

Título
Nome do Autor

This work aims to optimize a 6- RUS parallel robot
to determine the optimal active joints locations
(position and orientation) for a flight simulation
task using a PSO (Particle Swarm Optimization)
algorithm to escape from local minima and an

Interior Point algorithm to accelerate the search for
the optimum in the region indicated by PSO i.e.

Interior Point algorithm work to find bottom of the
valley indicated by PSO.

Advisor: Aníbal Alexandre Campos Bonilla

Joinville, 2015

MASTER DISSERTATION
ORIENTATION WORKSPACE OPTIMIZATION FOR A 6-RUS PARALLEL ROBOT

ANO 2015

CLODOALDO SCHUTEL FURTADO NETO |ORIENTATION WORKPACE

OPTIMIZATION FOR A 6-RUS PARALLEL ROBOT

SANTA CATARINA STATE UNIVERSITY – UDESC TECHNOLOGICAL SCIENCES CENTER – CCT POST GRADUATION PROGRAM IN MECHANICAL ENGINEERING– PPGEM

CLODOALDO SCHUTEL FURTADO NETO

 JOINVILLE, 2015

Clodoaldo Schutel Furtado Neto

Orientation Workspace Optimization For a 6-RUS

Parallel Robot

Dissertation submitted to Santa
Catarina State University as part of the
requirements for obtaining the degree
of Master in Mechanical Engineering.

ADVISOR: Dr. Aníbal Alexandre
Campos Bonilla

Joinville, SC

2015

 F992o Furtado Neto, Clodoaldo Schutel

 Orientation workspace optimization for a 6-RUS parallel robot / Clodoaldo

 Schutel Furtado Neto. – 2015.

 256 p. : il. ; 21 cm

 Advisor: Aníbal Alexandre Campos Bonilla

 Bibliography: p. 123- 127

 Dissertation (master) – Santa Catarina State University, Technological

 Sciences Center, Post Graduation Program in Mechanical Engineering,

 Joinville, 2015.

 1. Parallel Robot 2. Flight Simulator 3. 6-RUS 4. Singularity 5. Optimization

 I. Bonilla, Aníbal Alexandre Campos . II. Santa Catarina State University, Post

 Graduation Program in Mechanical Engineering. III. Title.

 CDD 620.1 – 23. ed.

For my mother Elga.

ACKNOWLEDGEMENTS

I would like to thank the Mechanical Engineering Department of

UDESC for accepting me to carry out this master. In a special way express my

gratitude.

To Dr. Aníbal Alexandre Campos Bonilla, for guiding me with enthu-

siasm in this work. I have great affection and appreciation for you, admire as a

person and also for your professionalism.

My colleagues and friends Guilherme Espindola, Guilherme Faveri

and Rodrigo Trentini, who help me in some stages of this work.

To my mother who taught me my values, had the enormous task of

educate my brother and I alone and always sought the best for us.

My brother who was always by my side and made everything in my

life more easier.

My dear friend Ana Maria Franco who encouraged me to enter this

master, helped me when I faced obstacles and especially for your friendship

and affection.

To my dear friend Thiago Kavilhuka who is gone and left many

longing. In memoriam Thiago Kavilhuka.

To God who gave me health and strength of will to not discourage

along the way.

“Hear, I forget. I saw, I remembered. I did, I learned“.

Confucius

ABSTRACT

FURTADO, C. Orientation Workspace Optimization For a 6-RUS Paral-

lel Robot. 2015. 256 p. Dissertation (Master in Mechanical Engineering –

Area: Design, Analysis and Optimization of Mechanical Systems) – Santa

Catarina State University, Post Graduation Program in Mechanical Engineer-

ing, Joinville (Brazil), 2015.

The Santa Catarina State University built a flight simulator based on 6-DoF

axisymmetric parallel robot which incorporates virtual reality immersion

environment. This flight simulator presents 6-RUS kinematic chain which is

the second most common architecture for this application. Hunt proposed this

chain architecture early in 1983. Parallel robots are closed-loop mechanisms

that present good performance in terms of accuracy, rigidity and ability to

manipulate large loads. This work aims to optimize a 6- RUS parallel robot to

determine the optimal active joints locations (position and orientation) for a

flight simulation task using a PSO (Particle Swarm Optimization) algorithm

to escape from local minima and an Interior Point algorithm to accelerate

the search for the optimum in the region indicated by PSO i.e. Interior Point

algorithm work to find bottom of the valley indicated by PSO.

Keywords: Parallel Robot, Flight Simulator, 6-RUS, Singularity, Optimiza-

tion.

RESUMO

FURTADO, C. Otimização da Orientação no Espaço de Trabalho de um

Robo Paralelo 6-RUS. 2015. 256 f. Dissertação (Mestrado em Engenharia

Mecânica – Área: Projeto, Análise e Otimização de Sistemas Mecânicos) –

Universidade do Estado de Santa Catarina, Programa de Pós-Graduação em

Engenharia Mecânica, Joinville, 2015.

A Universidade do Estado de Santa Catarina construiu um simulador de vôo

de baseado robô paralelo axissimétrico com 6 DoF (graus de liberdade) que

incorpora ambiente de realidade virtual de imersão. Este simulador de vôo

apresenta cadeia cinemática 6-RUS que é a segunda arquitetura mais comum

para esta aplicação. Robôs paralelos são mecanismos de cadeia fechada que

apresentam bom desempenho em termos de precisão, rigidez e capacidade

para manipular grandes cargas. Este trabalho tem como objetivo otimizar um

robô paralelo 6- RUS para determinar os melhores localizações das juntas

ativas (posição e orientação) para uma tarefa de simulação de vôo usando

um algoritmo PSO (Particle Swarm Optimization) para escapar de mínimos

locais e um algoritmo de Ponto Interior para acelerar a procurar pelo ótimo na

região indicada por PSO ou seja o algoritmo de Ponto Interior trabalha para

encontrar fundo do vale indicado pelo PSO.

Palavras-chave: Robô paralelo. Simulador de Voo. 6-RUS. Singularidade.

Otimização.

LIST OF FIGURES

Figure 1 – ABB IRB 4400 serial robot. 30

Figure 2 – ABB IRB 340 FlexPicker parallel robot. 31

Figure 3 – 6-Rus parallel robot. 34

Figure 4 – IWF-robot. 35

Figure 5 – CEART-robot. 36

Figure 6 – Screw movement or twist. 37

Figure 7 – Twist components for a general screw kinematic pair. . . 38

Figure 8 – Wrench components. 43

Figure 9 – Parallel robot geometrical parameters. 45

Figure 10 – Vectorial chain to i-limb. 48

Figure 11 – Plane ωi frontal view and required angles. 49

Figure 12 – Plane ωi frontal view, geometrical details. 49

Figure 13 – Plane ωi frontal view. 52

Figure 14 – Position of points B, and C. 58

Figure 15 – (a) The wrenches acting upon the end-effector. (b) and (c)

