51)
d?N,"oz 12 (as; + 0‘41 +aza) . 6 [2a3; +aza,, d3N Vxoz 1 + or4l Qg + @y + 03,0 )
dx? L3 — 3,0, x L2\ 4—as,0, — 3,0, ’
d?N, oz 2a3; + az,a,; - 12 as, d®N,"xoz i 2a31 + 3,0,
dx? TLE\ 4- az, 0y, Li\4—aza,) T de LA\ 4-aza )
d? Ny Vxoz 12 (as; + au; + az,as;\ _ N 6 (203, + as,ay, d3N Vxoz .t or4l Uy + @y + 3,00,
— = | |+ = = ,
dx? L3 4—as;ay, L2\ 4—asa, — 3,0,
d?N,Vxo _ _i 2a4; + az;ay; i+ E az; Ay, d3N Vxoz _ _i 2“41 + a3,
dx? L\ 4—aza, Li\4 —as;a,,)’ L? — a3,

the internal bending moments (M,, and M,) and shear forces (Vj, and V;) are defined by the

following expressions

My = (Eil;) [dzli?:y {00y} (3.52)
Vo = (CEd) [0131\;% {00y, } (3.53)
- () [dzl\:ff {itun, ) (3.54

ik = (—Eil;) l% {upx,,,l.}, (3.55)

where Uy, and u,,  are vectors with the local translation of the nodes in j and Z axes.
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Starting from the same procedure which was described for the axial force, we have

au*

ty;
Yooy = Ri—= (3.56)
Tz, = Giyey (3.57)

MR, (3.58)
Tz i

where vy, is the angular deformation and, at this case, 7, is a shear stress produced by torsion.

Replacing equation (3.58) into equation (3.57),

My; i
Ji

R;

= GiYyz, (3.59)

and then equation (3.56) into equation (3.59), after differentiating equation (3.43), the torsion

M, can be determinated by

My, = (%> -1 11{u, }. (3.60)

Analyzing the equations of the six internal forces, it is seen that the distributions of the
axial force and torsion are constant along the length of the element since the derivative is
applied in linear interpolation functions. On the other hand, while the shear forces also have
constant magnitude along the length, due to the third derivatives of the cubic interpolation
functions, the bending moments can have different magnitudes according to the arbitrary point

X, since the resulting second derivatives are linear.
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Chapter 4

Failure Criterion

The formulation of the new failure criterion for tubular elements with circular cross-
section and variable length is grounded on the von Mises theory and based on the stress
calculation strategy proposed by Irles and Irles (2000). The reference system adopted for
internal forces, stress distributions and angular location € in the outer radius is shown in Fig.

4.1.

Figure 4.1 — Reference system adopted for the failure criterion formulation.

~

9 AZ

b o

A

Source: Author’s production.

For the development of the formulation the following hypotheses are considered:
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I. Element with symmetrical and prismatic cross-sectional area along the longitudinal X-
axis;

II. Ductile, homogeneous and isotropic material;

III. Concentrations and residual stresses are neglected;

IV. Normal and shear stresses, shown in Fig. 4.1, distributed according to the internal
forces reference system coupled to the angular reference system 6,

V. Constant distribution for the normal stress of the axial force, linear distribution of the
normal stress of the bending moments, linear distribution of the shear stress resulting
from the torsion and parabolic distribution of the shear stresses related to the shear
forces;

VI. In the outline of the outer radius, the shear stresses of shear forces and torsion are both
tangential;
VIL. Cross-section remains flat during the deformation of the axial stress;
VIII. Distortion of the cross-section is insignificant and the thin-wall thickness (t) is small
enough to assume that there is no variation of the shear stresses along the thickness;
IX. Small torsion angles where the length and the outer radius of the element remain
unchanged;

X. The critical point of mechanical solicitation localized in the outer radius and

dependent only on the angular position 8, inserted in the fixed range of [0,2r] and

assumed from the local Z-axis.

The von Mises failure criterion for a point under a multiaxial stress state o is

1
o? = 2 [(Uxx - UYY)Z + (ny - Uzz)z + (0,7 — Uxx)z] + 3(Txy2 + Tyzz + szz)' (4.1)

where oy, 0y, € 0,, are normal stresses and Ty, T, € T, are shear stresses.
While the normal stress gy of the axial force is uniform throughout the area, the shear

stress Ty, of the torsion is maximal at any point 6. That is,

Nyt M, .R;
= — d = bt 4.2
2. an TMy 1 . (4.2)
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However, the locations of the maximum normal and shear stresses of the resulting
bending moment and shear force depend on 6, and therefore, it is necessary to deduce these
terms properly.

Considering that the cross-section of Fig. 4.2 is subjected to the bending moments M,,

and M,, the resulting bending moment My and the angle y,, are known as

Mg, = |My *+M, > and _ tan~ | ik 4
Rig = My, -+ Mz~ ana  yy;, =tan M, ) (4.3)
ik

Figure 4.2 — Cross-section properties used in the deduction of the normal stress from the

bending moments.

Source: Author’s production.

The normal stress depends on the distance ¢ (perpendicular to My) between the line of

action of the vector of My and the point 8. Also, the angle between My and the Z-axis is known,
. .. T ~ ~
since it is the complement of y,, for form the > angle between the y and Z axes.
By making the relation between the angles,

_ _ T
Cik = Risin(@ir), @i =0+ (E - VMi'k): (4.4)
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it is possible to determine the normal stress gy, of the resulting bending moment as a function

of 6

Oy, = — (4.5)

To define the shear stress expression of the resulting shear forces V}, and V; as a function

of the angle 6, consider the cross-section of Fig. 4.3.

Figure 4.3 — Cross-section properties used in the deduction of the shear stress produced by the

shear forces.

!/
Ty v — Ty, Z )

\
\
\

O-MR + O-Nx

Source: Author’s production.

By analogous procedure,

Vo
VRi,k = Vyi,kz + Vzi‘kz and YWir = tan~! <V L ) (4.6)

After the definition of Vi and using the angle A given by
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Ai,k = yVi,k - Hi,k' (47)
Vg is decomposed in the auxiliary reference system y’z’ by the components Vz”' and Vi #

Ve”' ik = Vo c0s(i)  and Vi, = Vg, sin(Ay). (4.8)

i

Based on the characteristic of the stress distribution, while the shear stress of Vi’ is
zero in 0, the shear force Vz”' produces maximum shear stress in 8. As this shear stress is
tangential to the outer contour, as well as the shear stress of the torsion, it becomes possible to
add these two portions of shear stresses.

The shear stress from Vz”' at the arbitrary point 8 depends on the static moment Q,
calculated with respect to the area A’ of the arc above the z’-axis and to the distance ¥’ of the
z'-axis to the centroid of this arc. Therefore, knowing that R,,, is the midline radius of the cross-

section, we have the following geometric properties

—y 4t; -/ _, ! 4ti2Rm'
V= 3_7; A; =nmRnt;, Q=Y A = TL (4.9)
and the expression for the shear stress 7,y is determined as
VRy,i in
) ="t 4.10

Returning to equation (4.1), considering that the stresses g,,y,, Ty, € T,y are zero, the
outer radius, midline radius, inertia moment and the polar inertia moment can be represented as

a function of the cross-section area and the thin-wall thickness
1/A; + mt;? t;
R; = §<;> Rm;=Ri—= I =mRy >t Ji=21, 4.11)

and adopting g, as the allowable stress, the failure criterion is established by

f@)ik < 0e?, (4.12)
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Nyir Mgy Cik ? My, R Ve’ Qi 2
oy =< o o ) +3< e ) (4.13)

According to the allowable stress and geometric properties, the failure criterion
evaluates the mechanical strength of the cross-sections through the von Mises stress, calculated
by f(6) in terms of the internal forces acting on the cross-section and only at the critical point
defined by an adequate sweep within the range of [0,27]. The sweep procedure is adopted due
to the simplicity of f(0) and ease of implementation, however it is noteworthy that any
unconstrained optimization method could be applied to find the critical point without major
problems.

In addition to the internal forces, note that the failure criterion is dependent on only three
more geometric parameters: the cross-section area A, the thin-wall thickness t and the critical
point 6. While the cross-section area is a design variable of the optimization process, it is
important to note that the critical point and the thin-wall thickness are constant parameters, the
first one being defined by the mentioned sweep and the adjacent is an input data kept fixed.

It is worth note that this failure criterion can be easily adapted for elements with a
massive circular section, being necessary to assume t = R and to modify the tabulated
equations for the calculation of the static moment Q. Therefore, the adaptation would require
small changes in the failure criterion and in its sensitivity analysis.

To justify the development and use of this failure criterion, an analytical investigation
about a particular case and a 2D optimization problem are detailed in the beginning of Chapter
6. Hereafter, the importance of the failure criterion is confirmed by the results obtained in the

developed case studies.
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Chapter 5

Optimization Problem

In the context of this research work, the manufacturing cost of a steel tubular space
frame consists on the sum of costs related to material and connections of each element. Thus,
the definition of the total cost found in Simdes (1996) can be extended to space frames as

follows

nel
W= (cumprdili + cs,), (5.1)
i=1
4
Cs; = (Z(Vo + Via. + Vz“cz)) cm;PidiLi, (5.2)
c=1 i

remembering that c), is the monetary material cost per mass [%] , Cs 1s the monetary connections

cost and now the index ¢ represents the four fixity factors related to the four rotational springs
of the i-elements.

According to Eurocode 3 (2013), in relation to structures designed for the civil
construction sector, the connections cost that only have components like plates and bolts is not
high. However, when it is desired to increase the stiffness in connections, the welding process
is required and this process increases the cost (operation and inspection of the welds).
Therefore, to analyze the cost-benefit relationship between increased stiffness and its associated
cost, the additional cost of the connections is inserted into the objective function W, being
proportional to material cost.

The coefficients V,,, V; and V, define the quadratic variation for the range of the

additional cost of the connections, delimited by pinned (AC,) and fully rigid (AC;) connections

costs, as can be seen at Simdes (1996). In mathematical form,
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4
(ACP)icypiAil; < (Z(Vo + Viae + Vzac2)> cumPiliLi < (ACT)icy;piAiLi, (5.3)

c=1 i

0 < ACP,AC™ < 100 (%).

For connections between steel tubular members, no published data was found with
suggestions concerning the percentage cost increase referred to this type of connection.
Therefore, representative values will be derived to ACP and AC".

Since no method in the literature or even a technical publication on regulatory standards
was found to define the constant coefficients of this quadratic variation, in the following is
presented a generic mathematical procedure proposed to standardize the definition of these
coefficients, to be applied in the development of case studies that evaluate and analyze different
costs of pinned and fully rigid connections. In other case studies, it is not necessary to apply
this procedure: the coefficients can be determinated based on graphical verification, ensuring
that the costs of pinned and fully rigid connections are the minimum and maximum extreme
costs.

Basically, a quadratic curve can be determinated knowing three distinct informations,
which can be three points or even two points and a derivative at any point. In this work, the
second procedure is adopted, due to its mathematical simplicity and the guarantee of a well
behaved curve.

For better visualization, consider only the quadratic variation AC given by

ACi =

c

ACL' = 4V0 + Vl(al + az + ag + a4) + Vz(alz + azz + a32 + a42), (55)

Vo + Via, + Vya,?), (5.4)

4
=1

being equation (5.5) the complete expression for the quadratic variation.
Since the percentages of the additional costs of pinned and fully rigid connections are

input data, the constant coefficient V} is easily defined as follows

a1, 0z, 03,0, =0 - AC; = AC, (5.6)
4V, = AG,, (5.7)
_4G%

Vo=— (5.8)
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Then, for the curve to be always well behaved, with the concavity located at the initial
point of the additional cost of pinned connections, the mathematical condition of an inflection

point must be imposed. That is,

= 0. (5.9)

Applying the derivative of equation (5.9), it is defined that the constant coefficient V; is

null, as can be seen in equations (5.10)-(5.12).

DA,
z Wy + Vya, + Vya2) = 0, (5.10)
— aac a.~0
c=1 c
4
0= Z(V1 +2V,a,), (5.11)
c=1

v, = 0. (5.12)

Finally, with two coefficients already defined, the constant coefficient V, is easily
obtained by checking the equation (5.5) at the extreme point of the additional cost of fully rigid

connections. Therefore,

a;,a,,a3,a, =1 = AC; = AC,, (5.13)
4Vy + 4Vy + 4V, = AC,, (5.14)

1
V, = Z(ACr — AC,). (5.15)

Considering the presented procedure, the imposed quadratic variations will always have

the characteristic shown in Fig. 5.1.



96

Figure 5.1 — Mathematical pattern defined for the quadratic variations.

AC (%)

Source: Author’s production.

Based on the purpose of this research, the optimization problem can be stated as finding
a set of continuous design variables v, — cross-section areas, joint positions and fixity factors
— that minimize the manufacturing costs W of a steel tubular space frame subject to LC-load

cases and displacement, stress and minimum length as design constraints. In the standard form,

Minimize >AXY,Z, 1/ARY
r ¢ (%)) (5.16)
Wsp
respecting KUL¢ = FL¢, (5.17)
subject to U,k
+1.0>0, (5.18)
|ULd|
UL
2 11020 (5.19)
Ud
0. LC
WACTSY (5.20)
O.e
L;
~-1020, (5.21)

L

where Wy is the value of the objective function at the starting point, U, , and Uy, are the lower

and upper bounds for a constrained displacement and L; is the minimum length acceptable to
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all the elements. The index j is related to the design variables, while d refer to the displacement
constraints.

Note that the objective function and constraints are normalized to avoid poor
conditioning of the optimization problem. The constraints that exist in the proposed problem
have very different orders of magnitude, and in the original condition the optimization process
could suffer serious difficulty in judging the severity of possible constraints violations
(ARORA, 2011).

The displacement constraints were dismembered, all design constraints were adapted to
type " = " and the optimization problem can be solved by any gradient-based method. In this
work, maintaining the format of the original code developed by Cardoso et. al. (2007) and
Carniel et. al. (2008), the SLP method was chosen. The method is described in the next section.

As performed by Carniel et. al. (2008), the failure criterion will be evaluated and applied
as a stress constraint at the cross-sections localized at the extremities and center of each element.
Therefore,

% =0gen, X =05L and % =1L; (5.22)

l(k=2) L (k=3)"

For the convergence of the optimization processes, stopping criteria with prescribed
tolerances are adopted to ensure the stabilization not only of the objective function, but also of
all design variables.

