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Steel space frames built by tubular elements with thin-wall 
circular cross-section are regularly employed in engineering 
practice. The aim of the research is to formulate and develop an 
algorithm for layout and connections optimization of steel tubular 
space frames subject to multiple load cases and displacement, 
minimum element length and stress constraints, in order to 
provide minimization of manufacturing costs related to material 
and connections. The manufacturing objective function has 
connections cost proportional to the material cost, as a quadratic 
variation between the costs of pinned and fully rigid connections. 
The finite element formulation is developed by the direct 
approach, assuming a linear model of connections with two 
rotational springs at each end acting on the bending planes. 
Considering the theory of von Mises, a failure criterion is 
proposed specifically for the previously defined cross-sectional 
type, forming an expression that accounts for the effect of shear 
forces and allows the determination of the most critical point in 
cross-sections of elements with variable length. As the numerical 
optimization is performed by a gradient-based method, the 
analytical sensitivity analysis is performed, being validated by 
central finite differences. Despite the high number of design 
variables, the proposed optimization problem is able to find 
optimal solutions that simultaneously account for the lowest 
manufacturing cost, based on the best cost-benefit between 
material and connections cost, providing the necessary 
mechanical strength and complying with local stiffness demands. 
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ABSTRACT 

 

Steel space frames built by tubular elements with thin-wall circular cross-section are regularly 

employed in engineering practice. The aim of the research is to formulate and develop an 

algorithm for layout and connections optimization of steel tubular space frames subject to 

multiple load cases and displacement, minimum element length and stress constraints, in order 

to provide minimization of manufacturing costs related to material and connections. The 

manufacturing objective function has connections cost proportional to the material cost, as a 

quadratic variation between the costs of pinned and fully rigid connections. The finite element 

formulation is developed by the direct approach, assuming a linear model of connections with 

two rotational springs at each end acting on the bending planes. Considering the theory of von 

Mises, a failure criterion is proposed specifically for the previously defined cross-sectional type, 

forming an expression that accounts for the effect of shear forces and allows the determination 

of the most critical point in cross-sections of elements with variable length. As the numerical 

optimization is performed by a gradient-based method, the analytical sensitivity analysis is 

performed, being validated by central finite differences. Despite the high number of design 

variables, the proposed optimization problem is able to find optimal solutions that 

simultaneously account for the lowest manufacturing cost, based on the best cost-benefit 

between material and connections cost, providing the necessary mechanical strength and 

complying with local stiffness demands. 

 

Key-words: Optimization, steel space frames, manufacturing costs, linear model of 

connections, failure criterion, gradient-based method.



 
 



RESUMO 

 

Pórticos espaciais de aço construídos por elementos tubulares com seção transversal circular de 

parede fina são estruturas regularmente empregadas na prática de engenharia. O objetivo de 

pesquisa é formular e desenvolver um algoritmo para otimizar layout e conexões de pórticos 

espaciais de aço sujeitos à múltiplos casos de carregamento e restrições de deslocamento, 

comprimento mínimo de elemento e tensão, visando possibilitar a minimização de custos de 

manufatura relativos aos custos de material e conexões. A função objetivo de manufatura possui 

custo de conexões proporcional ao custo de material, baseado em variação quadrática entre os 

custos de conexão rotulada e conexão totalmente rígida. A formulação do elemento finito é 

desenvolvida pelo método direto, assumindo um modelo linear para as conexões com duas 

molas rotacionais em cada extremidade, atuantes nos planos de flexão. Considerando a teoria 

de von Mises, um critério de falha é desenvolvido especificamente para o tipo de seção 

transversal previamente definido, contabilizando o efeito dos esforços cortantes e possibilitando 

a determinação do ponto mais crítico em seções de elementos com comprimento variável. Como 

a otimização é realizada por um método baseado em gradientes, a análise de sensibilidade 

analítica é desenvolvida, sendo validada por diferenças finitas centrais. Apesar da quantidade 

elevada de variáveis de projeto, o problema de otimização proposto possibilita o encontro de 

soluções ótimas capazes de simultaneamente agregar o menor custo de manufatura baseado no 

melhor custo-benefício entre custos de material e conexões, fornecendo a resistência mecânica 

necessária e suprindo demandas locais de rigidez. 

 

Palavras-chave: Otimização, pórticos espaciais de aço, custos de manufatura, modelo linear 

de conexões, critério de falha, método baseado em gradientes.



 
 



List of Figures 

 

 

Figure 1.1 – Examples of (a) flat roof of a supermarket and (b) kart chassis. ......................... 32 

Figure 1.2 – (A) Example of tubular joints with (1,2) bolted endplates, (3a) pinned connection 

by earplates, (4) gusset plate and (5) coverplate and (b) a pinned connection between four 

elements. ................................................................................................................................... 34 

 

Figure 2.1 – Layout complexity of an optimal solution found by GSM approach. ................. 41 

Figure 2.2 – Unsymmetrical truss as optimal solution found in Achtziger (2007). ................. 42 

Figure 2.3 – Problem with overlapping elements in Hagishita and Ohsaki (2009).................. 43 

Figure 2.4 – A study reproduced by Asadpoure et. al. (2015). ................................................ 44 

Figure 2.5 – Case study developed by Havelia (2016). ............................................................ 45 

Figure 2.6 – Steel space truss investigated in Tugilimana et. al. (2018). ................................. 46 

Figure 2.7 – Case study developed by Deb and Gulati (2001). ................................................ 47 

Figure 2.8 – Linear mathematical model vs. experimental curve of typical connections applied 

in the engineering practice. ....................................................................................................... 49 

Figure 2.9 – Linear mathematical model for semi-rigid connections....................................... 50 

Figure 2.10 – Difference between the column rotation and the rotation presented by the frame 

element at the connection. ........................................................................................................ 50 

Figure 2.11 – (a) Fully rigid vs. (b) semi-rigid connection. ..................................................... 51 

Figure 2.12 – Physical meaning of the fixity factor. ................................................................ 52 

Figure 2.13 – Non-linear relationship between rotational stiffness and fixity factor. .............. 53 

Figure 2.14 – Linear variation of the connections cost. ........................................................... 55 

Figure 2.15 – Structural problems treated by Xu and Grierson (1993): (a) a frame with 

recommended semi-rigid connections and (b) a frame with rigid connections as the best solution 

for minimal cost. ....................................................................................................................... 56 

Figure 2.16 – Fourth case studied by Kartal et. al. (2010). ...................................................... 58 

Figure 2.17 – Space frames investigated by Artar and Daloglu (2018). .................................. 58 

Figure 2.18 – Specific quadratic variation adopted by Simões (1996). ................................... 60 

Figure 2.19 – Reference system of Irles and Irles (2001). ....................................................... 65 

 

Figure 3.1 – Nodal parameters of a 3D frame element. ........................................................... 68 



 
 

Figure 3.2 – 3D frame element with semi-rigid connections. ................................................... 69 

Figure 3.3 – Spring for both rotational stiffness in 𝑥෤𝑦෤ and 𝑥෤𝑧̃ planes. ..................................... 69 

Figure 3.4 – Signal convention for the local reference system, the DOF and internal forces in 

𝑥෤𝑦෤ plane. ................................................................................................................................... 70 

Figure 3.5 – Signal convention for the local reference system, the DOF and internal forces in 

𝑥෤𝑧̃ plane. .................................................................................................................................... 70 

Figure 3.6 – Internal bending moments in the (a) 𝑥෤𝑦෤ and (b) 𝑥෤𝑧̃ planes. ................................. 71 

Figure 3.7 – Cases to define the 𝑘௔௕ terms in the 𝑥෤𝑦෤ plane. ..................................................... 72 

Figure 3.8 – Signal convention of the distributed load and consistent nodal loads. ................. 78 

Figure 3.9 – Node with 𝑚-elements connected. ....................................................................... 80 

Figure 3.10 – The constructive scheme for the connection between 𝑚-elements. ................... 80 

Figure 3.11 – A particular case of 𝑚-elements connected to the same joint. ........................... 81 

 

Figure 4.1 – Reference system adopted for the failure criterion formulation. .......................... 87 

Figure 4.2 – Cross-section properties used in the deduction of the normal stress from the 

bending moments. ..................................................................................................................... 89 

Figure 4.3 – Cross-section properties used in the deduction of the shear stress produced by the 

shear forces. .............................................................................................................................. 90 

 

Figure 5.1 – Mathematical pattern defined for the quadratic variations. .................................. 96 

Figure 5.2 – Ranges of pinned and fully rigid connections. ..................................................... 98 

Figure 5.3 – The iterative optimization process of the algorithm. .......................................... 101 

Figure 5.4 – Sensitivity of 𝑚-elements length related to iterative modifications in a given nodal 

coordinate 𝑋∗. ......................................................................................................................... 102 

 

Figure 6.1 – Clamped beam. ................................................................................................... 108 

Figure 6.2 – Numerical results (with the transverse shear stress) vs. analytical results (without 

the transverse shear stress). ..................................................................................................... 109 

Figure 6.3 – Normal, shear and equivalent stresses for lengths of (a) 20 𝑚𝑚 and (b) 

40 𝑚𝑚. .................................................................................................................................... 110 

Figure 6.4 – The 2D optimization problem developed and highlight of the short element with 

the highest shear stress 𝜏௏ೃ
. .................................................................................................... 111 

Figure 6.5 – Frame dome of Pedersen (1973). ........................................................................ 113 



Figure 6.6 – Design variables and displacement constraints applied in LCO process. .......... 114 

Figure 6.7 – Convergence analysis of the stress calculation at (a) the element 39, cross-section 

1, and (b) the element 22, cross-section 3. ............................................................................ 115 

Figure 6.8 – (a) The optimization process and final solution and (b) the fully stressed (red) 

elements of study (A). ............................................................................................................ 116 

Figure 6.9 – Results about (a) convergence diagram of the objective function and (b) diagram 

of the most stressed element at each iteration. ....................................................................... 117 

Figure 6.10 – Comparison between the convergence of the objective function..................... 118 

Figure 6.11 – The optimal solution when all connections are pinned, study (E), with the 36 fully 

stressed elements. ................................................................................................................... 119 

Figure 6.12 – The physical behavior of the optimization process. ......................................... 120 

Figure 6.13 – Comparison between the optimal solutions of studies (E) and LCO and the 

optimal solutions of the previous studies (A-D). .................................................................... 122 

Figure 6.14 – Results about convergence diagram of the actual study for (a) material cost, (b) 

connections cost, (c) manufacturing cost and (d) diagram of the most stressed element at each 

iteration. .................................................................................................................................. 123 

Figure 6.15 – (a) The optimal solution and the highlight of elements and specific locals with 

semi-rigid connections (listed for further analysis) and (b) the fully stressed elements. ....... 124 

Figure 6.16 – Convergence diagram for (a) material cost, (b) connections cost, (c) 

manufacturing cost, (d) most stressed element and (e) the constrained DOF at each 

iteration. .................................................................................................................................. 126 

Figure 6.17 – Cantilever beam of Pedersen and Nielsen (2003). ........................................... 129 

Figure 6.18 – Load cases. ....................................................................................................... 130 

Figure 6.19 – Design variables and displacement constraint assumed................................... 131 

Figure 6.20 – (a) Initial structure and (b) optimal solution. ................................................... 132 

Figure 6.21 – Results about convergence diagram of the actual study for (a) manufacturing cost, 

(b) diagram of the most stressed element at each iteration and (c) diagram of the constrained 

DOF at each iteration. ............................................................................................................. 134 

Figure 6.22 – (a) The behavior of the LCO process and (b) the optimal solution, the short 

element and the highlight of the element with semi-rigid connections. ................................. 135 

Figure 6.23 – Results about convergence diagram of the actual study for (a) manufacturing cost, 

(b) diagram of the most stressed element and (c) diagram of the constrained DOF at each 

iteration. .................................................................................................................................. 137 



 
 

Figure 6.24 – The elements with the highest shear stresses 𝜏௏ೃ
 produced by the resulting shear 

force. ....................................................................................................................................... 139 

Figure 6.25 – Summary of results about the convergence diagrams and the optimal solution of 

20-60%. .................................................................................................................................. 140 

Figure 6.26 – Summary of results about the convergence diagrams and the optimal solution of 

20-30%. .................................................................................................................................. 141 

Figure 6.27 – Summary of results about the convergence diagrams and the optimal solution of 

45-60%. .................................................................................................................................. 143 

Figure 6.28 – Mobile crane of Apostol et. al. (1995). ............................................................ 146 

Figure 6.29 – Multiple load cases. .......................................................................................... 147 

Figure 6.30 – Displacements constraints and design variables. .............................................. 147 

Figure 6.31 – Optimal solutions and semi-rigid connections of the (a) SCO and (b) LCO 

processes. ................................................................................................................................ 151 

Figure 6.32 – Results about the convergence diagram of the SCO and LCO studies for (a) 

manufacturing cost and (b) diagram of the most stressed element at each iteration. ............. 152 

Figure 6.33 – Short elements at the top of the roof. ................................................................ 153 

 

Figure A.1 – Available items of the code showed by sections (a), (b), (c) and (d). ............... 169 



List of Tables 

 

 

Table 2.1 – Author’s and method’s formulations. .................................................................... 49 

 

Table 3.1 – Necessary boundary conditions in 𝑥෤𝑦෤ plane.......................................................... 73 

Table 3.2 – Necessary boundary conditions in 𝑥෤𝑧̃ plane. ......................................................... 73 

 

Table 6.1 – Connectivity of the structure. .............................................................................. 113 

Table 6.2 – Optimal joint positions. ....................................................................................... 121 

Table 6.3 – Comparison of optimal areas related to the two studies of LCO, without (LCOଵ) and 

with (LCOଶ) displacement constraints. The higher cross-section areas are highlighted. ........ 127 

Table 6.4 – Semi-rigid connections of the optimal solution................................................... 128 

Table 6.5 – Connectivity of the structure. .............................................................................. 129 

Table 6.6 – Multiple load condition. ...................................................................................... 130 

Table 6.7 – Optimal joint positions. ....................................................................................... 136 

Table 6.8 – Comparison of optimal areas related to the SCO and LCO processes. The higher 

cross-section areas are highlighted. ........................................................................................ 136 

Table 6.9 – Semi-rigid connections of the optimal solution for 20-60%. ............................. 140 

Table 6.10 – Semi-rigid connections of the optimal solution for 20-30%. ........................... 141 

Table 6.11 – Semi-rigid connections of the optimal solution for 45-60%. ........................... 142 

Table 6.12 – Comparison between the costs of the optimal solutions. .................................. 143 

Table 6.13 – Optimal areas and joint positions of the three LCO processes. ......................... 144 

Table 6.14 – Connectivity of the structure. ............................................................................ 146 

Table 6.15 – Multiple load cases. ........................................................................................... 146 

Table 6.16 – Data of semi-rigid connections of the SCO process. ......................................... 149 

Table 6.17 – Data of semi-rigid connections of the LCO process. ........................................ 150 

Table 6.18 – Optimal joint positions of the LCO process. ..................................................... 150 

Table 6.19 – Comparison of optimal areas related to the SCO and LCO processes. The higher 

cross-section areas are highlighted. ........................................................................................ 150 

Table 6.20 – Comparison between the costs of the optimal solutions. .................................. 153 



 
 



List of Abbreviations 

 

 

LP   Linear programming 

FEM   Finite element method 

GSM   Ground structure method 

SLP   Sequential linear programming 

SQP   Sequential quadratic programming 

FEA   Finite element analysis 

DOF   Degree of freedom 

AISC   American Institute of Steel Construction 

GC   Global connector  

LO   Layout optimization 

SCO   Sizing and connections optimization 

LCO   Layout and connections optimization 

LU   Matrix decomposition 

CFD   Central finite difference 

IMSL   Numerical library 

DDLPRS Fortran subroutine to solve LP problems available on the IMSL 

Numerical Library 

NLPQLP Fortran subroutine for the SQP method developed and provided by 

Schittkowski (2001) 

 

 



 
 



List of Symbols 

 

 

𝑎   Generic term of the element stiffness matrix 

𝐴   Cross-section area 

𝐴̅ᇱ   Cross-section area above the 𝑧ᇱ-axis (arc) 

𝐴𝐶   Percentage of additional cost of connections 

𝐴𝐶௣   Percentage of additional cost of a pinned connection 

𝐴𝐶௥   Percentage of additional cost of a fully rigid connection 

𝑏   Generic term of the element stiffness matrix 

𝐵   Generic term for any function of the optimization problem 

𝑐   Index of rotational springs in a given element 

𝑐̅   Perpendicular distance of 𝑀ோ to the angular position 𝜃 

𝐶ଵ and 𝐶ଶ  Unknown variables of the elastic line 𝑣(𝑥෤) 

𝑐ெ   Cost per material 

𝑐ௌ   Cost per connection 

𝑑   Index for displacement constraints 

𝑑ᇱ   Index for the expressions 𝑓௖ 

𝐸   Young’s modulus 

𝐸𝐼   Beam stiffness 

𝑭   Load vector 

𝐹ଵ, 𝐹ଶ, 𝐹ଷ, 𝐹ସ and 𝐹ହ Different types of loads 

𝑓(𝜃)   von Mises stress calculation 

𝑓௖ Expressions as a function of the fixity factors of the element stiffness 

matrix 

𝐺   Shear modulus 

𝐺𝐽   Beam torsional stiffness 

𝑖   Index for elements 

𝑖𝑡𝑒𝑟   Total number of iterations 

𝐼   Inertia moment 

𝐼௬   Inertia moment around 𝑦෤-axis 

𝐼௭   Inertia moment around 𝑧̃-axis 



 
 

𝑗   Index for design variables 

𝐽   Polar moment of inertia 

𝑘   Index of cross-sections along the element length 

𝑘௔,௕   Generic term of the element stiffness matrix 

𝐊   Global stiffness matrix 

𝐊𝐛𝐨   Global stiffness matrix of fully rigid 3D frame elements 

𝐊𝐆   Global stiffness matrix of the element 

𝐊𝐋   Local stiffness matrix of the element 

𝐊𝐬   Overall contribution of the rotational stiffness of all joints 

𝐾ோ   Rotational stiffness 

𝐾௥௬
   Rotational stiffness of the rotational spring in 𝑥෤𝑧̃-plane 

𝐾௥௭
   Rotational stiffness of the rotational spring in 𝑥෤𝑦෤-plane 

𝐿𝐶   Index related to the number of load cases 

𝑙௠   Negligible length of rotational springs 

𝐿   Element length 

𝐿௖௥   Critical length 

𝐿௅   Lower bound for constrained element lengths 

𝑙௢௫෤, 𝑚௢௫෤ and 𝑛௢௫෤ Direction cosines of the local 𝑥෤-axis 

𝑙௢௬෤ , 𝑚௢௬෤  and 𝑛௢௬෤  Direction cosines of the local 𝑦෤-axis 

𝑙௢௭෤, 𝑚௢௭෤ and 𝑛௢௭෤ Direction cosines of the local 𝑧̃-axis 

𝑚   Index for elements connected to a same node 

𝑀(𝑥෤) Generic term for the distribution of internal bending moment along the 

element length 

𝑀௢௬(𝑥෤) Distribution of internal bending moment 𝑀௬ along the element length 

𝑀௢௭(𝑥෤) Distribution of internal bending moment 𝑀௭ along the element length 

𝑀ଶ௬ Term of the sum of the bending moments around node 2 in 𝑥෤𝑧̃-plane 

𝑀ଶ௭ Term of the sum of the bending moments around node 2 in 𝑥෤𝑦෤-plane 

𝑀௫   Torsion 

𝑀௫௔௟௪
   Allowable value of torsion 

𝑀௬   Bending moment in 𝑥෤𝑧̃-plane 

𝑀௬ଵ
   Bending moment in 𝑥෤𝑧̃-plane of node 1 

𝑀௬ଶ
   Bending moment in 𝑥෤𝑧̃-plane of node 2 



𝑀௬௔௟௪
   Allowable value of bending moment in 𝑥෤𝑧̃-plane 

𝑀௭   Bending moment in 𝑥෤𝑦෤-plane 

𝑀௭ଵ
   Bending moment in 𝑥෤𝑦෤-plane of node 1 

𝑀௭ଶ
   Bending moment in 𝑥෤𝑦෤-plane of node 2 

𝑀௭௔௟௪
   Allowable value of bending moment in 𝑥෤𝑦෤-plane 

𝑀ோ   Resulting bending moment 

𝑛   Index for iterations 

𝑛𝑑𝑣   Total number of design variables 

𝑛𝑒𝑐   Total number of elements that have a given nodal coordinate 

𝑛𝑒𝑙   Total number of elements 

𝐍   Matrix of interpolation functions 

𝑁௩ೣ೚೥   Interpolation functions in 𝑥෤𝑧̃-plane (four terms) 

𝑁௩ೣ೚೤   Interpolation functions in 𝑥෤𝑦෤-plane (four terms) 

𝑁௕ೣ   Interpolation functions of translation in 𝑥෤-axis (two terms) 

𝑁௧ೣ   Interpolation functions of rotation in 𝑦෤𝑧̃-plane (two terms) 

𝑁௫   Axial force 

𝑁௫௔௟௪
   Allowable value of axial force 

𝑜   Generic term of the element stiffness matrix 

𝑷   Vector of expression that represent any load distribution 

𝒑𝑬   Vector of consistent nodal loads in the local reference system 

𝒑𝑬𝑮   Vector of consistent nodal loads in the global reference system 

𝑝𝑒   Perturbation factor of the CFD 

𝑄   Static moment 

𝑅   Outer radius 

𝑅௠   Midline radius 

𝑡   Thin-wall thickness 

𝐓   Transformation matrix 

𝑢   Translation in 𝑥-axis 

𝑢ଵ   Translation in 𝑥෤-axis of node 1 

𝑢ଶ   Translation in 𝑥෤-axis of node 2 

𝒖   Nodal displacements in the local reference system 

𝑼   Global nodal displacements 

𝑼𝒂   Vector of approximate displacements 



 
 

𝑈௔
௕ೣ

   Approximation of translation in 𝑥෤-axis 

𝑈௔
௩ೣ೚೤

   Approximation of translation in 𝑦෤-axis 

𝑈௔
௩ೣ೚೥

   Approximation of translation in 𝑧̃-axis 

𝑈௔
௧ೣ

   Approximation of rotation in 𝑦෤𝑧̃-plane 

𝒖𝒃𝒙
   Vector with local axial displacements of the nodes 

𝒖𝒕𝒙
   Vector with local rotations in 𝑦෤𝑧̃-plane of the nodes 

𝒖𝒗𝒙𝒐𝒚
   Vector with local translation displacements in 𝑦෤-axis of the nodes 

𝒖𝒗𝒙𝒐𝒛
   Vector with local translation displacements in 𝑧̃-axis of the nodes 

𝑈௅ and 𝑈௎  Lower and upper bounds for constrained displacements 

𝑣   Translation in 𝑦-axis 

𝑣ଵ   Translation in 𝑦෤-axis of node 1 

𝑣ଶ   Translation in 𝑦෤-axis of node 2 

𝑣(𝑥෤) Distribution of translation in 𝑦෤-axis along the element length (elastic line) 

𝒗𝒑   Vector of design variables 

𝑣௣௅
 and 𝑣௣௎

  Lower and upper bounds of a given design variable 

𝑉଴, 𝑉ଵ and 𝑉ଶ  Coefficients of linear and quadratic variation of connections cost 

𝑉௬   Shear force in 𝑦෤-direction 

𝑉௭   Shear force in 𝑧̃-direction 

𝑉௬ଵ
   Shear force in 𝑦෤-direction of node 1 

𝑉௬ଶ
   Shear force in 𝑦෤-direction of node 2 

𝑉௭ଵ
   Shear force in 𝑧̃-direction of node 1 

𝑉௭ଶ
   Shear force in 𝑧̃-direction of node 2 

𝑉௬(𝑥෤) Distribution of internal shear force 𝑉௬ along the element length 

𝑉௭(𝑥෤)   Distribution of internal shear force 𝑉௭ along the element length 

𝑉ோ   Resulting shear force 

𝑉ோ
௬ᇲ

   Component of 𝑉ோ in the auxiliary reference system (𝑦ᇱ) 

𝑉ோ
௭ᇲ

   Component of 𝑉ோ in the auxiliary reference system (𝑧ᇱ) 

𝑉௬௔௟௪
   Allowable value of shear force in 𝑦෤-direction 

𝑉௭௔௟௪
   Allowable value of shear force in 𝑧̃-direction 

𝑤   Translation in 𝑧-axis 

𝑤ଵ   Translation in 𝑧̃-axis of node 1 



𝑤ଶ   Translation in 𝑧̃-axis of node 2 

𝑤(𝑥෤) Distribution of translation in 𝑧̃-axis along the element length (elastic line) 

𝑤ᇱ   Magnitude of a generic uniformly load distribution 

𝑤௬෤    Magnitude of the uniformly load distribution in 𝑦෤-direction 

𝑤௭෤   Magnitude of the uniformly load distribution in 𝑧̃-direction 

𝑊   Manufacturing objective function (cost) 

𝑊ௌி   Initial manufacturing cost 

𝑊ଵ   Material cost 

𝑊ଶ   Connections cost 

𝑋∗   Generic representation of joint positions 

𝑋, 𝑌 and 𝑍   Global nodal coordinates of joints 

𝑥෤, 𝑦෤ and 𝑧̃  Coordinates related to the local reference system 

𝑥, 𝑦 and 𝑧  Coordinates related to the global reference system 

𝑥෤𝑦෤ and 𝑥෤𝑧̃  Bending planes 

𝑦෤𝑧̃   Torsional plane 

𝑦തᇱ   Distance of the 𝑧ᇱ-axis to the centroid of the arc 

0   Index for current design point 

𝜃 Angular position in the outer radius of a circular thin-wall cross-section 

𝜃௫   Rotation in 𝑦෤𝑧̃-plane 

𝜃௬   Rotation in 𝑥෤𝑧̃-plane 

𝜃௭   Rotation in 𝑥෤𝑦෤-plane 

𝜃௭(𝑥෤) Distribution of internal rotation in 𝑥෤𝑦෤-plane along the element length 

𝜃ଵ௫   Rotation in 𝑦෤𝑧̃-plane of node 1 

𝜃ଶ௫   Rotation in 𝑦෤𝑧̃-plane of node 2 

𝜃ଵ௬   Rotation in 𝑥෤𝑧̃-plane of node 1 

𝜃ଶ௬   Rotation in 𝑥෤𝑧̃-plane of node 2 

𝜃ଵ௭   Rotation in 𝑥෤𝑦෤-plane of node 1 

𝜃ଶ௭   Rotation in 𝑥෤𝑦෤-plane of node 2 

𝜃஼    Column rotation 

𝜃ி    Frame rotation 

𝜙   Rotation due to connection flexibility 

𝜙ଵ, 𝜙ଶ, 𝜙ଷ and 𝜙ସ Rotation due to connection flexibility of case 1 for the formulation of the 

element stiffness matrix 



 
 

𝜙ହ, 𝜙଺, 𝜙଻ and 𝜙଼ Rotation due to connection flexibility of case 2 for the formulation of the 

element stiffness matrix 

𝜙ଽ, 𝜙ଵ଴, 𝜙ଵଵ and 𝜙ଵଶ Rotation due to connection flexibility of case 3 for the formulation 

of the element stiffness matrix 

𝜙ଵଷ, 𝜙ଵସ, 𝜙ଵହ and 𝜙ଵ଺ Rotation due to connection flexibility of case 4 for the formulation 

of the element stiffness matrix 

𝛾௬௭   Angular deformation 

𝛾ெ   Angle between the bending moments 𝑀௬ and 𝑀௭ 

𝛾௏   Angle between the shear forces 𝑉௬ and 𝑉௭ 

𝜎   Multiaxial stress state 

𝜎௘   Yield stress 

𝜎௘௤   von Mises equivalent stress 

𝜎௫௫, 𝜎௬௬ and 𝜎௭௭ Components of normal stress 

𝜎௫௫௠á௫
   Maximum normal stress 

𝜎ேೣ
   Normal stress produced by the axial force 

𝜎ெ೤
   Normal stress produced by the bending moment in 𝑥෤𝑧̃-plane 

𝜎ெ೥
   Normal stress produced by the bending moment in 𝑥෤𝑦෤-plane 

𝜎ெೃ
   Normal stress produced by 𝑀ோ 

𝜏௫௬, 𝜏௫௭ and 𝜏௬௭ Components of shear stress 

𝜏௬௭௠á௫
   Maximum shear stress 

𝜏ெೣ
   Shear stress produced by the torsion 

𝜏௏೥
   Shear stress produced by the shear force in 𝑧̃-direction 

𝜏௏೤
   Shear stress produced by the shear force in 𝑦෤-direction 

𝜏௏ೃ
   Shear stress produced by 𝑉ோ 

𝜏
௏ೃ

೤ᇲ    Shear stress produced by 𝑉ோ
௬ᇲ

 

𝜏
௏ೃ

೥ᇲ    Shear stress produced by 𝑉ோ
௭ᇲ

 

𝜁 Correction factor to impose the shear effect in deflection 

𝜁௬ Correction factor to impose the shear effect in the deflection of 𝑥෤𝑧̃-plane  

𝜁௭ Correction factor to impose the shear effect in the deflection of 𝑥෤𝑦෤-plane 

𝛼   Fixity factor 

𝜌   Specific mass 



𝛀   Sub-matrix of the direction cosines 

𝜀௫௬   Axial strain 

𝜑   Angle between 𝑀ோ and the outer radius line which pass though 𝜃 

𝜆   Angle related to the auxiliary reference system 𝑦ᇱ𝑧ᇱ 

∆𝑣௣   Stepsize of a given design variable 

𝜉   Percentage of the relationship between 𝜎௫௫௠á௫
 and 𝜏௬௭௠á௫

  

𝜇   Parameter of the active set strategy on constraints 
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Chapter 1 

 

Introduction 
 

 

Over the years, due to the scarcity of natural resources and the increased competitiveness 

of the global market, engineers have been showing concern and facing the challenge of 

designing reliable structures with the lowest manufacturing cost (SANT’ANNA et. al., 2001). 

Historically, the interest in structural optimization began in the mid-19th century with 

the study of Maxwell (1870) and years later, at the beginning of the 20th century with Michell 

(1904). Both studies investigate analytically the optimal layout of structures, subject to a given 

load case, in order to provide the lowest material volume. 

From there, the development of structural design has become an engineering activity 

that has been progressively improved by the use of mathematical tools, integrated to the 

computational environment, capable of automating the repetitive alteration of the available 

design parameters to define the best technical specification. 

In 50’s decade, Livesley (1956) introduced the linear programming (LP) technique on 

design of frames, a numerical method applicable on problems which the objective and design 

constraints functions appear as linear functions of the design variables (RAO, 2009). Schmit 

(1960 apud Muñoz-Rojas, 2013) presented the procedure of coupling non-linear optimization 

techniques with the structural analysis using the finite element method (FEM), providing the 

possibility to find optimal solutions in structural problems with a complexity not treated until 

then. Thereafter, structural optimization procedures have been extensively developed and 

investigated, due to the increasing demand for structures that respect design requirements 

having feasible costs. 

In the context of sizing, where cross-section areas are design variables, Dorn et. al. 

(1964) developed the ground structure method (GSM), a topology optimization method that 

aims to minimize the material cost from a dense initial mesh (discrete model) that fills the space 

in which the structure may exist. 

Since layout is a constructive aspect that influences the mechanical behavior of a 

structure, Pedersen (1972) proposed the possibility to optimize layout of structures through a 
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gradient-based method called by sequential linear programming (SLP), using cross-section 

areas and joint positions as design variables. More recently, also using a gradient-based method, 

Sergeyev and Pedersen (1996) presented the layout optimization of steel space frames with 

tubular thin-wall elements subject to multiple load cases and displacement and stress 

constraints. 

The civil construction makes use of tubular thin-wall elements in several types of steel 

space frames such as industrial sheds, catwalks, offshore structures and flat roof of stadiums, 

road terminals and airports. The automotive industry also applies this type of structural element, 

usually in chassis and protective cages of auto racing vehicles such as kart and Nascar. The Fig. 

1.1 shows some of these applications. 

 

Figure 1.1 – Examples of (a) flat roof of a supermarket and (b) kart chassis. 

   

                                   (a)                                                                       (b) 

Source: Author’s production. 

 

At these engineering sectors, the typical static design requirements are structural 

integrity and stiffness. In addition, another design requirement of extreme importance to ensure 

that a structure does not present catastrophic failure is the structural stability. In this context, 

layout optimization is a useful procedure for finding optimal solutions that ensure these 

requirements with manufacturing cost savings. However, local and global buckling can occur 

not only due to the reduction of cross-sectional size but also to the appearance of long elements 

(slender ratio). 

Generally, according to Santos (1977), designers applying tubular elements because of 

their aesthetic shape and the mechanical advantage of building joints between two or more 



33 
 

elements. This type of element also provides other mechanical advantages such as high torsion 

resistance, higher natural frequency and less wind resistance. However, there is a downside due 

to the cost being higher than the cost of rolled sections. 

A common practice adopted in most cases of design of frames is to neglect the effect of 

the shear forces. However, when layout optimization is performed, it is important to have a 

failure criterion suitable not only to the cross-sectional type but also considering the slender 

ratio of the element. The joint positions change can produce elements with short length, in 

which case this negligence may not be acceptable. 

Sergeyev and Pedersen (1996) proposed a stress calculation based on the distribution of 

normal and shear stresses as a function of all the internal forces of the 3D frame element. 

However, since the location of the critical point of equivalent stress depends on both the cross-

sectional local coordinates and the local longitudinal coordinate, this process can be 

computationally intensive. 

To avoid complexity and computational cost, Carniel et. al. (2008) also optimized layout 

of steel tubular space frames and proposed an alternative failure criterion given by the 

normalization of the internal forces in relation to the respective maximum forces. However, the 

criterion assumes the worst case of a combined request of internal forces, where the effect of 

all the stresses produced intensifies. The conservatism of this strategy can cause an oversizing 

of the structure. Thus, it is evident the need to combine computational efficiency and 

effectiveness in a stress-based failure criterion to optimize layout of this type of structure. 

Returning to the scope of costs, although extensively investigated, optimization 

procedures that counts only on the mass minimization may be insufficient for certain 

applications. Two optimal structures with the same mass may present layouts with different 

levels of complexity and mainly distinct manufacturing costs. The number of joints, elements 

and layout complexity are particularities capable of making the structure unfeasible not only 

due to the cost required for the manufacture procedure related to the connections, but also 

because of the difficulty and consequent time required for manufacturing (ASADPOURE et. 

al., 2015). 

Recently, Asadpoure et. al. (2015) proposed a topology optimization process in discrete 

models where the objective function incorporates the minimization of two independent types 

of manufacturing cost: material and connections costs. By varying the difference between these 

two types of cost, the study showed that the approach enables the determination of compromise 

solutions through the controlled removal of elements (and consequently connections). The 
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higher the cost of connections, the greater the removal of elements/connections and the lower 

the final complexity of the structure. 

On the construction point of view, it is well known that bolted and welded connections 

are widely used in joints of tubular elements. As can be seen in Vigh and Dunai (2004), several 

types of connections can be used, and there are cases where bolts and welds are used together 

through secondary components, which makes it difficult to characterize their structural 

behavior. The cost of any connection is directly related to the type and quantity of material and 

the manufacturing process required. Figs. 1.2(a-b) show some practical examples of joints. 

 

Figure 1.2 – (a) Example of tubular joints with (1,2) bolted endplates, (3a) pinned connection 

by earplates, (4) gusset plate, (5) coverplate and (b) a pinned connection between four elements. 

        

                                 (a)                                                                       (b) 

Source: Vigh and Dunai (2004) and Ghasemi et. al. (2010). 

 

In preliminary stages of structural design, in order to simplify the finite element analysis 

(FEA), another common practice is to idealize that all the connections between column-base, 

beam-to-column or beam-to-beam members are either perfectly pinned or fully rigid. However, 

as already commented, this is not an appropriate approach because each type of connection has 

its own mechanical behavior. Also, several experimental investigations proved that pinned 

connections have rotational stiffness and fully rigid connections show some degree of flexibility 
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(CHEN, 2000). Thus, to avoid an inconsistent prediction of structural responses, it is important 

to develop and apply a physical and mathematical model for connections. 

Monforton (1962) developed a formulation for 3D frame elements accounting the effect 

of semi-rigid connections through a model with rotational springs within the two bending 

planes. The torsional flexibility was also addressed, but through a different approach. However, 

none of the case studies evaluated by the author consider more than one element with semi-

rigid connection at the same joint. In fact, during the development of this research, only in 

Kartal et. al. (2010) was found an investigation about the constructive concept of two or more 

elements connected to the same joint, but within a case study of planar frame (i.e. coplanar 

elements). 

Xu and Grierson (1993) and Simões (1996) investigated the effects caused by the 

imposition of semi-rigid connections as design variables in structural optimization of planar 

frames. The objective functions stated by the authors also accounts for material and connection 

costs, but different from what is proposed in Asadpoure et. al. (2015), the connections cost of 

a given element is related to their stiffness and is proportional to the material cost. Comparing 

with processes where fixed fully rigid connections were assumed, these authors demonstrated 

that better optimal solutions can be found when semi-rigid connections are considered. Xu and 

Grierson (1993) also observed different performances of cost minimization when structures are 

subjected to displacement constraints and external loads from different directions. However, 

again no research found has addressed case studies with two or more elements connected to the 

same joint. 

Most researches about optimization of frames with semi-rigid connections has focused 

on procedures based on heuristic methods (exploratory search to found the optimal solution), 

with sizing optimization of planar frames through discrete design variables consistent with 

cross-section areas of commercial profiles and experimentally characterized connections. To 

the author’s knowledge, no research deals with thin-wall tubular elements and the constructive 

concept of two or more non-coplanar elements connected to the same joint. Therefore, an 

important contribution of this research work is precisely to enable simultaneous optimization 

of layout and connections of steel tubular space frames with more complex joints through any 

gradient-based method. 