Two direct singularities. 63

Figure 16 – Grassmann varieties of dimension 1,2,3,4,5,6. 66

Figure 17 – Distance between two segments. 79

Figure 18 – a) Grassmann variety V5a on the Hexa; b) Power based

index; c) Grassman variety V5b; d) Grassman V5b based

index. 82

Figure 19 – Flowchart for particle swarm optimization algorithm. . . 88

Figure 20 – Internal Point Algorithm. 91

Figure 21 – 6-Rus Kinematic Chain. 98

Figure 22 – Base layout, where design parameters are χa1 ,χa2, β1, β2,

β3, β4, β5 and β6. 99

Figure 23 – Active joint local system. 100

Figure 24 – Active Joint Angular Position θ. 100

Figure 25 – Platform angular layout, where the design parameters are

χj1 ,χj2, rp end e. 101

Figure 26 – IWF-robot active joint location. 102

Figure 27 – Pitch-Roll-Yaw of an Air Plane 104

Figure 28 – Axis Orientation Rotation with α from 0o to 360o 105

Figure 29 – IWF-robot Polar Graphic. 106

Figure 30 – CEART-robot Polar Graphic. 107

Figure 31 – IWF-robot direct singularity index, see red arrow. 107

Figure 32 – IWF-robot inverse singularity constraint. 108

Figure 33 – CEART-robot direct singularity index. 109

Figure 34 – CEART-robot inverse singularity constraint, see red arrow. 109

Figure 35 – Flowchart of MATLAB program optimization program. . 110

Figure 36 – Optimized 6-RUS Polar Graphic. 113

Figure 37 – Direct singularity index for Y rotation, see red arrow. . . 114

Figure 38 – Passive links minimum distance. 115

Figure 39 – Cranks minimum distance, see red arrow. 115

Figure 40 – Inverse singularity constraint for Y rotation, see red arrow. 116

Figure 41 – Crank 1 movement for Y rotation, see red arrow. 116

Figure 42 – Crank 6 movement for Y rotation, see red arrow. 117

Figure 43 – IWF-robot layout in ADAMS. 118

Figure 44 – IWF-robot torque application in initial position. 118

Figure 45 – IWF-robot torque application near direct singularity. . . . 119

Figure 46 – CEART-robot layout in ADAMS. 119

Figure 47 – CEART-robot rotation in Y axis, inverse singularity near

25◦. 120

Figure 48 – Optimized 6-RUS layout in ADAMS. 121

Figure 49 – Optimized 6-RUS robot torque application near direct sin-

gularity. 121

Figure 50 – Optimized 6-RUS movement for Y rotation. 121

LIST OF TABLES

Table 1 – 6-RUS Robot geometrical parameters. 44

Table 2 – PSO coefficients values. 89

Table 3 – IWF-robot angles parameters. 101

Table 4 – IWF-robot Geometrical Parameters. 102

Table 5 – CEART-robot angles parameters. 103

Table 6 – CEART-robot Geometrical Parameters. 103

Table 7 – Active joints orientation angle for 6-RUS optimized robot. 113

Table 8 – 6-RUS optimized parameters. 114

LIST OF ABBREVIATIONS AND ACRONYMS

HDBjoint Half of Distance Between a Pair of Joints

HDBact Half of Distance Between a pair of ACTuator

APact Angles for position a Pair of ACTuator

APjoint Angles for position a Pair of JOINTs

Aact Angles for ACTuator’s orientation

MDBL Minimal Distance Between any pair of Limbs

MDBC Minimal Distance Between any pair of Cranks

LIST OF SYMBOLS

rb Radius of the Base

rp Radius of the End-Effector

ri Length of the Crank

Ri Length of the Passive Link

e Half of Distance Between a Pair of Joints

d Half of Distance Between a Pair of Actuators

χa Angles for Position of Actuators

χj Angles for Position of a Pair of Joints

β Angles for Actuator’s Orientation

θ Active Joint Angular Position

CONTENTS

1 INTRODUCTION . 29

2 PARALLEL ROBOTS 33

2.1 Robot Architectures 34

2.2 Screw Theory Representation 36

2.2.1 Wrench: action screw 40

2.2.2 Reciprocity and rate of work 42

2.3 Inverse Kinematic Problem 44

3 ROBOT SINGULARITIES 57

3.1 Direct Singularity . 62

3.1.1 Singularity detection method 63

3.1.2 Grassmann Geometry 64

3.2 Singularity Closeness Measures 67

3.2.1 Linear Algebra Based Measures 68

3.2.2 Screw Theory Based Measures 69

4 SINGULARITY POWER INSPIRED MEASURE . . . 71

4.1 Minimization Problem 71

4.1.1 Twist Normalization: Invariant Norm 73

4.1.2 Objective function: power inspired measure 74

4.1.3 Constraints . 78

4.1.3.1 Inverse Singularity . 78

4.1.3.2 Cranks and limbs Collision 79

4.2 Corresponding eigenvalue problem 80

5 OPTIMIZATION . 85

5.1 Particle Swarm Optimization 85

5.1.1 Particle Swarm Optimization with constriction factor 86

5.1.2 Configuration for Particle Swarm Optimization 88

5.2 FMINCON . 89

5.2.1 Interior Point Algorithm 90

5.2.2 Sensitivity Analysis 92

5.3 Hybrid Optimization 94

6 ORIENTATION WORKSPACE OPTIMIZATION FOR

A 6-RUS PARALLEL ROBOT 97

6.1 Kinematical Performance Index for Two 6 - RUS

Parallel Robots . 97

6.2 Geometrical Parameters of the IWF-robot and CEART-

robot . 101

6.3 IWF-robot and CEART-robot Performance for Flight

simulator Task . 103

6.3.1 Proposed task . 103

6.3.2 IWF-robot and CEART-robot PERFORMANCE . . . 105

6.4 6-RUS Robot Optimization for Flight Simulator Task108

6.5 Optimization Result and Kinematic Analysis . . . 112

6.5.1 Software Tool: Matlab 112

6.5.2 Software Tool: ADAMS 116

6.5.2.1 CAE Analyze: IWF-robot 117

6.5.2.2 CAE Analyze: CEART-robot 119

6.5.2.3 CAE Analyze: Optimized 6-RUS Robot 120

7 CONCLUSIONS . 123

REFERENCE . 125

8 APPENDIX A: MATLAB ALGORITHM 131

8.1 Main Program . 131

8.2 Program 1 . 135

8.3 Kinematic and Screw Based Program 136

8.4 Program 2 . 154

8.5 Function Objective Gradient 155

8.6 Constraints Program 159

8.7 Constraints Finite Differences Program 162

8.8 Constraints Gradient Program 167

9 APPENDIX B: ADAMS SCRIPT 169

9.1 ADAMS Parametric Model Script 169

9.2 Positions Points File 261

29

1 INTRODUCTION

This work aims to determine the optimal value for some geometrical

parameters like active joints locations (position and orientation) for a 6-RUS

parallel robot in order to maximize the orientation workspace i.e. end-effector,

orientation.

Comparing parallel and serial robot configurations, it is observed that

parallel robots are advantageous in terms of accuracy, stiffness and ability to

manipulate large loads. Therefore, parallel robots are more suitable for tasks

that require such properties. However the small workspace, compared to serial

robots, is a drawback that researchers try to minimize, optimizing the parallel

robot parameters (MERLET, 2012).

In machining applications, a parallel robot requires the capability

to withstand large tool forces, which means that the robot structure must

transmit forces with high accuracy and high stiffness. Different applications

demand new requirement combinations which may be carry on optimizing

the robot structure, for a given task. To keep a low cost level, it is infeasible

to design customized robots for each application, therefore modularization

is needed. Modularization and optimization strategies for robots based on

parallel kinematics differ from the corresponding strategies used for robots

based on serial kinematics. Therefore, optimization and modularization of

parallel robots are interesting research tasks (BROGARDH, 2002).

As the performance of parallel robots is sensitive to their dimensions

and geometry, a given design may be optimized varying these parameters.

Among all kinematic measures, the workspace is one of the most important in-

30 Chapter 1. Introduction

Figure 1 – ABB IRB 4400 serial robot.

Source: (SICILIANO et al., 2010)

dices in the design of a parallel robot, (MERLET, 2012; KELAIAIA; ZAATRI

et al., 2012; MERLET, 2006).

Stiffness optimization for a spatial 5-DOF parallel robot was de-

veloped using a genetic algorithm to escape from local minima (ZHANG,

2010). Barbosa, Pires and Lopes optimize the kinematic design a 6-dof par-

allel robot for maximum dexterity using a Genetic algorithm (BARBOSA;

PIRES; LOPES, 2005). Stan, Maties and Balan applied a Genetic algorithm

to multiple criteria optimization problems for 2-DOF micro parallel robot

(STAN; MATIES; BALAN, 2007).

The parallel robot studied in this work is a flight simulator built

31

Figure 2 – ABB IRB 340 FlexPicker parallel robot.

Source: (SICILIANO et al., 2010)

at UDESC - Ceart (Centro de Artes) in Florianópolis, from now on named

CEART-robot. This robot presents the second most common architecture for

parallel robots used in flight simulators: the 6 - RUS. This work intends to

establish a method for optimizing some robot geometrical parameters aiming

at maximizing the orientation workspace i.e. the maximum plane orientation

or twist in the fight simulator case. Aiming at optimizing this system a work-

based index is used. This index measures the robot closeness to singularities,

i.e. robot configurations where its degrees of freedom are modified. It is

evaluated for different flight simulation configuration i.e. active joint location

on the base, in order to optimized the maximum orientation into the workspace

32 Chapter 1. Introduction

(FURTADO; CAMPOS; REIS, 2014).

Proposed workspace (objective function) optimization is based on

a kinematical index which is function of active joint location (optimization

parameters). The methods used for this optimization are a Particle Swarm

Optimization (PSO) algorithm and Interior Point algorithm, which is called

by MATLAB optimization function FMINCON. Initially , the PSO algorithm

optimizes, based on its metaheuristic behaviour, the problem to escape from

local minima and provides a set of optimized parameters. The Interior Point

algorithm, receives these optimized parameters and is employed to accelerate

the search for bottom of the valley indicated by the PSO as the best particles

locations.

Therefore this work provides a method for maximizing the workspace

of 6 - RUS parallel robot by optimizing the robot active joints location, evaluat-

ing the singularity proximity and employing a hybrid approach , i.e. combining

metaheuristic (PSO) and a derivative based algorithm (Interior Point).

The first step to develop this work is to determine the inverse kinemat-

ics equations, i.e. the relation between end-effector location and active joint

rotation. Differential kinematics, i.e. the relation between end-effector velocity

and active joint speed, and a singularity closeness index, used as constraint, are

determined applying the screw theory. Using MATLAB, this work develops

algorithms to perform the optimization and analyse the data. Optimized CAE

(Computed Aided Engineering) model (using MSC-ADAMS) is developed to

analyse the robot performance an evaluate the results. MATLAB and ADAMS

are used to analyze the optimizated 6-RUS robot configuration.

33

2 PARALLEL ROBOTS

Parallel robots, also named parallel manipulators, typically consist of

a platform connected to a fixed base by several limbs (MERLET, 2001) (see

Figures 3, 4 and 5).

A n-DOF (n-degree-of-freedom) fully-parallel mechanism is com-

posed of n independent limbs connecting the end-effector to the fixed base.

Each of these limbs is a serial kinematic chain that hosts one or more active

joints which actuates, directly or indirectly, the end-effector (BONEV, 2003).

Due to distribution of external load, parallel robots present good performances

in terms of accuracy, rigidity and ability to manipulate large loads (MERLET,

2001).

The 6-DOF parallel robot most studied architecture is the 6-UPS.

This architecture is known as Stewart-Gough platform (FICHTER, 1986).

The Stewart-Gough platform presents a stiff architecture be cause the load

distribution is only axial and allows the use of powerful hydraulic actuators.

Motion simulators, generally, manipulate excessive loads of up to tens of tons

(BONEV, 2003).

The second most common architecture is the 6-RUS kinematic chain,

this chain architecture was proposed by Hunt early in 1983 (MERLET, 2001).

In this architecture the actuated joint is rotational, which leads to the inter-

change possibility of universal and spherical joint without any change in

mechanism characteristics (BONEV, 2003). This work focus in a method to

optimize the workspace the robot 6-RUS using an index of singularity close-

ness base on screw theory, (BALL, 1900; HUNT, 1983; CAMPOS, 2001).