Following the content of AISC (2005) and Chen (2000), in engineering practice pinned
connections always have some stiffness and fully rigid connections have some flexibility,
therefore fixity factors with 0-1 is only theoretical. Furthermore, as can be seen in Fig. 5.2,
pinned and fully rigid connections can be characterized by wider regions. Therefore, to facilitate
the physical interpretation of any optimal solution, connections will be considered pinned for
a < 0.1 and fully rigid when a > 0.9. However, it is worth mentioning that the term “pinned
connection” should not be taken literally, because an element with theorically pinned
connections would have only translational DOF, and remember that 3D frame elements always
have the torsional DOF. Thus, in this work, pinned connections is always related to the bending

planes.
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Figure 5.2 — Ranges of pinned and fully rigid connections.
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Source: Adapted from Chen (2000).

5.1 The Gradient-Based Method

In the numerical field of optimization, among the most distinct types of methods that
exist, two classes stand out: gradient-based methods and derivative free methods.

Gradient-based methods are specifically applicable to continuous problems,
continuously differentiable and with accurate first-order derivative calculation. They fit very
well with smooth nonlinear optimization problems that have available gradient information.
The iterative process is performed based on the information of the functions, the gradients and
even the Hessian of the problem. Although they only guarantee convergence to local minima,
due to the nature of the information used (local, around the current design point), the gradient-
based methods present a good computational gain compared to the nature-inspired methods,
since they decrease the amount of evaluation of the functions of the problem (ARORA, 2011).

The SLP is a gradient-based method widely used in complex situations, converting any
nonlinear problem into a sequence of linear problems that can be solved iteratively by any LP
method, such as the simplex method (CHOI; KIM, 2005). Despite the existence of several
methods, the simplex remains the most used because of its efficiency in finding feasible basic

solutions within the feasible domain. As the objective function and constraints are expressed as
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a linear combination of the design variables, an LP method always finds a solution located in
the boundary of the design domain, at the intersection between constraints (RAO, 2009).
Pedersen (1972) and Pedersen and Jogersen (1984) demonstrated in detail the
formulation and use of the SLP method integrated with FEA. Each LP problem can be generated
by linear approximations of all the functions of the problem around the current design point,
using the Taylor series expansion truncated at the first order term. Thus, after the development
of a sensitivity analysis, the optimization problem stated by equations (5.16)-(5.21) can be

assembled in the LP format as

Minimize ndv P w
z —(—) vy, (5.23)
j=1 v \Wsr . !
subject to ndv o (U UdLCo ndv 9 (U,
FT G v, =-1.0- + o v, (5.24)
S \%%; |ULd| . / |ULcl| = \%; |ULd| . Jo
ndv ndv
RN BT FRA B
= av,,j Uy, i Pj Uy, = 6vpj Uy, ) Pjo
d d
NENEONS O, & o [ F@O)C
- , = —10 + - v, , (5.26)
v, 0,°? x (i \ 0, 0,2 Jo
=1 J 0 Jj=1 J 0
ndv a L ndv a L
i) io i
S () vy, 2 r0-Ben S (L2 (B)) (5.27)
= (avp] LL )0 L = avp] LL . Jo
Uy ST ST (5.28)
i=1,2,..,nel
j=1,2,..,ndv.
k=1,2and 3.

where ndv represent the number of design variables, 0 is the index for the previous iteration

(current design point) and Vp; and vp, are lower and upper bounds for the design variables.
L U

The design variables vp ; are the constant coefficients of the LP problem. Thus, the development

of the iterative procedure is supported by

v, M=, + Ay, " (5.29)

n=1,2,..,iter.
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being Avpj the stepsize of the design variables, n the index for iterations and iter the total

number of iterations. The LP problems are solved in n-iterations until the convergence criteria
are satisfied.

Move limits on the side constraint of the design variables are applied and responsible
for limiting the step at the n-th iteration, avoiding the application of a line search and making
the linearized sub problems bounded. Therefore, the SLP method may not converge to the
precise minimum, since no descent function is defined (ARORA, 2011). In addition, both
efficacy and computational efficiency of the optimization process are affected by the move
limits (VANDERPLAATS, 1999).

Since linear approximations of the problem functions are used, the design changes Avpj

should not be large in the minimization direction, that is, the move limits cannot be excessively
large. Usually, move limits are determined through fractions related to the design variable,
ranging from 1 to 100% (ARORA, 2011). According to Pedersen (1972) and Pedersen and
Jogersen (1984), it is interesting to give large steps in the first iterations and tightethen as the
optimal solution is approached. In the work of Yoshida and Vanderplaats (1988), the move
limits were critical only in the early design stages. Therefore, the SLP method should not be
used as a black box, because the user needs to understand how to select and update correctly
the move limits.

The choice for a gradient-based method is supported by the fact that any nature-inspired
method would present an exorbitant computational cost, since the amount of FEA required
would be much higher, especially for the high number of design variables involved. Thus, after
the definition of the optimization problem and the numerical optimization method, a
computational code was developed in Fortran 90 language. Its iterative process follows the
flowchart presented in Fig. 5.3. If desirable, detailed information about the working principle
is presented in the Appendix A. Reading this appendix is not mandatory to understand the
research.

For the development of the case studies of Chapter 6, as there is no guarantee of finding
the optimal global solution in this optimization problem, a multistart strategy is assumed, being
the structural problems optimized with different initial design variables and move limits. Then,

the best configuration is established.
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Figure 5.3 — The iterative optimization process of the algorithm.
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Source: Author’s production.
5.2 Analytical Sensitivity Analysis

To apply any gradient-based method in the structural optimization problem stated in
equations (5.16)-(5.21), it is necessary to compute the gradient of the objective function and all
the design constraints related to all the design variables.

The analytical sensitivity analysis is an important tool to allow the computation of the
gradients at each iteration and to evaluate how the problem equations behave under any
modification in the design variables (SERGEYEV; PEDERSEN, 1996). Despite some
difficulty of finding the analytic expressions, this procedure allows the efficient and
inexpensive use of mathematical programming (SANT’ANNA et. al., 2001).

From now on, for simplicity, X* represents generically the joint positions X, Y e Z as

design variables.
5.2.1 Objective function

Directly, the gradient of the objective function defined in equation (5.1), referring to the

design variables, can be defined as

ow o, 2% (5.30)
94, MiPiga; T Ba; '
+ (5.31)

= Cv .0 A —2— :
ax-  “MiPi%gx+ " Bx
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ow _ aCSj (5 32)
aaj N aa] ’ '
and after algebraic manipulations and simplifications, computed by
4
ow ,
9A: = CMjprj 1+ Z(VO +Viac + Vo) ) (5.33)
J c=1 i
nec 4
ow , oL,
aX]* = Z CMmpmAm 1 + Z(VO + Vlafc + Vzac ) W*].’ (534)
m=1 c=1 m
ow
a cm ;AL (Vi + 2V a). (5.35)

]

where m and nec are counters related to the elements that have the node coordinate X;.

Note that while the cross-section areas and the fixity factors are parameters related only
to the element that incorporate them, in the sensitivity relative to joint positions it is necessary
to analyze the connectivity of the structure, since any modification in a given nodal coordinate,

see Fig. 5.4, can affect the length of m-elements connected to the joint.

Figure 5.4 — Sensitivity of m-elements length related to iterative modifications in a given nodal

coordinate X*.

n+1

Source: Author’s production.
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5.2.2 Displacement constraint

To compute the sensitivity of displacements relative to any design variable, the
equilibrium equation (5.17) is differentiated and the sensitivity is defined by the linear system

as follows

(AU (aFLC oK ULC> 536
vy, v, v, ’ '

where the sensitivity of F depends on the nature of the load (distributed loads have sensitivity
related to joint positions and fixity factors that must be accounted for) and the sensitivity of K

is given by the sensitivity of Kg with respect to Up - Thus, remembering,

K¢ = TTK, T, (5.37)

and differentiating equation (5.37), we arrive at

0Kg;, 0T, 7 0Ky, T;
= —K.. T, +T; LT, + T, 'Ky, ——.
av,,j avpj Life ™ o avpj e L av,,j (5.38)

Note that for cross-section areas and fixity factors, the first and third terms of the
expressions are zero. The transformation matrix has only sensitivity related to the joint positions
and the development of this sensitivity it is not trivial. Details about this sensitivity analysis are
found in the report of Cardoso et. al. (2007). Also, the sensitivity of the elements length in
relation to the joint positions can be easily identified at this development. Details about the
analytical sensitivities of the element stiffness matrix Ky and consistent nodal loads of

distributed loads are also described in the report of Faria and Mufioz-Rojas (2019).

5.2.3 Stress constraint

In order to impose stress constraints at each i-element, first is required to compute the

sensitivity of the local nodal displacements, due to the sensitivity of the internal forces. To this
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end, it is necessary to map the sensitivity of the respective global nodal displacements,
calculated in equation (5.36), and rotate to the local reference system.
Since the allowable stress o, is a constant parameter, the sensitivity analyzes are

developed considering f(8), but the final sensitivity is normalized. By manipulating equation

(4.13),
2 — —- 2 2 2p 2
f(e) _ in,k ) Ci kle kMle n Ci,k MRi,k n 3 Mxi‘k Ri
VT A2 Al 12 4 12
2 (5.39)
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the sensitivity of the failure criterion can be computed for any design variable as
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The differentiation of equation (5.40) required many algebraic operations and

) o . . 0 . . o
investigations, due to mathematical indeterminancy (5) related to different nullity combinations
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of the pairs of internal forces (1}, V;) and (M,, M,). This equation is recapture from the Appendix
B with respect to the cross-sections areas, remembering that the thin-wall thickness and the
critical point are constant terms and, therefore, do not present sensitivity to any design variable
of the optimization process. Further details of the analytic development considering joint

positions and fixity factors are available in the report of Faria and Mufioz-Rojas (2019).
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Chapter 6

Results and Discussion

The purpose of this chapter is to develop, analyze and discuss the proposed structural
optimization problem. First, an analytical study and a simple 2D optimization problem is
presented, mainly to justify the applicability of the failure criterion in the scope of layout
optimization. The mechanical effects of semi-rigid connections on FEA and structural
optimization of space frames are analyzed. Through three case studies, special focus will be
given to the comparison between layout optimization (LO), sizing and connections optimization
(SCO) and layout and connections optimization (LCO) — “LO x LCO” and “SCO x LCO”. The
efficacy and computational efficiency of the processes will be compared by analyzing,
respectively, the optimal solutions and the relative time of processing required. As will be seen,

many other quantitative and qualitative features are also analyzed.

6.1 Failure Criterion Analysis

6.1.1 Analytical study

Optimizing space frame layout required a failure criterion that is able to correctly
evaluate the mechanical strength of elements with variable lengths, due to the iterative
modification in the joint positions. Thus, it is important to account the shear effect when
calculating von Mises stresses. To prove this statement, consider the particular case of Fig. 6.1,
a clamped beam of length L and circular thin-wall cross-section area, subjected to the
concentrated load F at the free end.

Based on the imposed boundary conditions, only two type of stress can coexist in the
cross-sections along the length of the element: the normal stress due to the bending moment
and the shear stress due to the shear force. Analytically, considering the clamping point at node

1, the maximum stresses Oy, .. € Tyz, . can be calculated as follows,
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HR o _fe (6.1)

Oxxmax = N YZmax It

Figure 6.1 — Clamped beam.
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7
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Source: Author’s production.

To correctly measure the magnitude of the shear effect on the cross-section, the

following expression is described

FQ _FLyR

zfaxxméx - F_f T (6.2)

YZmax

where (%) is the percentage that characterizes the relationship between the magnitude of the
maximum stresses and L, is the critical length necessary for the equality to occur. Thus, for
any ¢, knowing the static moment Q by the equation given in the expression (4.9) and

simplifying equation (6.2),

4tR
—3’" =¢L.R. (6.3)

Observing equation (6.3), it is noted that the analysis depends only on geometric

parameter belonging to the element. Remembering the equation of the midline radius R,,

t
Rm=R-3 (6.4)

replacing equation (6.4) in equation (6.3) and applying the possible simplifications,

Loy =871 <% (1 - %)) (6.5)

Ler =71 g(R,1). (6.6)
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Depending on the percentage ¢ adopted, the expression g(R, t) indicates the length L.,
that an element must have to presents a shear stress of relevant magnitude (§oyy,,,.). As an
example, in the hypothetical case where and expressive shear stress value with magnitude in
the order of 10% of the normal stress is considered, { = 0,1, L, is 10x greater than the original
value of g(R, t).

Assuming a set of distinct lengths, concentrated load of 50 kN (negative) and geometric
properties referring to a commercial circular section (#141.3 mm and t = 12.70 mm) taken
from Grupo Acotubo (2019), the equivalent stresses are calculated in the cross-section located
in the clamping of the beam shown in Fig. 6.1. Considering ¢ = 1 in equation (6.5), the critical

length L, is approximately 15 mm.

Remembering that the failure criterion provides a greater weight (v/3) for the shear
stresses, according to the von Mises theory, and evaluates the stress at the critical point 8, the
graph of Fig. 6.2 compares the code results (dashed lines) with the respective results obtained
considering the analytical solution (solid line) without the shear effect of the resulting shear

force. Only the range 0 — 100 mm is shown, but longer lengths have been tested.

Figure 6.2 — Numerical results (with the transverse shear stress) vs. analytical results (without
the transverse shear stress).
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Source: Author’s production.
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Note that the numerical and analytical equivalent stresses coincide until a visible
separation region, approximately L ~ 25 mm (/3 * (15) mm), where the shear stress of the

resulting shear force cannot be neglected. As a consequence, due to the combination of normal
o o T . .
and shear stresses, the critical point is changed from > to 0, consistent with the reference system

adopted for the stresses distribution at Fig. 4.1 (remember that 0 is evaluated from the local Z-
axis). According to the formulation, equation (6.7) mathematically demonstrates this
combination of stresses and, additionally, Figs. 6.3(a-b) show the modification of the critical

point.

(FLR sin(@))z '3 (_ 4tR, F cos(9)>2. 6.7)

Teq = I 3]

Figure 6.3 — Normal, shear and equivalent stresses for lengths of (a) 20 mm and (b) 40 mm.
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Source: Author’s production.
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When L = 25 mm, the shear stress of approximately 9 MPa that would be neglected is
significant. The case of clamped beam is very particular, where only the bending moment and
the shear force of the Xy plane are considered. In 3D frame elements, combination of six internal
forces may arise and the shear stresses from the shear forces V,, and V, may be determinant for

the correct judgment of the mechanical strength.
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6.1.2 Power transmission tower

To illustrate the applicability of the failure criterion, consider the planar frame shown
in Fig. 6.4. Layout optimization with stress constraints (o, = 147 MPa) and minimum element
length (5 mm) is developed. The power transmission tower is clamped and subjected to two
load cases (remember the index LC) that correspond to weight and wind forces, both transmitted
by the cables connected at the top end nodes (orthogonal to the plane of the structure). Details
about mechanical properties, boundary conditions and connectivity are omitted as they are not

relevant to the context of the present study.