Taking into account gradient-based methods, none of the research found addresses 

optimization of space frames with semi-rigid connections. Thus, through own procedure to 

impose the effect of semi-rigid connections at 3D frame elements, this work aims to extend the 

two-dimensional formulation of the objective function proposed by Simões (1996). Despite 
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having developed a formulation for 3D frame element with rotational stiffness in the three 

planes of rotation, Monforton (1962) states that in practice it is feasible to assume infinite 

stiffness for the torsional degree of freedom (DOF). Therefore, the formulation of this work 

focuses only in the semi-rigidity of the two orthogonal bending planes, while the torsional 

stiffness is assumed as fully rigid. 

Based on steel buildings with commercial profiles different of tubular elements, in the 

proposals of Xu and Grierson (1993) and Simões (1996) the additional cost of a pinned 

connection is always lower than that of a fully rigid connection, and the cost of an intermediate 

semi-rigid connection is given by linear and quadratic variations between these two connection 

cost, respectively. The extreme costs of pinned and fully rigid connections are based on 

published data’s (not found). For simplicity, this work also assumes this type of range of 

connections cost, but proposing a mathematical procedure to determine a behaved curve for the 

quadratic variation. However, it should be noted that the cost of any connection depends not 

only on the type of the cross-section of the connected elements, but also on the amount of 

material required and the complexity of the manufacturing process. Therefore, perhaps this 

assumption does not cover very well connections of tubular elements and different types of 

space frames constructions. Unfortunately, no published data was found for tubular elements. 

Solution techniques based on gradient-based methods have been considered not very 

efficient for later technical specifications of large scale structures (HAYALIOGLU; 

DEGERTEKIN, 2005). A discrete solution can be generated from the continuous solution by 

approximation techniques (HAVELIA, 2016), but Camp et. al. (1998) observed that optimizing 

with continuous design variables can cause optimal solutions with less quality or even infeasible 

due to construction constraints found in regulatory standards. Despite the potential decrease on 

the quality of the optimal solution, an advantage of deal with structures build by steel tubular 

elements is that the optimal continuous solution is easily extrapolated to a very close discrete 

solution, being important only to check later that the extrapolated solution continues to respect 

all the design constraints. 

 

1.1 Objectives 

 

The main objective of this research work is to propose a new approach to optimize 

layout and connections of steel tubular space frames through any gradient-based method. The 

optimization problem aims to minimize manufacturing costs related to material and 
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connections, with cross-section areas, joint positions and connections stiffness as design 

variables, subject to multiple load cases and respecting displacement, minimum element length 

and stress constraints. 

The optimization procedure must be capable of identifying competitive design solutions 

with continuous design variables that can be later extrapolated to a technical specification, 

simultaneously evaluating stiffness, mechanical strength and manufacturing costs without 

neglect the effect of connections and transverse shear stresses and releasing the existence of 

joints with more complex constructive concept. 

Based on the von Mises theory, the goal is to develop a new procedure to evaluate stress 

in 3D frame elements with thin-wall circular cross-section area and variable length as a function 

of the internal forces and geometric properties, accounting the transverse shear effect and 

determining the critical point of each cross-section analyzed. 

Layout optimization might lead to slender elements subject to the occurrence of local 

and global buckling failures. For this reason, to apply stability constraints is essential to ensure 

structural reliability at the optimal solutions. However, as a primary approach, this aspect is not 

included in the scope of the research. 

 

1.2 Outline 

 

The research work consists of seven chapters organized as follows: 

 

 Chapter 1 (Introduction): after a briefly contextualization of the research field 

and motivations, the objectives and limitations of the research proposal are presented. 

 Chapter 2 (Literature Review): this chapter presents the main contributions 

correlated with structural optimization of structures, application of semi-rigid 

connections in FEA and optimization problems and, finally, failure criteria, providing 

the basis for the further formulations and implementation to be developed. Also, it is 

important for the understanding of the environment in which the desired contribution is 

inserted. 

 Chapter 3 (Formulation of the Semi-Rigid Frame Element): in order to add 

the effect of semi-rigid connections, the stiffness matrix of the 3D frame element is 

formulated using the direct method, considering connections with rotational springs 
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with respect to two orthogonal bending planes. Then, the procedure to calculate the 

internal forces is presented. 

 Chapter 4 (Failure Criterion): this section presents one of the central 

contributions of this work. A novel procedure for calculating the von Mises failure 

criterion taking into consideration the usually neglected transverse shear contributions 

is developed for tubular elements. This way the criterion can be applied not only to long 

elements but also to moderately short ones. 

 Chapter 5 (Optimization Problem): the proposed optimization problem to 

minimize manufacturing costs is stated, providing a new approach for simultaneously 

optimizing layout and connections of steel space frames. Then, the most pertinent 

features and details about the iterative process of the chosen gradient-based method are 

presented. Thereafter, the sensitivity analysis of the objective function and design 

constraints is performed analytically. As the length of the elements varies during the 

optimization process, the failure criterion developed in Chapter 4 becomes important. 

 Chapter 6 (Results and Discussion): investigations are carried out regarding 

the structural behavior and the optimal solutions obtained by space frames with semi-

rigid connections, comparisons between different optimization procedures and the 

specific failure criterion. 

 Chapter 7 (Conclusions): recalling the objectives, developed formulations and 

obtained results, final conclusions regarding the contribution achieved and suggestions 

for future works are presented. 
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Chapter 2 

 

Literature Review 
 

 

 

The field of structural optimization in discrete models can be decomposed into three 

categories: sizing, shape and topology optimization. While sizing optimization deals with 

geometric parameters of the elements (usually cross-section areas), shape optimization of 

structures deals with the location of joints and topology optimization modifies the quantity and 

connectivity of the elements (KICINGER et. al., 2005). In order to clarify the term used 

throughout this research work, layout optimization incorporates sizing and shape optimization, 

i.e. cross-section areas and joint positions as design variables. Furthermore, when semi-rigid 

connections are available, parameters associated with the rotational stiffness level of the 

connections may be introduced as design variables. 

Basically, the sequence of engineering activities related to the design of a structure is 

given by: definition of the topology based on functional requirements, technical experience and 

predicted architecture, definition of the layout concept and calculation of dimensional 

parameters. Analyzing individually, while the first two activities of topology and layout 

influence significantly in the structural behavior, the sizing is the one that least impacts 

(HAVELIA, 2016). However, it is important to note that both categories of optimization are 

highly interdependent. When topology and/or layout changes are made, the distribution of 

internal forces also changes, which impacts on the later sizing (ROZVANY, 1992). 

Proceeding separately with the different types of optimizations facilitates the numerical 

process but generally achieves sub-optimal solutions (ROZVANY et. al., 1995). When 

compared to layout or topology optimization, sizing optimization produces less impact on final 

cost and structural performance (LEE et. al., 2014). 

In the next sections, studies that show different types of costs to build a structure are 

presented. Then, contributions in the area of topology optimization are presented, since the 

researches aggregates aspects related to minimization of manufacturing costs, use and behavior 
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of different types of approaches (sizing and layout) inside topology optimization, characteristics 

of optimal solutions and the effect of applying stability constraints. 

 

2.1 Costs for Building Structures 

 

Optimization problems for mass minimization of structures subject to displacement and 

stress constraints has been extensively investigated since a long time, mainly through the 

application of gradient-based methods within sizing or layout approaches. For example, see the 

works of Moses and Onoda (1969), Pedersen (1972), Pedersen and Jøgersen (1984), Yoshida 

and Vanderplaats (1988), Sergeyev and Pedersen (1996) and Sergeyev and Mróz (2000), 

Pedersen and Nielsen (2003), Sant’Anna et. al. (2001) and Carniel et. al. (2008). However, this 

procedure is a useful procedure to be applied only at initial stages of design, since there are 

other factors that directly influence in the final cost to build any structure (LIVESLEY, 1956). 

In recent decades, while material cost has remained almost constant, other types of costs 

in terms of manufacturing and erection processes of the elements and their connections have 

increased (STEENHUIS et. al., 1997). 

The total cost can be measured from the material acquisition, depending on the type and 

size of the cross-section area, quantity of material required (related to the element size) and 

market conditions (HAVELIA, 2016), up to costs that vary according to the quantity of 

connections and even the complexity of the layout, which can make the manufacturing process 

more difficult and expensive (ASADPOURE et. al., 2015).  

Depending on construction features related to the type, size and geometry of the 

elements, the connections cost can vary significantly. For example, according to Havelia 

(2016), is common to see steel frames that have column members with continuous length 

through joints related to beam connections, i.e. it is not necessary to account the connections 

between the column members in FEA and optimization. 

In this context, an accurate cost estimation is fundamental to design economical 

structures (ALI et. al., 2009). Ali et. al. (2009) and Havelia (2016), for example, assume several 

factors and sub-costs related to the costs of material, manufacturing, foundation and erection 

procedures. A similar concerning can be seen in Hasançebi (2017), where the objective function 

was formulated as a summation of five items: the material of elements, material and 

manufacturing of semi-rigid connections, transportation, erection and extra costs. Regarding 

manufacturing of connections, they included the costs of necessary materials for welding, 
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bolting, stiffeners and plates and costs of welding and hole forming process. The extra costs 

may be painting, flange aligning, surface preparation, among others. 

 

2.2 Topology Optimization of Discrete Structures 

 

The GSM proposed by Dorn et. al. (1964) was the beginning for the application of the 

procedure of removing elements from a dense and discrete mesh of line elements. Removing 

an element from a given structure does not only reduce the cost of material but also the quantity 

and cost of the required connections.  

After the initial sizing optimization, the procedure of the GSM consists of removing 

elements that have cross-sectional area value below a pre-set removal value and reapply the 

optimization with the new topology as a starting point (ASADPOURE et. al., 2015). According 

to Hagishita and Ohsaki (2009), the initial mesh density and the nodes location influence the 

quality of the solution. Case studies presented in Bendsøe et. al. (1994), see Fig. 2.1, also 

demonstrate that there is a tendency to produce optimal solutions with considerably complex 

layouts (TORII et. al., 2016). 

 

Figure 2.1 – Layout complexity of an optimal solution found by GSM approach. 

  
Source: Bendsøe et. al. (1994). 

 

Since the GSM formulation, several researches developed and investigated topology 

optimization of discrete structures based on sizing and layout approaches, such as Achtziger 

(2007), Hagishita and Ohsaki (2009), Asadpoure et. al. (2015), Havelia (2016), Torii et. al. 

(2016) and Tejani et. al. (2018). The main concern was the obtention of solutions with layout 

too complex for practical purposes, since this complexity impacts in several manufacturing 

costs of the final structure. 
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A simple procedure commented by Bendsøe et. al. (1994) to avoid complex structural 

designs is to limit intuitively the domain of the design space through the connectivity, i.e. only 

neighboring nodes are connected. Unfortunately, the performance of this strategy depends 

heavily on the designer's experience. 

Another procedure addressed in Bendsøe et. al. (1994), Achtziger (2007) and He and 

Gilbert (2015), is to use layout optimization into the topology optimization. Considering cross-

section areas and joint positions as continuous design variables, Achtziger (2007) demonstrated 

that this proposal can provide good optimal solutions for problems of moderate size, i.e. without 

the need to deal with many elements. Also, they observed a tendency to produce unsymmetric 

trusses as optimal solutions, see Fig. 2.2, even with a symmetric load condition, fact directly 

related to the use of a non-global optimization algorithm (any gradient-based method), the 

occurence of a flat objective function and the no imposition of symmetry by additional 

constraints. 

 

Figure 2.2 – Unsymmetrical truss as optimal solution found in Achtziger (2007). 

 
Source: Achtziger (2007). 

 

About the fact that layout optimization induces computational difficulties, Achtziger 

(2007) proposed the strategy where a feasible starting point is calculated with the fixed layout 

before proceeding with the layout optimization. This separate optimization process was also 

adopted in the first strategy discussed in He and Gilbert (2015). This strategy simplifies the 

optimization process, but can lead to sub-optimal solutions, as Rozvany et. al. (1995) identified 

in some studies performed by sequential optimization of topology and sizing. 

Hagishita and Ohsaki (2009) have proposed and obtained satisfactory results with 

strategies dedicated to adding and removing elements and nodes within layout optimization on 

trusses subject to static (single or multiple) loading. The authors deal with melting of joints, 
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remove of overlapping elements and initial meshes do not need to have a high number of 

elements. To illustrate, a particular case studied and the optimal layout achieved is presented in 

Fig. 2.3. 

 

Figure 2.3 – Problem with overlapping elements in Hagishita and Ohsaki (2009). 

 
Source: Adapted from Hagishita and Ohsaki (2009). 

 

It is well known that structural optimization problems may have singular optimal 

solutions that cannot be reached from an arbitrary starting point (SVED; GINOS, 1968). 

Therefore, an important result achieved by Hagishita and Ohsaki (2009) is that singular 

optimum solutions can be found for small trusses with stress constraints. 

Asadpoure et. al. (2015) proposed a formulation to optimize the topology of trusses 

using normalized areas as design variables and a continuous approximation of the Heaviside 

function applied in the normalized areas. The formulation enables a process that identifies the 

optimal solution by analyzing the manufacturing cost-benefit relationship between costs of 

material and connections (two connections for each element), controlling the layout complexity 

of the final structure. 

The approximation of the Heaviside function is continuous and differentiable, which 

enables the application of any gradient-based method. The results obtained by Asadpoure et. 

al. (2015) have shown that, according to the adoption of different magnitudes for material (𝑐ெ) 

and connections (𝑐ௌ) costs, different final layouts are achieved due to the ability to identify 

“non-structural” elements automatically, reducing the dependence on “artificial” removal 

factors and the computational cost within the optimization process. As can be seen in Fig. 2.4, 

the higher the connections cost of the element, the greater is the element removal and 

consequently lower layout complexity is achieved. Consider 𝐿 as element length. 
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Figure 2.4 – A study reproduced by Asadpoure et. al. (2015). 

 
Source: Adapted from Asadpoure et. al. (2015). 

 

Torii et. al. (2016) also noticed that previous works are capable to reduce layout 

complexity, but are not able to set a combined level between design complexity and structural 

performance desired by the designer. Therefore, the authors presented another efficient method 

to control layout complexity in sizing optimization of truss through any gradient-based method.  

Based on two continuous and differentiable functions that measure the number of nodes 

and elements, both are employed in the optimization process as a penalty into the objective 

function. The penalization factor is responsible to enforce the desired level of complexity. Torii 

et. al. (2016) observed the existence of local optimal solutions in some examples due to the 

non-convexity characteristic of the measure functions. 

Taking into account a frame structure, Havelia (2016) proposes a topology optimization 

scheme that has discrete cross-section areas as design variables, connection costs associated 

with construction features and a technique that recognizes continuity on desired elements, 

minimizing material, manufacturing and erection cost. After calculating the maximum internal 

stress and the total cost related to each element, it is produced a ranking that highlights the 

elements that have a high cost and are not useful to the mechanical strength of the structure (i.e. 

can be removed). 

Havelia (2016) optimized a structure subject to lateral loads with mass and 

manufacturing cost minimization procedures, see Fig. 2.5. When manufacturing and erection 

costs are included in the optimization process, the author observed that the columns tend to be 

heavier compared to the same in the optimal solution related to only mass minimization. 
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Figure 2.5 – Case study developed by Havelia (2016). 

  
Source: Adapted from Havelia (2016). 

 

This increase of mass in the columns happens because brace elements (see Fig. 2.5, the 

diagonal elements), which are mechanical efficiently in terms of mass minimization, are 

removed from the initial topology, decreasing the capacity of resistance to lateral loads. On the 

construction point of view, it is preferable to have fewer connections and consequently more 

easy manufacturing and erection procedures. 

More recently, Tugilimana et. al. (2018) worked with sizing and topology optimization 

of steel space trusses made of tubular thin-wall elements, such as the large-scale truss dome 

visualized in Fig. 2.6. Elements with cross-section areas that reach a lower bound are removed 

from the initial topology. 

Including global stability and local buckling constraints, the authors noted that some 

previous optimization problems treated without these constraints produced unstable structures, 

due to elements with small cross-sections in compression. In the optimal solution achieved for 

the truss dome of Fig. 2.6, bracing elements appear and cross-section areas of elements at the 

bottom are increased to ensure stability. For this case, the optimal design with stability 

constraints has approximately 10X the total volume of the optimal design that not accounts 

stability. 
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Figure 2.6 – Steel space truss investigated in Tugilimana et. al. (2018). 

 
Source: Adapted from Tugilimana et. al. (2018). 

 

Despite the knowledge that stability constraints are important to ensure truly secure 

optimal solutions, this type of constraint typically has a high level of non-linearity that produces 

difficulties at the optimization process (ROZVANY et. al., 1995). In the research of Wildemann 

and Muñoz-Rojas (2004), the layout and topology optimization of space trusses is performed 

by a gradient-based method, and several case studies were analyzed with and without local 

buckling constraints, through the critical Euler load. The authors not only observed different 

optimal solutions, but also noted that the optimization process encounters more numerical 

difficulty for convergence when this type of stability constraint is considered, sometimes falling 

into unfeasible regions. 

Tejani et. al. (2018) also treated space trusses and presented a study with layout and 

topology optimization through a heuristic method, mass minimization and subject to stress, 

displacement and kinematic stability (no generation of a mechanism due to the topology) 

constraints. For the removal of elements, they use a simple strategy for existence measure, 

which is directly multiplied in the objective function. The strategy assumes discrete values 0-1 

based on a conditional that evaluates whether the cross-section area is smaller or larger than a 

critical value. 

Deb and Gulati (2001) performed the same strategy in two case studies, one of them 

presented in Fig. 2.7. Developing two topology optimizations with layout and sizing 

approaches, the authors compared the obtained results of mass minimization and observed that 

the optimum solution of the layout optimization is 3% smaller than the optimum solution of the 

sizing optimization. 
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Figure 2.7 – Case study developed by Deb and Gulati (2001). 

 
Source: Adapted from Deb and Gulati (2001). 

 

In this research work, manufacturing costs will be evaluated without application of 

topology optimization, but rather with the use of layout and connections optimization. When 

layout optimization is performed, slender elements can be subject to compressive load and, 

consequently, may exhibit structural failure due to local or global buckling. The effect produced 

in the optimization process and optimum solutions when stability constraints are applied it is 

extremely important, as verified in Tugilimana et. al. (2018). However, according to research 

such as Rozvany et. al. (1995) and Wildemann and Muñoz-Rojas (2004), this type of constraint 

presents a high level of non-linearity that produces difficulties at the optimization process and 

would require more time to investigate it. For this reason, stability constraints are not in the 

scope of research. 

Hereafter, contributions related to modeling of connections, objective function 

proposals to minimize manufacturing costs with connections as design variables and the effects 

caused by the addition of rotational stiffness in the structural response and optimization are 

presented. 
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2.3 Semi-Rigid Connections 

 

Traditionally, to simplify the preliminary analysis and design of a steel frame, it is a 

common procedure to idealize connections with pinned or fully rigid behavior. However, as 

already commented, several experimental investigations demonstrated that pinned connections 

have rotational stiffness and fully rigid connections show some degree of flexibility (CHEN, 

2000). Furthermore, according to Pinheiro (2003) and Del Savio (2004), experiments with 

several types of connections used in practice exhibited non-linear behavior due to the gradual 

plasticity of components such as plates and bolts. 

In this scenario, to neglect the rotational stiffness of connections avoids realistic 

predictions of responses, such as displacements and internal forces distribution acting on the 

elements of the structure, and consequently the design reliability (SAGIROGLU; AYDIN, 

2015). Studies and analytical models have been developed for non-linear analysis of frames 

that have several types of semi-rigid connections. In these models, among the various 

parameters to be determined by empirical expressions, obtained by experimental investigations 

allied to curve fitting techniques and to the steel connection database, is the initial rotational 

stiffness (𝐾௥) of the connection (SEKULOVIC; SALATIC, 2001). 

At initial stages of frame design, using a linear mathematical model to represent the 

bending moment-rotation relation curve (𝑀-𝜙) is useful, see Fig. 2.8, since the initial stiffness 

of any type of connection is constant (PINHEIRO, 2003). Besides, when the goal is to analyze 

frames with small displacements and strains, the linear model can be applied without major 

problems, being the initial rotational stiffness the only parameter necessary to define the 

connection stiffness during the FEA and/or structural optimization processes. Therefore, 

iterative updating of this stiffness is not necessary as in non-linear models (PINHEIRO; 

SILVEIRA, 2005). 

For linear-elastic model, there are several formulations to incorporate the semi-rigidity 

behavior of connections, for example Monforton (1962), McGuire et. al. (2000), Chan and Chui 

(2000), Hairil Mohd et. al. (2016), among others presented at the master thesis of Pinheiro 

(2003). The approaches are mentioned in Table 2.1. 
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Figure 2.8 – Linear mathematical model vs. experimental curve of typical connections applied 

in the engineering practice. 

  
Source: Adapted from Pinheiro (2003). 

 

Table 2.1 – Author’s and method’s formulations. 

 Authors Method 

Formulations 

Monforton (1962) Conjugate beam 

McGuire et. al. (2000) 

Chan and Chui (2000) 

Hybrid element composed by a frame 

element and rotational springs at the 

extremities 

Hairil Mohd et. al. (2016) Potential energy approach 

Source: Author’s production. 

 

Based on linear-models, several researchers investigated the behavior and structural 

optimization of frames with semi-rigid connections, such as Xu and Grierson (1993), Heringer 

(1996), Simões (1996), Csébfalvi (2007), Kartal et. al. (2010) and Artal and Daloglu (2018). 

According to Sekulovic and Salatic (2001) and Del Savio (2004), in most steel structures 

the effects of axial and shear forces on the deformation of the connections are insignificant 

when compared to the effect caused by bending moments. At this context, a simple way of 

modeling semi-rigid connections of a 2D frame element is to impose rotational flexibility 

through rotational springs of negligible length 𝑙௠ and rotational stiffness 𝐾௥ at the two joints 

(nodes 1 and 2) of intersection between columns and beam members. This physical model is 

visualized in Fig. 2.9. 

𝑙𝑖𝑛𝑒𝑎𝑟 𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑚𝑜𝑑𝑒𝑙

𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

𝑐𝑢𝑟𝑣𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑡𝑦𝑝𝑒𝑠 
𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠  
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Figure 2.9 – Linear mathematical model for semi-rigid connections. 

  
Source: Adapted from Chan and Chui (2000). 

 

Two distinct rotations in the connection region coexist: a column rotation, 𝜃஼ , and a 

frame rotation, 𝜃ி , both shown in Fig. 2.10. Assuming that two elements are connected to the 

same column, 𝜃஼  is the combined rotation that guarantees the compatibility of the global nodal 

displacements in FEM. However, depending on the internal bending moments transmitted, the 

elements may have different rotations 𝜃ி . 

 

Figure 2.10 – Difference between the column rotation and the rotation presented by the frame 

element at the connection. 

   
Source: Adapted from Chan and Chui (2000). 

 

By the infinite stiffness hypothesis, when the column has any rotation 𝜃஼  the frame 

element accompanies this rotation as shown in Fig. 2.11(a). However, due to the rotational 

flexibility of the connection, a rotation 𝜙 of the frame element at the point of clamping occurs 

in relation to the line orthogonal to the inclined column, exposed in Fig. 2.11(b). 
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Figure 2.11 – (a) Fully rigid vs. (b) semi-rigid connection. 

 

                              (a)                                                                          (b) 

Source: Adapted from Kartal et. al. (2010). 

 

The rotation of the 3D frame element at the connection, adopting the linear-elastic 

model, is defined by the relation of 

 

𝜙 =
𝑀

𝐾௥
, (2.1) 

 

where 𝑀 is the concentrated bending moment acting in the connection. Hence, the real rotation 

that the frame element will presents in the connection is 

 

𝜃ி = 𝜃஼ − 𝜙. (2.2) 

 

According to Chen et. al. (2011), the AISC (American Institute of Steel Construction, 

2005) considers that semi-rigid connections have rotational stiffness in the range of 

 

2𝐸𝐼

𝐿
≤ 𝐾௥ ≤

20𝐸𝐼

𝐿
, (2.3) 

 

where 𝐸, 𝐼 and 𝐿 represent, respectively, the Young’s modulus, the inertia moment and the 

length of the element. Below and above these limit values, connections are considered pinned 

and fully rigid, respectively. In addition, it is noteworthy that this information may vary 

F F

F F

C C

frame member (F)

C column member (C) C

𝜙 = 0 𝜙 ≠ 0

𝜃஼ 𝜃஼

𝜃ி = 𝜃஼ 𝜃ி ≠ 𝜃஼
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according to the standard in use. Under the Brazilian standard ABNT NBR 8800 (2008), a 

connection with 
୉୍

ଶ୐
 or less can be considered as pinned, whereas with 

ଶହ୉୍

୐
 or more can be 

considered as fully rigid. 

Several researches such as Sekulovic and Salatic (2001), Cabrero and Bayo (2005) and 

Kartal et. al. (2010) used an initial rotational stiffness of semi-rigid connections defined as a 

function of the beam stiffness (𝐸𝐼) and a parameter called by fixity factor (𝛼), which measures 

the connections stiffness in the range (0,1]. Thus, 

 

𝐾௥ = ቀ
𝛼

1 − 𝛼
ቁ

3𝐸𝐼

𝐿
, (2.4) 

 

where for pinned connections the fixity factor value is zero (𝐾௥ = 0) and for fully rigid 

connections the value is unitary (𝐾௥ → ∞).  

The relation between the rotational stiffness and the fixity factor was deduced through 

the formulation developed by Monforton (1962), based on the conjugate beam method. 

Basically, the physical meaning of the fixity factors is given by the quotient between the frame 

element and column rotations, i.e. 𝜃ி  and 𝜃஼  represented in Fig. 2.12, due to an unitary bending 

moment. Typically, according to Chen (2000), planar frames present connections with 

evaluated fixity factors between the range of 0.77 and 0.94. 

 

Figure 2.12 – Physical meaning of the fixity factor. 

 
Source: Adapted from Simões (1996). 

 

Manipulating equation (2.4) to investigate and understand some aspects related to the 

relation between the fixity factor and the rotational stiffness, 
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𝐾௥𝐿

𝐸𝐼
=

3𝛼

(1 − 𝛼)
, (2.5) 

  

and knowing that 
௄ೝ௅

ாூ
 presents values in the range of 10.0 and 50.0 at design of frames 

(GERSTLE, 1988), the graph visualized in Fig. 2.13 is plotted. Note that the relationship 

between 𝛼 e 𝐾௥ is non-linear, especially in the region with 𝛼 values above 0.5, where a small 

increase in the fixity factor would correspond to an exaggerated increase in the rotational 

stiffness (CHEN, 2000). In the graph, Yʹcorrespond to 
௄ೝ௅

ாூ
. 

 

Figure 2.13 – Non-linear relationship between rotational stiffness and the fixity factor. 

 
Source: Adapted from Chen (2000). 

 

At the engineering practice, the introduction of the fixity factors is beneficial for the 

static analysis of frames, since it allows previous investigations of structural responses coupled 

with the physical notion of the level of rotational stiffness in the connections, as opposed to the 

fictitious infinite stiffness (CHEN, 2000). 

According to Monforton (1962), up to the mid-1960s there were few theoretical and 

experimental investigations about the structural behavior related to connection rotations around 

𝑥෤ (𝑦෤𝑧̃ plane) and in the 𝑥෤𝑧̃ plane on space frames, i.e. torsion and bending DOF (in this work, 
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the index “~” refers to the local reference system). The author states that most types of semi-

rigid connections exhibit fully rigid behavior in torsion and pinned behavior in rotation at the 

𝑥෤𝑧̃ plane. The main displacements in frames are rotations at the same plane of application of 

the external loads (HERINGER, 1996). 

With respect to the torsional DOF, in the study of Monforton (1962) the torsional 

flexibility in the plane 𝑦෤𝑧̃ is given by fixity factors directly proportional to the torsional stiffness 

(𝐺𝐽) of the 3D frame element (𝐺 is the shear modulus and 𝐽 is the polar moment of inertia). 

However, the author informs that connections between 3D frame elements can be considered 

fully rigid in torsion. 

 

2.4 Optimization of Frames with Semi-Rigid Connections 

 

In the field of structural optimization, linear models of semi-rigid connections have also 

been extensively applied and investigated in planar and space frames, with different 

optimization methods. 

Lui and Chen (1986) develop a study about connections flexibility in frames and 

concluded that, generally, fully rigid idealization underestimate the displacements and 

overestimate the strength. On the other hand, assuming pinned connection provides overdesign 

of beam members and underdesign of columns. 

Xu and Grierson (1993) present a procedure to minimize the combined cost of elements 

and semi-rigid connections of planar frames. Using discrete American standard steel sections 

and continuous rotational stiffness as design variables, a continuous-discrete optimization 

algorithm is applied based on a gradient-based method, with stress and displacement 

constraints. Thus, the objective function 𝑊 is given by 

 

𝑊 = ෍ ቌ𝑐ெ௜
𝜌௜𝐴௜𝐿௜ + ൭෍൫𝑉଴ + 𝑉ଵ𝐾௥௖

൯

ଶ

௖ୀଵ

൱

௜

𝑐ெ௜
𝜌௜𝐴௜𝐿௜ቍ

௡௘௟

௜ୀଵ

, (2.6) 

 

where 𝜌 is the specific mass and 𝐴 is the cross-section area. The indexes 𝑖 and 𝑛𝑒𝑙 represent 

the sum of elements, 𝑐 is related to each rotational spring of a given element and 𝑉଴ and 𝑉ଵ are 

parameters that control the additional cost of the connections of each element, which is directly 

related to the material cost. Also, remember that 𝑐ெ represent the material cost ቂ
$

௞௚
ቃ. 
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The objective function of equation (2.6) verifies the cost of each connection based on 

its rotational stiffness. Recently, Junior and Falcón (2019) also used this same expression to 

minimize costs of planar frames with geometric non-linearity, but adapted to account separately 

for the manufacturing costs of columns (material only) and beams (material and connections). 

Xu and Grierson (1993) define the parameters 𝑉଴ and 𝑉ଵ in such a way that the 

connection cost are limited by pinned and fully rigid cases, the cost of a pinned connection 

being lower than a fully rigid connection. By the polinomial degree characteristic, the 

connections cost has linear dependence on the material cost. In an example, for W-sections, Xu 

and Grierson (1993) assumed a suggestion informed by a published data (does not encountered) 

for the linear range of the additional connection cost, given by 

 

0.25𝜌௜𝐴௜𝐿௜ ≤ ൭෍൫𝑉଴ + 𝑉ଵ𝐾௥௖
൯

ଶ

௖ୀଵ

൱

௜

𝜌௜𝐴௜𝐿௜ ≤ 0.70𝜌௜𝐴௜𝐿௜ , (2.7) 

 

the cost of each element is increased by 25% if it is pinned and by 70% if it is fully rigid 

connected. Fig. 2.14 shows the linear variation of this additional cost, where 𝐴𝐶 is the 

percentage of additional cost of connections. 

 

Figure 2.14 – Linear variation of the connections cost. 

 
Source: Author’s production. 
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Compared to rigid frames, Xu and Grierson (1993) observed that greater material cost 

minimization is sometimes achieved when considering semi-rigid connections, especially when 

vertical loadings imposed (external or self-weight) predominate, as the study presented in Fig. 

2.15(a). This behavior is due to the reduction of the magnitude of the internal bending moment 

distribution caused by the flexibility of the connection. 

 

Figure 2.15 – Structural problems treated by Xu and Grierson (1993): (a) a frame with 

recommended semi-rigid connections and (b) a frame with rigid connections as the best solution 

for minimal cost. 

 

                                 (a)                                                                                      (b)  

Source: Adapted from Xu and Grierson (1993). 

 

On the other hand, when a lateral load of considerable magnitude and lateral 

displacements constraints are assumed, as in the structure of Fig. 2.15(b), fully rigid 

connections are more recommended to provide greater lateral stiffness, especially in the sizing 

of the columns. As can be seen in Heringer (1996), semi-rigid connections tend to have larger 

horizontal displacements. 
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Csébfalvi (2007) dealt only with material cost minimization of planar frames, using 

discrete cross-section as design variables and displacement and stress constraints. Optimizing 

with distinct magnitudes of rotational stiffness, he noted a different effect in optimal solutions 

of different structural problems. While in one case rigid connections were recommended, in 

another case a better solution was achieved by semi-rigid connections. Both problems had 

lateral and vertical loads. Therefore, Csébfalvi (2007) concluded that the optimal solution may 

have a dependence on the fixed structural layout coupled with the load condition assumed. 

Recently, the influence of semi-rigid connections is also investigated in Krystosik 

(2018), on structures subject to both vertical and lateral loads. The results obtained are 

compared with the results of a rigid frame. The author verified reduction of the internal bending 

moment distribution and critical buckling load in the columns but an increase in the lateral 

displacements of beam members. 

Using different levels of fixity factors, Kartal et. al. (2010) analyzed planar frames with 

a distinct layout, semi-rigid connections and load aspects. First, assuming a frame with semi-

rigid connections only at the foundations and subject to lateral and vertical loads, the authors 

evaluated the variation of lateral displacements, bending moment, shear and axial forces in the 

frame system. In this case, they noted that connections that are more rigid increased the bending 

moment in the columns of foundations, while the shear presented no variation. The axial forces 

also presented variation only at the bottom of the structure, with higher magnitudes when 

pinned connections are assumed. At the top of the frame, greater lateral displacement was 

observed for pinned connections. 

In the second frame, semi-rigid connections are considered only in beam-to-column 

joints and lateral loads are applied. With pinned connections, the clamping region has the 

highest bending moments and the lowest axial forces. On the other hand, with fully rigid 

connections, this region is subject to the highest axial forces. 

In the third case, a frame containing additional (related to the second frame) X-braced 

elements with semi-rigid connections presented an interesting result: no changes in the 

variations of the analyzed forces and lateral displacement, that is, the global structural behavior 

does not present variations although different stiffness levels of semi-rigid connections are 

assumed. 

The last case study, shown in Fig. 2.16, consists of a truss system with semi-rigid 

connections between all the elements and subject to vertical and lateral loads. To the author’s 

knowledge, this is the only work that investigated a case study with two or more elements 

connected to the same node. The results obtained demonstrate no change in the axial forces. 
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However, greater connections stiffness provided a decrease in vertical displacements and 

increases in the bending moment and shear force diagrams. 

 

Figure 2.16 – Fourth case studied by Kartal et. al. (2010). 

 
Source: Adapted from Kartal et. al. (2010). 

 

Artar and Daloglu (2018) presented optimizations studies performed by a heuristic 

method coupled to a FEM software of space frames, with discrete W-sections as design 

variables and subject to lateral wind loads (see examples in Fig. 2.17). Each optimization 

process is developed with fixed and distinct semi-rigid connections, similar to the approach 

applied by Csébfalvi (2007). 

 

Figure 2.17 – Space frames investigated by Artar and Daloglu (2018). 

                   
Source: Adapted from Artar and Daloglu (2018). 

 

According to the results obtained, the structures with semi-rigid connections obtained 

less material cost minimization mainly due to the increase of the lateral displacements of the 
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structure, caused by the reduction of the lateral stiffness. Consequently, the cross-section 

profiles are increased to overcome the absence of the lateral stiffness. 

Simões (1996) developed a study similar to Xu and Grierson (1993), but modified the 

previous objective function formulation of the equation (2.6) to 

 

𝑊 = ෍ ቌ𝑐ெ௜
𝜌௜𝐴௜𝐿௜ + ൭෍(𝑉଴ + 𝑉ଵ𝛼௖ + 𝑉ଶ𝛼௖

ଶ)

ଶ

௖ୀଵ

൱

௜

𝑐ெ௜
𝜌௜𝐴௜𝐿௜ቍ

௡௘௟

௜ୀଵ

, (2.8) 

 

using fixity factors as continuous design variables and imposing the parameter 𝑉ଶ to assume 

additional connections cost with quadratic dependence on the material cost. 

Considering IPE cross-sections for the beams, Simões (1996) assumed that the cost is 

increased by 20% for pinned connections and 60% for fully rigid connections, that is 

 

0.20𝜌௜𝐴௜𝐿௜ ≤ ൭෍(𝑉଴ + 𝑉ଵ𝛼௖ + 𝑉ଶ𝛼௖
ଶ)

ଶ

௖ୀଵ

൱

௜

𝜌௜𝐴௜𝐿௜ ≤ 0.60𝜌௜𝐴௜𝐿௜ . (2.9) 

 

As Xu and Grierson (1993), Simões (1996) also assumed the cost of a pinned connection 

being lower than a fully rigid connection. To the author’s knowledge, this is the only research 

that proposes the use of quadratic variation of the connections cost. Simões (1996) argues that 

the adoption of this type of variation provides greater accuracy on the prediction of the 

additional cost of connections. However, there is no standard procedure described for defining 

the constant coefficients. 

Analyzing mathematically, it was possible to note that the quadratic variation adopted 

by Simões (1996) has the pattern visualized in Fig. 2.18. With this convex configuration, 

Simões (1996) assumes that the cost of semi-rigid connections of up to 0.60 is less than the 

cost of pinned or fully rigid connections. Therefore, as expected, the results obtained by the 

author in two case studies show optimal semi-rigid connections with intermediate values of this 

interval, since not only do these semi-rigid connections offer greater lateral stiffness so that the 

structures do not violate the imposed displacement constraints, but also by the lower cost 

associated. The author does not justify this proposal for additional costs. 

Developing these two case studies, which had vertical and lateral loads and lateral 

displacement and stress constraints, Simões (1996) noted that optimal solutions that account 

for semi-rigid connections are lighter than the optimal solutions achieved by frames with fixed 
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fully rigid connections. However, in this case, as already evidenced, this is directly related to 

the curve adopted for the variation of the connections cost. 

 

Figure 2.18 – Specific quadratic variation adopted by Simões (1996). 

 
Source: Author’s production. 

 

Returning to the context of the studies developed by Csébfalvi (2007) and Artar and 

Daloglu (2018), note that the conflicting result achieved by Simões (1996) – lightweight 

structures with semi-rigid connections even with lateral loads and displacement constraints – 

may depend on the range and variation of the connections cost and the type of problem 

analyzed, relative to the different geometric properties of the cross-sections assumed, the fixed 

structural layout or even the magnitude ratio between the lateral and vertical loads applied. 

Also, it may be related to how design variables represent the semi-rigid connections (continuous 

or discrete values, fixity factors or rotational stiffness). 