34 Chapter 2. Parallel Robots

2.1 Robot Architectures

As early as 1983 Hunt suggested a robotic architecture using this

type of chain (HUNT, 1983) (see Figure 3). This parallel robot is composed

of two platforms, one of them fixed to the ground,(base). On the base there are

six rotating actuators R located on the edges of the triangle. These actuators

are the input elements on which the active joints are located. Each actuator is

linked to the end-effector through a rod. In each rod, one tip is linked to the

crank of an actuator through an universal joint U and the other tip is connected

to the end-effector by means of a spherical jointS, as depicted in Figure 3. A

couple of rods converge on each spherical joint of the end-effector (ZABALZA

et al., 2003).

Figure 3 – 6-Rus parallel robot.

Source: (MERLET, 2000).

The HEXA parallel robot, first presented in (PIERROT, 1990) is a

2.1. Robot Architectures 35

six degree of freedom DOF manipulator composed of six equally designed

kinematic chains, which connect a base-platform to the end-effector platform.

Each chain can be described as a serial RUS chain, where R stands for revolute

joint, U for universal or cardan joint and S for spherical joint respectively (see

Figure 21).

The revolute joints of the HEXA’s structure are the active joints,

which means that they are driven by an actuator while spherical joints in the

structure remain passive. A prototype of the HEXA parallel robot has been

designed and built at the Institute of Machine Tools and Production Technology

(IWF) in Braunschweig, Germany, from now on named IWF-robot (see Figure

4), (LAST et al., 2005).

Figure 4 – IWF-robot.

Source: (LAST et al., 2005).

The flight simulator built at UDESC - Ceart (Centro de Artes) in

Florianópolis also has a 6-RUS parallel robots configuration (see Figure 5).

36 Chapter 2. Parallel Robots

Both configurations belong to the same family, so they have the same kinematic

structure (FURTADO; CAMPOS; REIS, 2014).

Figure 5 – CEART-robot.

Source: Own Author.

2.2 Screw Theory Representation

The Mozzi theorem, states that the velocities of the points of a rigid

body with respect to an inertial reference frame O(X,Y, Z) may be repre-

sented by a differential rotation ~ω about a certain fixed axis and a simultaneous

differential translation ~τ along the same axis. The complete movement of the

rigid body, combining rotation and translation, is called screw movement or

twist $. Figure 6 shows the body "twisting" around an axis instantaneously

fixed with respect of the inertial reference frame. This axis is called the screw

axis and the rate of the translational velocity and the angular velocity is called

the pitch of the screw h = ‖~τ‖/‖~ω‖.

The twist represents the differential movement of the body with

respect to the inertial frame and may be expressed by a pair of vectors, i.e.

$ = [~ω ~Vp]T . The vector ~ω = [L M N]T represents the angular velocity of

2.2. Screw Theory Representation 37

Figure 6 – Screw movement or twist.

Source: (CAMPOS et al., 2011).

the body with respect to the inertial frame. The vector ~Vp = [P∗ Q∗ R∗]T

represents the linear velocity of a point P attached to the body which is

instantaneously coincident with origin O of the reference frame. If there are

no points of the body coinciding with the frame origin O, as in Figure 6,

a ficticious extension may be added to the body such that a point in this

extension, named point P , coincides with the origin O (see Figure 7). The

vector ~Vp consists of two components: a) a velocity component parallel to the

screw axis represented by ~τ = h ~ω; and b) a velocity component normal to

the screw axis represented by ~So × ~ω, where ~So is the position vector of any

point at the screw axis.

A twist may be decomposed into its amplitude and its corresponding

normalized screw. The twist amplitude Ψ is either the magnitude of the angular

velocity of the body, ‖~ω‖, if the kinematic pair is rotative or helical, or the

magnitude of the linear velocity, ‖ ~Vp‖, if the kinematic pair is prismatic.

38 Chapter 2. Parallel Robots

Figure 7 – Twist components for a general screw kinematic pair.

Source: (CAMPOS et al., 2011).

Consider a twist given by $ = [~ω ~Vp]T = [L M N P∗ Q∗ R∗]T then

the correspondent normalized screw is $̂ = [L M N P ∗ Q∗ R∗]T . This

normalized screw is a twist in which the magnitude Ψ is factored out, i.e.

$ = $̂ Ψ (2.1)

The normalized screw coordinates (HUNT, 2003) may be defined as

a pair of vectors, named. [L M N]T , dimensionless~l and [P ∗ Q∗ R∗], units

2.2. Screw Theory Representation 39

of length ~L, given by,

$̂ =



L

M

N

P ∗

Q∗

R∗


=

 ~S

~So × ~S + h~S

 (2.2)

where ~S is the normalized vector parallel to the screw axis. Notice that the

vector ~(So × S) determines the moment of the screw axis around the origin of

the reference frame.

The movement between two adjacent links, belonging to a n-link

kinematic chain, may be also represented by a twist. In this case, the twist

represents the movement of link i with respect to link (i− 1).

In robotics, generally. the differential kinematics between at pair of

bodies is determined by either a rotative or a prismatic kinematic pair. For a

rotative pair the pitch of the twist is null (h = 0). In this case the normalized

screw or a rotative pair is expressed by

$̂ =

 ~S

~So × ~S

 (2.3)

For a prismatic pair the pitch of the twist is infinite (h =∞) and the

40 Chapter 2. Parallel Robots

normalized screw reduces to

$̂ =

 0

~S

 (2.4)

2.2.1 Wrench: action screw

This section presents how an action (forces and moments) upon a

body may be represented by a screw and a magnitude.

The screw is a geometric element composed by a directed line (axis)

and by a scalar parameter h (length dimension) called pitch. If the directed

line is represented by a normalized vector, the screw is called a normalized

screw $̂.

The general action, i.e. a force and a couple, upon a rigid body in

relation to a coordinate system is named a wrench $, (HUNT, 2003). Any

forces and moments system acting upon a rigid body (statics) may be reduced

to a resultant force ~f and a resultant couple ~Co, in relation to at choice system

origin O, i.e. a wrench. In general. the resultant force vector and the resultant

binary are not collinear. However. the system of forces and moments always

can be reduced to a resultant force ~f acting in the axis direction and a couple

~C‖, acting around the same axis (POINSOT, 1806).

A wrench may be represented by a scalar Ψr, representing the action

magnitude. and by a normalized screw $̂r, defined by the normalized vector in

2.2. Screw Theory Representation 41

the axis direction and by the pitch hr, defined by

hr =
‖~C‖‖
‖~f‖

(2.5)

For example, consider a static nut supporting a couple around its axis,

corresponding screw axis, and additionally supporting the force, induced by

the binary, in the axis direction. The action upon the nut may be declined by

the scalar correspondent to the force magnitude (Ψr) and by the normalized

screw composed by the normalized vector, in the screw axis direction, and by

the pitch hr, given by the rate between the binary and the force acting upon

the nut.

The action upon a rigid body in relation to a coordinate system may

be represented by a wrench composed by two vectors, i.e. $ = [~f ~Co]T , or

in screw coordinate [Lr Mr Nr P∗r Q∗r R∗r]T , (HUNT, 2003). The vector

~f = [fx fy fz]T = [Lr Mr Nr]T represents the resultant force upon the

body. The vector ~Co = [Cox Coy Coz]T = [P∗r Q∗r R∗r]T represents the

resultant moment upon the body in relation to the coordinate system origin

O. The vector ~Co is formed by two moment components: a) the moment

component parallel to the screw axis represented by ~C‖ = hr ~f ; and b) the

moment component normal to the screw axis represented by ~Ch = ~So × ~f

where ~So, is the position vector of some point in on the screw axis, (see Figure

8). A wrench may be represented by its magnitude Ψr and by a normalized

screw $̂r through

$r = $̂r Ψr (2.6)

42 Chapter 2. Parallel Robots

The wrench magnitude Ψ, is the force magnitude ‖~f‖, acting upon

the body, if the action is a pure force, or it is the moment magnitude ‖~Co‖,

if the action is a pure moment. If the action is a force and moment combina-

tion the wrench magnitude is ‖~f‖. Considering a wrench $r = [~f ~Co]T =

[Lr Mr Nr P∗r Q∗r R∗r]T , its corresponding normalized screw $̂r is defined

by two vectors, [Lr Mr Nr]T . dimensionless ~l, and [P ∗r Q∗r R∗r]T , units of

length ~L, so:

$̂r =



Lr/Ψr

Mr/Ψr

Nr/Ψr

P∗r /Ψr

Q∗r/Ψr

R∗r/Ψr


=



Lr

Mr

Nr

P ∗r

Q∗r

R∗r


=

 ~Sr

~SOr × ~Sr + hr ~Sr

 (2.7)

where ~Sr is the normalized vector parallel to the screw axis. It is

important to notice that the vector ~SOr × ~Sr the screw axis moment around

the reference system origin.

2.2.2 Reciprocity and rate of work

If a non-null wrench (Ψr 6= 0) acts upon a rigid body in such way

that it does not produce work while the body moves around a instantaneous

twist (Ψ 6= 0), both screws (twist and wrench) are called reciprocal screws

(BALL, 1900; HUNT, 2003).

Let a rigid body support a wrench $r = [~f ~Co] = Ψr $̂r while it is

2.2. Screw Theory Representation 43

Figure 8 – Wrench components.