Figure 6.4 — The 2D optimization problem developed and highlight of the short element with

the highest shear stress 7y ,.

ORIGINAL TOWER OPTIMIZED TOWER
lLCl Lcll
Lcﬁ G
LEs LC_) Z LG LG,
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L€, Ic,
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11600 mm M

Element 10, k = 1, LC;:

oy, = 1.2 MPa
O-Mx ~0
Oy, = 66 MPa
1 | Oeqg = 147 MPa  Fully stressed |
| A A |
' 5000mm

Source: Author’s production.

All elements had their respective areas optimized, while layout changes were allowed
only at the top of the structure. For this reason, note that the optimization process produced
short elements in the middle region, see the optimal solution in Fig. 6.4. In addition, as seen in
Achtziger (2007), the optimal solution is not perfectly symmetrical.

The optimal structure has several elements with shear stress 7y, in the order of

magnitude of 0.1-1.0 MPa. However, special attention must be paid to element 10 (highlighted
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in red, see Fig. 6.4): it has one of the shortest lengths (570 mm, being larger than just two
diagonal elements connected to its ends) and shear stresses 7y, of 1.2 MPa in the two load
cases.

The emphasis given to the element 10 stems from the fact that it is fully stressed under
both load conditions. Even knowing that the bending moment stresses of this same element
have magnitudes ranging between 30-70 M Pa (and the other axial and torsional stresses added
up) along the length, realize that if the optimization process had not taken into account the effect
of shear forces at the shear stress, the optimal solution would probably be incorrectly sized and
all elements which are in similar situation would have shear section failure.

This example demonstrates the importance of optimizing structural layout by

accounting for the effect of shear forces within shear stresses.
6.2 Semi-Rigid Connections within FEA and Optimization

Before presenting the case studies developed, it is important to clarify the procedure
adopted for the post processing of optimal solutions. Through a code developed in Maple, the
elements that reach the area removal factor (a minimum value of area at the side constraint
previously set) are removed from the initial topology. Moreover, elements with cross-section
areas that closely approximate the lower bound and have no structural function are also
removed. The non-structural elements are those that are not transmitting internal forces and,
consequently, are not aiding in the global mechanical strength of the structure. Then, to ensure
that the solution does not violate the imposed constraints, an additional optimization process is
performed with the optimal solution as a starting point, providing an ajustment of the optimal
solution with the modified topology.

It is worth mentioning that none of the case studies will take into account the effects of

shear on deflections, hence { = 0. Additionally, to simplify, all the case studies consider that

the material cost [%] is unitary.

6.2.1 Frame dome

As the original data of the mesh was not found, the frame dome shown in Fig. 6.5 is an
approximation with own choices of joint positions of the structure, which was firstly

investigated by Pedersen (1973) and contains 52 elements and 21 nodes. Following Pedersen
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(1973), all the elements have circular thin-wall cross-sections with constant thickness of 8 mm,
initial cross-section areas A = 30.10% mm?, Young's modulus E = 200.103 MPa, shear
modulus G = 80 MPa, yield strength o, = 147 MPa and specific mass p = 7.799E ¢ kg/
mm?. The structure is clamped at the nodes of the external contour. The connectivity is

presented in Table 6.1. Whit this data, the initial structure has approximately 70000 kg of mass.

Figure 6.5 — Frame dome of Pedersen (1973).

W 9000 mm
10 11 12 3\6
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Source: Author’s production based on Sergeyev and Pedersen (1996).

Table 6.1 — Connectivity of the structure.

Elements 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
4 7 16 9 18 11 20 13 15 & 17 10 19 12 21 6 6 7
16 9 18 11 20 13 14 & 17 10 19 12 21 6 15 7 &8
Elements 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
8 9 10 11 12 13 2 7 3 9 4 11 5 13 2 4 5
0 11 12 13 6 7 3 9 4 11 5 13 2 3 4 5 2
Elements 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
4 6 2 18 10 4 20 12 5 16 & 3 15 17 19 21
2 1 10 4 1 12 5 1 & 3 1 7 9 11 13

Nodes

w

Nodes

Nodes

Source: Author’s production.

The optimization processes takes into account a single load case F = 632745 N,
without self-weight and with a unique load acting in the negative z-axis, see Fig. 6.5.

Aiming to compare the results obtained, the analysis will be developed as follows:
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= Layout optimization with fixed fully rigid connections and semi-rigid
connections with 75%, 50%, 25% and 1% of rotational stiffness;

. Layout and connections optimization.

The design variables adopted are the same for all the studies of the frame dome: all the
cross-section areas, the joint positions X and Y of nodes 6, 7, 8, 9, 10, 11, 12 and 13, and the
joint positions Z of nodes 2, 3, 4 and 5. The design variables are not linked and there is no
explicit side constraints on the joint positions. Constraints on the von Mises stress and on the
minimum length (5 mm) of each element are applied.

In the LCO process, all possible fixity factors are also added as design variables, with
initial rotational stiffness of 75%. The clamped elements have fixed fully rigid connections (i.e.
are not design variables). The additional cost of connections is within the range of 20-60%. To
analyze the behavior of the LCO process from the perspective of a design constraint related to
the flexibility of the structure, displacement constraints on nodes 2, 3, 4 and 5 are also imposed.

All these features are shown in Fig. 6.6.

Figure 6.6 — Design variables and displacement constraints applied in LCO process.
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52 A
X
oY
[ V4
36 a; 52 a,
36 az 52 ay

Source: Author’s production.

The critical point of each cross-section area and its von Mises stress are determined after
a sweep of 0 to 2m. The stepsize was chosen by a previous convergence study, visualized in
Figs. 6.7(a-b). After identifying an element and cross-section area in which it has the highest
von Mises stress, at the last iteration, several sweeps are performed on it with different stepsizes.

Observing Fig. 6.7(a), it is possible to note that since the maximum stress at this point is always
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found at m, the sweep may even be considered unnecessary. However, some elements present
maximum stress at different points, not multiples of 0 or 7, due to different combinations of

the internal forces, a fact that proves the usefulness of the failure criterion formulated.

Figure 6.7 — Convergence analysis of the stress calculation at (a) the element 39, cross-section

1, and (b) the element 22, cross-section 3.
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Thus, another convergence study was developed, as can be seen in Fig. 6.7(b). The stress
calculation converges and the stepsize of 0.006257 could be assumed without major problems.
As the computational cost practically does not increase, the stepsize of 0.002w was chosen, in

order to ensure a good accuracy.

6.2.1.1 Layout optimization with fixed (A) fully rigid connections and fixed semi-rigid
connections with (B) 75%, (C) 50%, (D) 25% and (E) 1% of rotational stiffness

After 244 iterations, the optimal solution of (A) is found through the process exposed
in Fig. 6.8(a). Also, Fig. 6.8(b) shows the 16 fully stressed elements, of the 24 that remained
in the topology. As seen in Fig. 6.8(b) and in the other case studies, note that the different

thicknesses of the elements represent the magnitude of their areas.

Figure 6.8 — (a) The optimization process and final solution and (b) the fully stressed (red)
elements of study (A).
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Source: Author’s production.
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To minimize the objective function and resist to the imposed loading, see Fig. 6.8(a),
the optimization process chooses to act as follows: gradually, decreases the areas of all the
elements connected to nodes 7, 9, 11 and 13, until they can be removed, redirecting the
transmission of internal forces to the other elements. Simultaneously, by descending the upper
nodes 2, 3, 4 and 5 at negative z-direction and approaching nodes 6, 7, 8, 9, 10, 11, 12 and
13 at x and y directions to the center of the structure, the process shortens and offers the largest
areas (compared to the others) to four elements (38, 41, 44 and 47), aiming to supply the
absence of the non-structural elements. It is interesting to note that since all elements connected
to the nodes 7, 9, 11 and 13 are removed, the nodes themselves disappear from the topology
of the structure.

The optimization starts the stabilization process after iteration 220, see Fig. 6.9(a), and
the final cost of the optimized structure is $1946, being $1216 of material cost and $729 of
connections cost. The graph of Fig. 6.9(b) represents the most stressed element at each iteration.

Note that until iteration 130 there was no fully stressed element.

Figure 6.9 — Results about (a) convergence diagram of the objective function and (b) diagram

of the most stressed element at each iteration.
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Source: Author’s production.

The four elements with the smallest lengths have the highest shear forces (103 > 10°
magnitudes) of all structure. However, the respective shear stresses computed have the

magnitude of 0.02 MPa, which is not significant.
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From the global point of view, it was observed that this new layout greatly reduces the
magnitude of all the internal forces, especially the bending moments, but also the shear forces
and torsion. All elements have axial forces and consequently normal stresses that are much
greater compared to all other internal forces and their respective stresses.

Thereafter, all the case studies with fixed semi-rigid connections are developed and
analyzed analogously to the previous one. With exception of study (E), the layout and topology
of the optimal solutions does not change (so the representations are omitted). The short elements
of all studies continue to have negligible shear stresses produced by the resulting shear force
and the same elements are fully stressed in studies (A-D). A comparison of convergence graphs
is demonstrated in Fig. 6.10, where W; and W, are the material and connections costs,

respectively.

Figure 6.10 — Comparison between the convergence of the objective function.
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As can be seen in Fig. 6.11, in study (E) a different optimal solution is found, with 36
fully stressed elements. Note that the layout and topology are not symmetrical. Also, instability
was faced during this optimization process, requiring several additional testing on the move

limits to find a configuration that could converge to some optimal solution.
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Figure 6.11 — The optimal solution when all connections are pinned, study (E), with the 36 fully

stressed elements.

Source: Author’s production.

By reducing the rotational stiffness of the connections, all studies showed the expected
reduction in the magnitude of bending moments and the increase in nodal displacements. In
study (B), for example, when compared to the study where the connections are rigid (25% less
rotational stiffness), the bending moments decreased within the range of 15 to 30%. On the
other hand, the increase in displacements is within the range of 1 to 70%, being the largest
increase due to the rotations. In study (E) we find the largest translational displacements
(23 mm at the z-direction) and, although not considered at first, this exaggerated flexibility
could be a future problem. Without the application of displacement constraints, there is a
possibility that the optimal structure presents large displacements and, consequently, the linear
model for the connections becomes invalid.

According to Fig. 6.10, the greater the reduction in rotational stiffness of the
connections, the greater the manufacturing cost minimization. As the bending moments
decrease, the von Mises stresses also decrease and this allows larger area reductions and,
consequently, greater material savings. As the cost of connections is not only directly related to
the level of rotational stiffness but also proportional to the material cost, this cost also reduces.
Thus, according to the results obtained until here for this structural optimization problem (stress
and minimum length constraints), it is economically feasible to manufacture the structure with
only pinned connections. The optimal solution of the study (E) has 31% less manufacturing

cost than the optimal fully rigid structure.



In addition, note that the optimal solutions of studies (A-D) are structures for this single
load case. However, if the real structure presents any different loading, all these solutions
become mechanisms. This proves the importance of analyzing and optimizing structures

considering multiple load cases.

6.2.1.2 Layout and connections optimization

After 264 iterations, the optimal solution is presented in Fig. 6.12. Note that the solution
(layout and topology) of the structure is equal to the solution of study (E). The short elements
have a much larger length (1067 mm, almost double) than previous studies (A-D). Only 12

elements are removed, but 36 elements are fully stressed, see the previous Fig 6.11.

Figure 6.12 — The physical behavior of the optimization process.
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Source: Author’s production.

The optimization faced a path, see Fig. 6.12, not yet seen during the iterative process:

1) Move the upper nodes 2, 3, 4 and 5 downwards;

2) Approach nodes 6, 8, 10 and 12 to the center of the structure;

3) Reduce the rotational stiffness of all connections until they become pinned;

4) Allowing the existence for more elements and finally moving the nodes 6, 8, 10

and 12, but now non-symmetrically.
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Table 6.2 shows the optimal joint positions and, for convenience, the optimal areas are

presented later, when this LCO process is compared to another LCO process.

Table 6.2 — Optimal joint positions.

Nodes 6 7 8 9 10 11 12 13
X [mm] 14443 13161 10092 7207 5556 6838 9907 12792
Y [mm] 9907 12792 14443 13161 10092 7207 5556 6838

Nodes 2 3 4 5
Z[mm] 3537 3524 3537 3524

Source: Author’s production.

The optimal solution has only pinned connections and non-symmetrical layout and
topology, a fact already faced in the research of Achtziger (2007), but theoretically unexpected
since the structural problem is symmetric. Therefore, it is a local solution. Since the SLP method
linearizes the optimization problem in each iteration, a small numerical error in the rounding of
the design variables can cause a perturbation on the linearization, which can modify the
minimization direction and cause the process to fall in a local minima. As commented in
Achtziger (2007), this could be avoided by using a global optimization algorithm or applying
additional constraints that impose symmetry.

This sensitivity of the linearization is associated with the small degree of approximation
of the functions in the optimization process. The optimal structure of Fig. 6.12 was tested with
the inverted non-symmetry. By the results obtained, the structure not only guarantees the non-
violation of the constraints, but also presents the same objective function. Therefore, it can be
concluded that they are local solutions.

Since the addition of fixity factors as design variables represents an addition of 176
variables, and no information about convexity is available, the proposed optimization problem
increases the possibility of finding local minima. Moreover, it became apparent that the
computational cost of processing also increases, not only due to the additional calculation of
derivatives, but also by the increase in the size of the LP problems.

Due to a different layout and topology with more elements (40 > 24) than previous
studies (A-D), in this optimal solution the transmission of internal forces to the clamped points
of the structure is smoother. Because of this uniform distribution, most of the axial forces are
smaller. While in studies (A-D) the maximum axial forces are in the range of 108, here the

maximum axial forces are in the range of 10°.
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With this reduction of axial forces, and also of the bending moments (consequence of
the pinned connections), the optimization process is able to further reduce the cross-section
areas and hence greater material cost savings (and consequently connections cost) is achieved.
Another feature that can be seen in Fig. 6.13 is that the elements that make a "+" cross-shape in
the optimal solution of this study have larger areas, which allow greater reduction of the areas

of the adjacent elements.

Figure 6.13 — Comparison between the optimal solutions of studies (E) and LCO and the

optimal solutions of the previous studies (A-D).

Optimal solution of study (E) and LCO LO of Studies (A-D)

Source: Author’s production.

Analyzing the evolution of the design variables, it was observed that all connections are
made to be pinned in a uniform way, with the same step pattern. This is expected since
displacement constraints are not imposed and pinned connections have the lowest
manufacturing cost.

The optimized structure has $1331 of total cost, being $1026 of material cost and
$304 of connections cost, is 31% cheaper than the fully rigid structure. Compared to studies
(A-D), the most interesting fact is that although less elements are removed, the process achieves
a greater reduction of material cost, choosing a minimization path to a local minima where
cross-section areas are reduced in a different way. The graph results are presented in Figs.