Interesting results were also obtained by researchers that used nonlinear models for the 

connections, about the effect of semi-rigid connections on the structural behavior. 

Sekulovic and Salatic (2001) studied the effects of flexible connections in planar frames 

with geometric nonlinearity, adopting a nonlinear connection model. The authors observed that 

with increased stiffness on the connections, the lateral displacement at beam members and the 

bending moment at the column-base are reduced. In a particular case developed without 

geometric nonlinearity, the structural behavior was similar for different load levels. Considering 

another nonlinear connection model, Pinheiro and Silveira (2005) investigated the same 

structural problems and achieved similar results. 

Cabrero and Bayo (2005) developed a methodology to elastic and plastic practical 

design of semi-rigid frames. Through this procedure, the authors observed that the cost 
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estimation of semi-rigid frames is smaller compared to frames with pinned or fully rigid 

connections. 

Hayalioglu and Degertekin (2005) used genetic algorithm and the same approach of Xu 

and Grierson (1993) for the connections cost dependence with material cost, but semi-rigid 

connections of beam-to-column and column-base were treated separately in the objective 

function. Only discrete W-sections are assumed as design variables. With lateral displacement 

and stress constraints of standard specifications and structures subject to vertical and lateral 

loads, the authors reached the same behavior of lateral displacement and cost minimization 

observed by Xu and Grierson (1993). 

Also based on a genetic algorithm, Ali et. al. (2009) formulated an optimization problem 

configured with discrete cross-sections, beam-to-column and column-base connections as 

design variables. As mentioned in the beginning of this chapter, a different objective function 

was assumed by these authors, containing four types of costs: material, manufacturing, erection 

and foundation costs. 

Compared to traditional frame design, frames with semi-rigid connections in the 

approach of Ali et. al. (2009) have a greater cost reduction, mainly obtained in manufacturing 

and erection costs. In addition, the better distribution of internal bending moments decreases 

the cost related to the foundation and less structural weight is achieved. Besides, the authors 

noted that connections cost may represent more than 20% of the total cost of a steel frame. 

Truong et. al. (2017) optimized space frame using discrete cross-section areas and semi-

rigid connections as design variables. As well as in Artar and Daloglu (2018), it became evident 

the need to increase the cross-section profiles to provide lateral stiffness when lateral loads are 

considered. In addition, comparing optimization processes that used only one type of semi-rigid 

connection with a process that used mixed semi-rigid connections, all constant during the 

processes, Truong et. al. (2017) also observed that the space frame with mixed connections had 

better performance in mass minimization. However, on a construction point of view, the authors 

concluded that it is more prudent to use only one type of semi-rigid connection. 

All these contributions show that, in structural optimization, is extremely important to 

take into consideration that with a connection model that poorly represents the physical 

phenomenon, perhaps the final optimal solution will not be able to realistically respect the 

imposed design constraints. 

While the 3D frame element formulation procedure is presented in Chapter 3, the 

formulation of the optimization problem is found in Chapter 5. The results obtained are 

presented and discussed in Chapter 6. In the next section, after presenting different failure 
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criteria already developed and applied in structural optimization surveys, specific failure 

criteria for tubular elements are displayed and analyzed. 

 

2.5 Failure Criteria 

 

Considering truss or frame elements, as explained in Vanderplaats and Salajegheh 

(1989), it is preferable to treat stress as a function of internal forces, in order to ease the 

necessary derivation to apply stress constraints within gradient-based methods. As the internal 

forces can be approximated with respect to section properties and other parameters that can be 

design variables, the authors demonstrated that this procedure provides computational 

efficiency within the optimization process, due to the reduction in the level of nonlinearity of 

the stress functions. In addition, the use of section properties is a technical advantage since most 

of them are physical variables commonly treated in the engineering practice. 

Researchers such as Sheu and Schmit Jr. (1971), Saka (1990), Sant’Anna et. al. (2001) 

and Pedersen and Nielsen (2003) adopted the axial stress failure criterion as design constraint 

in truss optimization. On the topology optimization field, Hagishita and Ohsaki (2009) and He 

and Gilbert (2015) used this strategy directly in the tensile and compressive forces. 

Pedersen and Nielsen (2003) inserted the axial stress constraint using Danish standards 

for specific cross-section profiles and adding buckling constraint. Saka (1990) developed a 

similar treatment, adhering to the United States and German standards specific to steel trusses. 

Most countries have standards which specify the allowable stress level that needs to be satisfied 

in structural design (PEDERSEN; NIELSEN, 2003). 

While bar elements have mechanical resistance evaluated simply through the 

transmitted axial stress component at each element, frame elements have stresses associated to 

axial, bending, shear and torsion internal forces, with different distributions and critical cross-

section points. Therefore, in order to determine the point that has the highest equivalent stress 

in a frame element, it is recommended to perform a detailed analysis of the stress state at several 

points of a given cross-section along the longitudinal axis of each element (CARNIEL et. al., 

2008). 

Moses and Onoda (1969) studied frames composed by beam members subject to 

concentrated and distributed loads, assuming the bending stress as design constraint based in 

the British standard. Xu and Grierson (1993) used the same approach but considering bending 

moments affected by the effect of semi-rigid connections. 
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Pedersen e Jørgensen (1984) also disregarded the shear effects and defined a failure 

criterion based on the calculation of von Mises stress in the one-dimensional stress state, 

considering only the normal stresses produced by axial forces 𝑁௫ and bending moments 𝑀௭ (𝑥෤𝑦෤ 

plane) and specifically at the top and bottom extremities of the desirable cross-sections. Simões 

(1996) assumed the same failure criterion, but in IPE sections and, just as Xu and Grierson 

(1993), imposing the effect of semi-rigid connections. Csébfalvi (2007) also used a similar 

approach, but both normal stresses related to 𝑁௫ and 𝑀௭ are divided by an allowable stress and 

the sum cannot exceed a unitary value. In Havelia (2016), the normal stress produced by the 

bending moment 𝑀௬ (𝑥෤𝑧̃ plane) is also computed and the extreme case is considered, where the 

three normal stresses are summed. 

In the context of space frames, Hayalioglu and Degertekin (2005) and Artar and Daloglu 

(2018) respect requirements defined by the manual of steel construction developed by the AISC. 

Sagiroglu and Aydin (2015) design space frames based on combined stress constraints detailed 

in the Turkish Building Code for Steel Structures. 

In the research of Yoshida and Vanderplaats (1988) four extremities points in 

rectangular and I-profiles, at the ends of the elements, are evaluated by the von Mises equivalent 

stress measured by normal and shear stresses associated with all the internal forces of a 3D 

frame element. However, more detailed information is not available, since the authors make 

use of “black-box” (designation used by the authors) in FEA and optimization. 

Specific for 3D tubular thin-wall elements subject to any combination of all possible 

internal forces, Sergeyev and Pedersen (1996) also presented a failure criterion based on 

equivalent stress 𝜎௘௤. The criterion is given by the stress calculation referring to the hypotheses 

of Tresca (𝑆 = 4) or von Mises (𝑆 = 3) in the form 

 

𝜎௘௤௜,௞
(𝑥෤, 𝑦෤, 𝑧̃) = ට𝜎௫௫௜,௞

ଶ + 𝑆𝜏௬௭௜,௞
ଶ, (2.10) 

 

where 𝜎௫௫ and 𝜏௬௭ represent the normal and shear stresses, respectively, and the index 𝑘 

represent any cross-section along the element length. Note that the stress calculation is 

dependent of the three local coordinates 𝑥෤, 𝑦෤ and 𝑧̃ of the element. This criterion was also used 

by Sergeyev and Mróz (2000). It is observed that when considering the normal stresses together 

with the shear stresses, is necessary to determine the location of the most critical point, both 

along the longitudinal 𝑥෤-axis and in the cross-section plane 𝑦෤𝑧̃. This process can be 

computationally intensive. 
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To reduce complexity and computational cost in layout optimization, Carniel et. al. 

(2008) have proposed an alternative failure criterion that does not investigate the stress state 

and is given by 

 

ቤ
𝑁௫௜,௞

𝑁௫௔௟௪

ቤ + ቤ
𝑉௬௜,௞

𝑉௬௔௟௪

ቤ + ቤ
𝑉௭௜,௞

𝑉௭௔௟௪

ቤ + ቤ
𝑀௫௜,௞

𝑀௫௔௟௪

ቤ + ቤ
𝑀௬௜,௞

𝑀௬௔௟௪

ቤ + ቤ
𝑀௭௜,௞

𝑀௭௔௟௪

ቤ ≤ 1, (2.11) 

 

where 𝑉௬ and 𝑉௭ are the shear forces in 𝑦෤ and 𝑧̃ directions, 𝑀௫ is the torsion in the 𝑦෤𝑧̃ plane and 

𝑁௫௔௟௪
, 𝑀௬௔௟௪

, 𝑀௭௔௟௪
, 𝑉௬௔௟௪

, 𝑉௭௔௟௪
 and 𝑀௫௔௟௪

 are allowable values for, respectively, the axial 

force, the bending moments, the shear forces and torsion, which cause failure in a given cross-

section of the element when acting individually. As design constraint, the criterion is applied at 

the ends and the center of the element length. 

The failure criterion of Carniel et. al. (2008) assumes the worst case of a combined 

solicitation, where all stresses intensify. The conservatism of this strategy may decrease the 

effectiveness of the design constraint. 

In the Brazilian standard ABNT NBR 8800 (2008), there is a specific section for tubular 

elements with circular cross-section. When the torsion is greater than 20% of the allowable 

torsion, the following equation is recommended 

 

ቆ
𝑁௫௜,௞

𝑁௫௔௟௪

+
𝑀௬௜,௞

𝑀௬௔௟௪

+
𝑀௭௜,௞

𝑀௭௔௟௪

ቇ + ቆ
𝑉௬௜,௞

𝑉௬௔௟௪

+
𝑉௭௜,௞

𝑉௭௔௟௪

+
𝑀௫௜,௞

𝑀௫௔௟௪

ቇ

ଶ

≤ 1. (2.12) 

 

Note that the failure criterion of equation (2.12) is slightly less conservative than the 

criterion of Carniel et. al. (2008), enabling combinations of internal forces with higher 

magnitudes, positive or negative (different signals, i.e. directions). Greater weight is given to 

the internal forces that produce normal stresses. However, when internal forces that produce 

the same type of stress (normal or shear) have the same signals, it still allows only one internal 

force with magnitude of the respective critical internal force. 

Using the reference system shown in Fig. 2.19, Irles and Irles (2001) presented elastic 

interaction diagrams for the case where the cross-section is submitted simultaneously to shear, 

bending and torsion internal forces. 
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Figure 2.19 – Reference system of Irles and Irles (2001). 

 
Source: Adapted from Irles and Irles (2001). 

 

As the critical equivalent stress in this type of cross-section is encountered necessarily 

in the outer radius, Irles and Irles (2001) characterized the stress distributions associated with 

each internal force as a function of the angular position 𝜃. Then, they used the von Mises failure 

criterion to formulate the stress calculation 𝑓(𝜃) and the subsequent global surfaces of elastic 

interaction. Therefore, 

 

𝜎ெ೤ ௜,௞
=

𝑀௬௜,௞
𝑅௜ cos 𝜃௜,௞

𝐼௜
, 𝜏௏೥ ௜,௞

=
𝑉௭௜,௞

𝑅௠௜
ଶ sin 𝜃௜,௞

𝐼௜
, 𝜏ெೣ ௜,௞

=
𝑀௫௜,௞

𝑅௜

𝐽௜
, (2.13) 

𝑓(𝜃)௜,௞ = ඨ𝜎ெ೤ ௜,௞

ଶ + 3 ቀ𝜏௏೥ ௜,௞
+  𝜏ெೣ ௜,௞

ቁ
ଶ

, (2.14) 

𝑓(𝜃)௜,௞ ≤ 𝜎௘ , (2.15) 

 

where 𝑅 is the outer radius, 𝑅௠ is the midline radius, 𝜎௘ is the yield stress (allowable), 𝜎ெ೤
 is 

the normal bending stress at the local 𝑦෤-axis, 𝜏௏೥
 and 𝜏ெೣ

 are shear stresses of the shear force 

𝑉௭ and torsion 𝑀௫, respectively. Both shear stresses are tangential to the outer radius and 

therefore can be summed. 
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After developing the elastic interaction diagrams, Irles and Irles (2001) identified that it 

is possible to determine the critical stress point when the bending moment and the shear force 

coexist in the cross-section. 

As the works of Sergeyev and Pedersen (1996) and Carniel et. al. (2008) proved the 

need to combine computational efficiency and effectiveness in a stress-based failure criterion 

to optimize layout of space frames, the von Mises stress evaluation strategy developed by Irles 

and Irles (2001) can be beneficial to solve these limitations. Thus, it will be explored in Chapter 

4, where the new procedure to calculate the von Mises failure criterion of tubular elements is 

presented. Hereafter, the case studies presented in Chapter 6 demonstrate the importance of 

considering this failure criterion as a stress constraint within the layout optimization.
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Chapter 3 

 

Formulation of the Semi-Rigid Frame 
Element 

 

 

This chapter presents all the formulations developed to comply with the scope of the 

research. To begin, the following initial hypotheses were assumed: 

 

 Space frames subject to small displacements and strains; 

 Each element has two connections, one at each end, and the connections have 

rotational stiffness in the 𝑥෤𝑦෤ and 𝑥෤𝑧̃ (local) planes of bending. 

 

Initially, the 3D frame finite element with semi-rigid connections is formulated using 

the direct method, determining the interpolation functions and the local stiffness matrix of the 

element. Then, applying the interpolation functions, the consistent nodal loads are determined 

in the case of a uniformly distributed load over the length of a given element. Finally, the 

calculation procedure of the internal forces is presented. 

 

3.1 3D Frame Finite Element 

 

The initial procedure for calculating nodal displacements 𝑼 of a structure is given by 

the numerical resolution of the equilibrium equation, 

 

𝐊𝑼 = 𝑭, (3.1) 

 

where 𝐊 is the global stiffness matrix and 𝑭 is the load vector. 

Once the global displacements are known, internal forces and stresses can be determined 

by formulations that will be presented. 
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Unlike trusses which have pinned connections between the structural components, 

frames are characterized by having a union of the components by welded and bolted 

connections. When subjected to any external loads, these types of connections are responsible 

not only for the transmission of axial force between the components but also bending moments, 

shear forces and torsion. 

Extrapolating the above concept to FEM, the 3D frame element is a line finite element 

that has two nodes and contains six DOF per node, associated to three translational and three 

rotational, which are: 𝑢, 𝑣 and 𝑤 (translation) and 𝜃௫, 𝜃௬ and 𝜃௭ (rotation) in global 𝑥, 𝑦 and 𝑧 

axes, respectively. Each node has six internal forces, being an axial (𝑁௫) and a torsion (𝑀௫) on 

the 𝑥෤-axis and two shears (𝑉௬ and 𝑉௭) and two bending moments (𝑀௬ and 𝑀௭) on the 𝑦෤ and 𝑧̃ 

axes, respectively. All these nodal parameters are shown in Fig. 3.1. 

 

Figure 3.1 – Nodal parameters of a 3D frame element. 

 
Source: Author’s production. 

 

According to the number of DOF, the element stiffness matrix 𝐊𝐋 in the local reference 

system has a 12𝑥12 dimension. To represent it in the global reference system, i.e. 𝐊𝐆, the 

transformation matrix 𝐓 is applied, which has the same dimension and is constructed through 

the sub-matrix 𝛀 referring to the direction cosines of the arbitrary local reference system in 

relation to the global reference system. Thus, 
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𝛀 = ቎

𝑙௢௫෤ 𝑚௢௫෤ 𝑛௢௫෤

𝑙௢௬෤ 𝑚௢௬෤ 𝑛௢௬෤

𝑙௢௭෤ 𝑚௢௭෤ 𝑛௢௭෤

቏ , 𝐓 = ൦

𝛀 0 0 0
0 𝛀 0 0
0 0 𝛀 0
0 0 0 𝛀

൪, (3.2) 

𝐊𝐆 = 𝐓୘𝐊𝐋𝐓, (3.3) 

 

where 𝑙௢௫෤, 𝑚௢௫෤ e 𝑛௢௫෤ represent the direction cosines of the local 𝑥෤-axis of the element in relation 

to the global coordinate system. The same is valid for the local 𝑦෤ and 𝑧̃ axes. Details about the 

direction cosines can be found in Chandrupatla and Belegundu (2002). 

To formulate the 3D frame finite element, the linear mathematical model is adopted. As 

can be seen in Fig. 3.2, the model is extended to space frames adding two rotational springs at 

each connection, related to the two planes 𝑥෤𝑦෤ (𝐾௥௭
) and 𝑥෤𝑧̃ (𝐾௥௬

) that have the bending moments 

𝑀௭ and 𝑀௬ and the rotations 𝜃௭ and 𝜃௬, respectively. 

 

Figure 3.2 – 3D frame element with semi-rigid connections. 

 

Source: Adapted from Chan and Chui (2000). 

 

The formulation is valid for any type of connection, i.e. beam-to-column, beam-to-beam 

and column-base. Also, to facilitate the representation of the semi-rigid connections, both 

springs having rotational stiffness in the 𝑥෤𝑦෤ and 𝑥෤𝑧̃ planes are represented by the symbol of a 

single spring (see Fig. 3.3). 

 

Figure 3.3 – Spring for both rotational stiffness in 𝑥෤𝑦෤ and 𝑥෤𝑧̃ planes. 

 
Source: Author’s production. 
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To begin the procedure to formulate the one-dimensional finite element, consider the 

3D frame element with semi-rigid connections shown in Fig. 3.2. According to Figs. 3.4 and 

3.5, respectively, the element has length 𝐿 and translations and rotations in in 𝑥෤𝑦෤ and 𝑥෤𝑧̃ planes. 

The free body diagrams of Figs. 3.4 and 3.5 also demonstrate the signal convention of the local 

reference system adopted for the DOF and internal forces, consistent with Fig. 3.1. 

 

Figure 3.4 – Signal convention for the local reference system, the DOF and internal forces in 

𝑥෤𝑦෤ plane. 

 
Source: Author’s production. 

 

Figure 3.5 – Signal convention for the local reference system, the DOF and internal forces in 

𝑥෤𝑧̃ plane. 

 
Source: Author’s production. 

 

The thin-wall circular cross-section is considered, allowing simplification by the 

symmetry of the moments of inertia around the 𝑦 and 𝑧 axes (𝐼௬ and 𝐼௭) for the moment of 

inertia around the neutral line (𝐼). 

Based on the direct method, the terms 𝑘௔,௕ of the stiffness matrix of any finite element 

can be physically interpreted as the necessary force in the DOF "𝑎" to promote a unitary 

displacement in the DOF "𝑏".  

By making a cut in any place within the length of the element, it is known that the 

expression of the internal bending moments in 𝑥෤𝑦෤ and 𝑥෤𝑧̃ planes, as a function of a local 

coordinate 𝑥෤ along the length, as can be seen in Figs. 3.6(a-b), are represented by 
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(𝑎) ෍ 𝑀௢௭ = 0 (↶ +),              (𝑏) ෍ 𝑀௢௬ = 0 (↶ +), (3.4) 

                   𝑀௢௭(𝑥෤) + 𝑀௭ଵ
− 𝑉௬ଵ

𝑥෤ = 0,         𝑀௢௬(𝑥෤) − 𝑀௬ଵ
− 𝑉௭ଵ

𝑥෤ = 0, (3.5) 

          𝑀௢௭(𝑥෤) = −𝑀௭ଵ
+ 𝑉௬ଵ

𝑥෤,               𝑀௢௬(𝑥෤) = 𝑀௬ଵ
+ 𝑉௭ଵ

𝑥෤. (3.6) 

 

Figure 3.6 – Internal bending moments in the (a) 𝑥෤𝑦෤ and (b) 𝑥෤𝑧̃ planes. 

 

                             (a)                                                                    (b)  

Source: Author’s production. 

 

Then, by static equilibrium, 

 

(𝑎) ෍ 𝑀ଶ௭ = 0 (↶ +),           (𝑏) ෍ 𝑀ଶ௬ = 0 (↷ +), (3.7) 

                       𝑀௭ଵ
+ 𝑀௭ଶ

− 𝑉௬ଵ
𝐿 = 0,          𝑀௬ଵ

+ 𝑀௬ଶ
+ 𝑉௭ଵ

𝐿 = 0. (3.8) 

(𝑎) ෍ 𝑉௬ = 0 (↑ +),           (𝑏) ෍ 𝑉௭ = 0 (↑ +), (3.9) 

                                 𝑉௬ଵ
+ 𝑉௬ଶ

= 0,                        𝑉௭ଵ
+ 𝑉௭ଶ

= 0. (3.10)

 

Considering that the beam stiffness 𝐸𝐼 is constant throughout the length, the two 

expressions given by equation (3.6a) and equation (3.6b) are applied in equation (3.11) of the 

Euler-Bernoulli model, 

 

𝑑²𝑣(𝑥෤)

𝑑𝑥෤²
=

𝑀(𝑥෤)

𝐸𝐼
, (3.11) 

 

and defining the boundary conditions that separately represent the four possible cases of unitary 

displacements in the DOF of each plane, we can define the necessary internal forces to produce 

such displacements. Therefore, by analogy of the direct method, the terms of the stiffness matrix 

of the element are defined. It is noteworthy that the rotations 𝜙, and consequently the resulting 

fixity factors, are always aligned with local axes of the element. 

o o

cuttingcutting
𝑥෤

𝑀௢௭(𝑥෤)
𝑀௭ଵ

𝑉௬ଵ 𝑥෤

𝑀௢௬(𝑥෤)
𝑀௬ଵ

𝑉௭ଵ
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The four cases of the 𝑥෤𝑦෤ plane are characterized in Fig. 3.7 and Tables 3.1 and 3.2 

represent the four cases of the 𝑥෤𝑦෤ and 𝑥෤𝑧̃ planes. Note that the procedure is done separately for 

each plane, and each curve represents the interpolation functions 𝑁௩ೣ೚೤ and 𝑁௩ೣ೚೥. The rotations 

𝜙 in all cases are represented by the equation (2.1), with the associated rotational stiffness and 

bending moment, and the signal is related to the local reference system. 

 

Figure 3.7 – Cases to define the 𝑘௔,௕ terms in the 𝑥෤𝑦෤ plane. 

 

     
Source: Author’s production. 
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Table 3.1 – Necessary boundary conditions in 𝑥෤𝑦෤ plane. 

Boundary 

conditions: 

Case 1 Case 2 Case 3 Case 4 

𝑣ଵ = 1 𝜃ଵ௭ = 1 𝑣ଶ = 1 𝜃ଶ௭ = 1 

𝜽𝟏𝒛(𝒙෥ = 𝟎) 0 − 𝜙
ଵ
 1 − 𝜙

ଷ
 0 − 𝜙

ହ
 0 − 𝜙

଻
 

𝜽𝟐𝒛(𝒙෥ = 𝑳) 0 − 𝜙
ଶ
 0 − 𝜙

ସ
 0 − 𝜙

଺
 1 − 𝜙

଼
 

𝒗𝟏(𝒙෥ = 𝟎) 1 0 0 0 

𝒗𝟐(𝒙෥ = 𝑳) 0 0 1 0 

Source: Author’s production. 

 

Table 3.2 – Necessary boundary conditions in 𝑥෤𝑧̃ plane. 

Boundary 

conditions: 

Case 5 Case 6 Case 7 Case 8 

𝑤ଵ = 1 𝜃ଵ௬ = −1 𝑤ଶ = 1 𝜃ଶ௬ = −1 

𝜽𝟏𝒚(𝒙෥ = 𝟎) 0 + 𝜙
ଽ
 −1 + 𝜙

ଵଵ
 0 + 𝜙

ଵଷ
 0 + 𝜙

ଵହ
 

𝜽𝟐𝒚(𝒙෥ = 𝑳) 0 + 𝜙
ଵ଴

 0 + 𝜙
ଵଶ

 0 + 𝜙
ଵସ

 −1 + 𝜙
ଵ଺

 

𝒘𝟏(𝒙෥ = 𝟎) 1 0 0 0 

𝒘𝟐(𝒙෥ = 𝑳) 0 0 1 0 

Source: Author’s production. 

 

To illustrate, the calculation procedure for case 1 described in Table 3.1 is demonstrated. 

The other cases are solved by a similar treatment. 

Applying the Euler-Bernoulli model of equation (3.11) in equation (3.6a) and 

integrating twice, 

 

𝜃௭(𝑥෤) =
1

𝐸𝐼
ቆ

𝑉௬ଵ
𝑥෤ଶ

2
− 𝑀௭ଵ

𝑥෤ + 𝐶ଵቇ, (3.12) 

𝑣(𝑥෤) = 𝑁ଵ
௩ೣ೚೤ =

1

𝐸𝐼
ቆ

𝑉௬ଵ
𝑥෤ଷ

6
−

𝑀௭ଵ
𝑥෤ଶ

2
+ 𝐶ଵ𝑥෤ + 𝐶ଶቇ, (3.13) 

 

we find the equations representing the rotation 𝜃௭(𝑥෤) and the vertical translation 𝑣(𝑥෤) in any 

arbitrary point 𝑥෤ along the element length. Moreover, after the determination of the expressions 

of the unknown variables 𝑉௬ଵ
, 𝑀௭ଵ

, 𝐶ଵ and 𝐶ଶ, equation (3.13) represents the interpolation 

function 𝑁ଵ
௩ೣ೚೤ of the case 1. The other interpolation functions are found analogously. 

With equations (3.12) and (3.13) of the rotation and elastic line, and equations (3.8a) 

and (3.10a) of static equilibrium, there are six unknowns in the problem: the four internal forces 

of the extremities and the constants 𝐶ଵ and 𝐶ଶ. Recalling expression (2.1) for the rotations 𝜙 
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and equation (2.4) for the rotational stiffness 𝐾௥ at the extremities of the element, the boundary 

conditions of case 1 are imposed in equations (3.12) and (3.13). By making possible 

simplifications, 

 

ቆ
(1 − 𝛼ଵ)𝐿

3𝐸𝐼𝛼ଵ
ቇ 𝑀௭ଵ

+ ൬
1

𝐸𝐼
൰ 𝐶ଵ = 0, 

ቆ
𝐿ଶ

2𝐸𝐼
ቇ 𝑉௬ଵ

+ ൬−
𝐿

𝐸𝐼
൰ 𝑀௭ଵ

+ ቆ
(1 − 𝛼ଶ)𝐿

3𝐸𝐼𝛼ଶ
ቇ 𝑀௭ଶ

+ ൬
1

𝐸𝐼
൰ 𝐶ଵ = 0, 

൬
1

𝐸𝐼
൰ 𝐶ଶ = 1, 

ቆ
𝐿ଷ

6𝐸𝐼
ቇ 𝑉௬ଵ

+ ቆ−
𝐿ଶ

2𝐸𝐼
ቇ 𝑀௭ଵ

+ ൬
𝐿

𝐸𝐼
൰ 𝐶ଵ + ൬

1

𝐸𝐼
൰ 𝐶ଶ = 0. 

(3.14) 

 

Grouping the system of equation (3.14) with the equations (3.8a) and (3.10a) of static 

equilibrium, the result is a linear system with six unknowns and the same amount of equations, 

given as follows 

 

(0)𝑉௬ଵ
+ (0)𝑉௬ଶ

+ ቆ
(1 − 𝛼ଵ)𝐿

3𝐸𝐼𝛼ଵ
ቇ 𝑀௭ଵ

+ (0)𝑀௭ଶ
+ ൬

1

𝐸𝐼
൰ 𝐶ଵ + (0)𝐶ଶ = 0, 

ቆ
𝐿ଶ

2𝐸𝐼
ቇ 𝑉௬ଵ

+ (0)𝑉௬ଶ
+ ൬−

𝐿

𝐸𝐼
൰ 𝑀௭ଵ

+ ቆ
(1 − 𝛼ଶ)𝐿

3𝐸𝐼𝛼ଶ
ቇ 𝑀௭ଶ

+ ൬
1

𝐸𝐼
൰ 𝐶ଵ + (0)𝐶ଶ = 0, 

(0)𝑉௬ଵ
+ (0)𝑉௬ଶ

+ (0)𝑀௭ଵ
+ (0)𝑀௭ଶ

+ (0)𝐶ଵ + ൬
1

𝐸𝐼
൰ 𝐶ଶ = 1, 

ቆ
𝐿ଷ

6𝐸𝐼
ቇ 𝑉௬ଵ

+ (0)𝑉௬ଶ
+ ቆ−

𝐿ଶ

2𝐸𝐼
ቇ 𝑀௭ଵ

+ (0)𝑀௭ଶ
+ ൬

𝐿

𝐸𝐼
൰ 𝐶ଵ + ൬

1

𝐸𝐼
൰ 𝐶ଶ = 0, 

(−𝐿)𝑉௬ଵ
+ (0)𝑉௬ଶ

+ 𝑀௭ଵ
+ 𝑀௭ଶ

+ (0)𝐶ଵ + (0)𝐶ଶ = 0, 

𝑉௬ଵ
+ 𝑉௬ଶ

+ (0)𝑀௭ଵ
+ (0)𝑀௭ଶ

+ (0)𝐶ଵ + (0)𝐶ଶ = 0. 

(3.15) 

 

Solving the linear system (3.15), 
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𝑉௬ଵ
= 𝑘ଶ,ଶ =

12𝐸𝐼

𝐿ଷ
൬

𝛼ଵ + 𝛼ଶ + 𝛼ଵ𝛼ଶ

4 − 𝛼ଵ𝛼ଶ
൰, 

𝑀௭ଵ
= 𝑘଺,ଶ =

6𝐸𝐼

𝐿ଶ
൬

2𝛼ଵ + 𝛼ଵ𝛼ଶ

4 − 𝛼ଵ𝛼ଶ
൰, 

𝑉௬ଶ
= 𝑘଼,ଶ = −

12𝐸𝐼

𝐿ଷ
൬

𝛼ଵ + 𝛼ଶ + 𝛼ଵ𝛼ଶ

4 − 𝛼ଵ𝛼ଶ
൰, 

𝑀௭ଶ
= 𝑘ଵଶ,ଶ =

6𝐸𝐼

𝐿ଶ
൬

2𝛼ଶ + 𝛼ଵ𝛼ଶ

4 − 𝛼ଵ𝛼ଶ
൰, 

𝐶ଵ =
2𝐸𝐼

𝐿
൬

2𝛼ଵ − 𝛼ଶ + 𝛼ଵ𝛼ଶ − 2

4 − 𝛼ଵ𝛼ଶ
൰, 

𝐶ଶ = 𝐸𝐼, 

(3.16) 

 

fours terms 𝑘௔,௕ are defined. Developing an analogous procedure for the other cases, all the 

terms related to beam DOF at the 𝑥෤𝑦෤ and 𝑥෤𝑧̃ planes can be found. 

Improving the Euler-Bernoulli model with Timoshenko’s theory, consider that 𝜁௬ and 

𝜁௭ are correction factors to impose the shear effect in deflection of the 𝑥෤𝑦෤ and 𝑥෤𝑧̃ planes. The 

correction factors depend on the type of cross-section considered and the effective shear areas 

in both directions. For circular sections, these two factors can be simplified to a single factor 𝜁 

because the effective area will be the same. More details about the inclusion of these factors on 

the stiffness matrix can be found in Filho (2000). 

The bar and shaft elements formulations, described in Cardoso et. al. (2007), are inserted 

by superposition to add the DOF of translation and rotation in the 𝑥෤-axis into the stiffness matrix 

of the 3D frame element. Therefore, returning with the indexes, considering the following terms 

 

𝑎௜ =
𝐸௜𝐴௜

𝐿௜
, 𝑜௜ =

𝐺௜𝐽௜

𝐿௜
, 𝑏௜ =

𝐸௜𝐼௜

𝐿௜
ଷ ൬

1

(1 + 𝜁௜)
൰, (3.17) 

 

and the 𝑓௖
ௗᇲ

 expressions 

 

𝑓௖
ଵ

௜
=

𝛼ଵ௜
+ 𝛼ଶ௜

+ 𝛼ଵ௜
𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

,   𝑓௖
ଶ

௜
=

𝛼ଷ௜
+ 𝛼ସ௜

+ 𝛼ଷ௜
𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

,   𝑓௖
ଷ

௜
=

2𝛼ଵ௜
+ 𝛼ଵ௜

𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

, (3.18) 

𝑓௖
ସ

௜
=

2𝛼ଶ௜
+ 𝛼ଵ௜

𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

,   𝑓௖
ହ

௜
=

2𝛼ଷ௜
+ 𝛼ଷ௜

𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

,   𝑓௖
଺

௜
=

2𝛼ସ௜
+ 𝛼ଷ௜

𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

, (3.19) 

𝑓௖
଻

௜
=

3𝛼ଵ௜
𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

,   𝑓௖
଼

௜
=

3𝛼ଷ௜
𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

,   𝑓௖
ଽ

௜
=

3𝛼ଵ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

, (3.20) 
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𝑓௖
ଵ଴

௜
=

3𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

, 𝑓௖
ଵଵ

௜
=

3𝛼ଷ௜

4 − 𝛼ଷ௜
𝛼ସ௜

,   𝑓௖
ଵଶ

௜
=

3𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

, (3.21) 

 

the stiffness matrix 𝐊𝐋 of the 3D frame element is assembled by equation (3.22). 
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𝐊𝐋𝒊
=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑎௜ 0 0 0 0 0 −𝑎௜ 0 0 0 0 0

0 12𝑏௜𝑓௖
ଵ

௜
0 0 0 6𝑏௜𝐿௜𝑓௖

ଷ
௜

0 −12𝑏௜𝑓௖
ଵ

௜
0 0 0 6𝑏௜𝐿௜𝑓௖

ସ
௜

0 0 12𝑏௜𝑓௖
ଶ

௜
0 −6𝑏௜𝐿௜𝑓௖

ହ
௜

0 0 0 −12𝑏௜𝑓௖
ଶ

௜
0 −6𝑏௜𝐿௜𝑓௖

଺
௜

0

0 0 0 𝑜௜ 0 0 0 0 0 −𝑜௜ 0 0

0 0 −6𝑏௜𝐿௜𝑓௖
ହ

௜
0 (4 + 𝜁௜)𝑏௜𝐿௜

ଶ𝑓௖
ଵଵ

௜
0 0 0 6𝑏௜𝐿௜𝑓௖

ହ
௜

0 (2 − 𝜁௜)𝑏௜𝐿௜
ଶ𝑓௖

଼
௜

0

0 6𝑏௜𝐿௜𝑓௖
ଷ

௜
0 0 0 (4 + 𝜁௜)𝑏௜𝐿௜

ଶ𝑓௖
ଽ

௜
0 −6𝑏௜𝐿௜𝑓௖

ଷ
௜

0 0 0 (2 − 𝜁௜)𝑏௜𝐿௜
ଶ𝑓௖

଻
௜

−𝑎௜ 0 0 0 0 0 𝑎௜ 0 0 0 0 0

0 −12𝑏௜𝑓௖
ଵ

௜
0 0 0 −6𝑏௜𝐿௜𝑓௖

ଷ
௜

0 12𝑏௜𝑓௖
ଵ

௜
0 0 0 −6𝑏௜𝐿௜𝑓௖

ସ
௜

0 0 −12𝑏௜𝑓௖
ଶ

௜
0 6𝑏௜𝐿௜𝑓௖

ହ
௜

0 0 0 12𝑏௜𝑓௖
ଶ

௜
0 6𝑏௜𝐿௜𝑓௖

଺
௜

0

0 0 0 −𝑜௜ 0 0 0 0 0 𝑜௜ 0 0

0 0 −6𝑏௜𝐿௜𝑓௖
଺

௜
0 (2 − 𝜁௜)𝑏௜𝐿௜

ଶ𝑓௖
଼

௜
0 0 0 6𝑏௜𝐿௜𝑓௖

଺
௜

0 (4 + 𝜁௜)𝑏௜𝐿௜
ଶ𝑓௖

ଵଶ
௜

0

0 6𝑏௜𝐿௜𝑓௖
ସ

௜
0 0 0 (2 − 𝜁௜)𝑏௜𝐿௜

ଶ𝑓௖
଻

௜
0 −6𝑏௜𝐿௜𝑓௖

ସ
௜

0 0 0 (4 + 𝜁௜)𝑏௜𝐿௜
ଶ𝑓௖

ଵ଴
௜⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

 

(3.22) 
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Formally, a distributed load on the length 𝐿 of any 𝑖-element is decomposed into 

consistent nodal loads through the following standard expression 

 

න 𝐍௜
୘𝑷௜ 𝑑𝑥෤

௅೔

଴

, (3.23) 

 

remembering that 𝐍 is the matrix that contains the interpolation functions and 𝑷 is the vector 

with the mathematical expressions that represent the distribution of the load, which can be 

uniform, linear and quadratic, for example. 

If there is a uniformly distributed load on the length, either in 𝑦෤ or 𝑧̃ directions with 

magnitudes 𝑤௬෤  and 𝑤௭෤ of the local reference system, Chandrupatla and Belegundu (2002) show 

that it can be decomposed into consistent nodal loads as 

 

𝒑𝑬𝒊
= ቈ0

𝑤௬෤ ௜
𝐿௜

2

𝑤௭෤௜
𝐿௜

2
0 −

𝑤௭෤௜
𝐿௜

ଶ

12

𝑤௬෤ ௜
𝐿௜

ଶ

12
0

𝑤௬෤ ௜
𝐿௜

2

𝑤௭෤௜
𝐿௜

2
0

𝑤௭෤௜
𝐿௜

ଶ

12
−

𝑤௬෤ ௜
𝐿௜

ଶ

12
቉

୘

, (3.24) 

 

for the frame element with connections of infinite stiffness. The signal of 𝑤௬෤  and 𝑤௭෤ must be 

consistent with the local reference system adopted, see Figure 3.8. 

 

Figure 3.8 – Signal convention of the distributed load and consistent nodal loads. 

 
Source: Adapted from Chandrupatla e Belegundu (2002). 