Source: (CAMPOS et al., 2011).

moving around a instantaneous twist $ = [~ω ~Vp] = Ψ $̂. Then, the rate of

work or instantaneous power carried out is:

δW = ~C · ~ωn + ~f · ~Vp (2.8)

For convenience, the transpose of a normalized screw is defined in

Plucker axis coordinates (TSAI, 1999), by $̂T = [P ∗ Q∗ R∗ L M N] and

$̂Tr = [P ∗r Q∗r R∗r Lr Mr Nr].

So, the rate of work is:

δW = $Tr $ = $T $r (2.9)

Additionally, the Equation 2.9 may be given by

δW = ($̂Tr Ψ)$r

δW = ($̂Tr $r)Ψ⇒ δW

Ψ
= $̂Tr $r

(2.10)

44 Chapter 2. Parallel Robots

Table 1 – 6-RUS Robot geometrical parameters.

Symbol Geometric Parameter
rb Radius of the Base
rp Radius of the End-Effector
ri Length of the Crank
Ri Length of the Passive Link
e Half of Distance Between a Pair of Joints (End-effector)
d Half of Distance Between a Pair of Actuators (Base)
χa Angles for Position of Actuators (Base)
χj Angles for Position of a Pair of Joints (End-effector)
β Angles for Actuator’s Orientation (Base)

Source: Own author.

so, the reciprocity condition may be expressed as

δW

Ψ
= 0 (2.11)

due a non trivial case Ψ 6= 0, the reciprocity condition result in

$̂T $r = 0 (2.12)

2.3 Inverse Kinematic Problem

This section presents a method to solve the Inverse Kinematic Prob-

lem for a 6-RUS parallel robot using some non-physical parameters defined

based on the vectorial equation of the chains.

For the inverse kinematic problem, the vector describing the end-

effector position in cartesian coordinates system and orientation by roll, pitch

and yaw angles, respectively is given by ~P = [Px Py Pz ϕ ϑ ψ].

In this method, few geometrical parameters are necessary to develop

the inverse kinematic problem solution for a 6-RUS parallel robot. All can be

2.3. Inverse Kinematic Problem 45

obtained from a prototype or a CAD model.

The required parameters are the fixed base radius (rb), the end-

effector radius (rp), the crank dimension (ri) which is located in an active

joint, the passive link dimension (Ri), the half-distance between joints in the

end-effector (e), the half-distance between an active joint pair (d), the position

angle of the actuators pair (χa), the position angle of the passive spherical

joint in end-effector (χj) and the angle between the crank rotational plane and

an axis parallel to y (β). These parameters are detailed in Figure 9.

Figure 9 – Parallel robot geometrical parameters.

Source: Own author.

Initially it is needed to define the position of the actuators, which can

be obtained by Equation 2.13, which must be solved for all limbs, resulting in

a 6x3 vector:

~A = ~R+ ~m (2.13)

m = (−1)i−1d (2.14)

46 Chapter 2. Parallel Robots

Being i = 1, 2, 3, .., 6 corresponding to each kinematic chain.

~R = rb cosχaî+ rb sinχaĵ (2.15)

~m = −m sinχaî+m cosχaĵ + 0k̂ (2.16)

~A = (rb cosχa −m sinχa) î+ (rb sinχa +m cosχa) ĵ + 0k̂ (2.17)

Similarly, all the platform joint positions, i.e. the spherical joints

attached to the end-effector must be found in the local coordinate system

attached to the base:

~C = ~r + ~n (2.18)

n = (−1)i−1e (2.19)

~r = rp cosχj î+ rp sinχj ĵ + 0k̂ (2.20)

~n = −n sinχj î+ n cosχj ĵ + 0k̂ (2.21)

e ~PC = rp cosχj −m sinχj î+ rp sinχj +m cosχj ĵ + 0k̂ (2.22)

2.3. Inverse Kinematic Problem 47

The rotational transformation using roll, pitch and yaw angles nota-

tion in (SCIAVICCO; SICILIANO, 1996) is used in order to find e ~PC from

Tool Center Point, attached to end-effector origin eO to spherical joint in

general coordinate system attached to fixed base origin bO.

rot =


cϕcθ cϕsϑsψ − sϕcψ cϕsϑcψ + sϕcψ

sϕcθ sϕsϑsψ + sϕcψ sϕsϑcψ − cϕsψ

−sϑ cϑsψ cϑcψ

 (2.23)

f ~PC = rot m ~PC (2.24)

In order to find the vector from active joint to spherical joint of a limb

b~I , the vectorial Equation (2.25) must be solved.

b ~OA = b ~OP + b ~PC + b ~PC − b~I (2.25)

b~I = f ~OA− f ~OP − f ~PC (2.26)

The vector b~I may be decomposed into two components, ~Iω in the

plane ωi, and another one orthogonal to ωi. ~Iω in ωi may be further decom-

posed into two components, ~Iz and ~T , one parallel to the z axis and contained

in plane ωi and another one parallel to the xy plane, respectively.

~Iω = ~Iz + ~T (2.27)

48 Chapter 2. Parallel Robots

Figure 10 – Vectorial chain to i-limb.

Source: Own author.

The norm of vector ~T may be written in the components of b~I terms,

where Ix and Iy are b~I components in x and y axis, respectively.

T =
∥∥∥~T∥∥∥ = Ix cosβ + Iy sinβ (2.28)

With these definitions, it is possible to analyse the crank rotational

plane ωi and define the angles θ, α, φ and ε , which must be found to solve

the inverse kinematic problem, being θ the crank angle.

An analysis of Figure 11 leads to:

π = ε+ φ+ α+ θ (2.29)

Using the inner product definition and callingM , horizontal compo-

nent of ~ri in plane ωi. Where −~T

‖~T‖ = −T̂ .

2.3. Inverse Kinematic Problem 49

Figure 11 – Plane ωi frontal view and required angles.

Source: Own author.

Figure 12 – Plane ωi frontal view, geometrical details.

Source: Own author.

~r · −~T = ‖~r‖
∥∥∥~T∥∥∥ cos θ (2.30)

−T̂ = r̂ (2.31)

~T · r̂ = M (2.32)

50 Chapter 2. Parallel Robots

M = ‖~r‖ cos θ (2.33)

Multiplying by 2T both sides.

2TM = 2T ‖~r‖ cos θ (2.34)

A non-physical parameter u is defined which allows to re-write Equa-

tion 2.34 as:

u = 2Tri (2.35)

u =
2TM

cos θ
(2.36)

Using same method, another non-physical parameter v is defined,

however the equation is multiplied by 2Iz . Where N is the vertical component

of ~ri and the formulation is similar to M .

v = −2Iz ‖~r‖ (2.37)

~r · Iz = ‖~r‖
∥∥∥~Iz∥∥∥ cosα (2.38)

N = ‖~r‖ cosα (2.39)

2IzN = 2Iz ‖~r‖ cosα (2.40)

2.3. Inverse Kinematic Problem 51

v =
2IzN

cosα
(2.41)

In these terms is it possible to define the relation between u
v and

determine the angle φ.

φ = arctan
T

Iz
(2.42)

u

v
=

2TM cosα

2IzN cos θ
(2.43)

M

N
=

cos θ

cosα
(2.44)

u

v
= − T

Iz
(2.45)

φ = − arctan
u

v
(2.46)

It is not necessary to use this method to find φ once Iz and T are

known. However, since the parameters u and v will be used in afterwards, it is

convenient to show the formulation.

An analogous method is applied in order to find other relations to

solve the inverse kinematic problem. Calling s the projection of Iω over ~ri and

multiplying by 2 ri for convenience.

s =
∥∥∥ ~Iω∥∥∥ cos (φ+ α) (2.47)

52 Chapter 2. Parallel Robots

Figure 13 – Plane ωi frontal view.

Source: Own author.

2ris = 2ri

∥∥∥ ~Iω∥∥∥ cos (φ+ α) (2.48)

Using the closed-loop equation leads to:

∥∥∥~R∥∥∥2 =
∥∥∥~I∥∥∥2 + ‖~r‖2 −

∥∥∥~I∥∥∥ ‖~r‖ cos δ (2.49)

Being δ the real angle crank and vector ~I . Analyzing Equation 2.49

in crank rotational plane, it is possible to affirm that δ = α+ φ, and then the

non-physical parameter, w is defined.

w = −2 ‖~r‖
∥∥∥ ~Iω∥∥∥ cos δ (2.50)

2.3. Inverse Kinematic Problem 53

w = R2
i −

∥∥∥~I∥∥∥− r2i (2.51)

Also, manipulating the geometrical equations of the triangle rectangle

showed in Figure 13, it turns out that.

s2 =

(−w
2ri

)2

(2.52)

u2 + v2 = (2Tri)
2

+ (−2Izri)
2 (2.53)

u2 + v2 = (2ri)
2

(Iω)
2 (2.54)

From the triangle rectangle showed in Figure 13

z2 + s2 =
∥∥∥ ~Iω∥∥∥2 (2.55)

(2ri)
2
z2 + (2ri)

2
s2 = (2ri)

2
∥∥∥ ~Iω∥∥∥2 (2.56)

Then another non-physical parameter q, is defined and Equation 2.56

is re-written as.

q = 2riz (2.57)

q2 + (2ri)
2
s2 = (2ri)

2
∥∥∥ ~Iω∥∥∥2 (2.58)

54 Chapter 2. Parallel Robots

Substituting Equation 2.52 into Equation 2.58:

q2 + w2 = (2ri)
2
∥∥∥ ~Iω∥∥∥2 (2.59)

q2 = (2ri)
2

(∥∥∥ ~Iω∥∥∥2 − ∥∥∥ ~Iω∥∥∥2 cos (φ+ α)

)
(2.60)

q2 = (2ri)
2
∥∥∥ ~Iω∥∥∥2 sin (φ+ α) (2.61)

q2

w2
=

(2 ‖~r‖)2
∥∥∥ ~Iω∥∥∥2 cos2 (φ+ α)

(2 ‖~r‖)2
∥∥∥ ~Iω∥∥∥2 sin2 (φ+ α)

(2.62)

tan (φ+ α) =
q

w
(2.63)

φ+ α = arctan
q

w
(2.64)

Returning to Equation 2.29.