6.14(a-d).
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Figure 6.14 — Results about convergence diagram of the actual study for (a) material cost, (b)
connections cost, (¢) manufacturing cost and (d) diagram of the most stressed element at each
iteration.
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As expected, it is proven that for this structural optimization problem it is more
appropriate to adopt pinned connections, reducing the bending moments and providing more
economical projects. Thus, the frame dome would actually be a lattice structure. Note that this
conclusion could be drawn due to the application of the proposed optimization procedure,
proving the importance of analyzing manufacturing costs with embedded connections as design
variables.

The smaller the rotational stiffness adopted for the connections of a given structure, it

became evident that the frame elements behave like bar elements, having axial forces that are
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much larger than other internal forces. Thus, in this problem, the failure criterion was important
during the development of the optimization process, but has lost importance on the optimal
solution, since the equivalent stresses in almost all elements are uniform throughout the external
contour of the cross-section.

As mentioned before, the optimal structure has several elements that are fully stressed,
all with normal stresses produced by axial forces. Among these elements, many are fully
stressed in compression. Since there is no buckling constraint within the proposed optimization
problem, it is evident that further study is necessary to verify if it is a stable structure, mainly
the last four elements (49, 50, 51 and 52), since they have the smallest areas and relatively
large lengths (= 6500 mm).

To analyze the behavior of this type of optimization under a different condition, the
additional imposition of displacement constraints is performed. After 261 iterations, the
optimal solution and the elements and nodes which have semi-rigid connections are highlighted
and presented in Fig. 6.15(a). Again, the optimal solution has non-symmetry related to layout
and connections, but only the four elements at the top of the structure are fully stressed, see Fig.
6.15(b). Since the optimal layout of this optimal solution is similar to the previous study without
displacement constraints, the length of the smallest elements is the same (and the previous Table

6.2 also applies to this optimal solution).

Figure 6.15 — (a) The optimal solution and the highlight of elements and specific locals with

semi-rigid connections (listed for further analysis) and (b) the fully stressed elements.

SN W
2>

(a) (b)

Source: Author’s production.

Initially, in order to ensure stiffness, the optimization process is placed in a structural

problem where there is an oversizing of areas and connections of high rotational stiffness.
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Therefore, knowing that large areas result in a high material cost and that fully rigid connections
not only have a higher manufacturing cost but also produce greater bending moments, the
process obviously decides to reduce the areas and rotational stiffness of the connections. Until
iteration 60, this is what it does, while also looking for a new layout.

After iteration 60, all connections are pinned (except the clamped region) and the
process continues through the design space. Upon reaching iteration 162, due to the
linearization of the problem, the design variables deviate slightly and induce a non-symmetry
to the structure. Consequently, the distribution of internal forces becomes non symmetric, and
each region of the structure becomes more flexible at different planes. Also, the constrained
nodes already present the maximum allowable displacement in the z-direction, and the largest
magnitudes of internal forces are seen in the axial forces (10°).

Taking into account the above information, the process understands that it is more
feasible to reduce the material cost and proceed as follows: to reduce the areas but, to continue
providing the necessary stiffness at the z-direction of the constrained nodes, it induces the
appearence of semi-rigid connections. However, this procedure is developed strategically: the
addition of rotational stiffness for the chosen connections acts in the plane in which there is the
greatest flexibility (and consequently the smaller bending moments), avoiding the faster
increase of the stresses.

With more rigid connections, the bending moments increase, but there is also a reduction
of axial forces, and thus the process can continue to reduce areas and consequently the material
cost. It is a compromise solution, where the optimization process chooses the path in which the
gain (minimization of the total cost from the material cost) is greater than the loss (increase of
the connection cost), while ensuring that the constraints are not violated.

The optimization features can be seen in Figs. 6.16(a-e). Stress and displacement
constraints are active, and the optimized structure has $3462 of total cost, being $2610 of
material cost and $851 of connections cost. Note that on the diagram of all four displacement

constraints the curves are overlapped.
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Figure 6.16 — Convergence diagram for (a) material cost, (b) connections cost, (c)
manufacturing cost, (d) most stressed element and (e) constrained DOF at each iteration.
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It is noticeable that the displacement constraints are stronger than the stress constraints,
since the final manufacturing cost is considerably higher than the same final cost in the previous
case study. The structure needs to have more elements, elements with larger cross-section areas
and semi-rigid connections to ensure no violation of any of the displacement constraints

imposed, as can be seen in Tables 6.3 and 6.4.

Table 6.3 — Comparison of optimal areas related to the two studies of LCO, without (LCO,) and

with (LCO,) displacement constraints. The higher cross-section areas are highlighted.

10°mm? LCO, LCO, 10°mm? LCO, LCO, 10°mm? LCO, LCO,
A 0.22E=3  0.35E7° Agy - 0.35E~%  Agq 0.13E72  0.12E72
Aqo 048E~*  0.95E~* Ays 0.33E73 0.59E7° Ay 0.19E72  0.66E*
Aqq 0.30E~3  0.357° Az - 0.60E™* Ay 021E72 0.74E7*
Ay 0.39E=%  0.15E73 Ayq 0.39E™* 0.45E7° Ay, 0.13E72  0.12E72
Ay 0.22E~%  0.30E3 Asg - 0.20E™% Ay 0.20E™2  0.66E*
Ay 0.54E~*  0.72E* Az 0.34E73 0.56E7° Ay 0.20E~2 0.73E72
A 0.30E7%  0.39E73 A3 - 0.14E™% Ay 0.11E72 0.12E72
Aqg 0.38E—3  0.16E73 Asq 0.36E™* 0.50E7° Ay 021E72  0.65E72
Aqq 0.24E73  0.44E3 Az, - 0.10E™* Ay 0.20E~2 0.73E*

Aig  026E™* 095E %  As3  0.69E3 034E2 Ay  011E2 0.12E°2
Ay 029E~* 034E° A3, 088E™3 035E2 A  0.13E3 0.20E°°
Ay - 044E~%  Ass  0.68E™3 034E2 Agy  0.15E* 0.16E°°
A,y 025E°%  041E3°  Ass 088E™3 035E2 Ay,  0.14E3 0.20E°°
Ay,  026E™* 054E*  Ay;  019E"2 0.65E% Ag;  014E™* 0.18E3
A,z  027E™*  038E  Asg  021E2 0.74E 2

Source: Author’s production.

With the appearance of semi-rigid connections at some elements, and also due to the
fact that the structure is clamped at six points, relevant levels of bending moments and shear
forces also arise. Then, several combinations of internal forces are faced, justifying the use of
the new failure criterion as stress constraint. Despite the stresses resulting from bending

moments and shear forces are not so high at this case study, it was observed that some elements
have critical points related to these internal forces (0, g, m and 3?71). The largest normal stress

from a resulting bending moment recorded is 15 MPa, while the highest shear stress of a

resulting shear is only 0.11 MPa.
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Table 6.4 — Semi-rigid connections of the optimal solution.

Fixity Factors
Joint
Elements Node 1 Node 2
Connections
aq as a; ay
37 fully rigid 0.446 pinned
1
38 0.369 pinned pinned
) 40 fully rigid pinned 0.468
41 pinned 0.388 pinned
43 fully rigid 0.342 pinned
3
44 0.285 pinned pinned
46 fully rigid pinned 0.264
4
47 pinned 0.220 pinned

Source: Author’s production.

The elements with semi-rigid connections are exactly the ones that “interconnect” the
clamped joints to the joints where the displacement constraints are imposed, and have the
largest cross-section areas. That is, the overall stiffness required in the z-direction of the
structure is provided by both features.

According to the arrangement of the optimal fixity factors (Table 6.4), the respective
connections would probably not be difficult to build, as they all need to incorporate only two
rotational stiffness in each joint, one of each element.

As a preliminary conclusion, it can be said that the LCO proved useful for the frame
dome study, not only for evaluating two different types of costs that practically command the
total cost at the design of any structure, but also for enabling the optimal solution to have
stiffness only in the required places, saving additional costs that would be spent if all
connections were considered to be fully rigid. Moreover, it is seen that assuming displacement
constraints is not only important to ensure that the structure does not exhibit exaggerated
flexibility, but also the fixity factors gain importance within the optimization process. However,
in the numerical field, occurs the appearence of a computational cost addition, due to the

considerable increase of design variables.

6.2.2 Cantilever beam

The cantilever beam presented in Fig. 6.17 was firstly investigated by Pedersen and

Nielsen (2003), containing 36 elements and 13 nodes. All the elements have circular thin-wall
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cross-section with constant thickness of 8 mm, initial cross-section areas 4 = 30.103 mm?,
Young's modulus E = 210.10% MPa, shear modulus G = 80 MPa, yield strength o, =
355 MPa and specific mass p = 7.799E~% kg /mm?>. The structure is clamped at the nodes 5
and 10 and node 1 has a pinned connection. The connectivity is presented in Table 6.5. Whit

this initial data, the structure has approximately 45000 kg of mass.

Figure 6.17 — Cantilever beam of Pedersen and Nielsen (2003).
510 6 11 7 12 8 13 9

7 5000 mm

L., i

}1‘0 11 12 13
}g 6 7 8
20000 mm

Source: Author’s production based on Pedersen and Nielsen (2003).

Table 6.5 — Connectivity of the structure.

Elements 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/2 3 4 5 6 7 & 10 11 12 13 5 6 7 & 5 10

3 4 9 6 7 & 9 11 12 13 9 10 1I 12 13 1I 6

Elements 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
6 11 7 12 5 10 6 11 7 12 & 13 5 10 5 10 7 12

2 7 13 8 1 1 2 2 3 3 4 4 2 2 3 3 4 4

Nodes

Nodes

Source: Author’s production.

The optimization processes will take into account the multiple load condition described
in Fig. 6.18 and Table 6.6, referred to a working load (F;), lift load (F,) due to the wind load
and the wind load (F3) itself. Differently of Pedersen and Nielsen (2003), the self-weight is

neglected.
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Figure 6.18 — Load cases.
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Source: Author’s production based on Pedersen and Nielsen (2003).

Table 6.6 — Multiple load condition.

Load cases Load condition
1 F;
2 0.5F, + F;
3 0.5F, — F;
4 F, + F;
5 F, — F;

Source: Author’s production.

Constraints on the von Mises stress, the displacement at the z-direction of the node 9
(should have less than 30 mm —see Fig. 6.19) and the minimum length (5 mm) of each element
are applied. Similar to the frame dome study, the critical point of each cross-section area and
its von Mises stress are determined after a sweep of 0 to 2m, with a stepsize of 0.002m
determinated through a previous convergence study.

Aiming to compare the results obtained, the analysis will be developed as follows:

. Sizing and connections optimization (SCO) with cost of connections ranging on
20-60 %);

. LCO with cost of connections ranging on 20-60%;
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. LCO with different ranges of additional cost of connections (20-60%, 20-30%
and 45-60%).

Figure 6.19 — Design variables and displacement constraint assumed.
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Source: Author’s production.

First of all, a process with sizing and connections optimization (SCO) is performed,
being all the cross-section areas, 33 fixity factors a; /a3 and 36 fixity factors a,/a, design
variables. Initially, all of the fixity factors have rotational stiffness of 90%.

Next, the coordinates X and Z of the nodes 2, 3 and 4 (see Fig. 6.19) are included as
design variables and the LCO is developed, allowing the comparison between SCO x LCO,
mainly from the point of view of efficacy and computational efficiency. Nodes which are loaded
are not free to change positions, their side constraints do not have the imposition of extremes
values and none of the design variables are linked.

Moreover, LCO processes with different ranges for the additional cost of connections
are performed, aiming to analyze and compare other features about the behavior of the
optimized structures and their optimization processes. At these processes, the definition of the
constant coefficients related to the quadratic variation of the connections cost is based on the
procedure explained in equations (5.4)-(5.15).

Pedersen and Nielsen (2003) used the same SLP algorithm and considered an active set
strategy on the stress constraints, when it achieves a critical level of 80% compared to the
allowed stress defined. In preliminary tests with the application of this strategy on the case
studies developed here, a lot of instability was observed in the optimization processes. Applying
the strategy on the minimum length constraints obviously reduced the size of the optimization
problem, but was not observed a significant improvement in the computational efficiency. On
the other hand, in the stress constraints, the processes began to show a great deal of instability,
falling in local solutions of low quality and, in most of the time, falling in unfeasible regions.

Due to lack of time to deeply analyze, the use of this strategy was disregarded.
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6.2.2.1 SCO with cost of connections of 20-60%

After 243 iterations, the optimal solution is presented in Fig. 6.20(b). Only four

elements are removed from the initial topology of Fig. 6.20(a).

Figure 6.20 — (a) Initial structure and (b) optimal solution.

Initial structure Optimal solution

(a) (b)

Source: Author’s production.

By analyzing the assumed structure and multiple load cases, the structure will always
be subject to the global bending around two planes, but mainly in the xz-plane, because the
magnitude of the loads applied in this plane are much larger.

At the beginning of the optimization process, all the internal forces are relevant. Since
the main load F; is at the xz-plane, the elements parallel to this plane have considerable

magnitudes of bending moment M,,, and thus all the critical points of these elements are located

at 0 or 7.

To minimize the objective function, the optimization process basically chooses to
produce only pinned connections, i.e. a lattice structure, and decrease the areas of the top
elements and the elements farthest from the region where the structure is attached. For
convenience, the optimal areas are presented later in Table 6.8, where this solution is compared

to the solution of the LCO process. With pinned connections, the process can reduce
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significantly the large magnitudes of bending moments and shear forces. At the end, almost all
the elements of the structure present axial forces of relevant magnitude compared to the other
internal forces.

Since the bottom of the structure is supported only by a pinned connection and has larger
stresses at the beginning, the process supplies the lack of strength and stiffness at this location
with these two elements having larger cross-sectional areas. Therefore, the stresses are softened
and four elements (13, 15, 23 and 24) connected to this region are removed from the initial
topology, because the internal forces are entirely absorbed mainly by these elements with larger
areas.

The optimized structure has $2560 of total cost, see the convergence diagram of Fig.
6.21(a), being $2109 of material cost and $451 of connections cost. According to Fig. 6.21(b),
there is a small violation of these stress constraints between 60-70 iterations. Regarding the
displacement constraints, Fig. 6.21(c) demonstrates the diagram of all five displacement
constraints. Some curves are overlapped and only the constraint applied in load case 1 is active.
This load case is critical because has the largest concentrated forces (F;).

Unlike the frame dome study, the stiffness required to withstand the displacement
constraints in the current study of SCO is entirely provided by the distribution of areas, even
with the option of more rigid connections. The optimization process understands that is
economically more feasible to produce stiffness with areas (material cost) than with
connections. With different ranges for the additional cost of connections, this behavior may

change.
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Figure 6.21 — Results about convergence diagram of the actual study for (a) manufacturing cost,
(b) diagram of the most stressed element at each iteration and (c) diagram of the constrained

DOF at each iteration.
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Source: Author’s production.