 

Then, to represent the consistent nodal loads in the global reference system (𝑷𝑬𝑮), 𝒑𝑬 

is multiplied by the transposed transformation matrix 𝐓 

 

𝒑𝑬𝑮௜
= 𝐓௜

୘𝒑𝑬௜
. (3.25) 

𝑎𝑥𝑖𝑠 1

𝑤ᇱ

1

2

𝐿

𝑤ᇱ𝐿

2

𝑤′𝐿

2

−
𝑤′𝐿ଶ

12

𝑤′𝐿ଶ

12

𝑎𝑥𝑖𝑠 2
𝑎𝑥𝑖𝑠 1ᇱ 

𝑎𝑥𝑖𝑠 2ᇱ 
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If the element has semi-rigid connections, the bending moments of the ends must be 

corrected due to the effect of the existing rotational stiffness. Therefore, using the interpolation 

functions, considering loadings in the 𝑥෤𝑦෤ and 𝑥෤𝑧̃ planes and integrating, 

 

න ൣ𝑁ଶ௜
௩ೣ೚೤ 𝑁ସ௜

௩ೣ೚೤൧
𝐓

𝑤௭෤௜
𝑑𝑥෤,

௅೔

଴

 (3.26) 

න ൣ𝑁ଶ௜
௩ೣ೚೥ 𝑁ସ௜

௩ೣ೚೥൧
𝐓

𝑤௬෤ ௜
𝑑𝑥෤,

௅೔

଴

 (3.27) 

 

we arrive at the following correction expressions for the bending moments, which need to be 

replaced in equation (3.24). 

 

𝑀௭ଵ௜
=

𝑤௬෤ ௜
𝐿௜

ଶ

12
ቆ

3𝛼ଵ௜
൫2 − 𝛼ଶ௜

൯

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ     𝑎𝑛𝑑    𝑀௭ଶ௜
= −

𝑤௬෤ ௜
𝐿௜

ଶ

12
ቆ

3𝛼ଶ௜
൫2 − 𝛼ଵ௜

൯

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ, (3.28) 

𝑀௬ଵ௜
= −

𝑤௭෤௜
𝐿௜

ଶ

12
ቆ

3𝛼ଷ௜
൫2 − 𝛼ସ௜

൯

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ     𝑎𝑛𝑑    𝑀௬ଶ௜
=

𝑤௭෤௜
𝐿௜

ଶ

12
ቆ

3𝛼ସ௜
൫2 − 𝛼ଷ௜

൯

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ . (3.29) 

 

Semi-rigid connections with characteristic close to the pinned connection condition in 

the 𝑥෤𝑦෤ and 𝑥෤𝑧̃ planes are possible through fixity factors with values close to null. On the other 

hand, fully rigid connections imply infinite stiffness which is not achievable and obtained only 

approximately. Most of the reviewed works study planar frames have only beam-to-column 

and/or column-base connections, which will always have a rigid part (column or base). In this 

context, the procedure to constraint the nullity and the unity of fixity factors is not uncommon, 

since values near the extremes are also physically interpretable as pinned and fully rigid 

connections. Kartal et. al. (2010), for example, investigate four planar frames with semi-rigid 

connections which have fixity factors within the range of 0.01 and 0.99. 

Usually, steel space frames have two or 𝑚-elements neighborhood of connectivity, as 

can be seen in Fig. 3.9, and consequently a given joint can have 2𝑚-rotational springs referring 

to the connected elements. 
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Figure 3.9 – Node with 𝑚-elements connected. 

 
Source: Author’s production. 

 

In this situation, the structural behavior of all the joints can be understood through the 

stiffness matrix. Since 𝐊𝐛𝐨 refers to the global stiffness matrix produced by 3D frame elements 

with fully rigid connections, the overall contribution 𝐊𝐬 of the rotational stiffness of all joints 

can be calculated by 

 

𝐊𝐬 = 𝐊 − 𝐊𝐛𝐨, (3.30) 

 

that is, with the addition of the fixity factors in the 3D frame element formulation, each joint 

becomes an additional element of the structure, having all the necessary rotational stiffness 

portions. 

Disregarding manufacturing and assembly difficulties, the connection between 𝑚-

elements can be represented by the constructive scheme of Fig. 3.10. The local rotational 

stiffness of each element are absorbed by a "global connector" (GC) which is rigid. The GC is 

illustrated as a cube and in the node 2 it has only two elements connected to him. If more 

elements are connected in a non-coplanar form, each element must be connected with the local 

longitudinal axis 𝑥෤ orthogonal to a given surface of the GC. 

 

Figure 3.10 – The constructive scheme for the connection between 𝑚-elements. 

 
Source: Author’s production. 
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To understand the constructive concept of Fig. 3.10, look at the particular case depicted 

in Fig. 3.11, where the pair of fixity factors 𝛼ଶ೔భ
 and 𝛼ସ೔భ

  are null and the pair 𝛼ଵ೔మ
 and 𝛼ଷ೔మ

  

have a certain degree of rotational stiffness at node 2. 

 

Figure 3.11 – A particular case of 𝑚-elements connected to the same joint. 

 
Source: Author’s production. 

 

If any rotation occurs at node 2, acting on either of the bending planes, the element 2 

provides portions of rotational stiffness related to both end rotational springs and to the element 

itself, and bending moment transmission occurs along the element length. On the other hand, 

while the left connection of the element 1 offers rotational stiffness, the connection in the right 

side offers no resistance to the rotation. Even so, the element 1 will also presents bending 

moments, since the left connection is semi-rigid (except in the labeled local, where the bending 

moment will be null). 

 

3.2 Calculation of Internal Forces 

 

In order to calculate the internal forces – axial force, shear forces, bending moments and 

torsion – in any cross-section, it is necessary to use the interpolation functions assumed in the 

element formulation, to define the displacement field along the length of the element. Thus, it 

is possible to predict local displacements at any point 𝑥෤. 

The displacement field is given by an approximation directly related to the local nodal 

displacements and to the polynomial degree of the interpolation functions. Local nodal 

displacements are determined by the global displacements mapped and rotated by the 

transformation matrix 𝐓. 

ELEMENT i1

ELEMENT i2

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑒

𝑝𝑖𝑛𝑛𝑒𝑑
𝑠𝑒𝑚𝑖-𝑟𝑖𝑔𝑖𝑑

𝑠𝑒𝑚𝑖-𝑟𝑖𝑔𝑖𝑑𝑠𝑒𝑚𝑖-𝑟𝑖𝑔𝑖𝑑

ଵ೔భ

ଷ೔భ

ଶ೔భ

ସ೔భ

ଵ೔మ

ଷ೔మ

ଶ೔మ

ଷ೔మ
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As can be seen in equations (3.31)-(3.39), linear interpolation functions are adopted to 

the translation and rotation in the 𝑥෤-axis, while cubic interpolation functions characterize the 

translation in 𝑦 and 𝑧 axes, related to the cases exhibited in the Tables 3.1 and 3.2. Therefore, 

 

𝑁ଵ
௕ೣ = 𝑁ଵ

௧ೣ = 1 −
𝑥෤

𝐿௜
, 𝑁ଶ

௕ೣ = 𝑁ଶ
௧ೣ =

𝑥෤

𝐿௜
, (3.31) 

 

are the interpolation functions of translation (𝑁௕ೣ) and rotation (𝑁௧ೣ) in 𝑥෤-axis, 

 

𝑁ଵ
௩ೣ೚೤ =

2

𝐿௜
ଷ ቆ

𝛼ଵ௜
+ 𝛼ଶ௜

+ 𝛼ଵ௜
𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤ଷ −
3

𝐿௜
ଶ ቆ

2𝛼ଵ௜
+ 𝛼ଵ௜

𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤ଶ +
2

𝐿௜
ቆ

2𝛼ଵ௜
− 𝛼ଶ௜

+ 𝛼ଵ௜
𝛼ଶ௜

− 2

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤ + 1, (3.32) 

𝑁ଶ
௩ೣ೚೤ =

1

𝐿௜
ଶ ቆ

2𝛼ଵ௜
+ 𝛼ଵ௜

𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤ଷ −
6

𝐿௜
ቆ

𝛼ଵ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤ଶ − ቆ
𝛼ଵ௜

𝛼ଶ௜
− 4𝛼ଵ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤, (3.33) 

𝑁ଷ
௩ೣ೚೤ = −

2

𝐿௜
ଷ ቆ

𝛼ଵ௜
+ 𝛼ଶ௜

+ 𝛼ଵ௜
𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤ଷ +
3

𝐿௜
ଶ ቆ

2𝛼ଵ௜
+ 𝛼ଵ௜

𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤ଶ −
2

𝐿௜
ቆ

2𝛼ଵ௜
− 𝛼ଶ௜

+ 𝛼ଵ௜
𝛼ଶ௜

− 2

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤, (3.34) 

𝑁ସ
௩ೣ೚೤ =

1

𝐿௜
ଶ ቆ

2𝛼ଶ௜
+ 𝛼ଵ௜

𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤ଷ −
3

𝐿௜
ቆ

𝛼ଵ௜
𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤ଶ + 2 ቆ
𝛼ଵ௜

𝛼ଶ௜
− 𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤, (3.35) 

 

are the interpolation functions of the displacements in plane 𝑥෤𝑦෤ (𝑁௩ೣ೚೤) and 

 

𝑁ଵ
௩ೣ೚೥ =

2

𝐿௜
ଷ ቆ

𝛼ଷ௜
+ 𝛼ସ௜

+ 𝛼ଷ௜
𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤ଷ −
3

𝐿௜
ଶ ቆ

2𝛼ଷ௜
+ 𝛼ଷ௜

𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤ଶ +
2

𝐿௜
ቆ

2𝛼ଷ௜
− 𝛼ସ௜

+ 𝛼ଷ௜
𝛼ସ௜

− 2

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤ + 1, (3.36) 

𝑁ଶ
௩ೣ೚೥ = −

1

𝐿௜
ଶ ቆ

2𝛼ଷ௜
+ 𝛼ଷ௜

𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤ଷ +
6

𝐿௜
ቆ

𝛼ଷ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤ଶ + ቆ
𝛼ଷ௜

𝛼ସ௜
− 4𝛼ଷ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤, (3.37) 

𝑁ଷ
௩ೣ೚೥ = −

2

𝐿௜
ଷ ቆ

𝛼ଷ௜
+ 𝛼ସ௜

+ 𝛼ଷ௜
𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤ଷ +
3

𝐿௜
ଶ ቆ

2𝛼ଷ௜
+ 𝛼ଷ௜

𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤ଶ −
2

𝐿௜
ቆ

2𝛼ଷ௜
− 𝛼ସ௜

+ 𝛼ଷ௜
𝛼ସ௜

− 2

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤, (3.38) 

𝑁ସ
௩ೣ೚೥ = −

1

𝐿௜
ଶ ቆ

2𝛼ସ௜
+ 𝛼ଷ௜

𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤ଷ +
3

𝐿௜
ቆ

𝛼ଷ௜
𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤ଶ − 2 ቆ
𝛼ଷ௜

𝛼ସ௜
− 𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤, (3.39) 

 

are the interpolation functions of the displacements in plane 𝑥෤𝑧̃ (𝑁௩ೣ೚೥). As already mentioned, 

the interpolation functions 𝑁௩ೣ೚೤ and 𝑁௩ೣ೚೥ are determinated by the procedure explained in 

equation (3.13). 

Considering these interpolation functions, the distributions of the translational 

displacements on the three cartesian axes (𝑈௕ೣ
, 𝑈௩ೣ೚೤

 and 𝑈௩ೣ೚೥
) and the rotation around the 𝑥෤-

axis (𝑈௧ೣ
), along the length of the element, can be approximated (𝑈௔

௕ೣ
, 𝑈௔

௩ೣ೚೤
, 𝑈௔

௩ೣ೚೥
 and 

𝑈௔
௧ೣ

, respectively) as follows 
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𝑈௔
௕ೣ ௜

= 𝑁ଵ
௕ೣ𝑢ଵ௜

+ 𝑁ଶ
௕ೣ𝑢ଶ௜

, (3.40) 

𝑈௔
௩ೣ೚೤௜

= 𝑁ଵ
௩ೣ೚೤𝑣ଵ௜

+ 𝑁ଶ
௩ೣ೚೤𝜃ଵ௭௜

+ 𝑁ଷ
௩ೣ೚೤𝑣ଶ௜

+ 𝑁ସ
௩ೣ೚೤𝜃ଶ௭௜

, (3.41) 

𝑈௔
௩ೣ೚೥ ௜

= 𝑁ଵ
௩ೣ೚೥𝑤ଵ௜

+ 𝑁ଶ
௩ೣ೚೥𝜃ଵ௬௜

+ 𝑁ଷ
௩ೣ೚೥𝑤ଶ௜

+ 𝑁ସ
௩ೣ೚೥𝜃ଶ௬௜

, (3.42) 

𝑈௔
௧ೣ ௜

= 𝑁ଵ
௧ೣ𝜃ଵ௫௜

+ 𝑁ଶ
௧ೣ𝜃ଶ௫௜

. (3.43) 

 

In matrix form, the set of equations (3.40)-(3.43) is described by the linear combination 

 

𝑼𝒂
௜ = 𝐍௜𝒖௜, (3.44) 

 

where 𝑼𝒂 is the vector of aproximate displacements at the 𝑖-element, 𝐍 is the matrix of the 

interpolation functions and 𝒖 is the vector of nodal displacements in the local reference system. 

The procedure to calculate the internal forces is analogous to the procedure presented in 

Carniel et. al. (2008), only with distinct interpolation functions that incorporate the effect of the 

semi-rigid connections. 

Returning with the index 𝑘 for a given cross-section and based on the definitions of the 

axial strain 𝜀௫௬, the Hooke's law and the basic equation to calculate the normal stress 𝜎௫௫ 

produced by an axial force, 

 

𝜀௫௬௜
=

𝑑𝑈௔
௕ೣ ௜

𝑑𝑥෤
, (3.45) 

𝜎௫௫௜,௞
= 𝐸௜𝜀௫௬௜

 (3.46) 

𝜎௫௫௜,௞
=

𝑁௫௜,௞

𝐴௜
, 

(3.47) 

 

differentiating equation (3.45) with respect to equation (3.40) and replacing equations (3.45) 

and (3.47) in equation (3.46), the calculation of axial forces 𝑁௫ is performed as follows 

 

𝑁௫௜,௞
= ൬

𝐸௜𝐴௜

𝐿௜
൰ [−1 1] ቄ𝒖𝒃𝒙௜

ቅ, (3.48) 

 

where 𝒖𝒃𝒙
 is the vector with the local axial displacements of nodes 1 and 2. 

Considering the known relationship between the shear and bending moments, 
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𝑀௢௭(𝑥෤)௜ = 𝐸௜𝐼௜

𝑑ଶ𝑣(𝑥෤)௜

𝑑𝑥෤ଶ
, 𝑉௬(𝑥෤)௜ = −

𝑑𝑀௢௭(𝑥෤)௜

𝑑𝑥෤
, (3.49) 

𝑀௢௬(𝑥෤)௜ = 𝐸௜𝐼௜

𝑑ଶ𝑤(𝑥෤)௜

𝑑𝑥෤ଶ
, 𝑉௭(𝑥෤)௜ = −

𝑑𝑀௢௬(𝑥෤)௜

𝑑𝑥෤
, 

(3.50) 

 

being the translations in 𝑦෤ and 𝑧̃ axes approximated by equations (3.41) and (3.42) and using 

the second and third derivatives of the interpolation functions viewed in equations (3.32)-(3.39), 

given by 

 

𝑑²𝑁ଵ
௩ೣ೚೤

𝑑𝑥෤²
=

12

𝐿௜
ଷ ቆ

𝛼ଵ௜
+ 𝛼ଶ௜

+ 𝛼ଵ௜
𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤ −
6

𝐿௜
ଶ ቆ

2𝛼ଵ௜
+ 𝛼ଵ௜

𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ,             
𝑑³𝑁ଵ

௩ೣ೚೤

𝑑𝑥෤³
=

12

𝐿௜
ଷ ቆ

𝛼ଵ௜
+ 𝛼ଶ௜

+ 𝛼ଵ௜
𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ, 

𝑑²𝑁ଶ
௩ೣ೚೤

𝑑𝑥෤²
=

6

𝐿௜
ଶ ቆ

2𝛼ଵ௜
+ 𝛼ଵ௜

𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤ −
12

𝐿௜
ቆ

𝛼ଵ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ,                             
𝑑³𝑁ଶ

௩ೣ೚೤

𝑑𝑥෤³
=

6

𝐿௜
ଶ ቆ

2𝛼ଵ௜
+ 𝛼ଵ௜

𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ, 

𝑑²𝑁ଷ
௩ೣ೚೤

𝑑𝑥෤²
= −

12

𝐿௜
ଷ ቆ

𝛼ଵ௜
+ 𝛼ଶ௜

+ 𝛼ଵ௜
𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤ +
6

𝐿௜
ଶ ቆ

2𝛼ଵ௜
+ 𝛼ଵ௜

𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ ,
𝑑³𝑁ଷ

௩ೣ೚೤

𝑑𝑥෤³
= −

12

𝐿௜
ଷ ቆ

𝛼ଵ௜
+ 𝛼ଶ௜

+ 𝛼ଵ௜
𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ, 

𝑑²𝑁ସ
௩ೣ೚೤

𝑑𝑥෤²
=

6

𝐿௜
ଶ ቆ

2𝛼ଶ௜
+ 𝛼ଵ௜

𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ 𝑥෤ −
6

𝐿௜
ቆ

𝛼ଵ௜
𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ,                              
𝑑³𝑁ସ

௩ೣ೚೤

𝑑𝑥෤³
=

6

𝐿௜
ଶ ቆ

2𝛼ଶ௜
+ 𝛼ଵ௜

𝛼ଶ௜

4 − 𝛼ଵ௜
𝛼ଶ௜

ቇ, 

𝑑²𝑁ଵ
௩ೣ೚೥

𝑑𝑥෤²
=

12

𝐿௜
ଷ ቆ

𝛼ଷ௜
+ 𝛼ସ௜

+ 𝛼ଷ௜
𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤ −
6

𝐿௜
ଶ ቆ

2𝛼ଷ௜
+ 𝛼ଷ௜

𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ,             
𝑑³𝑁ଵ

௩ೣ೚೥

𝑑𝑥෤³
=

12

𝐿௜
ଷ ቆ

𝛼ଷ௜
+ 𝛼ସ௜

+ 𝛼ଷ௜
𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ, 

𝑑²𝑁ଶ
௩ೣ೚೥

𝑑𝑥෤²
= −

6

𝐿௜
ଶ ቆ

2𝛼ଷ௜
+ 𝛼ଷ௜

𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤ +
12

𝐿௜
ቆ

𝛼ଷ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ,                         
𝑑³𝑁ଶ

௩ೣ೚೥

𝑑𝑥෤³
= −

6

𝐿௜
ଶ ቆ

2𝛼ଷ௜
+ 𝛼ଷ௜

𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ, 

𝑑ଶ𝑁ଷ
௩ೣ೚೥

𝑑𝑥෤ଶ
= −

12

𝐿௜
ଷ ቆ

𝛼ଷ௜
+ 𝛼ସ௜

+ 𝛼ଷ௜
𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤ +
6

𝐿௜
ଶ ቆ

2𝛼ଷ௜
+ 𝛼ଷ௜

𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ,        
𝑑ଷ𝑁ଷ

௩ೣ೚೥

𝑑𝑥෤ଷ
= −

12

𝐿௜
ଷ ቆ

𝛼ଷ௜
+ 𝛼ସ௜

+ 𝛼ଷ௜
𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ, 

𝑑²𝑁ସ
௩ೣ೚೥

𝑑𝑥෤²
= −

6

𝐿௜
ଶ ቆ

2𝛼ସ௜
+ 𝛼ଷ௜

𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ 𝑥෤ +
6

𝐿௜
ቆ

𝛼ଷ௜
𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ,                          
𝑑³𝑁ସ

௩ೣ೚೥

𝑑𝑥෤³
= −

6

𝐿௜
ଶ ቆ

2𝛼ସ௜
+ 𝛼ଷ௜

𝛼ସ௜

4 − 𝛼ଷ௜
𝛼ସ௜

ቇ, 

(3.51) 

 

the internal bending moments (𝑀௬ and 𝑀௭) and shear forces (𝑉௬ and 𝑉௭) are defined by the 

following expressions 

 

𝑀௭௜,௞
= (𝐸௜𝐼௜) ቈ

𝑑²𝐍𝒗𝒙𝒐𝒚
௞  

𝑑𝑥෤²
቉ ቄ𝒖𝒗𝒙𝒐𝒚 ௜

ቅ, (3.52) 

𝑉௬௜,௞
= (−𝐸௜𝐼௜) ቈ

𝑑³𝐍𝒗𝒙𝒐𝒚
௞   

𝑑𝑥෤³
቉ ቄ𝒖𝒗𝒙𝒐𝒚 ௜

ቅ, (3.53) 

𝑀௬௜,௞
= (𝐸௜𝐼௜) ቈ

𝑑²𝐍𝒗𝒙𝒐𝒛
௞  

𝑑𝑥෤²
቉ ቄ𝒖𝒗𝒙𝒐𝒛௜

ቅ, (3.54) 

𝑉௭௜,௞
= (−𝐸௜𝐼௜) ቈ

𝑑³𝐍𝒗𝒙𝒐𝒛
௞  

𝑑𝑥෤³
቉ ቄ𝒖𝒗𝒙𝒐𝒛 ௜

ቅ, (3.55) 

 

where 𝒖𝒗𝒙𝒐𝒚
 and 𝒖𝒗𝒙𝒐𝒛

 are vectors with the local translation of the nodes in 𝑦෤ and 𝑧̃ axes. 
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Starting from the same procedure which was described for the axial force, we have 

 

𝛾௬௭௜
= 𝑅௜

𝑑𝑈௔
௧ೣ ௜

𝑑𝑥෤
, (3.56) 

𝜏௬௭௜,௞
= 𝐺௜𝛾௬௭௜

, (3.57) 

𝜏௬௭௜,௞
=

𝑀௫௜,௞
𝑅௜

𝐽௜
, 

(3.58) 

 

where 𝛾௬௭ is the angular deformation and, at this case, 𝜏௬௭ is a shear stress produced by torsion. 

Replacing equation (3.58) into equation (3.57),  

 

𝑀௫௜,௞
𝑅௜

𝐽௜
= 𝐺௜𝛾௬௭௜

, (3.59) 

 

and then equation (3.56) into equation (3.59), after differentiating equation (3.43), the torsion 

𝑀௫ can be determinated by 

 

𝑀௫௜,௞
= ൬

𝐺௜𝐽௜

𝐿௜
൰ [−1 1] ቄ𝒖𝒕𝒙௜

ቅ. (3.60) 

 

Analyzing the equations of the six internal forces, it is seen that the distributions of the 

axial force and torsion are constant along the length of the element since the derivative is 

applied in linear interpolation functions. On the other hand, while the shear forces also have 

constant magnitude along the length, due to the third derivatives of the cubic interpolation 

functions, the bending moments can have different magnitudes according to the arbitrary point 

𝑥෤, since the resulting second derivatives are linear. 
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Chapter 4 

 

Failure Criterion 
 

 

The formulation of the new failure criterion for tubular elements with circular cross-

section and variable length is grounded on the von Mises theory and based on the stress 

calculation strategy proposed by Irles and Irles (2000). The reference system adopted for 

internal forces, stress distributions and angular location 𝜃 in the outer radius is shown in Fig. 

4.1. 

 

Figure 4.1 – Reference system adopted for the failure criterion formulation. 

 
Source: Author’s production. 

 

For the development of the formulation the following hypotheses are considered: 
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I.   Element with symmetrical and prismatic cross-sectional area along the longitudinal 𝑥෤-

axis; 

II.   Ductile, homogeneous and isotropic material; 

III.   Concentrations and residual stresses are neglected; 

IV.   Normal and shear stresses, shown in Fig. 4.1, distributed according to the internal 

forces reference system coupled to the angular reference system 𝜃; 

V.   Constant distribution for the normal stress of the axial force, linear distribution of the 

normal stress of the bending moments, linear distribution of the shear stress resulting 

from the torsion and parabolic distribution of the shear stresses related to the shear 

forces; 

VI.   In the outline of the outer radius, the shear stresses of shear forces and torsion are both 

tangential; 

VII.   Cross-section remains flat during the deformation of the axial stress; 

VIII.   Distortion of the cross-section is insignificant and the thin-wall thickness (𝑡) is small 

enough to assume that there is no variation of the shear stresses along the thickness; 

IX.   Small torsion angles where the length and the outer radius of the element remain 

unchanged; 

X.   The critical point of mechanical solicitation localized in the outer radius and 

dependent only on the angular position 𝜃, inserted in the fixed range of [0,2𝜋] and 

assumed from the local 𝑧̃-axis. 

 

The von Mises failure criterion for a point under a multiaxial stress state 𝜎 is 

 

𝜎ଶ =
1

2
ቂ൫𝜎௫௫ − 𝜎௬௬൯

ଶ
+ ൫𝜎௬௬ − 𝜎௭௭൯

ଶ
+ (𝜎௭௭ − 𝜎௫௫)ଶቃ + 3൫𝜏௫௬

ଶ + 𝜏௬௭
ଶ + 𝜏௭௫

ଶ൯, (4.1) 

 

where 𝜎௫௫, 𝜎௬௬ e 𝜎௭௭ are normal stresses and 𝜏௫௬, 𝜏௬௭ e 𝜏௭௫ are shear stresses. 

 While the normal stress 𝜎ேೣ
 of the axial force is uniform throughout the area, the shear 

stress 𝜏ெೣ
 of the torsion is maximal at any point 𝜃. That is, 

 

𝜎ேೣ ௜,௞
=

𝑁௫௜,௞

𝐴௜
       𝑎𝑛𝑑       𝜏ெೣ ௜,௞

=
𝑀௫௜,௞

𝑅௜

𝐽௜
. (4.2) 
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However, the locations of the maximum normal and shear stresses of the resulting 

bending moment and shear force depend on 𝜃, and therefore, it is necessary to deduce these 

terms properly. 

Considering that the cross-section of Fig. 4.2 is subjected to the bending moments 𝑀௬ 

and 𝑀௭, the resulting bending moment 𝑀ோ and the angle 𝛾ெ are known as 

 

𝑀ோ௜,௞
= ට𝑀௬௜,௞

ଶ + 𝑀௭௜,௞
ଶ      𝑎𝑛𝑑      𝛾ெ௜,௞

= tanିଵ ൭
𝑀௭௜,௞

𝑀௬௜,௞

൱. (4.3) 

 

Figure 4.2 – Cross-section properties used in the deduction of the normal stress from the 

bending moments. 

 

Source: Author’s production. 

 

The normal stress depends on the distance 𝑐̅ (perpendicular to 𝑀ோ) between the line of 

action of the vector of 𝑀ோ and the point 𝜃. Also, the angle between 𝑀ோ and the 𝑧̃-axis is known, 

since it is the complement of 𝛾ெ for form the 
గ

ଶ
 angle between the 𝑦෤ and 𝑧̃ axes. 

By making the relation between the angles, 

 

𝑐௜̅,௞ = 𝑅௜ sin(𝜑௜,௞) , 𝜑௜,௞ = 𝜃௜,௞ + ቀ
𝜋

2
− 𝛾ெ௜,௞

ቁ, (4.4) 

௭

௬

ோ

ெ
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it is possible to determine the normal stress 𝜎ெೃ
 of the resulting bending moment as a function 

of 𝜃 

 

𝜎ெೃ ௜,௞
=

𝑀ோ௜,௞
𝑐௜̅,௞

𝐼௜
. (4.5) 

 

To define the shear stress expression of the resulting shear forces 𝑉௬ and 𝑉௭ as a function 

of the angle 𝜃, consider the cross-section of Fig. 4.3. 

 

Figure 4.3 – Cross-section properties used in the deduction of the shear stress produced by the 

shear forces. 

  

Source: Author’s production. 

 

By analogous procedure, 

 

𝑉ோ௜,௞
= ට𝑉௬௜,௞

ଶ + 𝑉௭௜,௞
ଶ       𝑎𝑛𝑑       𝛾௏௜,௞

= tanିଵ ൭
𝑉௭௜,௞

𝑉௬௜,௞

൱. (4.6) 

 

After the definition of 𝑉ோ and using the angle 𝜆 given by  

 

௭

௬

ோ

௠

௏

dS

௏ೃ
೤ᇲ ெೣ

ோ
௬ᇱ

ோ
௭ᇱ

ெೃ ேೣ
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𝜆௜,௞ = 𝛾௏௜,௞
− 𝜃௜,௞, (4.7) 

 

𝑉ோ is decomposed in the auxiliary reference system 𝑦ᇱ𝑧ᇱ by the components 𝑉ோ
௬ᇱ and 𝑉ோ

௭ᇱ 

 

𝑉ோ
௬ᇱ

௜,௞
= 𝑉ோ௜,௞

cos(𝜆௜,௞)       𝑎𝑛𝑑       𝑉ோ
௭ᇱ

௜,௞
= 𝑉ோ௜,௞

sin(𝜆௜,௞). (4.8) 

 

Based on the characteristic of the stress distribution, while the shear stress of 𝑉ோ
௭ᇱ is 

zero in 𝜃, the shear force 𝑉ோ
௬ᇱ produces maximum shear stress in 𝜃. As this shear stress is 

tangential to the outer contour, as well as the shear stress of the torsion, it becomes possible to 

add these two portions of shear stresses. 

The shear stress from 𝑉ோ
௬ᇱ at the arbitrary point 𝜃 depends on the static moment 𝑄, 

calculated with respect to the area 𝐴̅ᇱ of the arc above the 𝑧ᇱ-axis and to the distance 𝑦തᇱ of the 

𝑧ᇱ-axis to the centroid of this arc. Therefore, knowing that 𝑅௠ is the midline radius of the cross-

section, we have the following geometric properties 

 

𝑦തᇱ
௜

=
4𝑡௜

3𝜋
, 𝐴̅௜

ᇱ
= 𝜋𝑅௠௜

𝑡௜ , 𝑄௜ = 𝑦തᇱ
௜
𝐴̅௜

ᇱ
=

4𝑡௜
ଶ𝑅௠௜

3
, (4.9) 

 

and the expression for the shear stress 𝜏௏ೃ
೤ᇲ is determined as 

 

𝜏௏ೃ
೤ᇲ

௜,௞
=

𝑉ோ
௬ᇱ

௜,௞
𝑄௜

𝐼௜𝑡௜
. (4.10) 

 

Returning to equation (4.1), considering that the stresses 𝜎௬௬, 𝜏௫௬ e 𝜏௭௫ are zero, the 

outer radius, midline radius, inertia moment and the polar inertia moment can be represented as 

a function of the cross-section area and the thin-wall thickness 

 

𝑅௜ =
1

2
ቆ

𝐴௜ + 𝜋𝑡௜
ଶ

𝜋𝑡௜
ቇ , 𝑅௠௜

= 𝑅௜ −
𝑡௜

2
, 𝐼௜ = 𝜋𝑅௠௜

ଷ𝑡௜, 𝐽௜ = 2𝐼௜, (4.11) 

 

and adopting 𝜎௘ as the allowable stress, the failure criterion is established by 

 

𝑓(𝜃)௜,௞ ≤ 𝜎௘
ଶ, (4.12) 
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𝑓(𝜃)௜,௞ = ቆ
𝑁௫௜,௞

𝐴௜
+

𝑀ோ௜,௞
𝑐௜̅,௞

𝐼௜
ቇ

ଶ

+ 3 ቆ
𝑀௫௜,௞

𝑅௜

2𝐼௜
−

𝑉ோ
௬ᇱ

௜,௞
𝑄௜

𝐼௜𝑡௜
ቇ

ଶ

. (4.13) 

 

According to the allowable stress and geometric properties, the failure criterion 

evaluates the mechanical strength of the cross-sections through the von Mises stress, calculated 

by 𝑓(𝜃) in terms of the internal forces acting on the cross-section and only at the critical point 

defined by an adequate sweep within the range of [0,2𝜋]. The sweep procedure is adopted due 

to the simplicity of 𝑓(𝜃) and ease of implementation, however it is noteworthy that any 

unconstrained optimization method could be applied to find the critical point without major 

problems. 

In addition to the internal forces, note that the failure criterion is dependent on only three 

more geometric parameters: the cross-section area 𝐴, the thin-wall thickness 𝑡 and the critical 

point 𝜃. While the cross-section area is a design variable of the optimization process, it is 

important to note that the critical point and the thin-wall thickness are constant parameters, the 

first one being defined by the mentioned sweep and the adjacent is an input data kept fixed. 

It is worth note that this failure criterion can be easily adapted for elements with a 

massive circular section, being necessary to assume 𝑡 = 𝑅 and to modify the tabulated 

equations for the calculation of the static moment 𝑄. Therefore, the adaptation would require 

small changes in the failure criterion and in its sensitivity analysis. 

To justify the development and use of this failure criterion, an analytical investigation 

about a particular case and a 2D optimization problem are detailed in the beginning of Chapter 

6. Hereafter, the importance of the failure criterion is confirmed by the results obtained in the 

developed case studies. 
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Chapter 5 

 

Optimization Problem 
 

 

In the context of this research work, the manufacturing cost of a steel tubular space 

frame consists on the sum of costs related to material and connections of each element. Thus, 

the definition of the total cost found in Simões (1996) can be extended to space frames as 

follows 

 

𝑊 = ෍൫𝑐ெ௜
𝜌௜𝐴௜𝐿௜ + 𝑐ௌ௜

൯

௡௘௟

௜ୀଵ

, (5.1) 

𝑐ௌ௜
= ൭෍(𝑉଴ + 𝑉ଵ𝛼௖ + 𝑉ଶ𝛼௖

ଶ)

ସ

௖ୀଵ

൱

௜

𝑐ெ௜
𝜌௜𝐴௜𝐿௜ , (5.2) 

 

remembering that 𝑐ெ is the monetary material cost per mass ቂ
$

௞௚
ቃ, 𝑐ௌ is the monetary connections 

cost and now the index 𝑐 represents the four fixity factors related to the four rotational springs 

of the 𝑖-elements. 

According to Eurocode 3 (2013), in relation to structures designed for the civil 

construction sector, the connections cost that only have components like plates and bolts is not 

high. However, when it is desired to increase the stiffness in connections, the welding process 

is required and this process increases the cost (operation and inspection of the welds). 

Therefore, to analyze the cost-benefit relationship between increased stiffness and its associated 

cost, the additional cost of the connections is inserted into the objective function 𝑊, being 

proportional to material cost. 

The coefficients 𝑉଴, 𝑉ଵ and 𝑉ଶ define the quadratic variation for the range of the 

additional cost of the connections, delimited by pinned (𝐴𝐶௣) and fully rigid (𝐴𝐶௥) connections 

costs, as can be seen at Simões (1996). In mathematical form, 
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(𝐴𝐶௣)௜𝑐ெ௜
𝜌௜𝐴௜𝐿௜ ≤ ൭෍(𝑉଴ + 𝑉ଵ𝛼௖ + 𝑉ଶ𝛼௖

ଶ)

ସ

௖ୀଵ

൱

௜

𝑐ெ௜
𝜌௜𝐴௜𝐿௜ ≤ (𝐴𝐶௥)௜𝑐ெ௜

𝜌௜𝐴௜𝐿௜ , (5.3) 

0 ≤ 𝐴𝐶௣, 𝐴𝐶௥ ≤ 100 (%). 

 

For connections between steel tubular members, no published data was found with 

suggestions concerning the percentage cost increase referred to this type of connection. 

Therefore, representative values will be derived to 𝐴𝐶௣ and 𝐴𝐶௥. 

Since no method in the literature or even a technical publication on regulatory standards 

was found to define the constant coefficients of this quadratic variation, in the following is 

presented a generic mathematical procedure proposed to standardize the definition of these 

coefficients, to be applied in the development of case studies that evaluate and analyze different 

costs of pinned and fully rigid connections. In other case studies, it is not necessary to apply 

this procedure: the coefficients can be determinated based on graphical verification, ensuring 

that the costs of pinned and fully rigid connections are the minimum and maximum extreme 

costs. 

Basically, a quadratic curve can be determinated knowing three distinct informations, 

which can be three points or even two points and a derivative at any point. In this work, the 

second procedure is adopted, due to its mathematical simplicity and the guarantee of a well 

behaved curve. 

For better visualization, consider only the quadratic variation 𝐴𝐶 given by 

 

𝐴𝐶௜ = ෍(𝑉଴ + 𝑉ଵ𝛼௖ + 𝑉ଶ𝛼௖
ଶ)

ସ

௖ୀଵ

, (5.4) 

𝐴𝐶௜ = 4𝑉଴ + 𝑉ଵ(𝛼ଵ + 𝛼ଶ + 𝛼ଷ + 𝛼ସ) + 𝑉ଶ(𝛼ଵ
ଶ + 𝛼ଶ

ଶ + 𝛼ଷ
ଶ + 𝛼ସ

ଶ), (5.5) 

 

being equation (5.5) the complete expression for the quadratic variation. 

Since the percentages of the additional costs of pinned and fully rigid connections are 

input data, the constant coefficient 𝑉଴ is easily defined as follows 

 

𝛼ଵ, 𝛼ଶ, 𝛼ଷ, 𝛼ସ ≈ 0  →   𝐴𝐶௜ = 𝐴𝐶௣, (5.6) 

4𝑉଴ = 𝐴𝐶௣, (5.7) 

𝑉଴ =
𝐴𝐶௣

4
. (5.8) 
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Then, for the curve to be always well behaved, with the concavity located at the initial 

point of the additional cost of pinned connections, the mathematical condition of an inflection 

point must be imposed. That is, 

 

𝜕𝐴𝐶௜

𝜕𝛼௖
ฬ

ఈ೎≈଴

= 0. (5.9) 

 

Applying the derivative of equation (5.9), it is defined that the constant coefficient 𝑉ଵ is 

null, as can be seen in equations (5.10)-(5.12). 