π = ε+ φ+ α+ θ

ε =
π

2
− φ (2.65)

π =
(π

2
− φ

)
+ (φ+ α) + θ (2.66)

2.3. Inverse Kinematic Problem 55

θ =
π

2
+ φ− (φ+ α) (2.67)

θ =
π

2
− arctan

u

v
− arctan

q

w
(2.68)

With these definitions, the inverse kinematic problem is solved. Once

function arctan has a dubious response, it is convenient to use arctan with

two arguments (atan2 function).

An algorithm that compute the joint and actuators position and com-

pute the parameter u, v, w and q as presented solve the inverse kinematic

problem using really low computational coast.

For convenience Equations 2.35, 2.37, 2.51, 2.59 and 2.54 may be

re-written to compute u, v, w and q based in previously values and apply in

2.68.

u = 2ri (Ix cosβ + Iy sinβ) (2.69)

v = −2riIz (2.70)

w = R2
i − r2i − I2x − I2y − I2z (2.71)

u2 + v2 = q2 + w2 (2.72)

56 Chapter 2. Parallel Robots

q =
√
u2 + v2 − w2 (2.73)

The same algorithm is useful to find the workspace to a given ori-

entation using some increments to Px, Py and Pz and solving the Inverse

Kinematic Problem repeatedly it is possible to find the workspace of the

parallel robot to a given orientation.

57

3 ROBOT SINGULARITIES

The kinematics study of mechanical systems leads inevitably to the

singular configurations problem. They correspond to configurations of the sys-

tem that are usually undesirable since the degree of freedom is instantaneously

changed. These special configurations are defined as the ones in which the

Jacobian matrix, i.e., the matrix relating the input rates to the output rates,

becomes rank deficient (GOSSELIN, 1988).

In this section it is present a differential kinematic relation for parallel

manipulators and introduce their singularities. This differential kinematics is

based on the parallel manipulator Jacobian matrix.

In spatial parallel manipulators, the relationship between actuator

coordinate vector q and end-effector Cartesian coordinate vector P , may be

stated as a function f

f(θ, P) = 0 (3.1)

where 0 is the 6-dimensional null vector, Therefore, the differential kinematic

relation may be determined (TSAI, 1999)

Jq θ̇ − Jx$ = 0

Jq θ̇ = Jx$

θ̇ = J$

(3.2)

where $ is the end-effector velocity in ray order, θ̇ = [Ψ1, ...,Ψl] is the

input twist magnitude vector and J = J−1q Jx is the Jacobian matrix of the

manipulator composed by direct Jx, and inverse Jq Jacobian matrices.

Additionally, we may write 3.2 as at differential kinematic relation-

58 Chapter 3. Robot Singularities

ship between the end-effector velocity $ and the vector υ = [υ1, ..., υn]T

υ = Jx$ (3.3)

where υ is the component of the absolute linear velocity of the end-effector

connection point in the direction of the passive link, i.e. the distal link of

each limb (serial chain between basis and end-effector) (DAVIDSON; HUNT,

2004a), e.g. in the 6-RUS parallel robot of Figure 14, the connection point is

Ci and the passive link isBiCi.

Figure 14 – Position of points B, and C.

Source: (MERLET, 2000).

Singular configurations occur if either Jx or Jq is singular. If Jq

is singular, a limb or inverse kinematics singularity is encountered and end-

effector is over constrained (TSAI, 1999), i.e. it instantaneously loses at least

one degree of freedom.. Using equation 3.4, there is a inverse kinematic

singularity if there exists a non-zero input velocity, Ψa = θ̇, which results in a

59

zero output, $ = 0. In this case:

Jq θ̇ = 0 (3.4)

In other words, this type of singularities consists of the set of points

where different branches of the inverse kinematic problem meet, the inverse

kinematic problem being understood here as the computation of values of the

input variables from given values of output variables(GOSSELIN, 1988).

The inverse kinematic singularity is found, typically, at the boundary

of the workspace or when the limbs folds upon itself. This type of singularity

is caused due the serial nature of the limbs and is discussed extensively in

literature (SCIAVICCO; SICILIANO, 1996; TSAI, 1999).

If Jx is singular, a platform or direct kinematic singularity is encoun-

tered and the end-effector can move instantaneously even if all actuators are

locked. At these configurations, the manipulator gains one or more uncon-

trollable degrees of freedom at the end-effector. For instance, there exists a

non-zero output velocity, $, corresponding to a zero input velocity, θ̇, i.e.

0 = Jx$ (3.5)

This corresponds to configurations in which the chain remains uncon-

trollable even when all the actuated joints are locked. As opposed to first one,

this type of singularity lies within the workspace of the chain and corresponds

to a point or set of points where different branches of the direct kinematic

problem meet. The direct kinematic problem is the one in which it is desired

to obtain the values of the output variables form given values of the input

60 Chapter 3. Robot Singularities

variables. Since the nullspace of J is not empty, there exists a set of output

rate vectors ẋ which will be mapped into the origin by J , i.e., which will cor-

respond to a velocity of zero of the input joints. The input rates area therefore

not independent (GOSSELIN, 1988). This type of singularity occurs within

the workspace and is the main goal of this report.

A third type of singularity happens when both Jx and Jq are singular.

This situation was first inadvertently classified as dependent on a certain

special design of the manipulator, but was later proven incorrect (DANIALI;

ZSOMBOR-MURRAY; ANGELES, 1995) by way of examples that the third

type of singularity does not occur only in “special” mechanism. Rather. it can

occur in "regular" mechanism.

In general inverse kinematic singularities are easier to detect and

move outside of the desired workspace by changing limb lengths. However.

since direct kinematic singularities happen within the workspace, they effec-

tively partition the workspace into smaller usable portions.

There are three basic reasons why direct singularities become an issue

in real life situations. They follow directly from the interpretations of singular-

ities and are: reduced accuracy, large internal forces and loss of knowledge of

solution tree (VOGLEWEDE, 2004).

• Degenerate accuracy. The Jacobian J (J = −J−1q Jx) (TSAI, 1999)

analysis relates the input and output velocities. At direct singularity the end-

effector can have an instantaneous velocity at the output for zero input velocity.

If the differentials inputs and outputs are taken, the Jacobian relations

61

becomes

θ̇ = J$

∆θ

∆t
≈ J∆X

∆t

∆θ ≈ J∆X

(3.6)

Therefore, theoretically, when the manipulator is at a direct singular pose, the

end-effector only has a very small instantaneous motion, i.e. no motion at

all. However, in practice, all manipulators have some amount of clearances

(and similarly some compliance) and allow some finite motion at the end-

effector. This motion is denoted as the unconstrained end-effector motion. The

problem is to find out how much unconstrained end-effector motion is allowed.

• Large internal forces. The direct kinematic singularities affect the

internal forces, i.e. the static forces required by the actuators (input forces)

approach to infinity at singularities.

• Solution tree. The solutions for the forward kinematics coincide

at direct singularities. In practice the two different solutions cause control

problems. If the manipulator moves close to a singularity and slips into the

other solution due to overshoot, the manipulator mechanically is not where

the control believes it is. The manipulator will be at a different end-effector

position than predicted and could lead the manipulator into poses where it was

not intended to operate.

62 Chapter 3. Robot Singularities

3.1 Direct Singularity

Direct singularities may be introduced studying the mechanical equi-

librium of a parallel robot. Consider the input articular torque/force vector

τ = [Ψr1, ...,Ψr6], i.e. the input wrench magnitude vector. If a wrench $r is

applied on the end-effector, the mechanical system will be in equilibrium, if

the resultant of the articular forces ($r1, ..., $r6) which act on the platform

is equal and opposite to the $r, if not the end-effector will move to reach an

equilibrium position. In an equilibrium position there is a relation between τ

and $r (DAVIDSON; HUNT, 2004b)

JT
x τ = $r (3.7)

where the columns of JT
x are the normalized screws (axial order) representing

the wrenches acting on the end-effector(end-effector), i.e. the Plucker vector

coordinates of the actuating force lines (MERLET, 2000; TSAI, 1999).

JT
x =



Lr1 ... Lr6

Mr1 ... Mr6

Nr1 ... Nr6

P ∗r1 ... P ∗r6

Q∗r1 ... Q∗r6

R∗r1 ... R∗r6


=

[
$̂r1 ... $̂r6

]
τ (3.8)

The quantity $r, is at wrench screw representing the action supported

by the body, in ray coordinates. From this equation, it is seen that not only

does the Jacobian relate the input and output velocities, but it relates the static

3.1. Direct Singularity 63

input to static forces and moments. Therefore, there is another interpretation

of singularities.

Figure (15a) shows the wrenches acting upon the end-effector. Two

examples of possible direct singularities are shown in Figure (15b) and (15c),

these are two cases previewed by Grassmann analysis that are inside the robot

workspace.

Figure 15 – (a) The wrenches acting upon the end-effector. (b) and (c) Two
direct singularities.

Source: (CAMPOS; GUENTHER; MARTINS, 2005).

Direct kinematic singularities occur when there exists a force/mo-

ment, in the end-effector, in one or more directions that cannot be resisted by

the inputs. When all the forces, acting up on the end-effector, intersect a one

point the manipulator cannot resist a moment around that point. This point

may be infinity and in this case the forces are parallel and they cannot resist a

perpendicular force acting on the end-effector.