6.2.2.2 LCO with cost of connections of 20-60%

After 392 iterations, the optimization process of Fig. 6.22(a) found the optimal solution
presented in Fig. 6.22(b). The pairs of elements connected between the nodes 7/12 and 3/4 are
almost overlapped. However, due to the topology removal, the overlap is suppressed. Five

elements can be removed from the initial topology, one more than SCO, and a short element



135

appears due to the approximation of nodes 3 and 4. Also, Fig. 6.22(b) highlighted the element

and nodes which have semi-rigid connections.

Figure 6.22 — (a) The behavior of the LCO process and (b) the optimal solution, the short

element and the highlight of the element with semi-rigid connections.

Initial structure Optimization Optimal solution

~

(b)

Source: Author’s production.

The upward movement of nodes 3 and 4 is mainly related to the displacement constraint
applied in node 9, since this layout modification allows a greater concentration of stiffness close
to this node. The optimal joint positions are shown in Table 6.7, where can be seen that node 2
goes down in the z-direction. Simultaneously, the process provides the largest cross-section
area for the element 4 directly connected to the constrained node and semi-rigid connections in
the nearby element 16. These connections provide 35% of rotational stiffness in the two
bending planes, while all other connections are pinned. From a practical point of view, this
symmetry of connections facilitates the construction of the structure. Also, these connections
would be simple to build, since the joints 8 and 13 only need two rotational springs and the

other elements are pinned.
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Table 6.7 — Optimal joint positions.

Nodes 2 3 4
X [mm] 5379 13913 14079
Z [mm] —-177 4241 4275

Source: Author’s production.

Although the short element has not achieved the minimum length constraint, probably
the most correct physical interpretation of this optimal solution is the removal of this element
and the joining of adjacent elements connected to him. Also, since almost all connections
converge to be pinned, the axial forces become more relevant than the other internal forces (as
seen in the SCO process).

The distribution of areas to ensure both stiffness and strength for the structure is different
from what was seen in the previous study: in the SCO, the elements 1 and 2 have the largest
areas. On the other hand, in the LCO there is a slightly more even distribution of areas towards
the free end, with the two top elements and the element at the bottom in the attachment region
also having large areas (in addition to element 4). Table 6.8 presents the comparison of optimal

arcas.

Table 6.8 — Comparison of optimal areas related to the SCO and LCO processes. The higher

cross-section areas are highlighted.

10°mm?  SCO LCO 10°mm?  SCO LCO  10°mm? SCO LCO
A, 097E%  020E™2 Ay - - Ays  022E~% 0.22E3
A, 083E2 012E"%2 Ay  090E™5 031E* Ay  022E% 0.22E3
A, 030E2  019E%2 Ay - 087E* Az  012E% 0.61E3

A, 0.17E~?  0.20E73 Age 0.78E~% 0.34E7°  Ayg 0.12E72  0.61E73
As 0.16E72  0.16E~2 Aqq 0.38E7% 0.35E73 Ay 0.57E~* 0.11E73
Ag 0.13E72  0.78E73 Aqg 0.38E7° 0.35E7°  Aj, 0.57E~* 0.11E73
A, 0.52E7%  0.94E73 Ao 0.28E7% 0.27E~% Ay 0.32E7%  0.65E7°
Ag 0.63E=3  0.10E2 Az 0.28E3 0.27E7%  Aj, 0.32E73  0.65E73
Aqy 0.16E™2  0.16E~2 Ayq 0.18E73 0.22E7°  Ags 0.28E2 0.44E73
Aqo 0.13E72  0.78E73 Ay, 0.18E73 0.22E7° Az, 0.28E~2  0.44E73
Ay 0.52E73%  0.94E73 Ay - - Ass 0.12E72 -

Ay 0.63E73  0.10E2 Agy - - Az 0.12E~2 -

Source: Author’s production.
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The optimization starts the stabilization process after iteration 300, see Fig. 6.23(a), and
the optimized structure has $1140 of total cost, being $927 of material cost and $212 of
connections cost. According to Figs. 6.23(b-c), the stress and displacement constraints are

sometimes violated. Compared to SCO, there are more elements fully stressed, and again only

the constraint applied in load case 1 is active.

Figure 6.23 — Results about convergence diagram of the actual study for (a) manufacturing cost,

(b) diagram of the most stressed element and (c) diagram of the constrained DOF at each

iteration.
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From the convergence graph of Fig. 6.23(a), it is possible to visualize between the 100-
250 iterations that the optimization process almost stabilizes and finds a local solution. Also,
during these iterations, the displacement constraints in load cases 4 and 5 become active,
because until the moment of being activated, the process is more concerned to ensure that the
displacement constraint of the critical load case 1 is not violated.

By simultaneously checking the behavior of displacement constraints and the evolution
of design variables, we realize that this region is probably a “flat area” of the objective function.
In this interval of iterations, the structure still has only pinned connections. However, after
iteration 250, the process is able to bypass this region and begin to impose semi-rigid
connections on element 16. At this transition, displacement constraints of load cases 4 and 5
are not active and violations occur in some stress constraints and in the displacement constraint
of load case 1.

The preceding analyses show that the LCO provides the required stiffness for the
structure for adequate values in the three types of design variables. While in SCO this is
accomplished only by areas, the optimal solution of LCO provides greater savings in
manufacturing costs (55.4%), being 56% less material cost and 53% less connections cost.
This greater saving is mainly obtained due to the better distribution of areas, because this
directly reduces the material cost and reduces indirectly the cost of the connections
(proportional to the material cost).

Based on quantitative and qualitative results of the cantilever beam study, it is proven
that for this structure the LCO reaches a better solution than SCO, with a relative simple layout
modification. Since the structure under study has a relatively small amount of DOF, the higher
number of iterations (67.5% more) is not a problem because the time spent solving the FEA,
calculating the derivatives and the LP at each iteration it is just a little higher. However, for
more complex structures, this can be a problem.

Analogous to the frame dome study, this optimal solution also has fully stressed
elements with normal stress produced by axial force of compression. Again, to ensure
reliability, all the pinned-pinned elements need to have their Euler stress limit calculated and
checked as a post-processing procedure.

As can be seen in Fig. 6.24, the element 3 has a considerable small length (170 mm),

the highest shear forces in the range of 10* and shear stress Ty, of —0.74 MPa. Element 16

has a fixed length of 1666 mm and a larger magnitude of shear stress 7y, (2.64 MPa), because
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its shear forces are also higher (range of 10%), due to the existence of semi-rigid connections,

and the respective cross-section area is smaller compared to the area of element 3.

Figure 6.24 — The elements with the highest shear stresses 7y, produced by the resulting shear

force.
Lig = 1666 mm
_ 2
Ar6 = 340 mm Element 3 16
2.64 MPa

oy, [MPa] | —99.9 ~23.61
om, [MPa] —1.99 —1.70
Ty, [MPa] | 2.13 | 9.35

o e v | e e | [ -4 |
L‘L'VR [MPa] |—0.74 | 2.64

S e —

Lz =170 mm
Az = 1900 mm?

Source: Author’s production.

These values of shear stresses seem small compared to the allowable stress — and they
really are in this case, since the equivalent stresses are much lower than the allowable stress —
but they cannot be neglected because it could happen that these shear stresses, added to the
stresses associated to the other five internal forces, lead the cross-section area to collapse. Note
that these elements have shear stresses 7y, with the same range of magnitudes of the normal
stresses gy, (indeed, in element 16 we see that Ty, > gy, ).

Being a discrete structure which "simulates" a clamped beam subject to the global
bending of the five sub-cases of loads imposed, this situation of non-negligible shear forces and

stresses could be expected.
6.2.2.3 LCO with different ranges of connections cost (20-60%, 20-30% and 45-60%)

In this section, the previous LCO study with connections cost of 20-60% is again
developed, but with V,, V;, and V, coefficients adopted for the quadratic variation of the
connections cost of all current studies has the same curve behavior.

The Figs. 6.25-6.27 and Tables 6.9-6.11 present, respectively, the results obtained for
studies 20-60%, 20-30% and 45-60%. Table 6.12 presents the comparison between these

studies.
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Figure 6.25 — Summary of results about the convergence diagrams and the optimal solution of

20-60%.
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Table 6.9 — Semi-rigid connections of the optimal solution for 20-60%.

Fixity Factors
Joint
Elements Node 1 Node 2
Connections
[XI 0(3 0(2 a4-
16 0.472 0.467 0.471 0.467
1
29 0.186 pinned pinned
16 0.472 0.467 0.471 0.467
2
30 pinned 0.197 pinned

Source: Author’s production.
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Figure 6.26 — Summary of results about the convergence diagrams and the optimal solution of

20-30%.
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Table 6.10 — Semi-rigid connections of the optimal solution for 20-30%.

Fixity Factors
Joint
Elements Node 1 Node 2
Connections

1 4 pinned 0.108 0.100
7 0.114 pinned pinned 0.145
) 8 pinned 0.118 0.245 0.323
16 0.347 0.347 0.343 0.348

29 0.248 pinned pinned

Source: Author’s production.
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Table 6.10 (Continuation) — Semi-rigid connections of the optimal solution for 20-30%.

Fixity Factors
Joint
Elements Node 1 Node 2
Connections
aq as a; ay
11 pinned pinned 0.183
12 pinned 0.342 0.415
3
16 0.347 0.347 0.343 0.348
30 pinned 0.243 pinned
4 pinned 0.108 0.100
4 8 pinned 0.118 0.245 0.323
12 pinned 0.342 0.415

Source: Author’s production.

Table 6.11 — Semi-rigid connections of the optimal solution for 45-60%.

Fixity Factors
Joint
Elements Node 1 Node 2
Connections
ay as az Ay
8 pinned pinned 0.100
1
12 pinned pinned 0.124
16 0.547 0.541 0.537 0.537
2
29 0.282 pinned pinned
16 0.547 0.541 0.537 0.537
3
30 pinned 0.264 pinned

Source: Author’s production.
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Figure 6.27 — Summary of results about the convergence diagrams and the optimal solution of

45-60%.
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Table 6.12 — Comparison between the costs of the optimal solutions.

Optimization processes

Costs ($) 20-60% 20-30% 45-60%
Manufacturing cost (W) 1125 1106 1338
Material cost (W) 916 916 916
Connections cost (W) 209 190 422

Source: Author’s production.
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Both studies have optimal solutions with the same areas and joint positions (presented
in Table 6.13) and, therefore, the same layout and final material cost (see Table 6.12). However,
these optimal solutions are not equal as they have different numbers of connections with
different levels of rotational stiffness. It is noteworthy that the manufacturing costs cannot be

directly compared, since different connections cost were evaluated.

Table 6.13 — Optimal areas and joint positions of the three LCO processes.

Cross-section areas Coordinates
10°mm? 10mm? 10°mm? mm

A, 0.18£72 Aqs - A,s 0.22E73 X, 5176
A, 0.11E72 Aqy 0.45E™% Ay 0.22E73 Z, —266
As 0.15E72 Aqs 0.93E™* Ay, 0.66E~3 X3 14310
A, 0.18£73 Ay 0.39E73 Ay 0.66E~3 Z, 4238.00
As 0.16E~2 Ay 0.35E73 Ay, 0.97E~* X, 14538
Ag 0.83£73 Aqg 0.35E73 A3, 0.97E~* Z, 4292
A, 0.74E73 Aqg 0.27E73 A3 0.65E~3

Ag 0.92E73 Ay 0.27E73  As, 0.65E73

A, 0.16E~2 Ay 023E™3 A3 056E3
Ay 0.83E~3 Ay,  023E3% Ay, 056E3
Ay, 0.74E 3 Ays - Ass -
Ay, 0.92E73 Ay, - Asg -

Source: Author’s production.

Decreasing the gap between connections costs and the magnitude of the cost of fully
rigid connections, the optimization process finds it economically feasible to provide structural
stiffness with more semi-rigid connections. Connections appear in the region near the
constrained node 9, and in the last two studies there are connections directly connected to this
node.

The study with connections cost 20-30% not only has the lowest manufacturing cost
and the largest number of semi-rigid connections, but also the largest number of elements with
shear stresses produced by shear forces within the range of 0.5-3 MPa. This fact is directly
related to the larger number of semi-rigid connections, as this results in a structure that has more
bending moments and shear forces being transmitted.

With the need to perform study 20-60% again using recalculated coefficients for the

quadratic variation of the connections cost, the current solution of Fig. 6.25 is different from
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the solution obtained in the first LCO study (Fig. 6.22). The optimization process required more
iterations to converge (593 > 392), two more connections were added to the structure, as can
be seen in Table 6.9, and the material cost is lower ($916 < $927), due to the different optimal
areas shown in Table 6.13.

The study 20-30% has several cases where three or more elements have rotational
stiffness connected to the same joint. Although the constructive concept is not complex, it is
possible that the variation assumed for the additional connections cost does not faithfully
represent the cost of the resulting connections of this study.

Based on the results obtained, it can be concluded that the optimization process is
sensitive not only to the interval adopted for the cost of connections, but also to the quadratic
variation that is imposed. Therefore, in practical applications, these two requirements must be
well defined beforehand, in order for the process to analyze and optimize a given structure with

cost information that faithfully reproduces actual manufacturing costs that will be faced.

6.2.3 Mobile crane

The mobile crane presented in Fig. 6.28 was firstly investigated by Apostol et. al. (1995)
and then by researchers such as Sergeyev and Pedersen (1996) and Sergeyev and Mréz (2000).
The structure has 26 elements, 18 nodes, all the elements have circular thin-wall cross-sections
with constant thickness of 8 mm, initial cross-section areas A = 30.103 mm? (except the six
columns which have A = 10. 103 mm?), Young's modulus E = 200. 103> MPa, shear modulus
G = 80 MPa, yield strength o, = 147 MPa and specific mass p = 7.799E~° kg/mm?. The
structure is clamped in the six nodes indicated in Fig. 6.28. The connectivity is presented in
Table 6.14. Whit this initial data, the structure has approximately 18448 kg of mass.

The optimization processes of this case study will take into account the multiple load
cases presented in Fig. 6.29 and Table 6.15. A vertical load F; in the negative z-direction, where
all the top nodes are loaded, is combined with four lateral loads of equal magnitudes. The self-

weight is not considered.
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Figure 6.28 — Mobile crane of Apostol ez. al. (1995).
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Source: Author’s production based on Sergeyev and Pedersen (1996).

Table 6.14 — Connectivity of the structure.