 

෍
𝜕𝐴𝐶௜

𝜕𝛼௖
ฬ

ఈ೎≈଴

(𝑉଴ + 𝑉ଵ𝛼௖ + 𝑉ଶ𝛼௖
ଶ)

ସ

௖ୀଵ

= 0, (5.10) 

0 = ෍(𝑉ଵ + 2𝑉ଶ𝛼௖)

ସ

௖ୀଵ

, (5.11) 

𝑉ଵ = 0. (5.12) 

 

Finally, with two coefficients already defined, the constant coefficient 𝑉ଶ is easily 

obtained by checking the equation (5.5) at the extreme point of the additional cost of fully rigid 

connections. Therefore, 

 

𝛼ଵ, 𝛼ଶ, 𝛼ଷ, 𝛼ସ ≈ 1  →   𝐴𝐶௜ = 𝐴𝐶௥ , (5.13) 

4𝑉଴ + 4𝑉ଵ + 4𝑉ଶ = 𝐴𝐶௥ , (5.14) 

𝑉ଶ =
1

4
൫𝐴𝐶௥ − 𝐴𝐶௣൯. (5.15) 

 

Considering the presented procedure, the imposed quadratic variations will always have 

the characteristic shown in Fig. 5.1. 
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Figure 5.1 – Mathematical pattern defined for the quadratic variations. 

 
Source: Author’s production. 

 

Based on the purpose of this research, the optimization problem can be stated as finding 

a set of continuous design variables 𝒗𝒑 – cross-section areas, joint positions and fixity factors 

– that minimize the manufacturing costs 𝑊 of a steel tubular space frame subject to 𝐿𝐶-load 

cases and displacement, stress and minimum length as design constraints. In the standard form, 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝒗𝒑 → 𝑨,𝑿,𝒀,𝒁,𝜶                                        𝑊 ቀ𝑣௣௝
ቁ

𝑊ௌி
, (5.16) 

𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑛𝑔                                          𝐊𝑼௅஼ = 𝑭௅஼ , (5.17) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑈ௗ
௅஼

ห𝑈௅ௗ
ห

+ 1.0 ≥ 0, (5.18) 

 
−

𝑈ௗ
௅஼

𝑈௎ௗ

+ 1.0 ≥ 0, (5.19) 

 
−

𝑓(𝜃)௜,௞
௅஼

𝜎௘
ଶ

+ 1.0 ≥ 0, (5.20) 

 𝐿௜

𝐿௅
− 1.0 ≥ 0, (5.21) 

 

where 𝑊ௌி is the value of the objective function at the starting point, 𝑈௅ௗ
 and 𝑈௎ௗ

 are the lower 

and upper bounds for a constrained displacement and 𝐿௅ is the minimum length acceptable to 
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all the elements. The index 𝑗 is related to the design variables, while 𝑑 refer to the displacement 

constraints. 

Note that the objective function and constraints are normalized to avoid poor 

conditioning of the optimization problem. The constraints that exist in the proposed problem 

have very different orders of magnitude, and in the original condition the optimization process 

could suffer serious difficulty in judging the severity of possible constraints violations 

(ARORA, 2011). 

The displacement constraints were dismembered, all design constraints were adapted to 

type " ≥ " and the optimization problem can be solved by any gradient-based method. In this 

work, maintaining the format of the original code developed by Cardoso et. al. (2007) and 

Carniel et. al. (2008), the SLP method was chosen. The method is described in the next section. 

As performed by Carniel et. al. (2008), the failure criterion will be evaluated and applied 

as a stress constraint at the cross-sections localized at the extremities and center of each element. 

Therefore, 

 

𝑥෤௜ = 0 (௞ୀଵ), 𝑥෤௜ = 0.5𝐿௜  (௞ୀଶ)
       𝑎𝑛𝑑       𝑥෤௜ = 𝐿௜  (௞ୀଷ)

. (5.22) 

 

For the convergence of the optimization processes, stopping criteria with prescribed 

tolerances are adopted to ensure the stabilization not only of the objective function, but also of 

all design variables. 

Following the content of AISC (2005) and Chen (2000), in engineering practice pinned 

connections always have some stiffness and fully rigid connections have some flexibility, 

therefore fixity factors with 0-1 is only theoretical. Furthermore, as can be seen in Fig. 5.2, 

pinned and fully rigid connections can be characterized by wider regions. Therefore, to facilitate 

the physical interpretation of any optimal solution, connections will be considered pinned for 

𝛼 < 0.1 and fully rigid when 𝛼 > 0.9. However, it is worth mentioning that the term “pinned 

connection” should not be taken literally, because an element with theorically pinned 

connections would have only translational DOF, and remember that 3D frame elements always 

have the torsional DOF. Thus, in this work, pinned connections is always related to the bending 

planes. 
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Figure 5.2 – Ranges of pinned and fully rigid connections. 

 
Source: Adapted from Chen (2000). 

 

5.1 The Gradient-Based Method 

 

In the numerical field of optimization, among the most distinct types of methods that 

exist, two classes stand out: gradient-based methods and derivative free methods. 

Gradient-based methods are specifically applicable to continuous problems, 

continuously differentiable and with accurate first-order derivative calculation. They fit very 

well with smooth nonlinear optimization problems that have available gradient information. 

The iterative process is performed based on the information of the functions, the gradients and 

even the Hessian of the problem. Although they only guarantee convergence to local minima, 

due to the nature of the information used (local, around the current design point), the gradient-

based methods present a good computational gain compared to the nature-inspired methods, 

since they decrease the amount of evaluation of the functions of the problem (ARORA, 2011). 

The SLP is a gradient-based method widely used in complex situations, converting any 

nonlinear problem into a sequence of linear problems that can be solved iteratively by any LP 

method, such as the simplex method (CHOI; KIM, 2005). Despite the existence of several 

methods, the simplex remains the most used because of its efficiency in finding feasible basic 

solutions within the feasible domain. As the objective function and constraints are expressed as 
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a linear combination of the design variables, an LP method always finds a solution located in 

the boundary of the design domain, at the intersection between constraints (RAO, 2009).  

Pedersen (1972) and Pedersen and Jøgersen (1984) demonstrated in detail the 

formulation and use of the SLP method integrated with FEA. Each LP problem can be generated 

by linear approximations of all the functions of the problem around the current design point, 

using the Taylor series expansion truncated at the first order term. Thus, after the development 

of a sensitivity analysis, the optimization problem stated by equations (5.16)-(5.21) can be 

assembled in the LP format as 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒                                        
෍ ቌ

𝜕

𝜕𝑣௣௝

൬
𝑊

𝑊ௌி

൰ቍቮ

଴

𝑣௣௝

௡ௗ௩

௝ୀଵ

, (5.23) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  
෍ ቌ

𝜕

𝜕𝑣௣௝

ቆ
𝑈ௗ

௅஼

ห𝑈௅ௗ
ห
ቇቍቮ

଴

𝑣௣௝

௡ௗ௩

௝ୀଵ

≥ −1.0 −
𝑈ௗ

௅஼
଴

ห𝑈௅ௗ
ห

+ ෍ ቌ
𝜕

𝜕𝑣௣௝

ቆ
𝑈ௗ

௅஼

ห𝑈௅ௗ
ห
ቇቍቮ

଴

𝑣௣௝ ଴

௡ௗ௩

௝ୀଵ

, (5.24) 

෍ ቌ
𝜕

𝜕𝑣௣௝

ቆ−
𝑈ௗ

௅஼

𝑈௎ௗ

ቇቍቮ

଴

𝑣௣௝

௡ௗ௩

௝ୀଵ

≥ −1.0 +
𝑈ௗ

௅஼
଴

𝑈௎ௗ

+ ෍ ቌ
𝜕

𝜕𝑣௣௝

ቆ−
𝑈ௗ

௅஼

𝑈௎ௗ

ቇቍቮ

଴

𝑣௣௝଴

௡ௗ௩

௝ୀଵ

, (5.25) 

෍ ቌ
𝜕

𝜕𝑣௣௝

ቆ−
𝑓(𝜃)௜,௞

௅஼

𝜎௘
ଶ

ቇቍቮ

଴

𝑣௣௝

௡ௗ௩

௝ୀଵ

≥ −1.0 +
𝑓(𝜃)௜,௞

௅஼

଴

𝜎௘
ଶ

+ ෍ ቌ
𝜕

𝜕𝑣௣௝

ቆ−
𝑓(𝜃)௜,௞

௅஼

𝜎௘
ଶ

ቇቍቮ

଴

𝑣௣௝ ଴

௡ௗ௩

௝ୀଵ

, (5.26) 

෍ ቌ
𝜕

𝜕𝑣௣௝

൬
𝐿௜

𝐿௅

൰ቍቮ

଴

𝑣௣௝

௡ௗ௩

௝ୀଵ

≥ 1.0 −
𝐿௜ ଴

𝐿௅

− ෍ ቌ
𝜕

𝜕𝑣௣௝

൬
𝐿௜

𝐿௅

൰ቍቮ

଴

𝑣௣௝ ଴

௡ௗ௩

௝ୀଵ

, (5.27) 

 𝑣௣௝ ௅
≤ 𝑣௣௝

≤ 𝑣௣௝௎
, (5.28) 

𝑖 = 1, 2, … , 𝑛𝑒𝑙. 

𝑗 = 1, 2, … , 𝑛𝑑𝑣. 

𝑘 = 1, 2 𝑎𝑛𝑑 3. 

 

where 𝑛𝑑𝑣 represent the number of design variables, 0 is the index for the previous iteration 

(current design point) and 𝑣௣௝௅
 and 𝑣௣௝௎

 are lower and upper bounds for the design variables. 

The design variables 𝑣௣௝
 are the constant coefficients of the LP problem. Thus, the development 

of the iterative procedure is supported by 

 

𝑣𝑝𝑗

௡ାଵ = 𝑣𝑝𝑗଴
+ ∆𝑣𝑝𝑗

௡ାଵ, (5.29) 

𝑛 = 1, 2, … , 𝑖𝑡𝑒𝑟. 
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being ∆𝑣𝑝𝑗
 the stepsize of the design variables, 𝑛 the index for iterations and 𝑖𝑡𝑒𝑟 the total 

number of iterations. The LP problems are solved in 𝑛-iterations until the convergence criteria 

are satisfied. 

Move limits on the side constraint of the design variables are applied and responsible 

for limiting the step at the 𝑛-𝑡ℎ iteration, avoiding the application of a line search and making 

the linearized sub problems bounded. Therefore, the SLP method may not converge to the 

precise minimum, since no descent function is defined (ARORA, 2011). In addition, both 

efficacy and computational efficiency of the optimization process are affected by the move 

limits (VANDERPLAATS, 1999). 

Since linear approximations of the problem functions are used, the design changes ∆𝑣𝑝𝑗
 

should not be large in the minimization direction, that is, the move limits cannot be excessively 

large. Usually, move limits are determined through fractions related to the design variable, 

ranging from 1 to 100% (ARORA, 2011). According to Pedersen (1972) and Pedersen and 

Jøgersen (1984), it is interesting to give large steps in the first iterations and tightethen as the 

optimal solution is approached. In the work of Yoshida and Vanderplaats (1988), the move 

limits were critical only in the early design stages. Therefore, the SLP method should not be 

used as a black box, because the user needs to understand how to select and update correctly 

the move limits. 

The choice for a gradient-based method is supported by the fact that any nature-inspired 

method would present an exorbitant computational cost, since the amount of FEA required 

would be much higher, especially for the high number of design variables involved. Thus, after 

the definition of the optimization problem and the numerical optimization method, a 

computational code was developed in Fortran 90 language. Its iterative process follows the 

flowchart presented in Fig. 5.3. If desirable, detailed information about the working principle 

is presented in the Appendix A. Reading this appendix is not mandatory to understand the 

research. 

For the development of the case studies of Chapter 6, as there is no guarantee of finding 

the optimal global solution in this optimization problem, a multistart strategy is assumed, being 

the structural problems optimized with different initial design variables and move limits. Then, 

the best configuration is established. 
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Figure 5.3 – The iterative optimization process of the algorithm. 

 
Source: Author’s production. 

 

5.2 Analytical Sensitivity Analysis 

 

To apply any gradient-based method in the structural optimization problem stated in 

equations (5.16)-(5.21), it is necessary to compute the gradient of the objective function and all 

the design constraints related to all the design variables. 

The analytical sensitivity analysis is an important tool to allow the computation of the 

gradients at each iteration and to evaluate how the problem equations behave under any 

modification in the design variables (SERGEYEV; PEDERSEN, 1996). Despite some 

difficulty of finding the analytic expressions, this procedure allows the efficient and 

inexpensive use of mathematical programming (SANT’ANNA et. al., 2001). 

From now on, for simplicity, 𝑋∗ represents generically the joint positions 𝑋, 𝑌 e 𝑍 as 

design variables. 

 

5.2.1 Objective function 

 

Directly, the gradient of the objective function defined in equation (5.1), referring to the 

design variables, can be defined as 

 

𝜕𝑊

𝜕𝐴௝
= 𝑐ெ௝

𝜌௝

𝜕𝐴௝

𝜕𝐴௝
𝐿௝ +

𝜕𝑐ௌ௝

𝜕𝐴௝
, (5.30) 

𝜕𝑊

𝜕𝑋∗
= 𝑐ெ௝

𝜌௝𝐴௝

𝜕𝐿௝

𝜕𝑋∗
௝

+
𝜕𝑐ௌ௝

𝜕𝑋∗
, (5.31) 
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𝜕𝑊

𝜕𝛼௝
=

𝜕𝑐ௌ௝

𝜕𝛼௝
, (5.32) 

 

and after algebraic manipulations and simplifications, computed by 

 

𝜕𝑊

𝜕𝐴௝
= 𝑐ெ௝

𝜌௝𝐿௝ ቌ1 + ൭෍(𝑉଴ + 𝑉ଵ𝛼௖ + 𝑉ଶ𝛼௖
ଶ)

ସ

௖ୀଵ

൱

௝

ቍ, (5.33) 

𝜕𝑊

𝜕𝑋௝
∗ = ෍ 𝑐ெ௠

𝜌௠𝐴௠ ቌ1 + ൭෍(𝑉଴ + 𝑉ଵ𝛼𝑐 + 𝑉ଶ𝛼𝑐
ଶ)

ସ

௖ୀଵ

൱

௠

ቍ
𝜕𝐿௠

𝜕𝑋∗
௝

௡௘௖

௠ୀଵ

, (5.34) 

𝜕𝑊

𝜕𝛼௝
= 𝑐ெ௝

𝜌௝𝐴௝𝐿௝൫𝑉ଵ + 2𝑉ଶ𝛼௝൯. (5.35) 

𝑚 = 1, 2, … , 𝑛𝑒𝑐. 

 

where 𝑚 and 𝑛𝑒𝑐 are counters related to the elements that have the node coordinate 𝑋௝. 

Note that while the cross-section areas and the fixity factors are parameters related only 

to the element that incorporate them, in the sensitivity relative to joint positions it is necessary 

to analyze the connectivity of the structure, since any modification in a given nodal coordinate, 

see Fig. 5.4, can affect the length of 𝑚-elements connected to the joint. 

 

Figure 5.4 – Sensitivity of 𝑚-elements length related to iterative modifications in a given nodal 

coordinate 𝑋∗. 

 
Source: Author’s production. 

𝑗𝑜𝑖𝑛𝑡

𝐿௠௡

𝐿௠೙శభ

𝐿௠೙శభ

𝐿௠೙శభ

𝐿௠௡

𝐿௠௡

𝑋௡ାଵ
∗

𝑋௡ାଵ
∗
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5.2.2 Displacement constraint 

 

To compute the sensitivity of displacements relative to any design variable, the 

equilibrium equation (5.17) is differentiated and the sensitivity is defined by the linear system 

as follows 

 

𝐊
𝜕𝑼௅஼

𝜕𝑣௣௝

= ൭
𝜕𝑭௅஼

𝜕𝑣௣௝

−
𝜕𝐊

𝜕𝑣௣௝

𝑼௅஼൱, (5.36) 

 

where the sensitivity of 𝑭 depends on the nature of the load (distributed loads have sensitivity 

related to joint positions and fixity factors that must be accounted for) and the sensitivity of 𝐊 

is given by the sensitivity of 𝐊𝐆 with respect to 𝑣௣௝
. Thus, remembering, 

 

𝐊𝐆 = 𝐓୘𝐊𝐋𝐓, (5.37) 

 

and differentiating equation (5.37), we arrive at 

 

𝜕𝐊𝐆௜

𝜕𝑣௣௝

=
𝜕𝐓௜

୘

𝜕𝑣௣௝

𝐊𝐋௜
𝐓௜ + 𝐓௜

୘
𝜕𝐊𝐋௜

𝜕𝑣௣௝

𝐓௜ + 𝐓௜
୘𝐊𝐋௜

𝜕𝐓௜

𝜕𝑣௣௝

. (5.38) 

 

Note that for cross-section areas and fixity factors, the first and third terms of the 

expressions are zero. The transformation matrix has only sensitivity related to the joint positions 

and the development of this sensitivity it is not trivial. Details about this sensitivity analysis are 

found in the report of Cardoso et. al. (2007). Also, the sensitivity of the elements length in 

relation to the joint positions can be easily identified at this development. Details about the 

analytical sensitivities of the element stiffness matrix 𝐊𝐋 and consistent nodal loads of 

distributed loads are also described in the report of Faria and Muñoz-Rojas (2019). 

 

5.2.3 Stress constraint 

 

In order to impose stress constraints at each 𝑖-element, first is required to compute the 

sensitivity of the local nodal displacements, due to the sensitivity of the internal forces. To this 
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end, it is necessary to map the sensitivity of the respective global nodal displacements, 

calculated in equation (5.36), and rotate to the local reference system.  

Since the allowable stress 𝜎௘ is a constant parameter, the sensitivity analyzes are 

developed considering 𝑓(𝜃), but the final sensitivity is normalized. By manipulating equation 

(4.13), 

 

𝑓(𝜃)௜,௞ =
𝑁௫௜,௞

ଶ

𝐴௜
ଶ + 2 ቆ

𝑐௜̅,௞𝑁௫௜,௞
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ቇ +
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ଶ𝑀ோ௜,௞

ଶ
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ଶ +

3

4
൭

𝑀௫௜,௞
ଶ𝑅௜

ଶ

𝐼ଶ
൱

−
3

𝑡௜
൭

𝑅௜𝑄௜𝑀௫௜,௞
𝑉ோ

௬ᇲ

௜,௞

𝐼௜
ଶ ൱ +

3

𝑡௜
ଶ ቌ

𝑄௜
ଶ𝑉ோ

௬ᇲ

௜,௞

ଶ

𝐼௜
ଶ ቍ, 

(5.39) 

 

the sensitivity of the failure criterion can be computed for any design variable as 

 

𝜕
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(5.40) 

 

The differentiation of equation (5.40) required many algebraic operations and 

investigations, due to mathematical indeterminancy (
଴

଴
) related to different nullity combinations 
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of the pairs of internal forces (𝑉௬, 𝑉௭) and (𝑀௬, 𝑀௭). This equation is recapture from the Appendix 

B with respect to the cross-sections areas, remembering that the thin-wall thickness and the 

critical point are constant terms and, therefore, do not present sensitivity to any design variable 

of the optimization process. Further details of the analytic development considering joint 

positions and fixity factors are available in the report of Faria and Muñoz-Rojas (2019). 
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Chapter 6 

 

Results and Discussion 
 

 

The purpose of this chapter is to develop, analyze and discuss the proposed structural 

optimization problem. First, an analytical study and a simple 2D optimization problem is 

presented, mainly to justify the applicability of the failure criterion in the scope of layout 

optimization. The mechanical effects of semi-rigid connections on FEA and structural 

optimization of space frames are analyzed. Through three case studies, special focus will be 

given to the comparison between layout optimization (LO), sizing and connections optimization 

(SCO) and layout and connections optimization (LCO) – “LO x LCO” and “SCO x LCO”. The 

efficacy and computational efficiency of the processes will be compared by analyzing, 

respectively, the optimal solutions and the relative time of processing required. As will be seen, 

many other quantitative and qualitative features are also analyzed. 

 

6.1 Failure Criterion Analysis 

 

6.1.1 Analytical study 

 

Optimizing space frame layout required a failure criterion that is able to correctly 

evaluate the mechanical strength of elements with variable lengths, due to the iterative 

modification in the joint positions. Thus, it is important to account the shear effect when 

calculating von Mises stresses. To prove this statement, consider the particular case of Fig. 6.1, 

a clamped beam of length 𝐿 and circular thin-wall cross-section area, subjected to the 

concentrated load 𝐹 at the free end. 

Based on the imposed boundary conditions, only two type of stress can coexist in the 

cross-sections along the length of the element: the normal stress due to the bending moment 

and the shear stress due to the shear force. Analytically, considering the clamping point at node 

1, the maximum stresses 𝜎௫௫௠á௫
 e 𝜏௬௭௠á௫

 can be calculated as follows, 
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𝜎௫௫௠á௫

=
𝐹𝐿𝑅

𝐼
   𝑒   𝜏௬௭௠á௫

=
𝐹𝑄

𝐼𝑡
. (6.1) 

  

Figure 6.1 – Clamped beam. 

 
Source: Author’s production. 

 

To correctly measure the magnitude of the shear effect on the cross-section, the 

following expression is described 

 

 
𝜏௬௭௠á௫

= 𝜉𝜎௫௫௠á௫
  →    

𝐹𝑄

𝐼𝑡
= 𝜉

𝐹𝐿௖௥𝑅

𝐼
, (6.2) 

 

where 𝜉(%) is the percentage that characterizes the relationship between the magnitude of the 

maximum stresses and 𝐿௖௥ is the critical length necessary for the equality to occur. Thus, for 

any 𝜉, knowing the static moment 𝑄 by the equation given in the expression (4.9) and 

simplifying equation (6.2), 

 

 4𝑡𝑅௠

3
= 𝜉𝐿௖௥𝑅. (6.3) 

 

Observing equation (6.3), it is noted that the analysis depends only on geometric 

parameter belonging to the element. Remembering the equation of the midline radius 𝑅௠ 

 

 
𝑅௠ = 𝑅 −

𝑡

2
, (6.4)

 

replacing equation (6.4) in equation (6.3) and applying the possible simplifications, 

 

 
𝐿௖௥ = 𝜉ିଵ ቆ

4𝑡

3
൬1 −

𝑡

2𝑅
൰ቇ, (6.5) 

 𝐿௖௥ = 𝜉ିଵ𝑔(𝑅, 𝑡). (6.6) 

𝑛𝑜𝑑𝑒 1 𝑛𝑜𝑑𝑒 2

𝐹

𝐿
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Depending on the percentage 𝜉 adopted, the expression 𝑔(𝑅, 𝑡) indicates the length 𝐿௖௥ 

that an element must have to presents a shear stress of relevant magnitude (𝜉𝜎௫௫௠á௫
). As an 

example, in the hypothetical case where and expressive shear stress value with magnitude in 

the order of 10% of the normal stress is considered, 𝜉 = 0,1, 𝐿௖௥ is 10𝑥 greater than the original 

value of 𝑔(𝑅, 𝑡). 

Assuming a set of distinct lengths, concentrated load of 50 𝑘𝑁 (negative) and geometric 

properties referring to a commercial circular section (∅141.3 𝑚𝑚 and 𝑡 = 12.70 𝑚𝑚) taken 

from Grupo Açotubo (2019), the equivalent stresses are calculated in the cross-section located 

in the clamping of the beam shown in Fig. 6.1. Considering 𝜉 = 1 in equation (6.5), the critical 

length 𝐿௖௥ is approximately 15 𝑚𝑚. 

Remembering that the failure criterion provides a greater weight (√3) for the shear 

stresses, according to the von Mises theory, and evaluates the stress at the critical point 𝜃, the 

graph of Fig. 6.2 compares the code results (dashed lines) with the respective results obtained 

considering the analytical solution (solid line) without the shear effect of the resulting shear 

force. Only the range 0 − 100 𝑚𝑚 is shown, but longer lengths have been tested. 

 

Figure 6.2 – Numerical results (with the transverse shear stress) vs. analytical results (without 

the transverse shear stress). 

 
Source: Author’s production. 
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Note that the numerical and analytical equivalent stresses coincide until a visible 

separation region, approximately 𝐿 ≈ 25 𝑚𝑚 (√3 ∗ (15) 𝑚𝑚), where the shear stress of the 

resulting shear force cannot be neglected. As a consequence, due to the combination of normal 

and shear stresses, the critical point is changed from 
గ

ଶ
 to 0, consistent with the reference system 

adopted for the stresses distribution at Fig. 4.1 (remember that 𝜃 is evaluated from the local 𝑧̃-

axis). According to the formulation, equation (6.7) mathematically demonstrates this 

combination of stresses and, additionally, Figs. 6.3(a-b) show the modification of the critical 

point. 

 

 
𝜎௘௤ = ඨ൬

𝐹𝐿𝑅 sin(𝜃)

𝐼
൰

ଶ

+ 3 ൬−
4𝑡𝑅௠𝐹 cos(𝜃)

3𝐼
൰

ଶ

. (6.7) 

 

Figure 6.3 – Normal, shear and equivalent stresses for lengths of (a) 20 𝑚𝑚 and (b) 40 𝑚𝑚. 

  
                                        (a)                                                                        (b)  
Source: Author’s production. 

 

When 𝐿 ≈ 25 𝑚𝑚, the shear stress of approximately 9 𝑀𝑃𝑎 that would be neglected is 

significant. The case of clamped beam is very particular, where only the bending moment and 

the shear force of the 𝑥෤𝑦෤ plane are considered. In 3D frame elements, combination of six internal 

forces may arise and the shear stresses from the shear forces 𝑉௬ and 𝑉௭ may be determinant for 

the correct judgment of the mechanical strength. 
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6.1.2 Power transmission tower 

 

To illustrate the applicability of the failure criterion, consider the planar frame shown 

in Fig. 6.4. Layout optimization with stress constraints (𝜎௘ = 147 𝑀𝑃𝑎) and minimum element 

length (5 𝑚𝑚) is developed. The power transmission tower is clamped and subjected to two 

load cases (remember the index 𝐿𝐶) that correspond to weight and wind forces, both transmitted 

by the cables connected at the top end nodes (orthogonal to the plane of the structure). Details 

about mechanical properties, boundary conditions and connectivity are omitted as they are not 

relevant to the context of the present study. 

 

Figure 6.4 – The 2D optimization problem developed and highlight of the short element with 

the highest shear stress 𝜏௏ೃ
. 

         ORIGINAL TOWER                                             OPTIMIZED TOWER 

          
Source: Author’s production. 

 

All elements had their respective areas optimized, while layout changes were allowed 

only at the top of the structure. For this reason, note that the optimization process produced 

short elements in the middle region, see the optimal solution in Fig. 6.4. In addition, as seen in 

Achtziger (2007), the optimal solution is not perfectly symmetrical. 

The optimal structure has several elements with shear stress 𝜏௏ೃ
 in the order of 

magnitude of 0.1-1.0 𝑀𝑃𝑎. However, special attention must be paid to element 10 (highlighted 
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in red, see Fig. 6.4): it has one of the shortest lengths (570 𝑚𝑚, being larger than just two 

diagonal elements connected to its ends) and shear stresses 𝜏௏ೃ
 of 1.2 𝑀𝑃𝑎 in the two load 

cases. 

The emphasis given to the element 10 stems from the fact that it is fully stressed under 

both load conditions. Even knowing that the bending moment stresses of this same element 

have magnitudes ranging between 30-70 𝑀𝑃𝑎 (and the other axial and torsional stresses added 

up) along the length, realize that if the optimization process had not taken into account the effect 

of shear forces at the shear stress, the optimal solution would probably be incorrectly sized and 

all elements which are in similar situation would have shear section failure. 

This example demonstrates the importance of optimizing structural layout by 

accounting for the effect of shear forces within shear stresses. 

 

6.2 Semi-Rigid Connections within FEA and Optimization 

 

Before presenting the case studies developed, it is important to clarify the procedure 

adopted for the post processing of optimal solutions. Through a code developed in Maple, the 

elements that reach the area removal factor (a minimum value of area at the side constraint 

previously set) are removed from the initial topology. Moreover, elements with cross-section 

areas that closely approximate the lower bound and have no structural function are also 

removed. The non-structural elements are those that are not transmitting internal forces and, 

consequently, are not aiding in the global mechanical strength of the structure. Then, to ensure 

that the solution does not violate the imposed constraints, an additional optimization process is 

performed with the optimal solution as a starting point, providing an ajustment of the optimal 

solution with the modified topology. 

It is worth mentioning that none of the case studies will take into account the effects of 

shear on deflections, hence 𝜁 = 0. Additionally, to simplify, all the case studies consider that 

the material cost [
$

௞௚
] is unitary. 

 

6.2.1 Frame dome 

 

As the original data of the mesh was not found, the frame dome shown in Fig. 6.5 is an 

approximation with own choices of joint positions of the structure, which was firstly 

investigated by Pedersen (1973) and contains 52 elements and 21 nodes. Following Pedersen 
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(1973), all the elements have circular thin-wall cross-sections with constant thickness of 8 𝑚𝑚, 

initial cross-section areas 𝐴 = 30. 10ଷ 𝑚𝑚², Young's modulus 𝐸 = 200. 10ଷ 𝑀𝑃𝑎, shear 

modulus 𝐺 = 80 𝑀𝑃𝑎, yield strength 𝜎௘ = 147 𝑀𝑃𝑎 and specific mass 𝜌 = 7.799𝐸ି଺ 𝑘𝑔/

𝑚𝑚³. The structure is clamped at the nodes of the external contour. The connectivity is 

presented in Table 6.1. Whit this data, the initial structure has approximately 70000 𝑘𝑔 of mass. 

  

Figure 6.5 – Frame dome of Pedersen (1973). 

 
Source: Author’s production based on Sergeyev and Pedersen (1996). 

 

Table 6.1 – Connectivity of the structure. 

Elements 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Nodes 
14 7 16 9 18 11 20 13 15 8 17 10 19 12 21 6 6 7 

7 16 9 18 11 20 13 14 8 17 10 19 12 21 6 15 7 8 

Elements 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

Nodes 
8 9 10 11 12 13 2 7 3 9 4 11 5 13 2 3 4 5 

9 10 11 12 13 6 7 3 9 4 11 5 13 2 3 4 5 2 

Elements 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 

 
Nodes 

14 6 2 18 10 4 20 12 5 16 8 3 15 17 19 21 

6 2 1 10 4 1 12 5 1 8 3 1 7 9 11 13 

Source: Author’s production. 

 

The optimization processes takes into account a single load case 𝐹 = 632745 𝑁, 

without self-weight and with a unique load acting in the negative 𝑧-axis, see Fig. 6.5. 

Aiming to compare the results obtained, the analysis will be developed as follows: 
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 Layout optimization with fixed fully rigid connections and semi-rigid 

connections with 75%, 50%, 25% and 1% of rotational stiffness; 

 Layout and connections optimization. 

 

The design variables adopted are the same for all the studies of the frame dome: all the 

cross-section areas, the joint positions 𝑋 and 𝑌 of nodes 6, 7, 8, 9, 10, 11, 12 and 13, and the 

joint positions 𝑍 of nodes 2, 3, 4 and 5. The design variables are not linked and there is no 

explicit side constraints on the joint positions. Constraints on the von Mises stress and on the 

minimum length (5 𝑚𝑚) of each element are applied. 

In the LCO process, all possible fixity factors are also added as design variables, with 

initial rotational stiffness of 75%. The clamped elements have fixed fully rigid connections (i.e. 

are not design variables). The additional cost of connections is within the range of 20-60%. To 

analyze the behavior of the LCO process from the perspective of a design constraint related to 

the flexibility of the structure, displacement constraints on nodes 2, 3, 4 and 5 are also imposed. 

All these features are shown in Fig. 6.6. 

 

Figure 6.6 – Design variables and displacement constraints applied in LCO process. 

 
Source: Author’s production. 

 

The critical point of each cross-section area and its von Mises stress are determined after 

a sweep of 0 to 2𝜋. The stepsize was chosen by a previous convergence study, visualized in 

Figs. 6.7(a-b). After identifying an element and cross-section area in which it has the highest 

von Mises stress, at the last iteration, several sweeps are performed on it with different stepsizes. 

Observing Fig. 6.7(a), it is possible to note that since the maximum stress at this point is always 
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found at 𝜋, the sweep may even be considered unnecessary. However, some elements present 

maximum stress at different points, not multiples of 0 or 𝜋, due to different combinations of 

the internal forces, a fact that proves the usefulness of the failure criterion formulated. 

 

Figure 6.7 – Convergence analysis of the stress calculation at (a) the element 39, cross-section 

1, and (b) the element 22, cross-section 3. 

 

(a) 

 

(b) 

Source: Author’s production. 
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Thus, another convergence study was developed, as can be seen in Fig. 6.7(b). The stress 

calculation converges and the stepsize of 0.00625𝜋 could be assumed without major problems. 

As the computational cost practically does not increase, the stepsize of 0.002𝜋 was chosen, in 

order to ensure a good accuracy. 

 

6.2.1.1 Layout optimization with fixed (A) fully rigid connections and fixed semi-rigid 

connections with (B) 𝟕𝟓%, (C) 𝟓𝟎%, (D) 𝟐𝟓% and (E) 𝟏% of rotational stiffness 

 

After 244 iterations, the optimal solution of (A) is found through the process exposed 

in Fig. 6.8(a). Also, Fig. 6.8(b) shows the 16 fully stressed elements, of the 24 that remained 

in the topology. As seen in Fig. 6.8(b) and in the other case studies, note that the different 

thicknesses of the elements represent the magnitude of their areas. 

 

Figure 6.8 – (a) The optimization process and final solution and (b) the fully stressed (red) 

elements of study (A). 

 

(a) 

 

(b) 

Source: Author’s production. 



117 
 

To minimize the objective function and resist to the imposed loading, see Fig. 6.8(a), 

the optimization process chooses to act as follows: gradually, decreases the areas of all the 

elements connected to nodes 7, 9, 11 and 13, until they can be removed, redirecting the 

transmission of internal forces to the other elements. Simultaneously, by descending the upper 

nodes 2, 3, 4 and 5 at negative 𝑧-direction and approaching nodes 6, 7, 8, 9, 10, 11, 12 and 

13 at 𝑥 and 𝑦 directions to the center of the structure, the process shortens and offers the largest 

areas (compared to the others) to four elements (38, 41, 44 and 47), aiming to supply the 

absence of the non-structural elements. It is interesting to note that since all elements connected 

to the nodes 7, 9, 11 and 13 are removed, the nodes themselves disappear from the topology 

of the structure.  

The optimization starts the stabilization process after iteration 220, see Fig. 6.9(a), and 

the final cost of the optimized structure is $1946, being $1216 of material cost and $729 of 

connections cost. The graph of Fig. 6.9(b) represents the most stressed element at each iteration. 

Note that until iteration 130 there was no fully stressed element. 

 

Figure 6.9 – Results about (a) convergence diagram of the objective function and (b) diagram 

of the most stressed element at each iteration. 

  
                                          (a)                                                                       (b) 

Source: Author’s production. 

 

The four elements with the smallest lengths have the highest shear forces (10ଷ ≫ 10଴ 

magnitudes) of all structure. However, the respective shear stresses computed have the 

magnitude of 0.02 𝑀𝑃𝑎, which is not significant. 
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From the global point of view, it was observed that this new layout greatly reduces the 

magnitude of all the internal forces, especially the bending moments, but also the shear forces 

and torsion. All elements have axial forces and consequently normal stresses that are much 

greater compared to all other internal forces and their respective stresses. 

Thereafter, all the case studies with fixed semi-rigid connections are developed and 

analyzed analogously to the previous one. With exception of study (E), the layout and topology 

of the optimal solutions does not change (so the representations are omitted). The short elements 

of all studies continue to have negligible shear stresses produced by the resulting shear force 

and the same elements are fully stressed in studies (A-D). A comparison of convergence graphs 

is demonstrated in Fig. 6.10, where 𝑊ଵ and 𝑊ଶ are the material and connections costs, 

respectively. 

 

Figure 6.10 – Comparison between the convergence of the objective function. 

 
Source: Author’s production. 

 

As can be seen in Fig. 6.11, in study (E) a different optimal solution is found, with 36 

fully stressed elements. Note that the layout and topology are not symmetrical. Also, instability 

was faced during this optimization process, requiring several additional testing on the move 

limits to find a configuration that could converge to some optimal solution. 
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Figure 6.11 – The optimal solution when all connections are pinned, study (E), with the 36 fully 

stressed elements. 

 
Source: Author’s production. 

 

By reducing the rotational stiffness of the connections, all studies showed the expected 

reduction in the magnitude of bending moments and the increase in nodal displacements. In 

study (B), for example, when compared to the study where the connections are rigid (25% less 

rotational stiffness), the bending moments decreased within the range of 15 to 30%. On the 

other hand, the increase in displacements is within the range of 1 to 70%, being the largest 

increase due to the rotations. In study (E) we find the largest translational displacements 

(23 𝑚𝑚 at the 𝑧-direction) and, although not considered at first, this exaggerated flexibility 

could be a future problem. Without the application of displacement constraints, there is a 

possibility that the optimal structure presents large displacements and, consequently, the linear 

model for the connections becomes invalid. 

According to Fig. 6.10, the greater the reduction in rotational stiffness of the 

connections, the greater the manufacturing cost minimization. As the bending moments 

decrease, the von Mises stresses also decrease and this allows larger area reductions and, 

consequently, greater material savings. As the cost of connections is not only directly related to 

the level of rotational stiffness but also proportional to the material cost, this cost also reduces. 

Thus, according to the results obtained until here for this structural optimization problem (stress 

and minimum length constraints), it is economically feasible to manufacture the structure with 

only pinned connections. The optimal solution of the study (E) has 31% less manufacturing 

cost than the optimal fully rigid structure. 
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In addition, note that the optimal solutions of studies (A-D) are structures for this single 

load case. However, if the real structure presents any different loading, all these solutions 

become mechanisms. This proves the importance of analyzing and optimizing structures 

considering multiple load cases. 

 

6.2.1.2 Layout and connections optimization 

 

After 264 iterations, the optimal solution is presented in Fig. 6.12. Note that the solution 

(layout and topology) of the structure is equal to the solution of study (E). The short elements 

have a much larger length (1067 𝑚𝑚, almost double) than previous studies (A-D). Only 12 

elements are removed, but 36 elements are fully stressed, see the previous Fig 6.11. 

 

Figure 6.12 – The physical behavior of the optimization process. 

 
Source: Author’s production. 