3.1.1 Singularity detection method

Singular configurations rest on the singularities of the Jacobian ma-

trix. Singularities correspond to the roots of Jacobian determinant. However,

the calculation of this determinant, even using symbolic algebra software,

64 Chapter 3. Robot Singularities

e.g. Maxima (www.gnu.org.software/maxima/maxima.html), is a complicated

labour for general robots (MERLET, 2000). After the calculating, of the de-

terminant it is necessary to find its roots within the workspace which is a

even more difficult task because the determinant in general is a non linear ex-

pression. This method is useful only tor particular parallel robots (DANIALI;

ZSOMBOR-MURRAY; ANGELES, 1995; TAHMASEBI, 1992).

Some researchers analyse intuitively some particular cases of singu-

larity for the Jacobian matrix and have obtained certain cases of singularity

(FICHTER, 1986), (HUNT, 1978), (LIU et al., 1993). Geometric method,

based on Grassmann geometry, solve the problem for many different robots

(MERLET, 2000). There are other methods which use a special variable to

"measure" how "far" a pose is from a singular, for instance the condition

number of the Jacobian matrix (XU; KOHLI; WENG, 1994). In this section,

the geometric method and the closeness to singularity measures are presented.

3.1.2 Grassmann Geometry

Equation 3.8 is a linear system of equations in term of articular force

τ . If the system is rigid, this means that for any action $r (force moment) up

on the end-effector, there exists one set of articular forces τ (or moments)

such that the system is in an equilibrium state. This relation only is possible

if matrix JT
x is of full rank, i.e. the Plucker vectors (columns of JT

x) are

linearly independent. So, a singular configuration of a parallel manipulator

corresponds to a configuration where it is no rigid.

In most cases the wrenches acting upon the parallel manipulator

end-effector are pure forces (null pitch screw) and their screw components cor-

3.1. Direct Singularity 65

respond to a Plucker components of a line. i.e. a Plucker vector. In these cases,

the singular configurations of the manipulator are associated with linearly de-

pendent set of lines, also called line based singularities (HAO; MCCARTHY,

1998). Grassmann studied the varieties of lines. i.e. the sets of linear depen-

dent lines to n given independent lines, and characterised them geometrically

(MERLET, 1989).

These varieties were analysed and classified in order to study the

singularities of spatial frameworks (DANDURAND, 1984) and triangular

simplified symmetric manipulator whose six limbs connect to the end-effector

and to the basis only in three points, respectively (MERLET, 2000)(HAO;

MCCARTHY, 1998).

The linear system of equations Equation (4.7) represents a rigid

system if for any action $r upon the end-effector, it is possible to find a

set of input wrench magnitudes Fi. This condition is only feasible when

matrix JT
x is full rank, i.e. the Plucker vectors (columns of JT

x) are linearly

independent. So a singular configuration of a parallel manipulator corresponds

to a configuration where it is not rigid.

The linear varieties are classified according to its rank (MERLET,

1989)(see Figure 16):

• The zero rank set is empty.

• The variety of rank one contains a line in the 3D space. The variety

of rank two is composed by either a pair of skew lines in <3, i.e. lines which

66 Chapter 3. Robot Singularities

Figure 16 – Grassmann varieties of dimension 1,2,3,4,5,6.

Source: (MERLET, 2000).

have no intersection and are not parallel (also called agonic lines), or a flat

pencil of lines, i.e. lines in a plane which intersect in one point.

• The variety of rank three is of four types: a regulus 3a, two flat

pencil of lines in different planes and with different centres 3b, a bundle of

lines (all lines through a point) 3c, and all lines in a plane 3d.

3.2. Singularity Closeness Measures 67

• The varieties of rank four, called linear congruences, are of four

cases: elliptic, hyperbolic, parabolic and degenerated congruence, details in

(HUNT, 1990; MERLET, 1989).

• Linear varieties of rank five, called linear complex, are of two

types: nonsingular (or general): generated by 5 independent skew lines 5a,

the complex is the set of lines tangent to coaxial helices; and singular (or

special): all the lines meeting one given line 5b, this case is subdivided de-

pending on if this line is at infinity 5b2 or not 5b1 (HAO; MCCARTHY, 1998).

Therefore, if the Plucker vectors, lines in the direction of the forces

acting upon the end-effector, are in any of the above varieties (rank= 1, ..., 5),

the parallel manipulator is in a direct singular configuration.

3.2 Singularity Closeness Measures

In this section some methods to measure the closeness of the singu-

larity are presented based on the Voglewede thesis (VOGLEWEDE, 2004).

Initially, the criteria of measure must to be frame invariant, scale

invariant and unit invariant:

• Frame invariant. A quantity that does not change due to a change

of the coordinate system’s location or orientation is said to be frame invariant.

• Unit invariant. A quantity does not change due a change in the

68 Chapter 3. Robot Singularities

units of the coordinate frame (e.g. meters or inches) is said to be unit invariant.

• Scale invariant. A quantity does not change due to a change of the

size (or scaling) of the manipulator is said to be scale invariant.

3.2.1 Linear Algebra Based Measures

Mathematically, singularities are defined where the Jacobian relation-

ship degenerates. Therefore, the most obvious method to evaluate singularities

is to use techniques from linear algebra.

Condition number

The condition number was first suggested by Yoshikawa (YOSHIKAWA,

1990) as a local measure or how close one is to singularity. The condition

number is defined as

k =
σmin

σmax
(3.9)

where σmin and σmax are the minimum and the maximum singular values of

the Jacobian matrix, J. This measure is not frame or unit invariant if the entries

of the Jacobian matrix are not uniform (LIPKIN; DUFFY, 1988; DUFFY,

1990).

Jacobian Determinant

Another possible measure to know how close one is to a singularity is

the determinant of the Jacobian matrix. It is proved that the determinant of the

Jacobian matrix is frame and unit invariant (MURRAY; LI; SASTRY, 1994).

3.2. Singularity Closeness Measures 69

However, the geometric meaning of the determinant is not clear, i.e. we do not

know what is a “good” value for determinant. Additionally, in general, finding

a physical meaning for the determinant is very difficult (VOGLEWEDE,

2004).

3.2.2 Screw Theory Based Measures

Screws are briefly introduced in Chapter 2. This analysis decomposes

all instantaneous rigid body motion into a rotation around an axis and a

translation along the same axis, i.e. a twist. A dualism of this concept is that

all forces acting on a rigid body can be decomposed as a force along an axis

and a moment around that axis, i.e. a wrench.

Using the screw theory, specifically the rate of work presented in

Section 2.2.2 a technique was developed to determine how close one is to a

singularity (POTTMANN; PETERNELL; RAVANI, 1998). The rate of work

or power product is defined as the normal dot product between a wrench $r,

represented in axis coordinates, and a twist $, represented in ray coordinates,

or vice versa, see Equation 2.8 here repeated.

δW = $Tr $ = $T $r = C · ωn + f · Vp (3.10)

where δW is the instantaneous power between the force and the twist. Porttman

et al. determine the twist that minimize the square of the power (to keep two

different power calculations from canceling out) with all the rows of the

Jacobian (i.e. the wrenches). This based power calculation is used as a measure

to see how close one is to a singularity. In other words, they find the twist

that goes against the constraints the least, and then calculate the power via

70 Chapter 3. Robot Singularities

the power product, Equation 3.10. This approach is used for a linear complex

approximation technique to measure the closeness to singularities (WOLF;

SHOHAM, 2003a) and it is presented in the next chapter.

71

4 SINGULARITY POWER INSPIRED MEASURE

This chapter determines closeness to singularities by formulating the

question in terms of a constrained optimization problem. The constrained opti-

mization problem results in a corresponding generalised eigenvalue problem.

The resulting eigenvalue has physical meaning and is utilized as a measure

of the performance near singularities, and thus is a measure of closeness to

singularities.

This optimization approach was used to the singularity analysis.

Pottman et al.(POTTMANN; PETERNELL; RAVANI, 1998) use the con-

strained optimization problem to determine the linear complex that is closest

to a singularity. Wolf and Shoham (WOLF; SHOHAM, 2003a) use the method-

ology to describe the instantaneous behaviour near singularities. Voglewede

(VOGLEWEDE, 2004) incorporate several other seemingly non-related mea-

sures into the constrained optimization framework, for instance the natural

frequency measure.

4.1 Minimization Problem

Accordingly Voglewede (VOGLEWEDE, 2004), a measure of close-

ness to singularities M(X), at a particular configuration, X, i.e. position and

orientation,

M : {configuration space} → <

M : {X} → <
(4.1)

72 Chapter 4. Singularity Power Inspired Measure

should have the following three properties:

•M(X) = 0 if and only if X is a singular configuration,

• If X is non-singular,M(X) > 0, and

•M(X) has clear physical meaning.

If one approaches the problem of creating a measure from a physical

standpoint, one first need to define the physical quantity, M(X), one cares

about. As shown above, a singular configuration has many different effects,

including loss of constraint, increased end-effector error, loss of stiffness

and degenerated actuator torque transmission. The effect that we are most

concerned about is the loss of constraint so it forms the basis of the singularity

measure.

In this case, if one cares primarily about the loss of constraint that

occurs in at least one direction at a singular configuration, an appropriate

measure that also applies to non-singular configurations is the amount of

constraint provided by the mechanism in the least constrained direction. In this

case, the physical quantity of interest at configuration X for twist direction $

is denoted by a value of the physical quantityF (X, $), a meaningful measure

4.1. Minimization Problem 73

is obtained by minimizing F over all "unity" motions, $, as follows:

M(X) =


min F (X)

subject to ‖ $ ‖2= c

(4.2)

where ‖ ... ‖ represents a type of norm for twists (several norms may be found

in (VOGLEWEDE, 2004) and c is a constant. The twist is constrained to have

a certain norm because otherwise the trivial solution,$ = 0, would always be

the minimum.