Elements 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 2 5 2 3 5 7 & 11 8 9 11 13 14 17 14 15 17
Nodes
5 6 3 4 4 & 11 12 9 10 10 14 17 18 15 16 16
Elements 19 20 21 22 23 24 25 26
2 8 3 9 3 11 4 10
Nodes
8§ 14 9 15 11 17 10 16

Source: Author’s production.

Table 6.15 — Multiple load cases.

Load cases Load condition
1 F, +F,
2 F, +F;
3 F,+F,
4 F, +Fs

Source: Author’s production.

5000 mm



Figure 6.29 — Multiple load cases.
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As shown in Fig. 6.30, the following design constraints are applied:
= von Mises stress constraints;
. Displacements constraints on the displacements at the x and y direction of the

nodes 2, 3,4, 5,8,9, 10, 11, 14, 15, 16 and 17 (5 mm) and at the z-direction of the

nodes 3, 4,9, 10, 15 and 16 (5 mm);

. Minimum element length (5 mm).

Figure 6.30 — Displacements constraints and design variables.
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To start, the SCO process is performed, adopting as design variables almost all the

cross-section areas (except of the columns which are fixed) and 20 fixity factors aq /a, /a3 /a,.
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All connections that are design variables start with rotational stiffness of 94%. Then, adding
the coordinates X and Y of the nodes 3, 4, 9, 10, 15 and 16 as design variables, the LCO is
developed, allowing the comparison between these two procedures, mainly from the point of
view of efficacy and computational efficiency. The design variables of areas and joint positions
are visualized in Fig. 6.30.

Note that only the roof of the mobile crane is subject to optimization. The column
connections are considered to be fixed fully rigid in all processes. The range and quadratic
variation of the additional connections cost is the same for both studies, being 20% for pinned
and 60% for fully rigid connections.

Some nodes that are loaded are free to change positions in the LCO process. Similar to
the previous studies, the critical point of the three cross-section areas and its von Mises stress

are determined after a sweep of 0 to 2m, with a step of 0.002m.

6.2.3.1 SCOvs. LCO

The optimal solutions and the elements with semi-rigid connections of the SCO and
LCO processes are presented in Figs. 6.31(a-b). The topology of the structure does not change
in none of the studies. The LCO has a higher time processing cost.

Since the optimization problem has several displacement constraints, both processes
provide structural stiffness through various semi-rigid connections, which are shown in Tables
6.16 and 6.17. However, the LCO process requires fewer semi-rigid connections, and
consequently has less connections cost, as the layout also works in favor of the global stiffness
of the structure. Basically, the LCO avoids the reduction of areas in the central elements and
approximates the nodes of the top of the roof, see Table 6.18, causing a concentration of
stiffness in the upper center of the structure. Also, note that in both studies again occurs the
case where m-elements are connected to the same joint.

Observing Figs. 6.31(a-b) from a sizing point of view, while in the SCO larger areas for
the top elements of the roof are established, in the LCO process only the middle elements of
the roof have larger areas. So again the LCO turns out better than SCO as it needs less material
to ensure no violation of displacement constraints. Moreover, remember that the lower the cost
of materials, the lower the cost of the connections. The comparison of optimized areas is shown

in Table 6.19.



Table 6.16 — Data of semi-rigid connections of the SCO process.
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Fixity Factors
Joint
Elements Node 1 Node 2
Connections
ay as az Ay
1 (in the
16 0.219 0.833 0.681 0.829
column)
2 (in the
10 0.399 0.633 fully rigid 0.813
column)
3 (in the
4 0.813 0.214 0.748 0.801
column)
16 0.219 0.833 0.681 0.829
4 17 fully rigid fully rigid fully rigid fully rigid
22 fully rigid fully rigid fully rigid fully rigid
10 0.399 0.633 fully rigid 0.813
s 11 fully rigid fully rigid fully rigid fully rigid
21 fully rigid fully rigid fully rigid fully rigid
22 fully rigid fully rigid fully rigid fully rigid
4 0.813 0.214 0.748 0.801
6 5 fully rigid fully rigid fully rigid fully rigid
21 fully rigid fully rigid fully rigid fully rigid
17 fully rigid fully rigid fully rigid fully rigid
7 18 0.823 0.157 0.830 0.742
26 fully rigid fully rigid fully rigid fully rigid
11 fully rigid fully rigid fully rigid fully rigid
g 12 0.605 0.477 0.802 0.875
25 fully rigid fully rigid 0.880 fully rigid
26 fully rigid fully rigid fully rigid fully rigid
5 fully rigid fully rigid fully rigid fully rigid
9 6 0.503 0.753 0.836 0.630
25 fully rigid fully rigid 0.880 fully rigid
10 (in the
18 0.823 0.157 0.830 0.742
column)
11 (in the
12 0.605 0.477 0.802 0.875
column)
12 (in the
6 0.503 0.753 0.836 0.630
column)

Source: Author’s production.
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Table 6.17 — Data of semi-rigid connections of the LCO process.

Fixity Factors
Joint
Elements Node 1 Node 2
Connections
8 fully rigid fully rigid fully rigid fully rigid
1
10 fully rigid 0.437 fully rigid 0.157
8 fully rigid fully rigid fully rigid fully rigid
2
12 fully rigid fully rigid 0.366 0.338
5 0.443 pinned pinned pinned
10 fully rigid 0.437 fully rigid 0.157
11 0.837 0.514 0.864 0.484
3 12 fully rigid fully rigid 0.366 0.338
17 pinned 0.593 pinned pinned
21 pinned pinned 0.144 0.562
22 pinned 0.571 pinned pinned

Source: Author’s production.

Table 6.18 — Optimal joint positions of the LCO process.

Node 3 4 9 10 15 16
X [mm] 2499 2505 2505 2505 2505 2505
Y [mm] 4925 4929 5000 4998 5092 5082

Source: Author’s production.

Table 6.19 — Comparison of optimal areas related to the SCO and LCO processes. The higher

cross-section areas are highlighted.

10°mm?  SCO LCO 10°mm? SCO LCO 10°mm? SCO LCO

A,  096E* 048E3 A, 012" 081E2 A,  061E % 0.38E2
A, O11E"' 012E2 A, 0.40E* O0A7E° Ay,  061E% 0.41E2
As  078E2 013E~% A, O011E-' 012E% Ay  040E* 071E°
A, O011E' 01262 A, O077E2 014E2 A,  040E~* 0.65E°3
Ag  036E3 012E°' A O011E-' 012E% Ay  063E2 048E~*
Ay  O011E"  058E~2 Ay  040E* 089E2 Ay,  0.60E% 0.14E3
Ay, 07262  0.64E2 Ay 059E* 08453

Source: Author’s production.
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Figure 6.31 — Optimal solutions and semi-rigid connections of the (a) SCO and (b) LCO

Processces.

10 11 12

(b)

Source: Author’s production.

According to the results presented in Table 6.20, the optimal solution of LCO has larger
manufacturing cost savings (31.3%), with 30.2% less material cost and 33.2% less connections
cost. The convergence diagrams of both studies are depicted in Fig. 6.32(a). While in the SCO
there are no fully stressed elements and only eight active displacement constraints, the LCO has
some stressed elements since iteration 200 (see Fig. 6.32(b)), eighteen active (and several near
activation) displacement constraints and one active minimum length constraint (and others six
elements very close to activation). Therefore, the displacement constraints are stronger than the

stress constraints.
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Despite the higher number of iterations in LCO (348 > 266), the optimal solution is
found after iteration 210 but took time to converge due to the a delay in the stabilization of the

design variables.

Figure 6.32 — Results about the convergence diagram of the SCO and LCO studies for (a)

manufacturing cost and (b) diagram of the most stressed element at each iteration.
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Table 6.20 — Comparison between the costs of the optimal solutions.

Optimization processes

Costs ($) sco LCO
Manufacturing cost (W) 6254 4297
Material cost (W) 4036 2816
Connections cost (W5) 2218 1481

Source: Author’s production.

According to Fig. 6.33, possibly the optimal solution would be the disappearance of all
the seven short elements (5, 11, 17, 21, 22, 25 and 26) and the joining of the adjacent elements
at the center of the structure. Analyzing from a practical point of view, it would also be the right
decision for the manufacture and assembly of the structure. Also, for this reason, a unique

connection is assumed, as can be seen in Table 6.17.

Figure 6.33 — Short elements at the top of the roof.

Source: Author’s production.

The short elements are practically invisible, with lengths between 5-90 mm, but have
cross-section areas of great magnitude (see Table 6.19) and have shear stresses within the range
of 10-75 MPa. Although the construction interpretation of the solution can be the removal of
these elements, they do not cease to exist in the final topology and it is precisely the elements
that are fully stressed, i.e. the failure criterion is useful for the layout optimization process. If

the designer choses this final layout, without topology modifications, these elements are well
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sized, since the shear stresses produced by the resulting shear forces were not neglected and, as
we can see, have higher magnitudes.

Unlike previous studies, the optimal solution of the LCO has several elements that have
shear stresses 7y, in the order of 0.1-0.5 MPa, certainly due to the appearance of a considerable
amount of more rigid connections. The element 9 (a column), for example, in the load case 1
and in the middle of its length, has a shear stress 7, of 0.5 MPa, while its normal bending
stress gy, is 5.0 MPa. Note that the magnitudes are not high, but the difference between them
is not significant enough to neglect the effect of the shear forces.

In this same element and load case, but in the cross-section ¥ = L (-3, the shear stress

Ty, temains 0.5 MPa, the normal bending stress oy, is —89.0 MPa, but the calculated

R

equivalent stress is 129 M Pa. Therefore, note that this section is almost fully stressed. Although
smaller compared to the normal stress of the bending moments, the shear stress 7y, almost had
the potential to cause catastrophic failure if neglected by the calculations.

Confronting the results obtained by SCO and LCO processes, it was concluded that the
layout change (joint positions) was an additional tool to provide structural stiffness in the three
cartesian axes and therefore it was possible to reduce not only the magnitude of the cross-
section areas, but also the quantity and levels of semi-rigid connections. Consequently, greater
reduction of manufacturing cost was achieved in the LCO process and therefore, for this
structural problem, the LCO process proved to be better than the SCO process. The only

misfortune is the longer processing time.



155

Chapter 7

Conclusions

The introduction of semi-rigid connections in the 3D frame element allowed more
realistic prediction and evaluation of the mechanical behavior that a given steel tubular space
frame will present in practice. The optimal fixity factors presented in each case study should be
treated as a good approximation of the degree of rotational stiffness that each connection on the
joints should present at each bending plane. In other words, not necessarily an optimal solution,
but a good decision for the structural design.

In the context of structural optimization, the addition of connections within FEA and
objective function is a useful tool to make the iterative process able to more accurately predict
manufacturing costs and minimize them. Moreover, the first case study of Chapter 6
demonstrates that it is possible to find more economically feasible solutions than solutions
given by a process that considers the original formulation for fully rigid frames.

With displacement constraints, the proposed optimization process has the ability to
provide optimal solutions that add the best cost-benefit ratio between manufacturing cost and
stiffness, providing stiffness only to the required locations and avoiding the expense of
unnecessary more rigid connections.

From a numerical point of view, since each element has four fixity factors associated
with the rotational stiffness of the two connections, the increase in the amount of design
variables is considerable high, causing the computational cost to increase due to the need to
compute a greater amount of derivatives. Also, this makes each LP process difficult to solve as
it increases the size of the problem, and increases the possibility of finding local optimal
solutions or even falling in unfeasible regions. It is noteworthy that these characteristics were
observed not only in the small and medium size studies that were presented, but also with one
large study that was omitted. This large structure required a lot of processing time not only in
the derivatives, but also in the LP solver, and has fallen countless times in unfeasible regions.

Regarding the comparison between the SCO and LCO processes, despite the higher

computational processing cost, the LCO seems to be a better option, making it possible to find
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more economical optimal solutions with not very complex layout. Modifications in joint
positions make it possible to improve the distribution of internal forces and, consequently,
better sizing and manufacturing cost savings.

Based on the results obtained in all the case studies, it is noticeable that connections
between two or more non-coplanar elements in the same joint can occur in optimal solutions.
This may be one of the reasons for not finding registered researches (to the author's knowledge)
that address this characteristic. Recent research focuses on optimization processes with
experimentally characterized discrete connections. Therefore, it is up to future research to
develop experimental studies of some constructive concepts reached in the optimal solutions,
according to the optimal fixity factors. Additionally, it is noteworthy that maybe the ranges of
the connections cost assumed in the case studies are not consistent with the reality that would
be faced in these connections manufacturing. The formulation assumed for the range of
connections cost is based on research that considered simpler connections, different structural
profiles and structures of the construction sector. In automotive structures, for example, the cost
of a fully rigid connection may be less than a pinned connection.

Considering that steel tubular space frames are regularly employed in engineering
practice, the formulated failure criterion was useful as it is proven that the proposed
optimization problem can have fixed small elements or lead to the appearance of moderately
short elements, during the optimization process or even in the optimal solution, that have non-
negligible shear stresses produced by shear forces.

Another noticeable fact during the development of the case studies was the existence of
different critical points, associated with the occurrence of different combinations of internal
forces. However, it should be noted that the operation of the failure criterion is intrinsically
dependent mainly to the existence of displacement constraints and the assumed range and
quadratic variation for the additional cost of connections. If the optimization problem only
imposes stress constraints and the cost of more rigid connections is very high, the tendency is
for the optimization process to opt for pinned connections only. From a structural point of view,
this choice is more efficient because it practically nullifies the transmission of shear forces and
bending moments through the structure. Thus, the failure criterion is useful during the
optimization process, but in the end the axial forces prevail and there is no need to calculate the
critical point of stress and to account the shear effect, because the normal stress produced is
uniform throughout the cross-section.

Not applying displacement constraints can also lead to another problem which is the

excessive flexibility of the optimal structure. In addition to being mechanically undesirable, the
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appearance of large displacements also invalidates the mathematical model of the connections
adopted and the formulation of the 3D frame element.

After the development of the case studies, it became evident that the appearance of
slender elements may indeed occur, being extremely important to apply stability constraints to
ensure that the optimal solutions are reliable. However, the limited time established for the
conclusion of this master thesis did not allow including this type of design constraint in the
scope of research. Thus, this is a limitation of this work.