 

The optimization faced a path, see Fig. 6.12, not yet seen during the iterative process: 

 

1) Move the upper nodes 2, 3, 4 and 5 downwards; 

2) Approach nodes 6, 8, 10 and 12 to the center of the structure; 

3) Reduce the rotational stiffness of all connections until they become pinned; 

4) Allowing the existence for more elements and finally moving the nodes 6, 8, 10 

and 12, but now non-symmetrically. 
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Table 6.2 shows the optimal joint positions and, for convenience, the optimal areas are 

presented later, when this LCO process is compared to another LCO process. 

 

Table 6.2 – Optimal joint positions. 

Nodes 𝟔 𝟕 𝟖 𝟗 𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 

𝑿 [mm] 14443 13161 10092 7207 5556 6838 9907 12792 

𝒀 [mm] 9907 12792 14443 13161 10092 7207 5556 6838 

Nodes 2 3 4 5     

𝒁 [mm] 3537 3524 3537 3524     

Source: Author’s production. 

 

The optimal solution has only pinned connections and non-symmetrical layout and 

topology, a fact already faced in the research of Achtziger (2007), but theoretically unexpected 

since the structural problem is symmetric. Therefore, it is a local solution. Since the SLP method 

linearizes the optimization problem in each iteration, a small numerical error in the rounding of 

the design variables can cause a perturbation on the linearization, which can modify the 

minimization direction and cause the process to fall in a local minima. As commented in 

Achtziger (2007), this could be avoided by using a global optimization algorithm or applying 

additional constraints that impose symmetry. 

This sensitivity of the linearization is associated with the small degree of approximation 

of the functions in the optimization process. The optimal structure of Fig. 6.12 was tested with 

the inverted non-symmetry. By the results obtained, the structure not only guarantees the non-

violation of the constraints, but also presents the same objective function. Therefore, it can be 

concluded that they are local solutions. 

Since the addition of fixity factors as design variables represents an addition of 176 

variables, and no information about convexity is available, the proposed optimization problem 

increases the possibility of finding local minima. Moreover, it became apparent that the 

computational cost of processing also increases, not only due to the additional calculation of 

derivatives, but also by the increase in the size of the LP problems. 

Due to a different layout and topology with more elements (40 > 24) than previous 

studies (A-D), in this optimal solution the transmission of internal forces to the clamped points 

of the structure is smoother. Because of this uniform distribution, most of the axial forces are 

smaller. While in studies (A-D) the maximum axial forces are in the range of 10଺, here the 

maximum axial forces are in the range of 10ହ. 
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With this reduction of axial forces, and also of the bending moments (consequence of 

the pinned connections), the optimization process is able to further reduce the cross-section 

areas and hence greater material cost savings (and consequently connections cost) is achieved. 

Another feature that can be seen in Fig. 6.13 is that the elements that make a "+" cross-shape in 

the optimal solution of this study have larger areas, which allow greater reduction of the areas 

of the adjacent elements. 

 

Figure 6.13 – Comparison between the optimal solutions of studies (E) and LCO and the 

optimal solutions of the previous studies (A-D). 

 
Source: Author’s production. 

 

Analyzing the evolution of the design variables, it was observed that all connections are 

made to be pinned in a uniform way, with the same step pattern. This is expected since 

displacement constraints are not imposed and pinned connections have the lowest 

manufacturing cost. 

The optimized structure has $1331 of total cost, being $1026 of material cost and 

$304 of connections cost, is 31% cheaper than the fully rigid structure. Compared to studies 

(A-D), the most interesting fact is that although less elements are removed, the process achieves 

a greater reduction of material cost, choosing a minimization path to a local minima where 

cross-section areas are reduced in a different way. The graph results are presented in Figs. 

6.14(a-d). 
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Figure 6.14 – Results about convergence diagram of the actual study for (a) material cost, (b) 

connections cost, (c) manufacturing cost and (d) diagram of the most stressed element at each 

iteration. 

                   

                                     (a)                                                                           (b) 

                   

                                     (c)                                                                           (d) 

Source: Author’s production. 

 

As expected, it is proven that for this structural optimization problem it is more 

appropriate to adopt pinned connections, reducing the bending moments and providing more 

economical projects. Thus, the frame dome would actually be a lattice structure. Note that this 

conclusion could be drawn due to the application of the proposed optimization procedure, 

proving the importance of analyzing manufacturing costs with embedded connections as design 

variables. 

The smaller the rotational stiffness adopted for the connections of a given structure, it 

became evident that the frame elements behave like bar elements, having axial forces that are 
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much larger than other internal forces. Thus, in this problem, the failure criterion was important 

during the development of the optimization process, but has lost importance on the optimal 

solution, since the equivalent stresses in almost all elements are uniform throughout the external 

contour of the cross-section. 

As mentioned before, the optimal structure has several elements that are fully stressed, 

all with normal stresses produced by axial forces. Among these elements, many are fully 

stressed in compression. Since there is no buckling constraint within the proposed optimization 

problem, it is evident that further study is necessary to verify if it is a stable structure, mainly 

the last four elements (49, 50, 51 and 52), since they have the smallest areas and relatively 

large lengths (≈ 6500 𝑚𝑚). 

To analyze the behavior of this type of optimization under a different condition, the 

additional imposition of displacement constraints is performed. After 261 iterations, the 

optimal solution and the elements and nodes which have semi-rigid connections are highlighted 

and presented in Fig. 6.15(a). Again, the optimal solution has non-symmetry related to layout 

and connections, but only the four elements at the top of the structure are fully stressed, see Fig. 

6.15(b). Since the optimal layout of this optimal solution is similar to the previous study without 

displacement constraints, the length of the smallest elements is the same (and the previous Table 

6.2 also applies to this optimal solution). 

 

Figure 6.15 – (a) The optimal solution and the highlight of elements and specific locals with 

semi-rigid connections (listed for further analysis) and (b) the fully stressed elements. 

       

                                         (a)                                                                            (b) 

Source: Author’s production. 

 

Initially, in order to ensure stiffness, the optimization process is placed in a structural 

problem where there is an oversizing of areas and connections of high rotational stiffness. 
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Therefore, knowing that large areas result in a high material cost and that fully rigid connections 

not only have a higher manufacturing cost but also produce greater bending moments, the 

process obviously decides to reduce the areas and rotational stiffness of the connections. Until 

iteration 60, this is what it does, while also looking for a new layout. 

After iteration 60, all connections are pinned (except the clamped region) and the 

process continues through the design space. Upon reaching iteration 162, due to the 

linearization of the problem, the design variables deviate slightly and induce a non-symmetry 

to the structure. Consequently, the distribution of internal forces becomes non symmetric, and 

each region of the structure becomes more flexible at different planes. Also, the constrained 

nodes already present the maximum allowable displacement in the 𝑧-direction, and the largest 

magnitudes of internal forces are seen in the axial forces (10଺). 

Taking into account the above information, the process understands that it is more 

feasible to reduce the material cost and proceed as follows: to reduce the areas but, to continue 

providing the necessary stiffness at the 𝑧-direction of the constrained nodes, it induces the 

appearence of semi-rigid connections. However, this procedure is developed strategically: the 

addition of rotational stiffness for the chosen connections acts in the plane in which there is the 

greatest flexibility (and consequently the smaller bending moments), avoiding the faster 

increase of the stresses.  

With more rigid connections, the bending moments increase, but there is also a reduction 

of axial forces, and thus the process can continue to reduce areas and consequently the material 

cost. It is a compromise solution, where the optimization process chooses the path in which the 

gain (minimization of the total cost from the material cost) is greater than the loss (increase of 

the connection cost), while ensuring that the constraints are not violated. 

The optimization features can be seen in Figs. 6.16(a-e). Stress and displacement 

constraints are active, and the optimized structure has $3462 of total cost, being $2610 of 

material cost and $851 of connections cost. Note that on the diagram of all four displacement 

constraints the curves are overlapped. 
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Figure 6.16 – Convergence diagram for (a) material cost, (b) connections cost, (c) 

manufacturing cost, (d) most stressed element and (e) constrained DOF at each iteration. 

                 

                                (a)                                                                         (b) 

 

             (c) 

                      

                                     (d)                                                                         (e) 
Source: Author’s production. 
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It is noticeable that the displacement constraints are stronger than the stress constraints, 

since the final manufacturing cost is considerably higher than the same final cost in the previous 

case study. The structure needs to have more elements, elements with larger cross-section areas 

and semi-rigid connections to ensure no violation of any of the displacement constraints 

imposed, as can be seen in Tables 6.3 and 6.4. 

 

Table 6.3 – Comparison of optimal areas related to the two studies of LCO, without (LCOଵ) and 

with (LCOଶ) displacement constraints. The higher cross-section areas are highlighted. 

𝟏𝟎𝟔𝐦𝐦𝟐 𝐋𝐂𝐎𝟏 𝐋𝐂𝐎𝟐 𝟏𝟎𝟔𝐦𝐦𝟐 𝐋𝐂𝐎𝟏 𝐋𝐂𝐎𝟐 𝟏𝟎𝟔𝐦𝐦𝟐 𝐋𝐂𝐎𝟏 𝐋𝐂𝐎𝟐 

𝑨𝟗 0.22𝐸ିଷ 0.35𝐸ିଷ 𝑨𝟐𝟒 - 0.35𝐸ିସ 𝑨𝟑𝟗 0.13𝐸ିଶ 0.12𝐸ିଶ 

𝑨𝟏𝟎 0.48𝐸ିସ 0.95𝐸ିସ 𝑨𝟐𝟓 0.33𝐸ିଷ 0.59𝐸ିଷ 𝑨𝟒𝟎 0.19𝐸ିଶ 0.66𝐸ିଶ 

𝑨𝟏𝟏 0.30𝐸ିଷ 0.35𝐸ିଷ 𝑨𝟐𝟔 - 0.60𝐸ିସ 𝑨𝟒𝟏 0.21𝐸ିଶ 0.74𝐸ିଶ 

𝑨𝟏𝟐 0.39𝐸ିଷ 0.15𝐸ିଷ 𝑨𝟐𝟕 0.39𝐸ିସ 0.45𝐸ିଷ 𝑨𝟒𝟐 0.13𝐸ିଶ 0.12𝐸ିଶ 

𝑨𝟏𝟑 0.22𝐸ିଷ 0.30𝐸ିଷ 𝑨𝟐𝟖 - 0.20𝐸ିସ 𝑨𝟒𝟑 0.20𝐸ିଶ 0.66𝐸ିଶ 

𝑨𝟏𝟒 0.54𝐸ିସ 0.72𝐸ିସ 𝑨𝟐𝟗 0.34𝐸ିଷ 0.56𝐸ିଷ 𝑨𝟒𝟒 0.20𝐸ିଶ 0.73𝐸ିଶ 

𝑨𝟏𝟓 0.30𝐸ିଷ 0.39𝐸ିଷ 𝑨𝟑𝟎 - 0.14𝐸ିସ 𝑨𝟒𝟓 0.11𝐸ିଶ 0.12𝐸ିଶ 

𝑨𝟏𝟔 0.38𝐸ିଷ 0.16𝐸ିଷ 𝑨𝟑𝟏 0.36𝐸ିସ 0.50𝐸ିଷ 𝑨𝟒𝟔 0.21𝐸ିଶ 0.65𝐸ିଶ 

𝑨𝟏𝟕 0.24𝐸ିଷ 0.44𝐸ିଷ 𝑨𝟑𝟐 - 0.10𝐸ିସ 𝑨𝟒𝟕 0.20𝐸ିଶ 0.73𝐸ିଶ 

𝑨𝟏𝟖 0.26𝐸ିସ 0.95𝐸ିସ 𝑨𝟑𝟑 0.69𝐸ିଷ 0.34𝐸ିଶ 𝑨𝟒𝟖 0.11𝐸ିଶ 0.12𝐸ିଶ 

𝑨𝟏𝟗 0.29𝐸ିସ 0.34𝐸ିଷ 𝑨𝟑𝟒 0.88𝐸ିଷ 0.35𝐸ିଶ 𝑨𝟒𝟗 0.13𝐸ିଷ 0.20𝐸ିଷ 

𝑨𝟐𝟎 - 0.44𝐸ିସ 𝑨𝟑𝟓 0.68𝐸ିଷ 0.34𝐸ିଶ 𝑨𝟓𝟎 0.15𝐸ିସ 0.16𝐸ିଷ 

𝑨𝟐𝟏 0.25𝐸ିଷ 0.41𝐸ିଷ 𝑨𝟑𝟔 0.88𝐸ିଷ 0.35𝐸ିଶ 𝑨𝟓𝟏 0.14𝐸ିଷ 0.20𝐸ିଷ 

𝑨𝟐𝟐 0.26𝐸ିସ 0.54𝐸ିସ 𝑨𝟑𝟕 0.19𝐸ିଶ 0.65𝐸ିଶ 𝑨𝟓𝟐 0.14𝐸ିସ 0.18𝐸ିଷ 

𝑨𝟐𝟑 0.27𝐸ିସ 0.38𝐸ିଷ 𝑨𝟑𝟖 0.21𝐸ିଶ 0.74𝐸ିଶ    

Source: Author’s production. 

 

With the appearance of semi-rigid connections at some elements, and also due to the 

fact that the structure is clamped at six points, relevant levels of bending moments and shear 

forces also arise. Then, several combinations of internal forces are faced, justifying the use of 

the new failure criterion as stress constraint. Despite the stresses resulting from bending 

moments and shear forces are not so high at this case study, it was observed that some elements 

have critical points related to these internal forces (0, 
గ

ଶ
, 𝜋 and 

ଷగ

ଶ
). The largest normal stress 

from a resulting bending moment recorded is 15 𝑀𝑃𝑎, while the highest shear stress of a 

resulting shear is only 0.11 𝑀𝑃𝑎. 
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Table 6.4 – Semi-rigid connections of the optimal solution. 

Joint 

Connections 
Elements 

Fixity Factors 

Node 1 Node 2 

𝛼ଵ 𝛼ଷ 𝛼ଶ 𝛼ସ 

1 
37  fully rigid 0.446 pinned 

38 0.369 pinned pinned 

2 
40 fully rigid pinned 0.468 

41 pinned 0.388 pinned 

3 
43 fully rigid 0.342 pinned 

44 0.285 pinned pinned 

4 
46 fully rigid pinned 0.264 

47 pinned 0.220 pinned 

Source: Author’s production. 

 

The elements with semi-rigid connections are exactly the ones that “interconnect” the 

clamped joints to the joints where the displacement constraints are imposed, and have the 

largest cross-section areas. That is, the overall stiffness required in the 𝑧-direction of the 

structure is provided by both features. 

According to the arrangement of the optimal fixity factors (Table 6.4), the respective 

connections would probably not be difficult to build, as they all need to incorporate only two 

rotational stiffness in each joint, one of each element. 

As a preliminary conclusion, it can be said that the LCO proved useful for the frame 

dome study, not only for evaluating two different types of costs that practically command the 

total cost at the design of any structure, but also for enabling the optimal solution to have 

stiffness only in the required places, saving additional costs that would be spent if all 

connections were considered to be fully rigid. Moreover, it is seen that assuming displacement 

constraints is not only important to ensure that the structure does not exhibit exaggerated 

flexibility, but also the fixity factors gain importance within the optimization process. However, 

in the numerical field, occurs the appearence of a computational cost addition, due to the 

considerable increase of design variables.  

 

6.2.2 Cantilever beam 

 

The cantilever beam presented in Fig. 6.17 was firstly investigated by Pedersen and 

Nielsen (2003), containing 36 elements and 13 nodes. All the elements have circular thin-wall 
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cross-section with constant thickness of 8 𝑚𝑚, initial cross-section areas 𝐴 = 30. 10ଷ 𝑚𝑚², 

Young's modulus 𝐸 = 210. 10ଷ 𝑀𝑃𝑎, shear modulus 𝐺 = 80 𝑀𝑃𝑎, yield strength 𝜎௘ =

355 𝑀𝑃𝑎 and specific mass 𝜌 = 7.799𝐸ି଺ 𝑘𝑔/𝑚𝑚³. The structure is clamped at the nodes 5 

and 10 and node 1 has a pinned connection. The connectivity is presented in Table 6.5. Whit 

this initial data, the structure has approximately 45000 𝑘𝑔 of mass. 

 

Figure 6.17 – Cantilever beam of Pedersen and Nielsen (2003). 

 
Source: Author’s production based on Pedersen and Nielsen (2003). 

 

Table 6.5 – Connectivity of the structure. 

Elements 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Nodes 
1 2 3 4 5 6 7 8 10 11 12 13 5 6 7 8 5 10 

2 3 4 9 6 7 8 9 11 12 13 9 10 11 12 13 11 6 

Elements 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

Nodes 
6 11 7 12 5 10 6 11 7 12 8 13 5 10 5 10 7 12 

12 7 13 8 1 1 2 2 3 3 4 4 2 2 3 3 4 4 

Source: Author’s production. 

 

The optimization processes will take into account the multiple load condition described 

in Fig. 6.18 and Table 6.6, referred to a working load (𝐹ଵ), lift load (𝐹ଶ) due to the wind load 

and the wind load (𝐹ଷ) itself. Differently of Pedersen and Nielsen (2003), the self-weight is 

neglected. 
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Figure 6.18 – Load cases. 

 
Source: Author’s production based on Pedersen and Nielsen (2003). 

 

Table 6.6 – Multiple load condition. 

Load cases Load condition 

1 𝐹ଵ 

2 0.5𝐹ଵ + 𝐹ଷ 

3 0.5𝐹ଵ − 𝐹ଷ 

4 𝐹ଶ + 𝐹ଷ 

5 𝐹ଶ − 𝐹ଷ 

Source: Author’s production. 

 

Constraints on the von Mises stress, the displacement at the 𝑧-direction of the node 9 

(should have less than 30 𝑚𝑚 – see Fig. 6.19) and the minimum length (5 𝑚𝑚) of each element 

are applied. Similar to the frame dome study, the critical point of each cross-section area and 

its von Mises stress are determined after a sweep of 0 to 2𝜋, with a stepsize of 0.002𝜋 

determinated through a previous convergence study. 

Aiming to compare the results obtained, the analysis will be developed as follows: 

 

 Sizing and connections optimization (SCO) with cost of connections ranging on 

20-60 %; 

 LCO with cost of connections ranging on 20-60%; 

5 6 1110 7 12 8 13 9

2 𝑋 80 𝑘𝑁 2 𝑋 40 𝑘𝑁 2 𝑋 20 𝑘𝑁 40 𝑘𝑁

𝐹ଵ

5 6 1110 7 12 8 13 9

2 𝑋 2 𝑘𝑁 2 𝑋 2 𝑘𝑁 2 𝑋 2 𝑘𝑁 4 𝑘𝑁

𝐹ଶ

5 6 1110 7 12 8 13 9

2 𝑋 10 𝑘𝑁 2 𝑋 10 𝑘𝑁 2 𝑋 10 𝑘𝑁 20 𝑘𝑁

𝐹ଷ

𝑥

𝑧

𝑥

𝑧

𝑥

𝑦
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 LCO with different ranges of additional cost of connections (20-60%, 20-30% 

and 45-60%). 

 

Figure 6.19 – Design variables and displacement constraint assumed. 

 
Source: Author’s production. 

 

First of all, a process with sizing and connections optimization (SCO) is performed, 

being all the cross-section areas, 33 fixity factors 𝛼ଵ/𝛼ଷ and 36 fixity factors 𝛼ଶ/𝛼ସ design 

variables. Initially, all of the fixity factors have rotational stiffness of 90%. 

Next, the coordinates 𝑋 and 𝑍 of the nodes 2, 3 and 4 (see Fig. 6.19) are included as 

design variables and the LCO is developed, allowing the comparison between SCO x LCO, 

mainly from the point of view of efficacy and computational efficiency. Nodes which are loaded 

are not free to change positions, their side constraints do not have the imposition of extremes 

values and none of the design variables are linked. 

Moreover, LCO processes with different ranges for the additional cost of connections 

are performed, aiming to analyze and compare other features about the behavior of the 

optimized structures and their optimization processes. At these processes, the definition of the 

constant coefficients related to the quadratic variation of the connections cost is based on the 

procedure explained in equations (5.4)-(5.15). 

Pedersen and Nielsen (2003) used the same SLP algorithm and considered an active set 

strategy on the stress constraints, when it achieves a critical level of 80% compared to the 

allowed stress defined. In preliminary tests with the application of this strategy on the case 

studies developed here, a lot of instability was observed in the optimization processes. Applying 

the strategy on the minimum length constraints obviously reduced the size of the optimization 

problem, but was not observed a significant improvement in the computational efficiency. On 

the other hand, in the stress constraints, the processes began to show a great deal of instability, 

falling in local solutions of low quality and, in most of the time, falling in unfeasible regions. 

Due to lack of time to deeply analyze, the use of this strategy was disregarded. 
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6.2.2.1 SCO with cost of connections of 𝟐𝟎-𝟔𝟎% 

 

After 243 iterations, the optimal solution is presented in Fig. 6.20(b). Only four 

elements are removed from the initial topology of Fig. 6.20(a). 

 

Figure 6.20 – (a) Initial structure and (b) optimal solution. 

               Initial structure                             Optimal solution 

 

                                     (a)                                                                      (b) 

Source: Author’s production. 

 

By analyzing the assumed structure and multiple load cases, the structure will always 

be subject to the global bending around two planes, but mainly in the 𝑥𝑧-plane, because the 

magnitude of the loads applied in this plane are much larger. 

At the beginning of the optimization process, all the internal forces are relevant. Since 

the main load 𝐹ଵ is at the 𝑥𝑧-plane, the elements parallel to this plane have considerable 

magnitudes of bending moment 𝑀௬, and thus all the critical points of these elements are located 

at 0 or 𝜋. 

To minimize the objective function, the optimization process basically chooses to 

produce only pinned connections, i.e. a lattice structure, and decrease the areas of the top 

elements and the elements farthest from the region where the structure is attached. For 

convenience, the optimal areas are presented later in Table 6.8, where this solution is compared 

to the solution of the LCO process. With pinned connections, the process can reduce 
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significantly the large magnitudes of bending moments and shear forces. At the end, almost all 

the elements of the structure present axial forces of relevant magnitude compared to the other 

internal forces. 

Since the bottom of the structure is supported only by a pinned connection and has larger 

stresses at the beginning, the process supplies the lack of strength and stiffness at this location 

with these two elements having larger cross-sectional areas. Therefore, the stresses are softened 

and four elements (13, 15, 23 and 24) connected to this region are removed from the initial 

topology, because the internal forces are entirely absorbed mainly by these elements with larger 

areas. 

The optimized structure has $2560 of total cost, see the convergence diagram of Fig. 

6.21(a), being $2109 of material cost and $451 of connections cost. According to Fig. 6.21(b), 

there is a small violation of these stress constraints between 60-70 iterations. Regarding the 

displacement constraints, Fig. 6.21(c) demonstrates the diagram of all five displacement 

constraints. Some curves are overlapped and only the constraint applied in load case 1 is active. 

This load case is critical because has the largest concentrated forces (𝐹ଵ). 

Unlike the frame dome study, the stiffness required to withstand the displacement 

constraints in the current study of SCO is entirely provided by the distribution of areas, even 

with the option of more rigid connections. The optimization process understands that is 

economically more feasible to produce stiffness with areas (material cost) than with 

connections. With different ranges for the additional cost of connections, this behavior may 

change. 
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Figure 6.21 – Results about convergence diagram of the actual study for (a) manufacturing cost, 

(b) diagram of the most stressed element at each iteration and (c) diagram of the constrained 

DOF at each iteration. 

 

             (a) 

    

                                       (b)                                                                    (c) 

Source: Author’s production. 

 

6.2.2.2 LCO with cost of connections of 𝟐𝟎-𝟔𝟎% 

 

After 392 iterations, the optimization process of Fig. 6.22(a) found the optimal solution 

presented in Fig. 6.22(b). The pairs of elements connected between the nodes 7/12 and 3/4 are 

almost overlapped. However, due to the topology removal, the overlap is suppressed. Five 

elements can be removed from the initial topology, one more than SCO, and a short element 
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appears due to the approximation of nodes 3 and 4. Also, Fig. 6.22(b) highlighted the element 

and nodes which have semi-rigid connections. 

 

Figure 6.22 – (a) The behavior of the LCO process and (b) the optimal solution, the short 

element and the highlight of the element with semi-rigid connections. 

 

(a) 

          

(b) 
Source: Author’s production. 

 

The upward movement of nodes 3 and 4 is mainly related to the displacement constraint 

applied in node 9, since this layout modification allows a greater concentration of stiffness close 

to this node. The optimal joint positions are shown in Table 6.7, where can be seen that node 2 

goes down in the 𝑧-direction. Simultaneously, the process provides the largest cross-section 

area for the element 4 directly connected to the constrained node and semi-rigid connections in 

the nearby element 16. These connections provide 35% of rotational stiffness in the two 

bending planes, while all other connections are pinned. From a practical point of view, this 

symmetry of connections facilitates the construction of the structure. Also, these connections 

would be simple to build, since the joints 8 and 13 only need two rotational springs and the 

other elements are pinned. 
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Table 6.7 – Optimal joint positions. 

Nodes 𝟐 𝟑 𝟒 

𝑿 [mm] 5379 13913 14079 

𝒁 [mm] −177 4241 4275 

Source: Author’s production. 

 

Although the short element has not achieved the minimum length constraint, probably 

the most correct physical interpretation of this optimal solution is the removal of this element 

and the joining of adjacent elements connected to him. Also, since almost all connections 

converge to be pinned, the axial forces become more relevant than the other internal forces (as 

seen in the SCO process). 

The distribution of areas to ensure both stiffness and strength for the structure is different 

from what was seen in the previous study: in the SCO, the elements 1 and 2 have the largest 

areas. On the other hand, in the LCO there is a slightly more even distribution of areas towards 

the free end, with the two top elements and the element at the bottom in the attachment region 

also having large areas (in addition to element 4). Table 6.8 presents the comparison of optimal 

areas. 

 

Table 6.8 – Comparison of optimal areas related to the SCO and LCO processes. The higher 

cross-section areas are highlighted. 

𝟏𝟎𝟔𝐦𝐦𝟐 𝐒𝐂𝐎 𝐋𝐂𝐎 𝟏𝟎𝟔𝐦𝐦𝟐 𝐒𝐂𝐎 𝐋𝐂𝐎 𝟏𝟎𝟔𝐦𝐦𝟐 𝐒𝐂𝐎 𝐋𝐂𝐎 

𝑨𝟏 0.97𝐸ିଶ 0.20𝐸ିଶ 𝑨𝟏𝟑 - - 𝑨𝟐𝟓 0.22𝐸ିଷ 0.22𝐸ିଷ 

𝑨𝟐 0.83𝐸ିଶ 0.12𝐸ିଶ 𝑨𝟏𝟒 0.90𝐸ିହ 0.31𝐸ିସ 𝑨𝟐𝟔 0.22𝐸ିଷ 0.22𝐸ିଷ 

𝑨𝟑 0.30𝐸ିଶ 0.19𝐸ିଶ 𝑨𝟏𝟓 - 0.87𝐸ିସ 𝑨𝟐𝟕 0.12𝐸ିଶ 0.61𝐸ିଷ 

𝑨𝟒 0.17𝐸ିଶ 0.20𝐸ିଷ 𝑨𝟏𝟔 0.78𝐸ିସ 0.34𝐸ିଷ 𝑨𝟐𝟖 0.12𝐸ିଶ 0.61𝐸ିଷ 

𝑨𝟓 0.16𝐸ିଶ 0.16𝐸ିଶ 𝑨𝟏𝟕 0.38𝐸ିଷ 0.35𝐸ିଷ 𝑨𝟐𝟗 0.57𝐸ିସ 0.11𝐸ିଷ 

𝑨𝟔 0.13𝐸ିଶ 0.78𝐸ିଷ 𝑨𝟏𝟖 0.38𝐸ିଷ 0.35𝐸ିଷ 𝑨𝟑𝟎 0.57𝐸ିସ 0.11𝐸ିଷ 

𝑨𝟕 0.52𝐸ିଷ 0.94𝐸ିଷ 𝑨𝟏𝟗 0.28𝐸ିଷ 0.27𝐸ିଷ 𝑨𝟑𝟏 0.32𝐸ିଷ 0.65𝐸ିଷ 

𝑨𝟖 0.63𝐸ିଷ 0.10𝐸ିଶ 𝑨𝟐𝟎 0.28𝐸ିଷ 0.27𝐸ିଷ 𝑨𝟑𝟐 0.32𝐸ିଷ 0.65𝐸ିଷ 

𝑨𝟗 0.16𝐸ିଶ 0.16𝐸ିଶ 𝑨𝟐𝟏 0.18𝐸ିଷ 0.22𝐸ିଷ 𝑨𝟑𝟑 0.28𝐸ିଶ 0.44𝐸ିଷ 

𝑨𝟏𝟎 0.13𝐸ିଶ 0.78𝐸ିଷ 𝑨𝟐𝟐 0.18𝐸ିଷ 0.22𝐸ିଷ 𝑨𝟑𝟒 0.28𝐸ିଶ 0.44𝐸ିଷ 

𝑨𝟏𝟏 0.52𝐸ିଷ 0.94𝐸ିଷ 𝑨𝟐𝟑 - - 𝑨𝟑𝟓 0.12𝐸ିଶ - 

𝑨𝟏𝟐 0.63𝐸ିଷ 0.10𝐸ିଶ 𝑨𝟐𝟒 - - 𝑨𝟑𝟔 0.12𝐸ିଶ - 

Source: Author’s production. 
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The optimization starts the stabilization process after iteration 300, see Fig. 6.23(a), and 

the optimized structure has $1140 of total cost, being $927 of material cost and $212 of 

connections cost. According to Figs. 6.23(b-c), the stress and displacement constraints are 

sometimes violated. Compared to SCO, there are more elements fully stressed, and again only 

the constraint applied in load case 1 is active. 

 

Figure 6.23 – Results about convergence diagram of the actual study for (a) manufacturing cost, 

(b) diagram of the most stressed element and (c) diagram of the constrained DOF at each 

iteration. 

 

           (a) 

               

                                      (b)                                                                             (c) 

Source: Author’s production. 
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From the convergence graph of Fig. 6.23(a), it is possible to visualize between the 100-

250 iterations that the optimization process almost stabilizes and finds a local solution. Also, 

during these iterations, the displacement constraints in load cases 4 and 5 become active, 

because until the moment of being activated, the process is more concerned to ensure that the 

displacement constraint of the critical load case 1 is not violated. 

By simultaneously checking the behavior of displacement constraints and the evolution 

of design variables, we realize that this region is probably a “flat area” of the objective function. 

In this interval of iterations, the structure still has only pinned connections. However, after 

iteration 250, the process is able to bypass this region and begin to impose semi-rigid 

connections on element 16. At this transition, displacement constraints of load cases 4 and 5 

are not active and violations occur in some stress constraints and in the displacement constraint 

of load case 1. 

The preceding analyses show that the LCO provides the required stiffness for the 

structure for adequate values in the three types of design variables. While in SCO this is 

accomplished only by areas, the optimal solution of LCO provides greater savings in 

manufacturing costs (55.4%), being 56% less material cost and 53% less connections cost. 

This greater saving is mainly obtained due to the better distribution of areas, because this 

directly reduces the material cost and reduces indirectly the cost of the connections 

(proportional to the material cost). 

Based on quantitative and qualitative results of the cantilever beam study, it is proven 

that for this structure the LCO reaches a better solution than SCO, with a relative simple layout 

modification. Since the structure under study has a relatively small amount of DOF, the higher 

number of iterations (67.5% more) is not a problem because the time spent solving the FEA, 

calculating the derivatives and the LP at each iteration it is just a little higher. However, for 

more complex structures, this can be a problem. 

Analogous to the frame dome study, this optimal solution also has fully stressed 

elements with normal stress produced by axial force of compression. Again, to ensure 

reliability, all the pinned-pinned elements need to have their Euler stress limit calculated and 

checked as a post-processing procedure. 

As can be seen in Fig. 6.24, the element 3 has a considerable small length (170 𝑚𝑚), 

the highest shear forces in the range of 10ସ and shear stress 𝜏௏ೃ
 of −0.74 𝑀𝑃𝑎. Element 16 

has a fixed length of 1666 𝑚𝑚 and a larger magnitude of shear stress 𝜏௏ೃ
 (2.64 𝑀𝑃𝑎), because 
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its shear forces are also higher (range of 10ଷ), due to the existence of semi-rigid connections, 

and the respective cross-section area is smaller compared to the area of element 3. 

 

Figure 6.24 – The elements with the highest shear stresses 𝜏௏ೃ
 produced by the resulting shear 

force. 

 
Source: Author’s production. 

 

These values of shear stresses seem small compared to the allowable stress – and they 

really are in this case, since the equivalent stresses are much lower than the allowable stress – 

but they cannot be neglected because it could happen that these shear stresses, added to the 

stresses associated to the other five internal forces, lead the cross-section area to collapse. Note 

that these elements have shear stresses 𝜏௏ೃ
 with the same range of magnitudes of the normal 

stresses 𝜎ெೃ
 (indeed, in element 16 we see that 𝜏௏ೃ

> 𝜎ெೃ
). 

Being a discrete structure which "simulates" a clamped beam subject to the global 

bending of the five sub-cases of loads imposed, this situation of non-negligible shear forces and 

stresses could be expected. 

 

6.2.2.3 LCO with different ranges of connections cost (𝟐𝟎-𝟔𝟎%, 𝟐𝟎-𝟑𝟎% and 𝟒𝟓-𝟔𝟎%) 

 

In this section, the previous LCO study with connections cost of 20-60% is again 

developed, but with 𝑉଴, 𝑉ଵ, and 𝑉ଶ coefficients adopted for the quadratic variation of the 

connections cost of all current studies has the same curve behavior. 

The Figs. 6.25-6.27 and Tables 6.9-6.11 present, respectively, the results obtained for 

studies 20-60%, 20-30% and 45-60%. Table 6.12 presents the comparison between these 

studies. 
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Figure 6.25 – Summary of results about the convergence diagrams and the optimal solution of 

20-60%. 

 

 
Source: Author’s production. 

 

Table 6.9 – Semi-rigid connections of the optimal solution for 20-60%. 

Joint 

Connections 
Elements 

Fixity Factors 

Node 1 Node 2 

𝛼ଵ 𝛼ଷ 𝛼ଶ 𝛼ସ 

1 
16 0.472 0.467 0.471 0.467 

29 0.186 pinned pinned 

2 
16 0.472 0.467 0.471 0.467 

30 pinned 0.197 pinned 

Source: Author’s production. 
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Figure 6.26 – Summary of results about the convergence diagrams and the optimal solution of 

20-30%. 

 

 
Source: Author’s production. 

 

Table 6.10 – Semi-rigid connections of the optimal solution for 20-30%. 

Joint 

Connections 
Elements 

Fixity Factors 

Node 1 Node 2 

𝛼ଵ 𝛼ଷ 𝛼ଶ 𝛼ସ 

1 4 pinned 0.108 0.100 

2 

7 0.114 pinned pinned 0.145 

8 pinned 0.118 0.245 0.323 

16 0.347 0.347 0.343 0.348 

29 0.248 pinned pinned 

Source: Author’s production. 
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Table 6.10 (Continuation) – Semi-rigid connections of the optimal solution for 20-30%. 

Joint 

Connections 
Elements 

Fixity Factors 

Node 1 Node 2 

𝛼ଵ 𝛼ଷ 𝛼ଶ 𝛼ସ 

3 

11 pinned pinned 0.183 

12 pinned 0.342 0.415 

16 0.347 0.347 0.343 0.348 

30 pinned 0.243 pinned 

4 

4 pinned 0.108 0.100 

8 pinned 0.118 0.245 0.323 

12 pinned 0.342 0.415 

Source: Author’s production. 

 

Table 6.11 – Semi-rigid connections of the optimal solution for 45-60%. 

Joint 

Connections 
Elements 

Fixity Factors 

Node 1 Node 2 

𝛼ଵ 𝛼ଷ 𝛼ଶ 𝛼ସ 

1 
8 pinned pinned 0.100 

12 pinned pinned 0.124 

2  
16 0.547 0.541 0.537 0.537 

29 0.282 pinned pinned 

3 
16 0.547 0.541 0.537 0.537 

30 pinned 0.264 pinned 

Source: Author’s production. 
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Figure 6.27 – Summary of results about the convergence diagrams and the optimal solution of 

45-60%. 

 

 
Source: Author’s production. 

 

Table 6.12 – Comparison between the costs of the optimal solutions. 

 Optimization processes 

Costs ($) 𝟐𝟎-𝟔𝟎% 𝟐𝟎-𝟑𝟎% 𝟒𝟓-𝟔𝟎% 

Manufacturing cost (𝑾) 1125 1106 1338 

Material cost (𝑾𝟏) 916 916 916 

Connections cost (𝑾𝟐) 209 190 422 

Source: Author’s production. 
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Both studies have optimal solutions with the same areas and joint positions (presented 

in Table 6.13) and, therefore, the same layout and final material cost (see Table 6.12). However, 

these optimal solutions are not equal as they have different numbers of connections with 

different levels of rotational stiffness. It is noteworthy that the manufacturing costs cannot be 

directly compared, since different connections cost were evaluated. 

 

Table 6.13 – Optimal areas and joint positions of the three LCO processes. 