So it is necessary to obtain an objective function F and an appropriate

normalization of $ for minimization the problem of Equation 4.2.

4.1.1 Twist Normalization: Invariant Norm

The general minimization problem presented in Equation 4.2 requires

normalization a of a twist, which raises many issues on how this vector

should be normalized, due the different dimension terms in the vector (twist)

components. Specifically, we chose the invariant norm of the twist, other most

used common norms are the Euclidean norm and the kinetic energy norm

(VOGLEWEDE, 2004).

The invariant norm takes the magnitude of only the frame-invariant

portion of the screw, i.e. the angular velocity component of the twist. so for a

74 Chapter 4. Singularity Power Inspired Measure

given twist:

$ =

 ω

Vp

 (4.3)

the invariants norm is

‖ $ ‖=
√
ω · ω =

√
TD (4.4)

where

D =

 I3x3 03x3

03x3 03x3

 (4.5)

It is important to notice that if ω = 0, the invariant norm becomes

null, therefore for the case of pure translation the invariant norm must be

supplemented, for instance a potential solution is (VOGLEWEDE, 2004):

If ω = 0, then ‖ $ ‖=
√
Vp · Vp (4.6)

and in this case

D =

 03x3 03x3

03x3 I3x3

 (4.7)

The invariant norm of Equation 4.4 deals well with finite pitch twists

(h 6=∞), i.e. twists with ω 6= 0.

4.1.2 Objective function: power inspired measure

A objective function which results of the power inspired measure is

used to state the minimizing problem (POTTMANN; PETERNELL; RAVANI,

4.1. Minimization Problem 75

1998; WOLF; SHOHAM, 2003b)

F ($) =

k∑
i=1

($̂Tri$)2 (4.8)

here $̂ri are the columns, in axial order, of JT
x , see Equation 3.8 that, particu-

larly, can be interpreted as unitary magnitude wrenches $̂ri ∼= $ri, and k is the

number of rows. The motivation for this measure, using parallel manipulators,

comes from the dual meaning of the Jacobian matrix. Namely, columns of

JT
x may be interpreted as the (normalized) wrenches applied by the limbs

(specifically by passive links) for unit actuator torques and each term ($̂Tri$)2

of F may be interpreted as the square of the power e.g.
[
N2 �m2/seg2

]
of the

ith limb on the end-effector twist, $. Strictly, given that $̂ri, is a normalized

screw and is not a unitary magnitude wrench, the magnitude of F is L/T 2 e.g.

[m/seg] because, see Equation 3.3.

$̂Tri · $ = [P ∗riQ
∗
riR
∗
riLriMriNri] · [Lr,Mr,Nr, (P∗,Q∗,R∗)]T

= F

= (Jx$)T (Jx$)

= υTυ

= ‖ υ ‖2
(4.9)

In a singular configuration there exist a twist $ for which none of the

limb actions can do any work and thus the minimum of F goes to zero. Away

from singular configuration, the minimization identifies the least constrained

twist - with the restriction that its angular part be of norm one - and uses the

power done by the constraining limb forces on that twist as a measure.

76 Chapter 4. Singularity Power Inspired Measure

Rearranging Equation 4.8 in the form or Equation 4.2, this measure

becomes:

M(X) =


min F ($) = $TJT

x Jx$ = TM

subject to g($) = TD− c = 0

(4.10)

where M (also called Graminiam matrix) and D are n× n symmetric positive

semi-definite matrices, g is a given constraint, and c is some positive con-

stant (VOGLEWEDE, 2004), therefore F only takes on non-negative values,

F ($) ≥ 0.

We want to minimize the function F subject to given constraint. In

other words, into the set of values of $ that satisfy the constraint, we want to

find the ones that give the minimum value F .

All possible constraints for a two variable function, can be rearranged

to read g(x, y) = 0. For instance, the constraint x2y = 3 may he written as

x2y − 3 = 0 and so forth. The equation g(x, y) = 0 give us a line or curve

in the xy plane. We want to go along that line and find the point on with

the largest value of F (in this example F (x, y)). When we find the largest

value, we know that F (x, y) will be stationary as we move along the line.

That is what a minimum (or maximum) means. This in turn means that the

gradient∇F is perpendicular to the line of the constraint at this point, because

the gradient is always perpendicular to the contour. But the constraint is also

constant along the line, it is zero by construction. So it also has a gradient ∇g

that is perpendicular to the line. Thus the two gradients are not equal but they

4.1. Minimization Problem 77

do point in the same direction. In other words, they are proportional to each

other ∇F = λ∇g, where λ is some number that we do not at present know

the value of. This number λ is called a Lagrange multiplier. Rearranging we

see that∇F − λ∇g = 0, or if given that:

F̄ (x, y) = F (x, y)− λg(x, y) then ∇F̄ = 0 (4.11)

If ∇F̄ = 0, the all partial derivatives of F̄ are zero. This give us a method to

finding our minimum. We simply construct the function F̄ (x, y) as above, but

multiplying g by a constant λ, then we set all partial derivatives of F̄ (x, y)

to zero and solve the set of simultaneous equations we get. This give us a

solution for the minimum of F̄ .

The only problem is that the solution still contains the constant λ,

whose value we do not know. But we can solve that problem easily enough.

We still have one more equation - the constraint. If we substitute our solution

for x and y back into the constraint, we get another equation that we can solve

for λ.

It is possible to show that the method generalizes to more than two

variables and more than one constraint. If we have a set {xi}, o = 1, ..., n of

variables and set gj({xi}), j = 1, ...,m of constraints, then one constructs the

function

F̄ (xi) = F (xi)−
m∑
j=1

λjgj(xi) (4.12)

where {λj} is a set of m unknown Lagrange multipliers. Then we solve the n

78 Chapter 4. Singularity Power Inspired Measure

simultaneous equations
∂F̄

∂xi
= 0 (4.13)

to get xi in terms of the λj , and we substitute the answer back into the m

constraints to get m more equations that we solve for λj .

4.1.3 Constraints

Constraints are imposed conditions that variables must to satisfy and

solution is a set of variable value that satisfies all constraints i.e., a point in the

feasible region.

4.1.3.1 Inverse Singularity

Inverse singularity is caused due the serial nature of the limbs and

will occur in 6-RUS parallel robots if one or more of the six limbs are fully

extended or fully contracted. This means that the parallel robot loses one or

more degrees of freedom, banning some moves.

Inverse singularity proximity may be analyzed by alignment between

the crank and the passive link of each limb. This analysis may be done from the

kinematic equations. When inverse singularity occurs the root of the Equation

4.14 is negative (q is an imaginary number),which means this limb can not be

more extended or contracted because of crank and passive link lengths.

q =
√
u2 + v2 − w2 =

√−µ (4.14)

So the singularity proximity may be evaluated by checking how close

this root is next to become negative. Aiming avoid this the sum of geometric

4.1. Minimization Problem 79

terms u2 and v2 must be greater than w2. Thus a proximity inverse singularity

index InvI of each limb may be defined as:

InvI =
u2 + v2

w2
, InvI > 1 (4.15)

4.1.3.2 Cranks and limbs Collision

Collision avoidance guarantees the orientation aptitudes of the robot.

It may be denote byRj ,Rj+1 the radius of two cylindrical segmentsAjBj and

Aj+1Bj+1, Figure 17, we can ensure that there is no mechanical interference

if the distance between any segments pair verifies the following condition:

dist(AjBj , Aj+1Bj+1) ≥ Rj +Rj+1 (4.16)

Figure 17 – Distance between two segments.

Source: (KELAIAIA; ZAATRI et al., 2012).

To avoid cranks and limbs collision during movement this work uses

as reference the radius of Ceart’s 6-RUS limbs, which means at least distance

of 3.1cm for cranks and 3cm for passive link.

80 Chapter 4. Singularity Power Inspired Measure

4.2 Corresponding eigenvalue problem

In order to solve the constraint optimization problem of Equation 4.2,

it is transformed into an unconstrained optimization problem. This transfor-

mation is achieved by forming the Lagrangian. L($, λ) = F ($)− λh($) and

solving the resulting unconstrained optimization problem.

min L($, λ) (4.17)

where for this particular problem, the Lagrangian becomes

L($, λ) = TM− λ(TD− c) (4.18)

The minimization of the Lagrangian is now performed by taking

the partial derivative of the Lagrangian with respect to λ and $ and setting

both equations equal to zero. With this, all extrema of the problem are identi-

fied which, since F is bounded from below by 0, must include the absolute

minimum of F . Differentiating the Lagrangian with respect to λ results in

∂L

∂λ
= (TD− c) = 0 (4.19)

which is the constraint from the Equation (5.10). Differentiating the Lagrangian

with respect to $ and using the fact that M and D are symmetric yields:

∂L

∂$
= 2M$− 2λD$ = (M − λD)$ = 0 (4.20)

For a non trivial solution to exist, the matrix expression in the paren-

theses must be singular. In other words:

det(M − λD) = 0 (4.21)

4.2. Corresponding eigenvalue problem 81

which is called the corresponding general eigenvalue problem. From this,

the eigenvalues, λ, (i.e. the stationary points in a minimization sense) and

the associate eigenvector, $′ , are computed. The eigenvectors are then scaled

to satisfy the constraints, $T′ D$′ − c = 0, and the resulting scaled vectors

are substituted into the original function, F , from Equation 4.10 to yield its

minimum value.