Finally, based on the literature review and the contributions made, the implementation
of the present research allows the development of various future works about the following

aspects:

. Adapt the code to develop optimization processes within a discrete design space
or with a more robust gradient-based method, to improve numerical performance;

. Carry out more investigation on the performance of the already implemented
active set strategy of Pedersen and Nielsen (2003) on the design constraints;

. Investigate if the effects of shear on deflections ({y,{, # 0) can significantly
influence the optimal solutions of the case studies developed;

- Implement a solver to eigenvalue and eigenvector problems to impose buckling
and frequencies constraints, investigating what happens in the optimal solutions found
and providing more reliable solutions regarding structural stability;

. Theoretical and numerical studies about a Heaviside continuous approximation
applied to the areas and lengths of the elements, aiming to provide the development of
topology optimization within the LCO process;

. Extend the 3D frame element formulation to impose torsional flexibility in yZ
plane and add the subsequent fixity factors as design variables of the proposed
optimization problem;

- Adapt the sensitivities already developed and implement the technique to enable
optimization problems with linked design variables, aiming to reduce not only the
number of design variables (mainly fixity factors) and the computational cost, but also
to provide the possibility to look for optimal solutions with symmetrical constructive

concept.
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Appendix A

The Iterative Process of the Structural
Optimization Code

At the beginning, the algorithm performs a reading of the input data, which emcompasse

the following topics:

- Primary flags to determine the desired optimization problem, i.e. define the
objective function, the design constraints and the desired optimization method (another
gradient-based method is available in the code), auxiliary flags which define the method
for solve the linear systems and some parameters that dictate the content of the outputs;
. Structure data: mesh, mechanical and geometric properties (both fixed and initial
properties) and the boundary and load conditions to be imposed in FEA;

. Information regarding the optimization problem, such as the quantity and
definition of the design variables, coefficients referring to the move limits, the quadratic
variation of the additional cost of connections and limit values for design and side

constraints.

After the reading data, cross-sectional properties are calculated, based on the elementary
thin-wall thickness and cross-section areas, and the iterative optimization process starts. It is
worth mentioning that the thickness is an input data fixed during the optimization process, while
the areas are update after each iteration.

Within the optimization process, the first step is to zero out all matrices and vectors, and
then calculate and store certain iterative outputs. This procedure is required not only to ensure
post-processing of graphical results, but also for real-time monitoring at the prompt.

Proceeding, the assembly of the global stiffness matrix is carried out. Being the local
stiffness matrix of the 3D frame element given in equation (4.22), the boundary conditions and

nodal loads are imposed, and displacements, internal forces and stresses are calculated by FEA.
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Concentrated or uniform distributed loads on the length of the elements can be imposed
as consistent nodal loads in the vector F, and multiple load cases can be considered. The
condition of multiple load cases is important because a structure optimized for only one load
case has the disadvantage, in safety, that the optimal solution found is not optimal if a small
change in the loading condition is made.

The equilibrium equation can be solved by two methods: with a LU decomposition of
the original stiffness matrix and retro-replacement or using the skyline strategy proposed by
Dhatt and Touzot (1984). Since the global stiffness matrix is characterized as a band matrix and
is always symmetric, the skyline strategy is more efficient than the first since it solves the
equilibrium equation by storing only the elements of the main diagonal and the non-null
elements above the main diagonal. Thus, the upper and lower triangles are disregarded,
avoiding unnecessary operations during the solution.

According to the allowable stress, geometric properties and internal forces, the failure
criterion will evaluate the mechanical strength of three cross-sections (extremities and center
of the elements) through the von Mises equivalent stress. The critical point of each cross-section
area and its von Mises stress are determined after a sweep of 0 to 2w, with a predetermined
stepsize. Therefore, in each case study, to ensure that the sweep is efficient and effective, a
previous convergence analysis of the stress calculation at the critical point of the structure is
developed. Thus, the stepsize with the best cost benefit between efficacy and computational
cost is defined.

When multiple load cases are considered, the amount of stress constraints increases
considerably (each element has three cross-section areas of stress detection). Therefore, aiming
to reduce the dimension of the optimization problems which will be investigate, and
consequently the computational effort in the solver, the active set strategy demonstrated in
Pedersen and Nielsen (2003) is available for the minimum element length and stress constraints.
These authors also used the SLP method.

Considering this strategy, the constraint is active and need to be compute only when the

length and the stress of a given element and cross-section achieve a predetermined value. Thus,

Ly = ply, (A.1)
f(0)ix" = no.?, (A.2)

where u is the parameter that defines the predetermined value. The user should be aware of the

use of this strategy, since it can easily affect the iterative process of each LP problem.
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To develop the iterative optimization process, the LP routine DDLPRS of the IMSL
Math/Library (1991) is used to solve each standard LP problem. Therefore, it is necessary to
linearize the objective and the design constraints by the linear part of the Taylor’s expansion.
The linearization is performed through the calculated sensitivities, using the implemented

analytical expressions, properly validated by central finite differences (CFD),

0 N B (vp], +pe) —B (vp], —pe)

~ , =1078, A3
avpj 2pe pe (A.3)

where B represents any function and pe is the perturbation factor of the CFD. To support the
development of analytic expressions, a symbolic language software was used.

After the convergence of the standard LP, the convergence criteria are calculated. These
criteria are given by parameters relative to the stability of the objective function and all the
design variables treated. If the convergence criteria reach the tolerances initially assumed, the
optimization process is finalized and the outputs for the post-processing are computed. On the
other hand, if this does not happen, the design variables and the move limits are updated and
the cross-sectional properties are recalculated. Then, returned to the place where the
optimization was initiated to continue the iterative process.

The side constraints of the design variables are updated externally to the LP solver, by
the move limits, to ensure convergence. Based on initial percentage factors for each type of
design variable, entered as input data, the move limits are updated at each iteration by
percentage update factors. In the specific case of joint positions as design variables, generically
represented by X*, the initial move limits also depend on the shortest absolute distance between
a given X™ and the respective joint positions that, through connectivity, form elements with X™*.

The percent update factors are fixed and the update occurs as follows: if the design
variable runs successively in the same direction of the search of the optimal solution, the side
constraint is relaxed by multiplying the extreme values with a percentage factor greater than
the unit value, to allow larger steps. Otherwise, the step is reduced with a percentage factor less
than the unit value. The computational efficiency and convergence are highly sensitive to the
choice of updating parameters (VANDERPLAATS, 1999).

If desirable, the code provides the option of assuming maximum and minimum values
in the side constraints of the joint positions which are design variables, constraining the design

space. Also, areas and fixity factors can be organized into groups of design variables through
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inequality constraints, imposing symmetry at the optimal solutions. In addition, the side
constraints applied to the areas and the minimum length constraints of the elements avoid poor
conditioning and singularity in the stiffness matrix. Physically, it ensures that the elements of
the mesh do not disappear during FEA.

The structural optimization problem is stated in Chapter 5. However, providing a variety
of optimization problems and methods for the next researchers of the master’s program, a
complement of this research work is to make possible all the items described in the flowchart
of Figs. A.1(a-d), based on flags input described at the beginning of this Appendix. It is
noteworthy that some items are related to previous researchers, and some were developed with
the intention of providing improvements in the optimization process and optimal solutions.
Topics related to topology optimization were inserted in the previous objective of this research,
were properly developed and validated (mathematically) and made available. However, due to
lack of time, they were removed from the current scope.

Despite the initial option of using the SLP method, it is worth mentioning that the
sequential quadratic programming (SQP) developed by Schittkowski (2001) — NLPQLP — was
implemented and evaluated at the first case of layout and connections optimization (frame
dome), in order to decrease processing time and improve the robustness of search for optimal
solutions at the optimization process. Unfortunately, the author's implementation was not
intended for problems with high number of design variables, which made the subsequent

application of this method unfeasible.
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Figure A.1 — Available items of the code showed by sections (a), (b), (c) and (d).
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Figure A.1 (Continuation) — Available items of the code demonstrated in the sections (a), (b),

(c) and (d).
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Appendix B

The Analytical Sensitivity Analysis of the
Failure Criterion with respect to the
Cross-Section Areas

Analytically, the sensitivity of f(6); relative to a given cross-section area can be

expressed as

4 _ 2 a 1 10 2 in,kMRi,k 9 ,_
a3, U@ =t 5 () a0 +2(Z577) 5 @

5 6i'kin,kMRi,k i(l)+2 El',kNXi,kMRi,k i(l)
EikMRik 0 Eikink 0 MRL'kZ 0
2= ~ | —|(N,. 2= — | —( My, — (.2
* ( Ail; )aAj( xl’k)-l_ ( Ail; aAj( R"">+ I, 04; (@)
d (1) &’ d 3( My, ”\ @ 3 9 (1
CiMg P |+ e — (Mg, ) + o | =2 ) = (R?) + = (R?M,, 2) (=
+C1,k Rik aA] Ii2 + Iiz aA]( Rik )+4 Iiz aA]( i )""4( i Xik )GA] Iiz
+ 3 Riz ad (M 2) 3 QiMxi'kVRy ik a (R) (B'l)
4\ 12 )04\ T )y 12 94; !
_3 (B i i(Q.)—E(R'Q.M V.Y )i 1) _3(RaiVe” i(M )
t; Iiz aAj i t; i xi k"R ik 6Aj Iiz t; 1.2 aAj Xik
;2
3 (RiQiMy,;,\ @ , 3(Ve¥ | 0 3 ;o2y 0 (1
—__ <)\ (y,Y . - L — (0.2 —(0.%v.Y . — =
ti( I* >8A]-( N L'k) +ti2 I 04; (@ )+ti2 (Ql Roik )aA- I

3 /0% 0 ;2
=) — y
*tf(zf)aA,-(VR )

Based on equation (B.1) and the formulation of the internal forces, explained in the
Chapter 3, it is noticed that the use of the chain and product rules will be essential for some
derivatives. These derivatives will be analyzed separately to present the details of each
differentiation. Derivatives in relation to the six internal forces will not be presented, but can

be seen in Faria and Mufioz-Rojas (2019) and follow the same procedure as Carniel et. al.
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(2008), with some changes related to the interpolation functions and cross-sectional geometric

aA,‘ ( l’k ) BA, ( l’k )

Considering p and q as
P =Ny and q=p° (B.2)
using the chain rule

d ( x'kz)_dq ap
L

O_Aj = %O_A]' (B.3)

and assuming that the axial internal force and its derivative are known, the sensitivity of Ny; kz

is equal to
d ) d

a7 (Vi) = 2 () B4

The sensitivity of My; kz can be defined by analogous procedure and, therefore,
2\ d

04, (Mxi,k ) =2My, 94 (Mxi,k)' (B.5)
. a a 2

Computation of o (M Ri,k) and o (M Rik )

Recalling that the resulting bending moment is calculated by

— 2 2
Mg, = \/Myi‘k +M,,2 (B.6)

and considering the chain rule
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p= Myl,’k2 + le.‘kz and q= \/F

(B.7)
d 1 a
— (M, )= M, %2+ M,, 2)
6A-( Rl'k) > 2aA-( Yik Zik )’ (B.8)
J 2\/Myl,’k + M, 20
we arrive at
1 0
— (M, )= —— (M. ?),
aA,-( Rl'k) ZMRikaAj( Ruk) (B.9)

.0 . d 2 .
that s, E (M Ri,k) depends on the definition of @ (M Rik ), which can be defined by the sum

of two derivatives

9]

a_Aj(MRi,kz) - aiAj(Myi,kz) + aiAj(MZi,kz)' (B.10)

Again, doing the chain rule,

j 04; ik
0 P (B.11)
a_Aj(MZlkz) = ZMZi,ka_Aj(MZlk)’

and returning to the previous equations (B.9) and (B.10), the sensitivities of Mg, kz and M, .
are given by



174

Analyzing equation (B.13), it is noted that this sensitivity should be evaluated with more
attention to the specific case where M Rki tends to zero, because mathematically this results in

an indetermination of the type

aiAj(MRi,k) - (B.14)

In order to investigate this specific case, the problem is divided into two sub-cases,

which are
A) Myl_’k =0 and B) Mg, = 0. (B.15)

In both cases, replacing the respective values of null bending moments in the expression

(B.13), we arrive at

A) aiAj(MRi,k)zaiAj(MZi.k) and  B) ait‘lj(MRi.k)zaiz‘lj(Myi.k)’ (B.16)

and if M, , tends to zero in sub-case A and Myi . tends to zero in sub-case B,

A) a_Aj(MRi,k) = a_Aj(Mzi,k)‘M » and B) a_A]-(MRi'k) = a_A]-(Myi'k)’ _)0' (B.17)
frk Yik

it must comply with the following condition

d d
J(MR”() = J(MR”() ) (B.18)
J SUB—CASE (A) J SUB—CASE (B)
that is,
d 0
9A. (Mzi,k) ~ 34, (Myi,k) : (B.19)
J My ~0 J Yix=0
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By verifying equations (3.52) and (3.54), for the calculations of the bending moments

M, and Myi . it is possible to note that such internal forces will be null in an element if and
only if the local nodal displacements Uy and Uy, are null because the cross-sectional area,
l

thin-wall thickness, Young’s modulus and the second derivative of the interpolation functions

are parameters that do not have null values. Then, based on the previous statement,

au,,xoy i

u, l=0 - =0 and {u, l=o0 - et =0, (B.20)
oy 34, : 04,

]

the equality of the expression (B.18) is respected, since the derivatives of M, , and Myi . will

be null

=0, (B.21)

and, therefore,

= 0. (B.22)

. i yl
Computation of on; (VR l.’k)

From the formulation of the failure criterion, it is known from equation (4.8) that
VRy'l.,k = VRrix cos(Ai), (B.23)

where

_ ik
Vei = %ol Ve Ak =V =0 and  yy,, =tan™' (Vyl ) (B.24)

Using the product rule, the derivative of V', , is given by
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d , (B.25)
O_Aj(v Y k) = cos(Aix) = 3, (Vle) + VR”‘OA (cos(2ix))
where (VR k) has an analogous development to (M R k) and therefore
d 1 0 d
94, (Vei) = m(‘/yi,k A (B0 + Ve 94, (Vzu«)) (B.26)
i

0
We need to define A (cos(li,k)). Knowing that 6; , has no sensitivity to any design
J

variable and making successive uses of the chain rule,

p1=Ax and g = cos(py),

d d
I (cos()) = = sinhus) oo ().
] ]

=3 52}

and q, = tan"1(py),

04; Wik (Vzi,k>2 N 15Aj Vi) (B.28)

(B.27)

i,k
9 Vzlk> 1 9 ) < 1 )
= Vi) + Vo — ),
04; (Vyi,k Vyi,k aAf(Zl'k) OA Vyl,k
ps=VY, and qz = o
B.29
0 < 1 ) 1 0 (V ) (B.29)
s T =__2_ Y )
aA] Vyi,k Vyi,k aA] Lk

replacing equation (B.29) in (B.28) and then equation (B.28) in (B.27),



177

0 (faux)_ 1 9 i Veix 0
ﬁ(‘/y ‘v,kﬁ("zk —Vy,sz(Vyi,k)' (B.30)

1 1 0 Vzix O
= EYS ]/Z - - ey V ’
) /5 >2+1<V ',kaAj( l'k) V. ZaAj(yl.k) (B.31)

0 ~osin(A) (1@ Vaik O
a_Aj(COS(Ai,k))__ v (V ﬁ(vzi,k)_vy' Zﬁ(vyi,k) ’ (B.32)