Cross-section areas Coordinates 

𝟏𝟎𝟔𝐦𝐦𝟐  10଺mmଶ  10଺mmଶ  mm  

𝑨𝟏 0.18𝐸ିଶ 𝑨𝟏𝟑 - 𝑨𝟐𝟓 0.22𝐸ିଷ 𝑿𝟐 5176 

𝑨𝟐 0.11𝐸ିଶ 𝑨𝟏𝟒 0.45𝐸ିସ 𝑨𝟐𝟔 0.22𝐸ିଷ 𝒁𝟐 −266 

𝑨𝟑 0.15𝐸ିଶ 𝑨𝟏𝟓 0.93𝐸ିସ 𝑨𝟐𝟕 0.66𝐸ିଷ 𝑿𝟑 14310 

𝑨𝟒 0.18𝐸ିଷ 𝑨𝟏𝟔 0.39𝐸ିଷ 𝑨𝟐𝟖 0.66𝐸ିଷ 𝒁𝟑 4238.00 

𝑨𝟓 0.16𝐸ିଶ 𝑨𝟏𝟕 0.35𝐸ିଷ 𝑨𝟐𝟗 0.97𝐸ିସ 𝑿𝟒 14538 

𝑨𝟔 0.83𝐸ିଷ 𝑨𝟏𝟖 0.35𝐸ିଷ 𝑨𝟑𝟎 0.97𝐸ିସ 𝒁𝟒 4292 

𝑨𝟕 0.74𝐸ିଷ 𝑨𝟏𝟗 0.27𝐸ିଷ 𝑨𝟑𝟏 0.65𝐸ିଷ   

𝑨𝟖 0.92𝐸ିଷ 𝑨𝟐𝟎 0.27𝐸ିଷ 𝑨𝟑𝟐 0.65𝐸ିଷ   

𝑨𝟗 0.16𝐸ିଶ 𝑨𝟐𝟏 0.23𝐸ିଷ 𝑨𝟑𝟑 0.56𝐸ିଷ   

𝑨𝟏𝟎 0.83𝐸ିଷ 𝑨𝟐𝟐 0.23𝐸ିଷ 𝑨𝟑𝟒 0.56𝐸ିଷ   

𝑨𝟏𝟏 0.74𝐸ିଷ 𝑨𝟐𝟑 - 𝑨𝟑𝟓 -   

𝑨𝟏𝟐 0.92𝐸ିଷ 𝑨𝟐𝟒 - 𝑨𝟑𝟔 -   

Source: Author’s production. 

 

Decreasing the gap between connections costs and the magnitude of the cost of fully 

rigid connections, the optimization process finds it economically feasible to provide structural 

stiffness with more semi-rigid connections. Connections appear in the region near the 

constrained node 9, and in the last two studies there are connections directly connected to this 

node. 

The study with connections cost 20-30% not only has the lowest manufacturing cost 

and the largest number of semi-rigid connections, but also the largest number of elements with 

shear stresses produced by shear forces within the range of 0.5-3 𝑀𝑃𝑎. This fact is directly 

related to the larger number of semi-rigid connections, as this results in a structure that has more 

bending moments and shear forces being transmitted. 

With the need to perform study 20-60% again using recalculated coefficients for the 

quadratic variation of the connections cost, the current solution of Fig. 6.25 is different from 
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the solution obtained in the first LCO study (Fig. 6.22). The optimization process required more 

iterations to converge (593 > 392), two more connections were added to the structure, as can 

be seen in Table 6.9, and the material cost is lower ($916 < $927), due to the different optimal 

areas shown in Table 6.13. 

The study 20-30% has several cases where three or more elements have rotational 

stiffness connected to the same joint. Although the constructive concept is not complex, it is 

possible that the variation assumed for the additional connections cost does not faithfully 

represent the cost of the resulting connections of this study. 

Based on the results obtained, it can be concluded that the optimization process is 

sensitive not only to the interval adopted for the cost of connections, but also to the quadratic 

variation that is imposed. Therefore, in practical applications, these two requirements must be 

well defined beforehand, in order for the process to analyze and optimize a given structure with 

cost information that faithfully reproduces actual manufacturing costs that will be faced. 

 

6.2.3 Mobile crane 

 

The mobile crane presented in Fig. 6.28 was firstly investigated by Apostol et. al. (1995) 

and then by researchers such as Sergeyev and Pedersen (1996) and Sergeyev and Mróz (2000). 

The structure has 26 elements, 18 nodes, all the elements have circular thin-wall cross-sections 

with constant thickness of 8 𝑚𝑚, initial cross-section areas 𝐴 = 30. 10ଷ 𝑚𝑚² (except the six 

columns which have 𝐴 = 10. 10ଷ 𝑚𝑚²), Young's modulus 𝐸 = 200. 10ଷ 𝑀𝑃𝑎, shear modulus 

𝐺 = 80 𝑀𝑃𝑎, yield strength 𝜎௘ = 147 𝑀𝑃𝑎 and specific mass 𝜌 = 7.799𝐸ି଺ 𝑘𝑔/𝑚𝑚³. The 

structure is clamped in the six nodes indicated in Fig. 6.28. The connectivity is presented in 

Table 6.14. Whit this initial data, the structure has approximately 18448 𝑘𝑔 of mass. 

The optimization processes of this case study will take into account the multiple load 

cases presented in Fig. 6.29 and Table 6.15. A vertical load 𝐹ଵ in the negative 𝑧-direction, where 

all the top nodes are loaded, is combined with four lateral loads of equal magnitudes. The self-

weight is not considered. 
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Figure 6.28 – Mobile crane of Apostol et. al. (1995). 

 
Source: Author’s production based on Sergeyev and Pedersen (1996). 

 

Table 6.14 – Connectivity of the structure. 

Elements 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Nodes 
1 2 5 2 3 5 7 8 11 8 9 11 13 14 17 14 15 17 

2 5 6 3 4 4 8 11 12 9 10 10 14 17 18 15 16 16 

Elements 19 20 21 22 23 24 25 26 

Nodes 
2 8 3 9 3 11 4 10 

8 14 9 15 11 17 10 16 

Source: Author’s production. 

 

Table 6.15 – Multiple load cases. 

Load cases Load condition 

1 𝐹ଵ + 𝐹ଶ 

2 𝐹ଵ + 𝐹ଷ 

3 𝐹ଵ + 𝐹ସ 

4 𝐹ଵ + 𝐹ହ 

Source: Author’s production. 
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Figure 6.29 – Multiple load cases. 

 
Source: Author’s production based on Sergeyev and Pedersen (1996). 

 

As shown in Fig. 6.30, the following design constraints are applied:  

 

 von Mises stress constraints; 

 Displacements constraints on the displacements at the 𝑥 and 𝑦 direction of the 

nodes 2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16 and 17 (5 𝑚𝑚) and at the 𝑧-direction of the 

nodes 3, 4, 9, 10, 15 and 16 (5 𝑚𝑚); 

 Minimum element length (5 𝑚𝑚). 

 

Figure 6.30 – Displacements constraints and design variables. 

 
Source: Author’s production. 

 

To start, the  SCO process is performed, adopting as design variables almost all the 

cross-section areas (except of the columns which are fixed) and 20 fixity factors 𝛼ଵ/𝛼ଶ/𝛼ଷ/𝛼ସ. 
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All connections that are design variables start with rotational stiffness of 94%. Then, adding 

the coordinates 𝑋 and 𝑌 of the nodes 3, 4, 9, 10, 15 and 16 as design variables, the  LCO is 

developed, allowing the comparison between these two procedures, mainly from the point of 

view of efficacy and computational efficiency. The design variables of areas and joint positions 

are visualized in Fig. 6.30. 

Note that only the roof of the mobile crane is subject to optimization. The column 

connections are considered to be fixed fully rigid in all processes. The range and quadratic 

variation of the additional connections cost is the same for both studies, being 20% for pinned 

and 60% for fully rigid connections. 

Some nodes that are loaded are free to change positions in the LCO process. Similar to 

the previous studies, the critical point of the three cross-section areas and its von Mises stress 

are determined after a sweep of 0 to 2𝜋, with a step of 0.002𝜋. 

 

6.2.3.1 SCO vs. LCO 

 

The optimal solutions and the elements with semi-rigid connections of the SCO and 

LCO processes are presented in Figs. 6.31(a-b). The topology of the structure does not change 

in none of the studies. The LCO has a higher time processing cost. 

Since the optimization problem has several displacement constraints, both processes 

provide structural stiffness through various semi-rigid connections, which are shown in Tables 

6.16 and 6.17. However, the LCO process requires fewer semi-rigid connections, and 

consequently has less connections cost, as the layout also works in favor of the global stiffness 

of the structure. Basically, the LCO avoids the reduction of areas in the central elements and 

approximates the nodes of the top of the roof, see Table 6.18, causing a concentration of 

stiffness in the upper center of the structure. Also, note that in both studies again occurs the 

case where 𝑚-elements are connected to the same joint. 

Observing Figs. 6.31(a-b) from a sizing point of view, while in the SCO larger areas for 

the top elements of the roof are established, in the LCO process only the middle elements of 

the roof have larger areas. So again the LCO turns out better than SCO as it needs less material 

to ensure no violation of displacement constraints. Moreover, remember that the lower the cost 

of materials, the lower the cost of the connections. The comparison of optimized areas is shown 

in Table 6.19. 
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Table 6.16 – Data of semi-rigid connections of the SCO process. 

Joint 

Connections 
Elements 

Fixity Factors 

Node 1 Node 2 

𝛼ଵ 𝛼ଷ 𝛼ଶ 𝛼ସ 

1 (in the 

column) 
16 0.219 0.833 0.681 0.829 

2 (in the 

column) 
10 0.399 0.633 fully rigid 0.813 

3 (in the 

column) 
4 0.813 0.214 0.748 0.801 

4 

16 0.219 0.833 0.681 0.829 

17 fully rigid fully rigid fully rigid fully rigid 

22 fully rigid fully rigid fully rigid fully rigid 

5 

10 0.399 0.633 fully rigid 0.813 

11 fully rigid fully rigid fully rigid fully rigid 

21 fully rigid fully rigid fully rigid fully rigid 

22 fully rigid fully rigid fully rigid fully rigid 

6 

4 0.813 0.214 0.748 0.801 

5 fully rigid fully rigid fully rigid fully rigid 

21 fully rigid fully rigid fully rigid fully rigid 

7 

17 fully rigid fully rigid fully rigid fully rigid 

18 0.823 0.157 0.830 0.742 

26 fully rigid fully rigid fully rigid fully rigid 

8 

11 fully rigid fully rigid fully rigid fully rigid 

12 0.605 0.477 0.802 0.875 

25 fully rigid fully rigid 0.880 fully rigid 

26 fully rigid fully rigid fully rigid fully rigid 

9 

5 fully rigid fully rigid fully rigid fully rigid 

6 0.503 0.753 0.836 0.630 

25 fully rigid fully rigid 0.880 fully rigid 

10 (in the 

column) 
18 0.823 0.157 0.830 0.742 

11 (in the 

column) 
12 0.605 0.477 0.802 0.875 

12 (in the 

column) 
6 0.503 0.753 0.836 0.630 

Source: Author’s production. 
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Table 6.17 – Data of semi-rigid connections of the LCO process. 

Joint 

Connections 
Elements 

Fixity Factors 

Node 1 Node 2 

𝛼ଵ 𝛼ଷ 𝛼ଶ 𝛼ସ 

1 
8 fully rigid fully rigid fully rigid fully rigid 

10 fully rigid 0.437 fully rigid 0.157 

2 
8 fully rigid fully rigid fully rigid fully rigid 

12 fully rigid fully rigid 0.366 0.338 

3 

5 0.443 pinned pinned pinned 

10 fully rigid 0.437 fully rigid 0.157 

11 0.837 0.514 0.864 0.484 

12 fully rigid fully rigid 0.366 0.338 

17 pinned 0.593 pinned pinned 

21 pinned pinned 0.144 0.562 

22 pinned 0.571 pinned pinned 

Source: Author’s production. 

 

Table 6.18 – Optimal joint positions of the LCO process. 

Node 𝟑 𝟒 𝟗 𝟏𝟎 𝟏𝟓 𝟏𝟔 

𝑿 [mm] 2499 2505 2505 2505 2505 2505 

𝒀 [mm] 4925 4929 5000 4998 5092 5082 

Source: Author’s production. 

 

Table 6.19 – Comparison of optimal areas related to the SCO and LCO processes. The higher 

cross-section areas are highlighted. 

𝟏𝟎𝟔𝐦𝐦𝟐 𝐒𝐂𝐎 𝐋𝐂𝐎 𝟏𝟎𝟔𝐦𝐦𝟐 𝐒𝐂𝐎 𝐋𝐂𝐎 𝟏𝟎𝟔𝐦𝐦𝟐 𝐒𝐂𝐎 𝐋𝐂𝐎 

𝑨𝟐 0.96𝐸ିସ 0.48𝐸ିଷ 𝑨𝟏𝟐 0.12𝐸ିଵ 0.81𝐸ିଶ 𝑨𝟐𝟏 0.61𝐸ିଶ 0.38𝐸ିଶ 

𝑨𝟒 0.11𝐸ିଵ 0.12𝐸ିଶ 𝑨𝟏𝟒 0.40𝐸ିସ 0.47𝐸ିଷ 𝑨𝟐𝟐 0.61𝐸ିଶ 0.41𝐸ିଶ 

𝑨𝟓 0.78𝐸ିଶ 0.13𝐸ିଶ 𝑨𝟏𝟔 0.11𝐸ିଵ 0.12𝐸ିଶ 𝑨𝟐𝟑 0.40𝐸ିସ 0.71𝐸ିଷ 

𝑨𝟔 0.11𝐸ିଵ 0.12𝐸ିଶ 𝑨𝟏𝟕 0.77𝐸ିଶ 0.14𝐸ିଶ 𝑨𝟐𝟒 0.40𝐸ିସ 0.65𝐸ିଷ 

𝑨𝟖 0.36𝐸ିଷ 0.12𝐸ିଵ 𝑨𝟏𝟖 0.11𝐸ିଵ 0.12𝐸ିଶ 𝑨𝟐𝟓 0.63𝐸ିଶ 0.48𝐸ିସ 

𝑨𝟏𝟎 0.11𝐸ିଵ 0.58𝐸ିଶ 𝑨𝟏𝟗 0.40𝐸ିସ 0.89𝐸ିଷ 𝑨𝟐𝟔 0.60𝐸ିଶ 0.14𝐸ିଷ 

𝑨𝟏𝟏 0.72𝐸ିଶ 0.64𝐸ିଶ 𝑨𝟐𝟎 0.59𝐸ିସ 0.84𝐸ିଷ    

Source: Author’s production. 
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Figure 6.31 – Optimal solutions and semi-rigid connections of the (a) SCO and (b) LCO 

processes. 

 

(a) 

 

(b) 
Source: Author’s production. 

 

According to the results presented in Table 6.20, the optimal solution of LCO has larger 

manufacturing cost savings (31.3%), with 30.2% less material cost and 33.2% less connections 

cost. The convergence diagrams of both studies are depicted in Fig. 6.32(a). While in the SCO 

there are no fully stressed elements and only eight active displacement constraints, the LCO has 

some stressed elements since iteration 200 (see Fig. 6.32(b)), eighteen active (and several near 

activation) displacement constraints and one active minimum length constraint (and others six 

elements very close to activation). Therefore, the displacement constraints are stronger than the 

stress constraints. 
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Despite the higher number of iterations in LCO (348 > 266), the optimal solution is 

found after iteration 210 but took time to converge due to the a delay in the stabilization of the 

design variables. 

 

Figure 6.32 – Results about the convergence diagram of the SCO and LCO studies for (a) 

manufacturing cost and (b) diagram of the most stressed element at each iteration. 

                               SCO                                                      LCO 

       

(a) 

    

(b) 

Source: Author’s production. 
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Table 6.20 – Comparison between the costs of the optimal solutions. 

 Optimization processes 

Costs ($) 𝐒𝐂𝐎 𝐋𝐂𝐎 

Manufacturing cost (𝑾) 6254 4297 

Material cost (𝑾𝟏) 4036 2816 

Connections cost (𝑾𝟐) 2218 1481 

Source: Author’s production. 

 

According to Fig. 6.33, possibly the optimal solution would be the disappearance of all 

the seven short elements (5, 11, 17, 21, 22, 25 and 26) and the joining of the adjacent elements 

at the center of the structure. Analyzing from a practical point of view, it would also be the right 

decision for the manufacture and assembly of the structure. Also, for this reason, a unique 

connection is assumed, as can be seen in Table 6.17. 

 

Figure 6.33 – Short elements at the top of the roof. 

 
Source: Author’s production. 

  

The short elements are practically invisible, with lengths between 5-90 𝑚𝑚, but have 

cross-section areas of great magnitude (see Table 6.19) and have shear stresses within the range 

of 10-75 𝑀𝑃𝑎. Although the construction interpretation of the solution can be the removal of 

these elements, they do not cease to exist in the final topology and it is precisely the elements 

that are fully stressed, i.e. the failure criterion is useful for the layout optimization process. If 

the designer choses this final layout, without topology modifications, these elements are well 
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sized, since the shear stresses produced by the resulting shear forces were not neglected and, as 

we can see, have higher magnitudes. 

Unlike previous studies, the optimal solution of the LCO has several elements that have 

shear stresses 𝜏௏ೃ
 in the order of 0.1-0.5 𝑀𝑃𝑎, certainly due to the appearance of a considerable 

amount of more rigid connections. The element 9 (a column), for example, in the load case 1 

and in the middle of its length, has a shear stress 𝜏௏ೃ
 of  0.5 𝑀𝑃𝑎, while its normal bending 

stress 𝜎ெೃ
 is 5.0 𝑀𝑃𝑎. Note that the magnitudes are not high, but the difference between them 

is not significant enough to neglect the effect of the shear forces. 

In this same element and load case, but in the cross-section 𝑥෤ = 𝐿 (௞ୀଷ), the shear stress 

𝜏௏ೃ
 remains 0.5 𝑀𝑃𝑎, the normal bending stress 𝜎ெೃ

 is −89.0 𝑀𝑃𝑎, but the calculated 

equivalent stress is 129 𝑀𝑃𝑎. Therefore, note that this section is almost fully stressed. Although 

smaller compared to the normal stress of the bending moments, the shear stress 𝜏௏ೃ
  almost had 

the potential to cause catastrophic failure if neglected by the calculations. 

Confronting the results obtained by SCO and LCO processes, it was concluded that the 

layout change (joint positions) was an additional tool to provide structural stiffness in the three 

cartesian axes and therefore it was possible to reduce not only the magnitude of the cross-

section areas, but also the quantity and levels of semi-rigid connections. Consequently, greater 

reduction of manufacturing cost was achieved in the LCO process and therefore, for this 

structural problem, the LCO process proved to be better than the SCO process. The only 

misfortune is the longer processing time. 
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Chapter 7 

 

Conclusions 
 

 

The introduction of semi-rigid connections in the 3D frame element allowed more 

realistic prediction and evaluation of the mechanical behavior that a given steel tubular space 

frame will present in practice. The optimal fixity factors presented in each case study should be 

treated as a good approximation of the degree of rotational stiffness that each connection on the 

joints should present at each bending plane. In other words, not necessarily an optimal solution, 

but a good decision for the structural design. 

In the context of structural optimization, the addition of connections within FEA and 

objective function is a useful tool to make the iterative process able to more accurately predict 

manufacturing costs and minimize them. Moreover, the first case study of Chapter 6 

demonstrates that it is possible to find more economically feasible solutions than solutions 

given by a process that considers the original formulation for fully rigid frames. 

With displacement constraints, the proposed optimization process has the ability to 

provide optimal solutions that add the best cost-benefit ratio between manufacturing cost and 

stiffness, providing stiffness only to the required locations and avoiding the expense of 

unnecessary more rigid connections. 

From a numerical point of view, since each element has four fixity factors associated 

with the rotational stiffness of the two connections, the increase in the amount of design 

variables is considerable high, causing the computational cost to increase due to the need to 

compute a greater amount of derivatives. Also, this makes each LP process difficult to solve as 

it increases the size of the problem, and increases the possibility of finding local optimal 

solutions or even falling in unfeasible regions. It is noteworthy that these characteristics were 

observed not only in the small and medium size studies that were presented, but also with one 

large study that was omitted. This large structure required a lot of processing time not only in 

the derivatives, but also in the LP solver, and has fallen countless times in unfeasible regions. 

Regarding the comparison between the SCO and LCO processes, despite the higher 

computational processing cost, the LCO seems to be a better option, making it possible to find 
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more economical optimal solutions with not very complex layout. Modifications in joint 

positions make it possible to improve the distribution of internal forces and, consequently, 

better sizing and manufacturing cost savings. 

Based on the results obtained in all the case studies, it is noticeable that connections 

between two or more non-coplanar elements in the same joint can occur in optimal solutions. 

This may be one of the reasons for not finding registered researches (to the author's knowledge) 

that address this characteristic. Recent research focuses on optimization processes with 

experimentally characterized discrete connections. Therefore, it is up to future research to 

develop experimental studies of some constructive concepts reached in the optimal solutions, 

according to the optimal fixity factors. Additionally, it is noteworthy that maybe the ranges of 

the connections cost assumed in the case studies are not consistent with the reality that would 

be faced in these connections manufacturing. The formulation assumed for the range of 

connections cost is based on research that considered simpler connections, different structural 

profiles and structures of the construction sector. In automotive structures, for example, the cost 

of a fully rigid connection may be less than a pinned connection. 

Considering that steel tubular space frames are regularly employed in engineering 

practice, the formulated failure criterion was useful as it is proven that the proposed 

optimization problem can have fixed small elements or lead to the appearance of moderately 

short elements, during the optimization process or even in the optimal solution, that have non-

negligible shear stresses produced by shear forces. 

Another noticeable fact during the development of the case studies was the existence of 

different critical points, associated with the occurrence of different combinations of internal 

forces. However, it should be noted that the operation of the failure criterion is intrinsically 

dependent mainly to the existence of displacement constraints and the assumed range and 

quadratic variation for the additional cost of connections. If the optimization problem only 

imposes stress constraints and the cost of more rigid connections is very high, the tendency is 

for the optimization process to opt for pinned connections only. From a structural point of view, 

this choice is more efficient because it practically nullifies the transmission of shear forces and 

bending moments through the structure. Thus, the failure criterion is useful during the 

optimization process, but in the end the axial forces prevail and there is no need to calculate the 

critical point of stress and to account the shear effect, because the normal stress produced is 

uniform throughout the cross-section. 

Not applying displacement constraints can also lead to another problem which is the 

excessive flexibility of the optimal structure. In addition to being mechanically undesirable, the 
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appearance of large displacements also invalidates the mathematical model of the connections 

adopted and the formulation of the 3D frame element. 

After the development of the case studies, it became evident that the appearance of 

slender elements may indeed occur, being extremely important to apply stability constraints to 

ensure that the optimal solutions are reliable. However, the limited time established for the 

conclusion of this master thesis did not allow including this type of design constraint in the 

scope of research. Thus, this is a limitation of this work. 

Finally, based on the literature review and the contributions made, the implementation 

of the present research allows the development of various future works about the following 

aspects: 

 

 Adapt the code to develop optimization processes within a discrete design space 

or with a more robust gradient-based method, to improve numerical performance; 

 Carry out more investigation on the performance of the already implemented 

active set strategy of Pedersen and Nielsen (2003) on the design constraints; 

 Investigate if the effects of shear on deflections (𝜁௬, 𝜁௭ ≠ 0) can significantly 

influence the optimal solutions of the case studies developed; 

 Implement a solver to eigenvalue and eigenvector problems to impose buckling 

and frequencies constraints, investigating what happens in the optimal solutions found 

and providing more reliable solutions regarding structural stability; 

 Theoretical and numerical studies about a Heaviside continuous approximation 

applied to the areas and lengths of the elements, aiming to provide the development of 

topology optimization within the LCO process; 

 Extend the 3D frame element formulation to impose torsional flexibility in 𝑦෤𝑧̃ 

plane and add the subsequent fixity factors as design variables of the proposed 

optimization problem; 

 Adapt the sensitivities already developed and implement the technique to enable 

optimization problems with linked design variables, aiming to reduce not only the 

number of design variables (mainly fixity factors) and the computational cost, but also 

to provide the possibility to look for optimal solutions with symmetrical constructive 

concept. 
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Appendix A 

 

The Iterative Process of the Structural 
Optimization Code 

 

 

At the beginning, the algorithm performs a reading of the input data, which emcompasse 

the following topics: 

 

 Primary flags to determine the desired optimization problem, i.e. define the 

objective function, the design constraints and the desired optimization method (another 

gradient-based method is available in the code), auxiliary flags which define the method 

for solve the linear systems and some parameters that dictate the content of the outputs; 

 Structure data: mesh, mechanical and geometric properties (both fixed and initial 

properties) and the boundary and load conditions to be imposed in FEA; 

 Information regarding the optimization problem, such as the quantity and 

definition of the design variables, coefficients referring to the move limits, the quadratic 

variation of the additional cost of connections and limit values for design and side 

constraints. 

 

After the reading data, cross-sectional properties are calculated, based on the elementary 

thin-wall thickness and cross-section areas, and the iterative optimization process starts. It is 

worth mentioning that the thickness is an input data fixed during the optimization process, while 

the areas are update after each iteration. 

Within the optimization process, the first step is to zero out all matrices and vectors, and 

then calculate and store certain iterative outputs. This procedure is required not only to ensure 

post-processing of graphical results, but also for real-time monitoring at the prompt. 

Proceeding, the assembly of the global stiffness matrix is carried out. Being the local 

stiffness matrix of the 3D frame element given in equation (4.22), the boundary conditions and 

nodal loads are imposed, and displacements, internal forces and stresses are calculated by FEA. 
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Concentrated or uniform distributed loads on the length of the elements can be imposed 

as consistent nodal loads in the vector 𝑭, and multiple load cases can be considered. The 

condition of multiple load cases is important because a structure optimized for only one load 

case has the disadvantage, in safety, that the optimal solution found is not optimal if a small 

change in the loading condition is made. 

The equilibrium equation can be solved by two methods: with a LU decomposition of 

the original stiffness matrix and retro-replacement or using the skyline strategy proposed by 

Dhatt and Touzot (1984). Since the global stiffness matrix is characterized as a band matrix and 

is always symmetric, the skyline strategy is more efficient than the first since it solves the 

equilibrium equation by storing only the elements of the main diagonal and the non-null 

elements above the main diagonal. Thus, the upper and lower triangles are disregarded, 

avoiding unnecessary operations during the solution. 

According to the allowable stress, geometric properties and internal forces, the failure 

criterion will evaluate the mechanical strength of three cross-sections (extremities and center 

of the elements) through the von Mises equivalent stress. The critical point of each cross-section 

area and its von Mises stress are determined after a sweep of 0 to 2𝜋, with a predetermined 

stepsize. Therefore, in each case study, to ensure that the sweep is efficient and effective, a 

previous convergence analysis of the stress calculation at the critical point of the structure is 

developed. Thus, the stepsize with the best cost benefit between efficacy and computational 

cost is defined. 

When multiple load cases are considered, the amount of stress constraints increases 

considerably (each element has three cross-section areas of stress detection). Therefore, aiming 

to reduce the dimension of the optimization problems which will be investigate, and 

consequently the computational effort in the solver, the active set strategy demonstrated in 

Pedersen and Nielsen (2003) is available for the minimum element length and stress constraints. 

These authors also used the SLP method. 

Considering this strategy, the constraint is active and need to be compute only when the 

length and the stress of a given element and cross-section achieve a predetermined value. Thus, 

 

𝐿௜ ≥ 𝜇𝐿௅ ,  (A.1) 

𝑓(𝜃)௜,௞
௅஼

≥ 𝜇𝜎௘
ଶ, (A.2) 

 

where 𝜇 is the parameter that defines the predetermined value. The user should be aware of the 

use of this strategy, since it can easily affect the iterative process of each LP problem. 
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To develop the iterative optimization process, the LP routine DDLPRS of the IMSL 

Math/Library (1991) is used to solve each standard LP problem. Therefore, it is necessary to 

linearize the objective and the design constraints by the linear part of the Taylor’s expansion. 

The linearization is performed through the calculated sensitivities, using the implemented 

analytical expressions, properly validated by central finite differences (CFD),  

 

𝜕

𝜕𝑣௣௝

≈
𝐵 ቀ𝑣௣௝

+ 𝑝𝑒ቁ − 𝐵 ቀ𝑣௣௝
− 𝑝𝑒ቁ

2𝑝𝑒
, 𝑝𝑒 = 10ି଼, (A.3) 

 

where 𝐵 represents any function and 𝑝𝑒 is the perturbation factor of the CFD. To support the 

development of analytic expressions, a symbolic language software was used. 

After the convergence of the standard LP, the convergence criteria are calculated. These 

criteria are given by parameters relative to the stability of the objective function and all the 

design variables treated. If the convergence criteria reach the tolerances initially assumed, the 

optimization process is finalized and the outputs for the post-processing are computed. On the 

other hand, if this does not happen, the design variables and the move limits are updated and 

the cross-sectional properties are recalculated. Then, returned to the place where the 

optimization was initiated to continue the iterative process. 

The side constraints of the design variables are updated externally to the LP solver, by 

the move limits, to ensure convergence. Based on initial percentage factors for each type of 

design variable, entered as input data, the move limits are updated at each iteration by 

percentage update factors. In the specific case of joint positions as design variables, generically 

represented by 𝑋∗, the initial move limits also depend on the shortest absolute distance between 

a given 𝑋∗ and the respective joint positions that, through connectivity, form elements with 𝑋∗. 

The percent update factors are fixed and the update occurs as follows: if the design 

variable runs successively in the same direction of the search of the optimal solution, the side 

constraint is relaxed by multiplying the extreme values with a percentage factor greater than 

the unit value, to allow larger steps. Otherwise, the step is reduced with a percentage factor less 

than the unit value. The computational efficiency and convergence are highly sensitive to the 

choice of updating parameters (VANDERPLAATS, 1999). 

If desirable, the code provides the option of assuming maximum and minimum values 

in the side constraints of the joint positions which are design variables, constraining the design 

space. Also, areas and fixity factors can be organized into groups of design variables through 
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inequality constraints, imposing symmetry at the optimal solutions. In addition, the side 

constraints applied to the areas and the minimum length constraints of the elements avoid poor 

conditioning and singularity in the stiffness matrix. Physically, it ensures that the elements of 

the mesh do not disappear during FEA. 

The structural optimization problem is stated in Chapter 5. However, providing a variety 

of optimization problems and methods for the next researchers of the master’s program, a 

complement of this research work is to make possible all the items described in the flowchart 

of Figs. A.1(a-d), based on flags input described at the beginning of this Appendix. It is 

noteworthy that some items are related to previous researchers, and some were developed with 

the intention of providing improvements in the optimization process and optimal solutions. 

Topics related to topology optimization were inserted in the previous objective of this research, 

were properly developed and validated (mathematically) and made available. However, due to 

lack of time, they were removed from the current scope. 

Despite the initial option of using the SLP method, it is worth mentioning that the 

sequential quadratic programming (SQP) developed by Schittkowski (2001) – NLPQLP – was 

implemented and evaluated at the first case of layout and connections optimization (frame 

dome), in order to decrease processing time and improve the robustness of search for optimal 

solutions at the optimization process. Unfortunately, the author's implementation was not 

intended for problems with high number of design variables, which made the subsequent 

application of this method unfeasible. 
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Figure A.1 – Available items of the code showed by sections (a), (b), (c) and (d). 

 

(a) 

 

(b) 

 

(c) 



170 
 

Figure A.1 (Continuation) – Available items of the code demonstrated in the sections (a), (b), 

(c) and (d). 

 

(d) 

Source: Author’s production. 

 

 

 

 

 

 

 

 

 

 

 

 



171 
 

Appendix B 

 

The Analytical Sensitivity Analysis of the 
Failure Criterion with respect to the 
Cross-Section Areas 

 

 

Analytically, the sensitivity of 𝑓(𝜃)௜,௞ relative to a given cross-section area can be 

expressed as 
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𝐴௜𝐼௜

ቇ
𝜕

𝜕𝐴௝

ቀ𝑀ோ௜,௞
ቁ +

𝑀ோ௜,௞
ଶ

𝐼௜
ଶ

𝜕

𝜕𝐴௝

൫𝑐௜̅,௞
ଶ൯ 

+ 𝑐௜̅,௞
ଶ𝑀ோ௜,௞

ଶ 𝜕

𝜕𝐴௝

ቆ
1

𝐼௜
ଶቇ +

𝑐௜̅,௞
ଶ

𝐼௜
ଶ

𝜕

𝜕𝐴௝

ቀ𝑀ோ௜,௞
ଶቁ +

3

4
൭

𝑀௫௜,௞
ଶ

𝐼௜
ଶ ൱

𝜕

𝜕𝐴௝

൫𝑅௜
ଶ൯ +

3

4
ቀ𝑅௜

ଶ𝑀௫௜,௞
ଶቁ

𝜕

𝜕𝐴௝

ቆ
1

𝐼௜
ଶቇ

+
3

4
ቆ

𝑅௜
ଶ

𝐼௜
ଶ ቇ

𝜕

𝜕𝐴௝

ቀ𝑀௫௜,௞
ଶቁ −

3

𝑡௜

൭
𝑄௜𝑀௫௜,௞

𝑉ோ
௬ᇲ

௜,௞

𝐼௜
ଶ ൱

𝜕

𝜕𝐴௝

(𝑅௜) 

−
3

𝑡௜

൭
𝑅௜𝑀௫௜,௞

𝑉ோ
௬ᇲ

௜,௞

𝐼௜
ଶ ൱

𝜕

𝜕𝐴௝

(𝑄௜) −
3

𝑡௜

ቀ𝑅௜𝑄௜𝑀௫௜,௞
𝑉ோ

௬ᇲ

௜,௞
ቁ

𝜕

𝜕𝐴௝

ቆ
1

𝐼௜
ଶቇ −

3

𝑡௜

൭
𝑅௜𝑄௜𝑉ோ

௬ᇲ

௜,௞

𝐼௜
ଶ ൱

𝜕

𝜕𝐴௝

ቀ𝑀௫௜,௞
ቁ 

−
3

𝑡௜

ቆ
𝑅௜𝑄௜𝑀௫௜,௞

𝐼௜
ଶ ቇ

𝜕

𝜕𝐴௝

ቀ𝑉ோ
௬ᇲ

௜,௞
ቁ +

3

𝑡௜
ଶ ቌ

𝑉ோ
௬ᇲ

௜,௞

ଶ

𝐼௜
ଶ ቍ

𝜕

𝜕𝐴௝

൫𝑄௜
ଶ൯ +

3

𝑡௜
ଶ ቀ𝑄௜

ଶ𝑉ோ
௬ᇲ

௜,௞

ଶ
ቁ

𝜕

𝜕𝐴௝

ቆ
1

𝐼௜
ଶቇ

+
3

𝑡௜
ଶ ቆ

𝑄௜
ଶ

𝐼௜
ଶ ቇ

𝜕

𝜕𝐴௝

ቀ𝑉ோ
௬ᇲ

௜,௞

ଶ
ቁ. 

(B.1) 

 

Based on equation (B.1) and the formulation of the internal forces, explained in the 

Chapter 3, it is noticed that the use of the chain and product rules will be essential for some 

derivatives. These derivatives will be analyzed separately to present the details of each 

differentiation. Derivatives in relation to the six internal forces will not be presented, but can 

be seen in Faria and Muñoz-Rojas (2019) and follow the same procedure as Carniel et. al. 
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(2008), with some changes related to the interpolation functions and cross-sectional geometric 

properties. 