J ik
VR x sin(A) 1 @ (V ) ~ Vair i( ) (B.33)
(I/Zi,k>2 ylk aA] Zik I/yl k2 aA] yl,k
7 +1
Yik

As in equation (B.13), equation (B.33) demonstrates the same mathematical problem of

division by zero in both terms of the subtraction. Then, rearranging the second term of equation

(B.33)

] , A 9 ]
o) =2 1 () ()

(B.34)

NS

VR; k sin(Aie)[ 1 @
vz oy 2y aA-(VZl"")
Vaik 4 ik Yig "

2 2
V. V.
Yik Yik

d
B Vyll:z a_A] (Vyi,k) ’

substituting Vyl, kz +V; kz for Vg, kz and making the product of the dividend with the inverse

of the divisor
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aiAj (VRy’i,k) - CO]S/IE#R) <Vyi,k aiA] (Vyi,k) + Vi aiA] (Vzl',k)>

Lk
. (B.35)
Vo sin(ie) [ 1 0 Ve 0
— 2 V. A (Vzik)_ LkZﬁ(Vyik) ’
VRik Yir O T
by putting Vyi kz in evidence, we arrive at the following simplification
2 () = cos(i) [, 2 (1 Yy ()
aAj R k)™ VRik Vik aAj Vik Zik aAj Zik
(B.36)

sin(2;x) 9 5
- VR i kZ <Vyi'k aA] (Vzi'k) - VZi,k a_A] (Vyi,k))'

L

and if Vg, . tends to zero, the equation continues present the same numerical error of equation
(B.33). To avoid this risk, it is possible to develop more mathematical analysis.
Dividing the mathematical problem into two sub-cases A and B, where the first one

encompasses Vyi , null and V,, , tending to zero and the second one is a reciprocal case, we have

a : d _ ]
2 04; (VRy i'k) = cos(2ix) 0A; (Vzi'k) +sin(4;) 0A; (V;’i,k) ’
) ] VZi,k_)o ) Vyik=0
' B.37
dJ r 0 . P ( )
B) A (VR i.k) = cos(/li,k)ﬁ (Vyl k) — Sln(/'li_k) VR (Vzi,k)
J J ’ Vy; =0 J Vzi=0
Since 4; i is calculated by
V,.
Aij =tan~" <VZ "k) — 0k (B.38)
Yik

replacing V,. and V;,, in cases A and B and using the trigonometric relations, it can be defined
l,k l,k

that
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-1 Vzi,k -1 T
A) Ajp = tan 0 ) bk A =tan" () — 0y - Ay = 5 bk
0 (B.39)
B) Ay =tan™! (V_> — 6 ~ Ape=tan"1(0) =0k — Ay = O
Yik
Substituting the expressions of 4; ; into the respective sub-cases
d T a T d
—(v.y )= 9., )— in(=—9..)—
A) o4, (VR i,k) = cos (2 Bl,k) o4 (Vzl.‘k) + sin (2 Bl,k) oA (V;,i‘k) )
Vyi =0 Vy =0
5 5 5 (B.40)
B) J(VRW”{) = —sin(—Bi,k)ﬁ(VZi‘k) + COS(_ei'k)ﬁ(Vyi,R) )
J 1 V=0 J Vy =0
and identifying the following trigonometric relationships
s ) T
cos (E — 0) = —sin(—0) and sin (E - 9) = cos(—0), (B.41)

we notice that by going through the two paths, the expressions for the sensitivity of Vi ik

when Vg,  tends to zero are equivalent. Therefore, in this particular case, having knowledge of

two more trigonometric identities

cos(—0) = cos(f) and —sin(—0) = sin(0), (B.42)

and using the equation (B.37) of sub-case B, it is assumed that this sensitivity is given by

31 ()

] _ 0
] = Cos(ei‘k)a_Aj(Vyi,k) + Sm(ei"‘)a_Aj(Vzi'k)' (B.43)

VRi,k_>O

Moreover, it is noteworthy that the expressions of equation (B.39) are used to compute

the angle yy, ik in the respective nullity occasions of Vyi‘k and Vi k- When both are null,

physically the angle yy, , does not exist, but would produce mathematical indeterminacy within

the code. Therefore, through a conditional, it is considered null.
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Computation of on; (VR ik )

Since the equation for V"’ ; kz is given by

1 2
VY i = Vryy” €05 (Aik), (B.44)

the sensitivity can be expressed by

o, . 9 9
aA (V y 2) = COSZ(Ai,k)a_A],(VRi,kZ) + VRi'kza—A]’(COSZ(/li'k)). (B.45)

Applying the chain rule to the two unknown derivatives,

0?4 (Vle ) - ZVRi,k%(VRi,k)' (B.46)

(cos (Alk)) =2 cos(llk) (cos(llk)) (B.47)

0 0 . . .
We already know E (cos(li,k)) and E (VRi,k)’ developed in the previous item,

equations (B.26) and (B.32). Thus, the sensitivity of Vz”". kz is

L

d

04; (VRy’lkz) = 2cos (Alk)( Yik 6?4 (V ) + Vzi,kai/lj(vzi,k)) B

2V, cos(A)sin(Ax) [ 1 (V ) Vi 9 (V (B.48)
2 \Zik) 232 \"y
(Vzi,k> i1 V&i,kaAJ ' Vyi,k 0A; \ Jik
ik

To avoid mathematical indetermination, it is necessary to manipulate equation (B.48) in

a similar way to that presented for equation (B.33). Therefore,
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d

04; (VRy’i. 2) = 2 cos” (i) <V3’i,k aiA] (Vyi,k) Ve aiA] (Vzi,k)> B

0 0
2 cos(2;x) sm(Alk)< ik 34, (VZ ) - Vzi'ka_Aj(Vyi,k))'

and in cases where Vyi . OF V. are null, the angle 4;  can be determined as given in equation

(B.39).

Computation of (Cl k)

The calculation of ¢; j, is performed by

C_'i,k = Ri Sin((pl-,k), (BSO)

where R; has already been informed in equation (4.11) and

T -1 MZi,k
Qix =0k + 57 VMg and  yy;, = tan <M ) (B.51)
Yik

The sensitivity of C; ; is conditioned in the form

d a
P ) (Sil’l((pi’k) ﬁ (Rl) + Ri c’)_A] (sin(goi_k)) ’ lf A] = Ai ‘
(e = { ; . (B52)
J k ‘OA (sm((plk)) if Aj # AiJ

While the derivative of R; is directly computed by,

, (B.53)

A; + 7'l.'l'fi2 _ 1
d0A;

2Ry = 2 (4
; ki 0A;\ 2mt; ) 2my

the derivative of sin(<pl-,k), by the chain rule, is given as
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0 0
A (Sin(fﬂi,k)) = cos(pix) A (pik), (B.54)
j j
being that
d 9] 0 M,.

P i —— ([ — - | _ -1 Zi,k
aAJ ((pl,k) aA] ( VMi,k) aA] < tan <My )) (B.55)

ik

d Vzi
In a similar way to the development in equation (B.28) for EYP (tan_1 (V—k>>,
J

d . 1 1 d Mzik 0

N — _ - )= A

aA] ((pk <MZ . 2 (M}"k aA] (le,k) My- 2 aA] (Myi,k) ’ (B.56)
7 i, ) +1 i, Lk

Yik

returning and replacing equation (B.56) in (B.54) and then equation (B.54) in (B.52), we arrive

at

a /. cos(@i) 1 0 Mg, 0
— (sin(¢;, = — . — M., ) — —S——I\M, )
aA].( ( ”‘)) (Mzi,k)2+1 Myi,kaAj( Zt.k) Myz,kZaAj( yl,k) (B.57)

Myik

sin(@ir)  Ricos(@iy) 1 0 Mz, 0 ) B
IO E o (Mein) ~3g, zan (M) | A=A

zi,k)2 +1 Yik yi,k
O (s Myik
a_Aj(Ci,k) = x ( ) ; L " ; (B.58)

i COS\ Pk zik .

()’ 1(Myi,,(a—Aj(Mm> - Myi;a—/y(Myi.J)' 4%,

Myi,k
Looking at the term highlighted in a*

R; cos( ¢; 1 0 M, 8

T 1\:1 ((Zpl’k) My 04; (MZ""‘) - MZl'kzﬁ( yi,k) T (B39)
< Zi,k) +1 yi‘k ] yi,k j .
Yik

the same mathematical problem of indetermination seen in equation (B.48) is encountered.
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By performing the same algebraic manipulation procedures applied in previous

equations (B.34)-(B.36), the following simplification can be achieved

R; cos(<pik) 0 0
=M, — M, |—-M,,, —(M , B.60
a MRi,kz yi,kaA].( Zl.k) Zl.kaA].( yi,k) ( )
where
_ -1 le',k T
®ir = 0;; —tan M +o (B.61)
Yik

If we divide the problem into sub-cases A and B, where the first one encompasses M,

null and M,, , tending to zero and the second case is reciprocal, we have to

§ d
A) a* =R; COS(QD""‘)G_AI.(MVi,k) Mz, e o
yi =0 Zl.,k
. (B.62)
d
B) a*=—R; cos(gol-,k)— M,. M, ,
aA] ( l,k) MZi,k:O l,k|Myilk_>0
where
M,
A) @iy =0, —tan™? ( Ol'k) +g > @i = 0y — tan™! () +g = @ik =ik
(B.63)
B) @i =0;; —tan! 0 oS Qi =0; —tan_1(0)+E - @i =06; +o
ik ik Myi . 2 ik ik 2 ik ik 2-
Replacing ¢;  in the respective sub-cases,
A) a* =R; cos(eik)i(M , ) M, ’
’ aAJ yl'k y_kZO l'k le'lk—>0
) (B.64)
T\ 0
B) @ =—ricos(0ut ) ()| Ml
) ’ yi,kﬁo

le-'k=0
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By analyzing the sub-cases A and B, due to the existence of terms M, , and
’ le-lk—>0

Vik , it is easy to see that in both cases a* tends to be null. Then, since the two paths
’ Myl.'k—>0

show the same result, we can assume that when Mg, , tends to zero, the sensitivity of C; is

given by

sin(@)
=< 2nt; ' i =Aal (B.65)
MRi_k_>0 0, lf A] * Ai

0 ,_
a_A]- (Ci,k)

being that, in this condition, the calculation of ¢;; would have mathematical indetermination

. My; . . .
due to the quotient of the term tan™! (#) However, physically, if the two bending moments
Yik

are null, there is no angle @, ; and, therefore,

sin (91 k + E)
o\ 2) if A; = A
= ot j = Al (B.66)

MR =0 0, if Aj # A

0 ,_
a_Aj(C”‘)

In a simplified format, the generic sensitivity of ¢; , is computed in the form

sin((p-, ) R-cos((p-_ ) a a .
- = Myi,k[—)_Aj(Mzi'k)_Mzi'kﬁ(Myi,k) ’ lfAf:Ai]

a 2mt; MRikZ
B_Aj(ci’k) - R cos((p ) ' 0 d
i ik ,
T Mg, (Myi,ka_Aj(MZi.k) ~Mai gz (Myi,k)>' if Aj # A;

L

Similar to the yy, , angle computation, the expressions of equation (B.63) are used to

compute the angle yy; ,, in the respective nullity occasions of Myl_ , and M, , and when both

are null yy, . is considered null.
. 0 — 2
Computation of o (ci,k )

Since the equation for ¢; ;° is
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Ei,kz = Riz Sinz(gol-'k), (B68)
its sensitivity can be expressed by
(Cl k) = sin’(g;, k) 94; (R*) +R* 94; (Sm (Pix))- (B.69)
and conditioning in the form
( 2 2 . \
5 sin ((plk) (R )+Rl 6A (sm ((plk)) if Aj = 4; L
m(c-i’kZ) = . (B.70)
J l ; aA (smz((plk)) if Aj # AiJ

While the derivative of R;? is found directly,

d 2) _ (Al + T[tiz)z _ Ai 1 _ Ai + T[tl'z B.71
aA] ‘ N aA] 47T2tl'2 B 27T2tl'2 21 B Zﬂztiz ’ ( ’ )
the derivative of sin? ((pi,k), by the chain rule, is given by
p = sin(@;x) and q =p?
d (B.72)

a_A,- (sin2 ((pi,k)) = 2sin(@; x) aiA] (sin((pi,k))-

Recalling that the derivative of sin(fpi,k) has already been developed and presented in

equation (B.57), then

in(o, . M,,
aiAj (sinz (<Pi,k)) _ 2sin(@i )cos(pin) <M1 % (le_'k) - i3 61,4} (Myi,k)>' (B.73)

2
MZi,k +1 Yik Yik
M,
i,k
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Ai iz . 2Riz i i i Zl 4 .
%(w—WQ a7 01) (Myi,k)) a4
o)+ '
() = (B.74)
J 2R;%sin(g;)cos(pi) [ 1 0 M, @ )
B Mz ’ Myl'ka_AJ'(Mzi'k)_Myikza_Aj(Myi'k) ' Y *A
S G R | )
Observing another term highlighted in a*
e _ZRL-Zsin((pi,k)cos((pi,k) 1 0 ( ) Mz, 0 ( )
M, \? 9A; \ k) oy ZGA Yir) | (B.75)
< ZL,k) +1 ylk Yik
Myi,k

the same adversity observed in equation (B.59) is found.

Manipulating a*, the following simplification is defined

i 2Rizsin(<pi_k)cos(goi_k) i d
at = — o Myl_’ka—Aj(MZi‘k)—MZi'ka—Aj(Myi’k) . (B.76)

Zi,k

By developing the same sub-cases A and B and the same manipulations and

mathematical analyzes, the sensitivity of ¢; ,* can be computed by the following expressions

A +mt? s o
Tt Cutz) A =al g
MRi_k*O 0, lf Aj * Ai
A +mt? 2R;* sin(@y) cos( @) 9 i
o _{( it sin?(g;,) — MR 5 (MyzkaA zlk) Zlka_Aj(MYi,k)>‘ lfAj:Ai]

_(Cik
0A; N 2R % sin(¢; ;) cos(@ir) P .
k_ MRi,/cz My Yik QA; (MZ”‘) ‘ka_Aj(Myi,k) ’ if A # AiJ

J ,_
a_A]- (Ci,kz)

(B.78)

Computation of —— (i), 2 (i), 2 (l), i} ( ) (QJ and - (sz)

04; \4;/)” aa; \a;*

Directly, recalling equations (4.11) for I;, R, and R;, the sensitivities of the other terms

viewed in equation (B.1) are presented.
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(B.79)

~(574)
0 6<4Li2A2> 8le

2 T — .
04; l)_aAj 92

valid only for when A; = A;. Otherwise, such sensitivities are null.
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