 

Computation of 
𝝏

𝝏𝑨𝒋
ቀ𝑵𝒙𝒊,𝒌

𝟐ቁ and 
𝝏

𝝏𝑨𝒋
ቀ𝑴𝒙𝒊,𝒌

𝟐ቁ 

 

Considering 𝑝 and 𝑞 as 

 

 𝑝 = 𝑁௫௜,௞
          𝑎𝑛𝑑          𝑞 = 𝑝ଶ, (B.2) 

 

using the chain rule 

 

 𝜕

𝜕𝐴௝
ቀ𝑁௫௜,௞

ଶቁ =
𝑑𝑞

𝑑𝑝

𝜕𝑝

𝜕𝐴௝
, (B.3) 

 

and assuming that the axial internal force and its derivative are known, the sensitivity of 𝑁௫௜,௞
ଶ 

is equal to 

 

 𝜕

𝜕𝐴௝
ቀ𝑁௫௜,௞

ଶቁ = 2𝑁௫௜,௞

𝜕

𝜕𝐴௝
ቀ𝑁௫௜,௞

ቁ. (B.4) 

 

The sensitivity of 𝑀௫௜,௞
ଶ can be defined by analogous procedure and, therefore, 

 

 𝜕

𝜕𝐴௝
ቀ𝑀௫௜,௞

ଶቁ = 2𝑀௫௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௫௜,௞

ቁ. (B.5) 

 

Computation of 
𝝏

𝝏𝑨𝒋
ቀ𝑴𝑹𝒊,𝒌

ቁ and 
𝝏

𝝏𝑨𝒋
ቀ𝑴𝑹𝒊,𝒌

𝟐ቁ 

 

Recalling that the resulting bending moment is calculated by 

 

 
𝑀ோ௜,௞

= ට𝑀௬௜,௞

ଶ + 𝑀௭௜,௞
ଶ, (B.6) 

 

and considering the chain rule 
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 𝑝 = 𝑀௬௜,௞

ଶ + 𝑀௭௜,௞
ଶ          𝑎𝑛𝑑          𝑞 = ඥ𝑝. (B.7) 

 𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞

ቁ =
1

2ට𝑀௬௜,௞

ଶ + 𝑀௭௜,௞
ଶ

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ଶ + 𝑀௭௜,௞
ଶቁ, 

(B.8) 

 

we arrive at 

 

 𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞

ቁ =
1

2𝑀ோ௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞

ଶቁ, (B.9) 

 

that is, 
డ

డ஺ೕ
൫𝑀𝑅𝑖,𝑘

൯ depends on the definition of 
డ

డ஺ೕ
൫𝑀𝑅𝑖,𝑘

2൯, which can be defined by the sum 

of two derivatives 

 

 𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞

ଶቁ =
𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ଶቁ +
𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ଶቁ. (B.10) 

 

Again, doing the chain rule, 

 

 𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ଶቁ = 2𝑀௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁ, 

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ଶቁ = 2𝑀௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ቁ, 

(B.11) 

 

and returning to the previous equations (B.9) and (B.10), the sensitivities of 𝑀ோ௜,௞
ଶ and 𝑀ோ௜,௞

 

are given by 

 

 𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞

ଶቁ = 2 ൭𝑀௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁ + 𝑀௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

௜ቁ൱, (B.12) 

 𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞

ቁ =
1

𝑀ோ௜,௞

൭𝑀௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁ + 𝑀௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ቁ൱. (B.13) 
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Analyzing equation (B.13), it is noted that this sensitivity should be evaluated with more 

attention to the specific case where 𝑀ோ௞
௜ tends to zero, because mathematically this results in 

an indetermination of the type 

 

 𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞

ቁ =
0

0
 . (B.14) 

 

In order to investigate this specific case, the problem is divided into two sub-cases, 

which are 

 

 𝐴)   𝑀௬௜,௞
= 0        𝑎𝑛𝑑       𝐵)   𝑀௭௜,௞

= 0. (B.15) 

 

In both cases, replacing the respective values of null bending moments in the expression 

(B.13), we arrive at 

 

 
𝐴)   

𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞ቁ =

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞ቁ        𝑎𝑛𝑑        𝐵)   

𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞ቁ =

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁ, (B.16) 

 

and if 𝑀௭௜,௞
 tends to zero in sub-case A and 𝑀௬௜,௞

 tends to zero in sub-case B, 

 

𝐴)   
𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞ቁ =

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞ቁቤ

ெ೥೔,ೖ→଴

   𝑎𝑛𝑑   𝐵)   
𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞ቁ =

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁቤ
ெ೤೔,ೖ

→଴

, (B.17) 

 

it must comply with the following condition 

 

 𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞

ቁ
ௌ௎஻ି஼஺ௌா (஺)

=
𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞

ቁ
ௌ௎஻ି஼஺ௌா (஻)

, (B.18) 

 

that is, 

 

 𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ቁቤ
ெ೥೔,ೖ→଴

=
𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁቤ
ெ೤೔,ೖ

→଴

. (B.19) 
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By verifying equations (3.52) and (3.54), for the calculations of the bending moments 

𝑀௭௜,௞
 and 𝑀௬௜,௞

, it is possible to note that such internal forces will be null in an element if and 

only if the local nodal displacements 𝒖𝒗𝒙𝒐𝒚 ௜
 and 𝒖𝒗𝒙𝒐𝒛 ௜

 are null because the cross-sectional area, 

thin-wall thickness, Young’s modulus and the second derivative of the interpolation functions 

are parameters that do not have null values. Then, based on the previous statement, 

 

 
ቄ𝒖𝒗𝒙𝒐𝒚 ௜

ቅ = 0 ∴  ൝
𝜕𝒖𝒗𝒙𝒐𝒚 ௜

𝜕𝐴௝
ൡ = 0   𝑎𝑛𝑑   ቄ𝒖𝒗𝒙𝒐𝒛 ௜

ቅ = 0  ∴  ቊ
𝜕𝒖𝒗𝒙𝒐𝒛௜

𝜕𝐴௝
ቋ = 0, (B.20) 

 

the equality of the expression (B.18) is respected, since the derivatives of 𝑀௭௜,௞
 and 𝑀௬௜,௞

 will 

be null 

 

 𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ቁቤ
ெ೥೔,ೖ→଴

= 0        𝑎𝑛𝑑       
𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁቤ
ெ೤೔,ೖ

→଴

= 0, (B.21) 

 

and, therefore, 

 

 𝜕

𝜕𝐴௝
ቀ𝑀ோ௜,௞

ቁቤ
ெೃ೔,ೖ→଴

= 0. (B.22) 

 

Computation of 
𝝏

𝝏𝑨𝒋
ቀ𝑽𝑹

𝒚ᇱ
𝒊,𝒌

ቁ 

 

From the formulation of the failure criterion, it is known from equation (4.8) that 

 

 𝑉ோ
௬ᇱ

௜,௞
= 𝑉ோ௜,௞

cos൫𝜆௜,௞൯, (B.23) 

 

where 

 

 
𝑉ோ௜,௞

= ට𝑉௬௜,௞

ଶ + 𝑉௭௜,௞
ଶ, 𝜆௜,௞ = 𝛾௏௜,௞

− 𝜃௜,௞       𝑎𝑛𝑑       𝛾௏௜,௞
= tanିଵ ൭

𝑉௭௜,௞

𝑉௬௜,௞

൱ . (B.24) 

 

Using the product rule, the derivative of 𝑉ோ
௬ᇱ

௜,௞
 is given by 
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 𝜕

𝜕𝐴௝
ቀ𝑉ோ

௬ᇱ
௜,௞

ቁ = cos൫𝜆௜,௞൯
𝜕

𝜕𝐴௝
ቀ𝑉ோ௜,௞

ቁ + 𝑉ோ௜,௞

𝜕

𝜕𝐴௝
൫cos൫𝜆௜,௞൯൯, 

(B.25) 

 

where 
డ

డ஺ೕ
൫𝑉𝑅𝑖,𝑘

൯ has an analogous development to 
డ

డ஺ೕ
൫𝑀𝑅𝑖,𝑘

൯ and therefore 

 

 𝜕

𝜕𝐴௝
ቀ𝑉ோ௜,௞

ቁ =
1

𝑉ோ௜,௞

൭𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁ + 𝑉௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ൱. (B.26) 

 

We need to define 
డ

డ஺ೕ
൫cos൫𝜆𝑖,𝑘൯൯. Knowing that 𝜃௜,௞ has no sensitivity to any design 

variable and making successive uses of the chain rule, 

 

 𝑝ଵ = 𝜆௜,௞          𝑎𝑛𝑑          𝑞ଵ = cos(𝑝ଵ), 

𝜕

𝜕𝐴௝
൫cos൫𝜆௜,௞൯൯ = − sin൫𝜆௜,௞൯

𝜕

𝜕𝐴௝
൫𝜆௜,௞൯, 

𝜕

𝜕𝐴௝
൫𝜆௜,௞൯ =

𝜕

𝜕𝐴௝
൭tanିଵ ൭

𝑉௭௜,௞

𝑉௬௜,௞

൱൱, 

(B.27) 

 
𝑝ଶ =

𝑉௭௜,௞

𝑉௬௜,௞

          𝑎𝑛𝑑          𝑞ଶ = tanିଵ(𝑝ଶ), 

𝜕

𝜕𝐴௝
൭tanିଵ ൭

𝑉௭௜,௞

𝑉௬௜,௞

൱൱ =
1

ቆ
𝑉௭௜,௞

𝑉௬௜,௞

ቇ

ଶ

+ 1

𝜕

𝜕𝐴௝
൭

𝑉௭௜,௞

𝑉௬௜,௞

൱, 

𝜕

𝜕𝐴௝
൭

𝑉௭௜,௞

𝑉௬௜,௞

൱ =
1

𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ + 𝑉௭௜,௞

𝜕

𝜕𝐴௝
൭

1

𝑉௬௜,௞

൱, 

(B.28) 

 
𝑝ଷ = 𝑉௬௜,௞

          𝑎𝑛𝑑          𝑞ଷ =
1

𝑝ଷ
, 

𝜕

𝜕𝐴௝
൭

1

𝑉௬௜,௞

൱ = −
1

𝑉௬௜,௞

ଶ

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁ, 

(B.29) 

 

replacing equation (B.29) in (B.28) and then equation (B.28) in (B.27), 
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 𝜕

𝜕𝐴௝
൭

𝑉௭௜,௞

𝑉௬௜,௞

൱ =
1

𝑉௬௜,௞

𝜕

𝜕𝐴௝
൫𝑉௭௞

௜൯ −
𝑉௭௜,௞

𝑉௬௜,௞

ଶ

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁ, (B.30) 

 𝜕

𝜕𝐴௝
൭tanିଵ ൭

𝑉௭௜,௞

𝑉௬௜,௞

൱൱ =
1

ቆ
𝑉௭௜,௞

𝑉௬௜,௞

ቇ

ଶ

+ 1

ቌ
1

𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞ቁ −

𝑉௭௜,௞

𝑉௬௜,௞

ଶ

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁቍ, (B.31) 

 𝜕

𝜕𝐴௝
൫cos൫𝜆௜,௞൯൯ = −

sin൫𝜆௜,௞൯

ቆ
𝑉௭௜,௞

𝑉௬௜,௞

ቇ

ଶ

+ 1

ቌ
1

𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞ቁ −

𝑉௭௜,௞

𝑉௬௜,௞

ଶ

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁቍ, (B.32) 

 

the derivative 
డ

డ஺ೕ
൫𝑉𝑅

𝑦′
𝑖,𝑘

൯ is computed by 

 

 𝜕

𝜕𝐴௝
ቀ𝑉ோ

௬ᇱ
௜,௞

ቁ =
cos൫𝜆௜,௞൯

𝑉ோ௜,௞

൭𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁ + 𝑉௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ൱ 

−
𝑉ோ௜,௞

sin൫𝜆௜,௞൯

ቆ
𝑉௭௜,௞

𝑉௬௜,௞

ቇ

ଶ

+ 1

ቌ
1

𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ −
𝑉௭௜,௞

𝑉௬௜,௞

ଶ

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁቍ. 

(B.33) 

 

As in equation (B.13), equation (B.33) demonstrates the same mathematical problem of 

division by zero in both terms of the subtraction. Then, rearranging the second term of equation 

(B.33) 

 

 𝜕

𝜕𝐴௝
ቀ𝑉ோ

௬ᇱ
௜,௞

ቁ =
cos൫𝜆௜,௞൯

𝑉ோ௜,௞

൭𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁ + 𝑉௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ൱ 

−
𝑉ோ௜,௞

sin൫𝜆௜,௞൯

𝑉௭௜,௞
ଶ

𝑉௬௜,௞

ଶ +
𝑉௬௜,௞

ଶ

𝑉௬௜,௞

ଶ

ቌ
1

𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ −
𝑉௭௜,௞

𝑉௬௜,௞

ଶ

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁቍ, 
(B.34) 

 

substituting 𝑉௬௜,௞

ଶ + 𝑉௭௜,௞
ଶ for 𝑉ோ௜,௞

ଶ and making the product of the dividend with the inverse 

of the divisor 
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 𝜕

𝜕𝐴௝
ቀ𝑉ோ

௬ᇱ
௜,௞

ቁ =
cos൫𝜆௜,௞൯

𝑉ோ௜,௞

൭𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁ + 𝑉௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ൱ 

−
𝑉௬௜,௞

ଶ sin൫𝜆௜,௞൯

𝑉ோ௜,௞
ଶ ቌ

1

𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ −
𝑉௭௜,௞

𝑉௬௜,௞

ଶ

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁቍ, 

(B.35) 

 

by putting 𝑉௬௜,௞

ଶ in evidence, we arrive at the following simplification 

 

 𝜕

𝜕𝐴௝
ቀ𝑉ோ

௬ᇱ
௜,௞

ቁ =
cos൫𝜆௜,௞൯

𝑉ோ௜,௞

൭𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁ + 𝑉௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ൱ 

−
sin൫𝜆௜,௞൯

𝑉ோ௜,௞
ଶ ൭𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ − 𝑉௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁ൱, 

(B.36) 

 

and if 𝑉ோ௜,௞
 tends to zero, the equation continues present the same numerical error of equation 

(B.33). To avoid this risk, it is possible to develop more mathematical analysis. 

Dividing the mathematical problem into two sub-cases A and B, where the first one 

encompasses 𝑉௬௜,௞
 null and 𝑉௭௜,௞

 tending to zero and the second one is a reciprocal case, we have 

 

𝐴)   
𝜕

𝜕𝐴௝
ቀ𝑉ோ

௬ᇱ
௜,௞ቁ = cos൫𝜆௜,௞൯

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞ቁቤ

௏೥೔,ೖ→଴

+ sin൫𝜆௜,௞൯
𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁቤ
௏೤೔,ೖ

ୀ଴

, 

𝐵)   
𝜕

𝜕𝐴௝
ቀ𝑉ோ

௬ᇱ
௜,௞ቁ = cos൫𝜆௜,௞൯

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁቤ
௏೤೔,ೖ

→଴

− sin൫𝜆௜,௞൯
𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞ቁቤ

௏೥೔,ೖୀ଴

. 

(B.37) 

 

Since 𝜆௜,௞ is calculated by 

 

 
𝜆௜,௞ = tanିଵ ൭

𝑉௭௜,௞

𝑉௬௜,௞

൱ − 𝜃௜,௞, (B.38) 

 

replacing 𝑉௬௜,௞
 and 𝑉௭௜,௞

 in cases A and B and using the trigonometric relations, it can be defined 

that 
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𝐴)   𝜆௜,௞ = tanିଵ ቆ
𝑉௭௜,௞

0
ቇ − 𝜃௜,௞   →    𝜆௜,௞ = tanିଵ(∞) − 𝜃௜,௞    →    𝜆௜,௞ =

𝜋

2
− 𝜃௜,௞ , 

𝐵)  𝜆௜,௞ = tanିଵ ൭
0

𝑉௬௜,௞

൱ − 𝜃௜,௞   →    𝜆௜,௞ = tanିଵ(0) − 𝜃௜,௞    →    𝜆௜,௞ = −𝜃௜,௞. 

(B.39) 

 

Substituting the expressions of 𝜆௜,௞ into the respective sub-cases 

 

𝐴)   
𝜕

𝜕𝐴௝
ቀ𝑉ோ

௬ᇱ
௜,௞ቁ = cos ቀ

𝜋

2
− 𝜃௜,௞ቁ

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞ቁቤ

௏೥೔,ೖ→଴

+ sin ቀ
𝜋

2
− 𝜃௜,௞ቁ

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁቤ
௏೤೔,ೖ

ୀ଴

, 

𝐵)   
𝜕

𝜕𝐴௝
ቀ𝑉ோ

௬ᇱ
௜,௞ቁ = −sin൫−𝜃௜,௞൯

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞ቁቤ

௏೥೔,ೖୀ଴

+ cos൫−𝜃௜,௞൯
𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁቤ
௏೤೔,ೖ

→଴

, 

 (B.40) 

 

and identifying the following trigonometric relationships 

 

 cos ቀ
𝜋

2
− 𝜃ቁ = −sin(−𝜃)    𝑎𝑛𝑑   sin ቀ

𝜋

2
− 𝜃ቁ = cos(−𝜃), (B.41) 

 

we notice that by going through the two paths, the expressions for the sensitivity of 𝑉ோ
௬ᇱ

௜,௞
 

when 𝑉ோ௜,௞
 tends to zero are equivalent. Therefore, in this particular case, having knowledge of 

two more trigonometric identities 

 

 cos(−𝜃) = cos(𝜃)    𝑎𝑛𝑑   −sin(−𝜃) = sin(𝜃), (B.42) 

 

and using the equation (B.37) of sub-case B, it is assumed that this sensitivity is given by 

 

 𝜕

𝜕𝐴௝
ቀ𝑉ோ

௬ᇱ
௜,௞

ቁቤ
௏ೃ೔,ೖ→଴

= cos൫𝜃௜,௞൯
𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁ + sin൫𝜃௜,௞൯
𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ. (B.43) 

 

Moreover, it is noteworthy that the expressions of equation (B.39) are used to compute 

the angle 𝛾௏௜,௞
 in the respective nullity occasions of 𝑉௬௜,௞

 and 𝑉௭௜,௞
. When both are null, 

physically the angle 𝛾௏௜,௞
 does not exist, but would produce mathematical indeterminacy within 

the code. Therefore, through a conditional, it is considered null. 
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Computation of 
𝝏

𝝏𝑨𝒋
ቀ𝑽𝑹

𝒚ᇱ
𝒊,𝒌

𝟐
ቁ 

 

Since the equation for 𝑉ோ
௬ᇱ

௜,௞

ଶ
 is given by 

 

 𝑉ோ
௬ᇱ

௜,௞

ଶ
= 𝑉ோ௜,௞

ଶ cosଶ൫𝜆௜,௞൯, (B.44) 

 

the sensitivity can be expressed by 

 

 𝜕

𝜕𝐴௝
ቀ𝑉ோ

௬ᇱ
௜,௞

ଶ
ቁ = cosଶ൫𝜆௜,௞൯

𝜕

𝜕𝐴௝
ቀ𝑉ோ௜,௞

ଶቁ + 𝑉ோ௜,௞
ଶ 𝜕

𝜕𝐴௝
൫cosଶ൫𝜆௜,௞൯൯. (B.45) 

 

Applying the chain rule to the two unknown derivatives, 

 

 𝜕

𝜕𝐴௝
ቀ𝑉ோ௜,௞

ଶቁ = 2𝑉ோ௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉ோ௜,௞

ቁ, (B.46) 

 𝜕

𝜕𝐴௝
൫cosଶ൫𝜆௜,௞൯൯ = 2 cos൫𝜆௜,௞൯

𝜕

𝜕𝐴௝
൫cos൫𝜆௜,௞൯൯. (B.47) 

 

We already know 
డ

డ஺ೕ
൫cos൫𝜆𝑖,𝑘൯൯ and 

డ

డ஺ೕ
൫𝑉𝑅𝑖,𝑘

൯, developed in the previous item, 

equations (B.26) and (B.32). Thus, the sensitivity of 𝑉ோ
௬ᇱ

௜,௞

ଶ
 is 

 

 𝜕

𝜕𝐴௝
ቀ𝑉ோ

௬ᇱ
௜,௞

ଶ
ቁ = 2 cosଶ൫𝜆௜,௞൯ ൭𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁ + 𝑉௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ൱ − 

2𝑉ோ௜,௞
ଶ cos൫𝜆௜,௞൯ sin൫𝜆௜,௞൯

ቆ
𝑉௭௜,௞

𝑉௬௜,௞

ቇ

ଶ

+ 1

ቌ
1

𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ −
𝑉௭௜,௞

𝑉௬௜,௞

ଶ

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁቍ. 
(B.48) 

 

To avoid mathematical indetermination, it is necessary to manipulate equation (B.48) in 

a similar way to that presented for equation (B.33). Therefore, 

 



181 
 

 𝜕

𝜕𝐴௝
ቀ𝑉ோ

௬ᇱ
௜,௞

ଶ
ቁ = 2 cosଶ൫𝜆௜,௞൯ ൭𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁ + 𝑉௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ൱ − 

2 cos൫𝜆௜,௞൯ sin൫𝜆௜,௞൯ ൭𝑉௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௭௜,௞

ቁ − 𝑉௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑉௬௜,௞

ቁ൱, 

(B.49) 

 

and in cases where 𝑉௬௜,௞
 or 𝑉௭௜,௞

 are null, the angle 𝜆௜,௞ can be determined as given in equation 

(B.39). 

 

Computation of 
𝝏

𝝏𝑨𝒋
൫𝒄ത𝒊,𝒌൯ 

 

The calculation of 𝑐௜̅,௞ is performed by 

 

 𝑐௜̅,௞ = 𝑅௜ sin൫𝜑௜,௞൯, (B.50) 

 

where 𝑅௜ has already been informed in equation (4.11) and 

 

 
𝜑௜,௞ = 𝜃௜,௞ +

𝜋

2
− 𝛾ெ௜,௞

       𝑎𝑛𝑑       𝛾ெ௜,௞
= tanିଵ ൭

𝑀௭௜,௞

𝑀௬௜,௞

൱ . (B.51) 

 

The sensitivity of 𝑐௜̅,௞ is conditioned in the form 

 

 
𝜕

𝜕𝐴௝
൫𝑐௜̅,௞൯ =

⎩
⎪
⎨

⎪
⎧sin൫𝜑௜,௞൯

𝜕

𝜕𝐴௝

(𝑅௜) + 𝑅௜

𝜕

𝜕𝐴௝
ቀsin൫𝜑௜,௞൯ቁ , 𝑖𝑓 𝐴௝ = 𝐴௜ 

𝑅௜

𝜕

𝜕𝐴௝
ቀsin൫𝜑௜,௞൯ቁ ,                                               𝑖𝑓 𝐴௝ ≠ 𝐴௜

⎭
⎪
⎬

⎪
⎫

. (B.52) 

 

While the derivative of 𝑅௜ is directly computed by, 

 

 𝜕

𝜕𝐴௝

(𝑅௜) =
𝜕

𝜕𝐴௝
ቆ

𝐴௜ + 𝜋𝑡௜
ଶ

2𝜋𝑡௜
ቇ =

1

2𝜋𝑡௜
, (B.53) 

 

the derivative of sin൫𝜑௜,௞൯, by the chain rule, is given as 
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 𝜕

𝜕𝐴௝
ቀsin൫𝜑௜,௞൯ቁ = cos൫𝜑௜,௞൯

𝜕

𝜕𝐴௝
൫𝜑௜,௞൯, (B.54) 

 

being that 

 

 𝜕

𝜕𝐴௝
൫𝜑௜,௞൯ =

𝜕

𝜕𝐴௝
ቀ−𝛾ெ௜,௞

ቁ =
𝜕

𝜕𝐴௝
൭− tanିଵ ൭

𝑀௭௜,௞

𝑀௬௜,௞

൱൱. (B.55) 

 

In a similar way to the development in equation (B.28) for 
డ

డ஺ೕ
ቆtan−1 ቆ

𝑉𝑧𝑖,𝑘

𝑉𝑦𝑖,𝑘

ቇቇ,  

 

 
𝜕

𝜕𝐴௝
൫𝜑௞

௜൯ = −
1

ቆ
𝑀௭௜,௞

𝑀௬௜,௞

ቇ

ଶ

+ 1

ቌ
1

𝑀௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞ቁ −

𝑀௭௜,௞

𝑀௬௜,௞

ଶ

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁቍ, (B.56) 

 

returning and replacing equation (B.56) in (B.54) and then equation (B.54) in (B.52), we arrive 

at 

 

𝜕

𝜕𝐴௝

ቀsin൫𝜑௜,௞൯ቁ = −
cos൫𝜑௜,௞൯

ቆ
𝑀௭௜,௞

𝑀௬௜,௞

ቇ

ଶ

+ 1

ቌ
1

𝑀௬௜,௞

𝜕

𝜕𝐴௝

ቀ𝑀௭௜,௞
ቁ −

𝑀௭௜,௞

𝑀௬௜,௞

ଶ

𝜕

𝜕𝐴௝

ቀ𝑀௬௜,௞
ቁቍ, (B.57) 

𝜕

𝜕𝐴௝
൫𝑐௜̅,௞൯ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧sin൫𝜑௜,௞൯

2𝜋𝑡௜
−

𝑅௜ cos൫𝜑௜,௞൯

ቆ
𝑀௭௜,௞

𝑀௬௜,௞

ቇ

ଶ

+ 1

ቌ
1

𝑀௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ቁ −
𝑀௭௜,௞

𝑀௬௜,௞

ଶ

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁቍ , 𝑖𝑓 𝐴௝ = 𝐴௜

−
𝑅௜ cos൫𝜑௜,௞൯

ቆ
𝑀௭௜,௞

𝑀௬௜,௞

ቇ

ଶ

+ 1

ቌ
1

𝑀௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ቁ −
𝑀௭௜,௞

𝑀௬௜,௞

ଶ

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁቍ ,                            𝑖𝑓 𝐴௝ ≠ 𝐴௜

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

. (B.58) 

 

Looking at the term highlighted in 𝑎∗ 

 

 
𝑎∗ = −

𝑅௜ cos൫𝜑௜,௞൯

ቆ
𝑀௭௜,௞

𝑀௬௜,௞

ቇ

ଶ

+ 1

ቌ
1

𝑀௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ቁ −
𝑀௭௜,௞

𝑀௬௜,௞

ଶ

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁቍ, 
(B.59) 

 

the same mathematical problem of indetermination seen in equation (B.48) is encountered. 
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By performing the same algebraic manipulation procedures applied in previous 

equations (B.34)-(B.36), the following simplification can be achieved 

 

 
𝑎∗ = −

𝑅௜ cos൫𝜑௜,௞൯

𝑀ோ௜,௞
ଶ ൭𝑀௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ቁ − 𝑀௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁ൱, (B.60) 

 

where 

 

 
𝜑௜,௞ = 𝜃௜,௞ − tanିଵ ൭

𝑀௭௜,௞

𝑀௬௜,௞

൱ +
𝜋

2
. (B.61) 

 

If we divide the problem into sub-cases A and B, where the first one encompasses 𝑀௬௜,௞
 

null and 𝑀௭௜,௞
 tending to zero and the second case is reciprocal, we have to 

 

 
𝐴)   𝑎∗ = 𝑅௜ cos൫𝜑௜,௞൯

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁቤ
ெ೤೔,ೖ

ୀ଴

𝑀௭௜,௞
ቚ

ெ೥೔,ೖ→଴
, 

𝐵)   𝑎∗ = −𝑅௜ cos൫𝜑௜,௞൯
𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ቁቤ
ெ೥೔,ೖୀ଴

𝑀௬௜,௞
ቚ

ெ೤೔,ೖ
→଴

, 

(B.62) 

 

where  

 

𝐴)   𝜑௜,௞ = 𝜃௜,௞ − tanିଵ ቆ
𝑀௭௜,௞

0
ቇ +

𝜋

2
   →    𝜑௜,௞ = 𝜃௜,௞ − tanିଵ(∞) +

𝜋

2
   →    𝜑௜,௞ = 𝜃௜,௞, 

𝐵)   𝜑௜,௞ = 𝜃௜,௞ − tanିଵ ൭
0

𝑀௬௜,௞

൱ +
𝜋

2
   →    𝜑௜,௞ = 𝜃௜,௞ − tanିଵ(0) +

𝜋

2
   →    𝜑௜,௞ = 𝜃௜,௞ +

𝜋

2
. 

(B.63) 

 

Replacing 𝜑௜,௞ in the respective sub-cases, 

 

  
𝐴)   𝑎∗ = 𝑅௜ cos൫𝜃௜,௞൯

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁቤ
ெ೤೔,ೖ

ୀ଴

𝑀௭௜,௞
ቚ

ெ೥೔,ೖ→଴
, 

𝐵)   𝑎∗ = −𝑅௜ cos ቀ𝜃௜,௞ +
𝜋

2
ቁ

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ቁቤ
ெ೥೔,ೖୀ଴

𝑀௬௜,௞
ቚ

ெ೤೔,ೖ
→଴

. 

(B.64) 
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By analyzing the sub-cases A and B, due to the existence of terms 𝑀௭௜,௞
ቚ

ெ೥೔,ೖ→଴
 and 

𝑀௬௜,௞
ቚ

ெ೤೔,ೖ
→଴

, it is easy to see that in both cases 𝑎∗ tends to be null. Then, since the two paths 

show the same result, we can assume that when 𝑀ோ௜,௞
 tends to zero, the sensitivity of 𝑐௜̅,௞ is 

given by 

 

 
𝜕

𝜕𝐴௝
൫𝑐௜̅,௞൯ቤ

ெೃ೔,ೖ→଴

= ቐ

sin൫𝜑௜,௞൯

2𝜋𝑡௜
, 𝑖𝑓 𝐴௝ = 𝐴௜

0,                         𝑖𝑓 𝐴௝ ≠ 𝐴௜

ቑ, (B.65) 

 

being that, in this condition, the calculation of 𝜑௜,௞ would have mathematical indetermination 

due to the quotient of the term tanିଵ ቆ
𝑀𝑧𝑖,𝑘

𝑀𝑦𝑖,𝑘

ቇ. However, physically, if the two bending moments 

are null, there is no angle 𝜑௜,௞ and, therefore, 

 

 
𝜕

𝜕𝐴௝
൫𝑐௜̅,௞൯ቤ

ெೃ೔,ೖ→଴

= ൞

sin ቀ𝜃௜,௞ +
𝜋
2

ቁ

2𝜋𝑡௜
, 𝑖𝑓 𝐴௝ = 𝐴௜

0,                                 𝑖𝑓 𝐴௝ ≠ 𝐴௜

ൢ. (B.66) 

 

In a simplified format, the generic sensitivity of 𝑐௜̅,௞ is computed in the form 

 

𝜕

𝜕𝐴௝
൫𝑐௜̅,௞൯ =

⎩
⎪
⎨

⎪
⎧sin൫𝜑௜,௞൯

2𝜋𝑡௜
−

𝑅௜ cos൫𝜑௜,௞൯

𝑀ோ௜,௞
ଶ ൭𝑀௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ቁ − 𝑀௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁ൱ , 𝑖𝑓 𝐴௝ = 𝐴௜

−
𝑅௜ cos൫𝜑௜,௞൯

𝑀ோ௜,௞
ଶ ൭𝑀௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞

ቁ − 𝑀௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁ൱ ,                            𝑖𝑓 𝐴௝ ≠ 𝐴௜
⎭
⎪
⎬

⎪
⎫

. (B.67) 

 

Similar to the 𝛾௏௜,௞
 angle computation, the expressions of equation (B.63) are used to 

compute the angle 𝛾ெ௜,௞
 in the respective nullity occasions of 𝑀௬௜,௞

 and 𝑀௭௜,௞
, and when both 

are null  𝛾ெ௜,௞
 is considered null. 

 

Computation of 
𝝏

𝝏𝑨𝒋
൫𝒄ത𝒊,𝒌

𝟐൯ 

 

Since the equation for 𝑐௜̅,௞
ଶ is 
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 𝑐௜̅,௞
ଶ = 𝑅௜

ଶ sinଶ൫𝜑௜,௞൯, (B.68) 

 

its sensitivity can be expressed by 

 

 𝜕

𝜕𝐴௝
൫𝑐௜̅,௞

ଶ൯ = sinଶ൫𝜑௜,௞൯
𝜕

𝜕𝐴௝
൫𝑅௜

ଶ൯ + 𝑅௜
ଶ 𝜕

𝜕𝐴௝
൫sinଶ൫𝜑௜,௞൯൯. (B.69) 

 

and conditioning in the form 

 

𝜕

𝜕𝐴௝
൫𝑐௜̅,௞

ଶ൯ =

⎩
⎪
⎨

⎪
⎧sinଶ൫𝜑௜,௞൯

𝜕

𝜕𝐴௝
൫𝑅௜

ଶ൯ + 𝑅௜
ଶ 𝜕

𝜕𝐴௝
൫sinଶ൫𝜑௜,௞൯൯ ,              𝑖𝑓 𝐴௝ = 𝐴௜  

𝑅௜
ଶ 𝜕

𝜕𝐴௝
൫sinଶ൫𝜑௜,௞൯൯,                                                          𝑖𝑓 𝐴௝ ≠ 𝐴௜

⎭
⎪
⎬

⎪
⎫

. (B.70) 

 

While the derivative of 𝑅௜
ଶ is found directly, 

 

 𝜕

𝜕𝐴௝
൫𝑅௜

ଶ൯ =
𝜕

𝜕𝐴௝
ቆ

(𝐴௜ + 𝜋𝑡௜
ଶ)ଶ

4𝜋ଶ𝑡௜
ଶ ቇ =

𝐴௜

2𝜋ଶ𝑡௜
ଶ +

1

2𝜋
=

𝐴௜ + 𝜋𝑡௜
ଶ

2𝜋ଶ𝑡௜
ଶ , (B.71) 

 

the derivative of sinଶ൫𝜑௜,௞൯, by the chain rule, is given by 

 

 𝑝 = sin൫𝜑௜,௞൯          𝑎𝑛𝑑          𝑞 = 𝑝ଶ, 

𝜕

𝜕𝐴௝
ቀsinଶ൫𝜑௜,௞൯ቁ = 2sin൫𝜑௜,௞൯

𝜕

𝜕𝐴௝
ቀsin൫𝜑௜,௞൯ቁ. 

(B.72) 

 

Recalling that the derivative of sin൫𝜑௜,௞൯ has already been developed and presented in 

equation (B.57), then 

 

𝜕

𝜕𝐴௝

ቀsinଶ൫𝜑௜,௞൯ቁ = −
2sin൫𝜑௜,௞൯cos൫𝜑௜,௞൯

ቆ
𝑀௭௜,௞

𝑀௬௜,௞

ቇ

ଶ

+ 1

ቌ
1

𝑀௬௜,௞

𝜕

𝜕𝐴௝

ቀ𝑀௭௜,௞
ቁ −

𝑀௭௜,௞

𝑀௬௜,௞

ଶ

𝜕

𝜕𝐴௝

ቀ𝑀௬௜,௞
ቁቍ, (B.73) 
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𝜕

𝜕𝐴௝

൫𝑐௜̅,௞
ଶ൯ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝐴௜ + 𝜋𝑡௜

ଶ

2𝜋ଶ𝑡௜
ଶ sinଶ൫𝜑௜,௞൯ −

2𝑅௜
ଶsin൫𝜑௜,௞൯cos൫𝜑௜,௞൯

ቆ
𝑀௭௜,௞

𝑀௬௜,௞

ቇ

ଶ

+ 1

ቌ
1

𝑀௬௜,௞

𝜕

𝜕𝐴௝

൫𝑀௭௜,௞
൯ −

𝑀௭௜,௞

𝑀௬௜,௞

ଶ

𝜕

𝜕𝐴௝

ቀ𝑀௬௜,௞
ቁቍ ,    𝑖𝑓 𝐴௝ = 𝐴௜  

−
2𝑅௜

ଶsin൫𝜑௜,௞൯cos൫𝜑௜,௞൯

ቆ
𝑀௭௜,௞

𝑀௬௜,௞

ቇ

ଶ

+ 1

ቌ
1

𝑀௬௜,௞

𝜕

𝜕𝐴௝

൫𝑀௭௜,௞
൯ −

𝑀௭௜,௞

𝑀௬௜,௞

ଶ

𝜕

𝜕𝐴௝

ቀ𝑀௬௜,௞
ቁቍ ,                                          𝑖𝑓 𝐴௝ ≠ 𝐴௜

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

. (B.74) 

 

Observing another term highlighted in 𝑎∗ 

 

 
𝑎∗ = −

2𝑅௜
ଶsin൫𝜑௜,௞൯cos൫𝜑௜,௞൯

ቆ
𝑀௭௜,௞

𝑀௬௜,௞

ቇ

ଶ

+ 1

ቌ
1

𝑀௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞ቁ −

𝑀௭௜,௞

𝑀௬௜,௞

ଶ

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁቍ, (B.75) 

 

the same adversity observed in equation (B.59) is found. 

Manipulating 𝑎∗, the following simplification is defined 

 

 
𝑎∗ = −

2𝑅௜
ଶsin൫𝜑௜,௞൯cos൫𝜑௜,௞൯

𝑀௭௜,௞
ଶ ൭𝑀௬௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௭௜,௞ቁ − 𝑀௭௜,௞

𝜕

𝜕𝐴௝
ቀ𝑀௬௜,௞

ቁ൱. (B.76) 

 

By developing the same sub-cases A and B and the same manipulations and 

mathematical analyzes, the sensitivity of 𝑐௜̅,௞
ଶ can be computed by the following expressions 

 

 
𝜕

𝜕𝐴௝
൫𝑐௜̅,௞

ଶ൯ቤ
ெೃ೔,ೖ→଴

= ቐ

𝐴௜ + 𝜋𝑡௜
ଶ

2𝜋ଶ𝑡௜
ଶ sinଶ ቀ𝜃௜,௞ +

𝜋

2
ቁ , 𝑖𝑓 𝐴௝ = 𝐴௜

0,                                                      𝑖𝑓 𝐴௝ ≠ 𝐴௜

ቑ, (B.77) 

𝜕

𝜕𝐴௝

൫𝑐௜̅,௞
ଶ൯ =

⎩
⎪
⎨

⎪
⎧𝐴௜ + 𝜋𝑡௜

ଶ

2𝜋ଶ𝑡௜
ଶ sinଶ൫𝜑௜,௞൯ −

2𝑅௜
ଶ sin൫𝜑௜,௞൯ cos൫𝜑௜,௞൯

𝑀ோ௜,௞
ଶ ൭𝑀௬௜,௞

𝜕

𝜕𝐴௝

൫𝑀௭௜,௞
൯ − 𝑀௭௜,௞

𝜕

𝜕𝐴௝

ቀ𝑀௬௜,௞
ቁ൱ , 𝑖𝑓 𝐴௝ = 𝐴௜

−
2𝑅௜

ଶ sin൫𝜑௜,௞൯ cos൫𝜑௜,௞൯

𝑀ோ௜,௞
ଶ ൭𝑀௬௜,௞

𝜕

𝜕𝐴௝

൫𝑀௭௜,௞
൯ − 𝑀௭௜,௞

𝜕

𝜕𝐴௝

ቀ𝑀௬௜,௞
ቁ൱ ,                                                𝑖𝑓 𝐴௝ ≠ 𝐴௜

⎭
⎪
⎬

⎪
⎫

. (B.78) 

 

Computation of 
𝝏

𝝏𝑨𝒋
ቀ

𝟏

𝑨𝒊
ቁ, 

𝝏

𝝏𝑨𝒋
ቀ

𝟏

𝑨𝒊
𝟐ቁ, 

𝝏

𝝏𝑨𝒋
ቀ

𝟏

𝑰𝒊
ቁ, 

𝝏

𝝏𝑨𝒋
ቀ

𝟏

𝑰𝒊
𝟐ቁ, 

𝝏

𝝏𝑨𝒋
(𝑸𝒊) and 

𝝏

𝝏𝑨𝒋
൫𝑸𝒊

𝟐൯ 

 

Directly, recalling equations (4.11) for 𝐼௜, 𝑅௠௜
 and 𝑅௜, the sensitivities of the other terms 

viewed in equation (B.1) are presented. 
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 𝜕

𝜕𝐴௝
൬

1

𝐴௜
൰ = −

1

𝐴௜
ଶ, 

𝜕

𝜕𝐴௝
ቆ

1

𝐴௜
ଶቇ = −

2

𝐴௜
ଷ, 

𝜕

𝜕𝐴௝
൬

1

𝐼௜
൰ =

𝜕

𝜕𝐴௝
ቆ

8𝜋ଶ𝑡௜
ଶ

𝐴௜
ଷ ቇ = −

24𝜋ଶ𝑡௜
ଶ

𝐴௜
ସ , 

𝜕

𝜕𝐴௝
ቆ

1

𝐼௜
ଶቇ =

𝜕

𝜕𝐴௝
ቆ

64𝜋ସ𝑡௜
ସ

𝐴௜
଺ ቇ = −

384𝜋ସ𝑡௜
ସ

𝐴௜
଻ , 

𝜕

𝜕𝐴௝

(𝑄௜) =
𝜕

𝜕𝐴௝
൬

2𝑡௜

3𝜋
𝐴௜൰ =

2𝑡௜

3𝜋
, 

𝜕

𝜕𝐴௝
൫𝑄௜

ଶ൯ =
𝜕

𝜕𝐴௝
ቆ

4𝑡௜
ଶ

9𝜋ଶ
𝐴௜

ଶቇ =
8𝑡௜

ଶ

9𝜋ଶ
𝐴௜ , 

(B.79) 

  

valid only for when 𝐴௝ = 𝐴௜. Otherwise, such sensitivities are null. 
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