Furthermore, the objective function’s minimum is the smallest eigen-

value, λmin, of Equation 4.21 multiplied by the constant c. This is proven by

first going back to Equation 4.20 which rewritten yields

M$ = λD (4.22)

Substituting this relationship into objective function F and using the

constraint g yields.

F ($) = TE = λTD = cλ (4.23)

Since c is a positive constant, F is minimised for the smallest eigen-

value, λmin, thus.

min F ($) = cλmin (4.24)

Another result that can be inferred from this analysis is all eigenvalues are

non-negative, λi ≥ 0, since the objective function is non-negative.

Then
√
λmin is associated to the minimum power [\W] of the system,

which indicates the manipulator singularity closeness. The smallest eigenvalue

λmin will be the minimum value of the objective function F($), and so it can

be utilized as a measure value.

82 Chapter 4. Singularity Power Inspired Measure

The measure behaviors of the minimum power of the system through

a singularity is showed in Figure 18, here the end-effector twists θo around the

$min (the end-effector twist which requires minimum power in this singularity).

The singularity occurs when
√
λmin = 0, but a singular range exists due

to clearance and compliance of the system, where the end-effector is still

unconstrained. Theoretically the index value is supposed to be zero, but due

joints clearance the value of the index to be a singularity is slightly higher

(LAST et al., 2005). The singular range bound is experimentally identified as

0.029 \W (IWF-Hexa Robot) and upon it the manipulator stiffness is warranted

into the whole workspace (HESSELBACH et al.,). The index minimum value

is determined by evaluating the built robot prototype belonging IWF-robot,

this work suppose that CEART-robot have a similar value, for the optimization.

Figure 18 – a) Grassmann variety V5a on the Hexa; b) Power based index; c)
Grassman variety V5b; d) Grassman V5b based index.

Source: (HESSELBACH et al.,).

The power inspired measure has two weakness. The first one comes

4.2. Corresponding eigenvalue problem 83

from the normalisation procedure, namely the fact that the angular part of

the twist is constrained to have unit norm. Thus singularities with a purely

translational deficiency are not detected by the measure. Pottman et al. propose

to supplement this approach with second optimisation for which the twist is

normalized to have unit linear part. However, this results in two different

values for any configuration and it is unclear how these two values are to be

combined to yield a single for closeness to singularity.

85

5 OPTIMIZATION

Optimization is the act of obtaining the best result under given circum-

stances. In design, construction, and maintenance of any engineering system,

engineers have to take many technological and managerial decisions at several

stages. The ultimate goal of all such decisions is either to minimize the effort

required or to maximize the desired benefit (RAO; RAO, 2009).

This chapter describes optimization methods which were used in this

work to maximizing the orientation rotation avoiding the direct singularity con-

figuration and others constraints. Two optimization methods were employed

in this work. The particle swarm optimization PSO was applied first to escape

for local minimum problems during the optimization. Then Matlab’sfmincon

function work to guarantee the optimal solution since is set with Intern point

algorithm which is a gradient based method. This work used the PSO Matlab

codes developed by (DONCKELS, 2006).

5.1 Particle Swarm Optimization

The particle swarm optimization (PSO) is a technique introduced

by James Kennedy and Russell Eberhart in the 90’s and emerged from ex-

periments with algorithms that model the social behavior observed in some

species of birds (KENNEDY; KENNEDY; EBERHART, 2001).

PSO is a robust stochastic optimization method based upon the be-

havior of swarms observed in nature. The method captures the concept of

social intelligence and co-operation. The PSO method employs particles that

exhibit individual and group behavior when looking for a solution within a

86 Chapter 5. Optimization

search space. These particles also have a memory of where they have been.

PSO optimizes a problem by having a population of candidate solu-

tions, here dubbed particles, and moving these particles around in the search

space according to simple mathematical formulas on the particle position

and velocity. The motion of each particle is influenced by its best known site

position, but is also oriented towards the most known locations in the search

space, which are updated as better positions are found by other particles. This

is expected to move the swarm to the best solutions (KENNEDY; KENNEDY;

EBERHART, 2001).

PSO is a metaheuristic technique, as it makes little or no assump-

tions about the problem being optimized and can search very large spaces

of candidate solutions . However , as PSO metaheuristics do not guarantee

an optimal solution is always found . More specifically, the PSO does not

use the gradient of the problem to be optimized (KENNEDY; KENNEDY;

EBERHART, 2001).

5.1.1 Particle Swarm Optimization with constriction factor

PSO model consists of a swarm of particles, which are initialized

with a population of random candidate solutions. In 2002, Clerc and Kennedy

introduced a constriction factor in PSO, which was later on shown to be supe-

rior to the inertia factors (CLERC; KENNEDY, 2002). They move iteratively

through the d-dimension problem space to search the new solutions, where the

fitness, f , can be calculated as the certain qualities measure. Each particle has

a position presented by a position-vector Vi (i is the index of particle), and a

velocity represented by a velocity-vector Vi. Each particle remembers its own

5.1. Particle Swarm Optimization 87

best position so far in a vector P best
i , and its d-th dimensional value is P best

id .

The best position-vector among the swarm so far is then stored in

a vector Gbest, and its d-th dimensional value is Gbest
d . During the iteration

time k, the update of velocity from the previous velocity to the new velocity is

determined by Equation 5.1. The new position is then determined by the sum

of previous position and the new velocity by Equation 5.2.

Vid(k+1) = K[Vid(k)+c1r1(P best
id (k)−Pid(k))+c2r2(Gbest

d (k)−Pid(k))]

(5.1)

Pid(k + 1) = Vid(k + 1) + Pid(k) (5.2)

K =
2

| 2− ϕ−
√
ϕ2 − 4ϕ |

where ϕ = c1 + c2, ϕ > 4 (5.3)

In Equations 5.1-5.3, ϕ is called constriction factor, r1 and r2 are

random numbers, which are used to maintain the diversity of population, and

are uniformly distributed in the interval [0, 1] for the d-th dimension of i-th

particle. c1 is a positive constant, called as coefficient of self-recognition

component, c2 is a positive constant, called as coefficient of social component.

From Equation 5.1, a particle decides where to move next, considering its own

experience, which is the memory of its best past position, and the experience

of its most successful particle in the swarm (see Figure 19).

88 Chapter 5. Optimization

Figure 19 – Flowchart for particle swarm optimization algorithm.

Start

Stop

Generate Inicial Population

Evaluate Individual Fitness
Update Personal Best

Update Global Best

Time to Stop?

Evaluate Individual Fitness
Update Personal Best

Update Global Best

Yes

No

Source: (KACHITVICHYANUKUL, 2012).

5.1.2 Configuration for Particle Swarm Optimization

In order to obtain a good performance of the PSO when solving

the optimization problem some configurations are necessary. As previously

mentioned, the PSO has two coefficients, called coefficient of self-recognition

component and coefficient of social component. These parameters determinate

the particle movement influence from its own experience and from the most

successful particle in the swarm. As recomended by Schutte and Groenwold

5.2. FMINCON 89

Table 2 – PSO coefficients values.

Symbol PSO Coefficient and Parameters Value
c1 coefficient of self-recognition component 2.8
c2 coefficient of social component 1.3
ϕ constriction factor 4.1
K constant multiplier 0.7298

Source: Own author.

(SCHUTTE; GROENWOLD, 2005), the coefficient of self-recognition and

coefficient of social component have their values as shown in Table 2. In this

case, constriction factor, ϕ was set to 4.1 and the constant multiplier K is thus

0.729.

ϕ = c1 + c2 = 2.8 + 1.3 = 4.1, where ϕ > 4 (5.4)

K =
2

| 2− 4.1−
√

(4.1)2 − 4 · 4.1 |
=

2

| −2.7403 | =
2

2.7403
= 0.7298

(5.5)

The Swarm Size which means number of particles and the max

number of generation are other parameters to configure in PSO algorithm. The

Swarm Size directly influences the algorithm performance.

5.2 FMINCON

Fmincon is a Matlab function part of Matlab’s Optimization Toolbox.

It’s find a minimum of a constrained nonlinear multivariable function. fmincon

attempts to find a constrained minimum of a scalar function of several variables

starting at an initial estimate. fmincon is a gradient-based method that is

90 Chapter 5. Optimization

designed to work on problems where the objective and constraint functions

are both continuous and have continuous first derivatives.

There is no guarantee that the fmincon will return a global minimum,

unless the global minimum is the only minimum. As a method based on gradi-

ent may get remand to a local minimum and not find the value of the global

minimum. Based on where fmincon starts, it may terminate at the global mini-

mum or at one of the local minimum. The optimizer gets trapped in the local

valley and can’t escape to reach the global valley. The FMINCON function,

configured to use the Interior Point algorithm is employed to accelerate the

search for bottom of the valley indicated by the PSO as the best particles

locations.

5.2.1 Interior Point Algorithm

An Interior Point method is a linear or nonlinear programming

method that achieves optimization by going through the middle of the re-

gion defined by the problem rather than around its surface (FORSGREN;

GILL; WRIGHT, 2002).

A polynomial time linear programming algorithm using an interior

point method was developed by (KARMARKAR, 1984). Arguably, interior

point methods were known as early as the 1960s in the form of barrier function

methods, but the media hype accompanying Karmarkar’s announcement led

to these methods receiving a great deal of attention. However, it should be

noted that while Karmarkar claimed that his implementation was much more

efficient than the simplex method, the potential of interior point method was

established only later. By 1994, there were more than 1300 published papers

5.2. FMINCON 91

on interior point methods.

Current efficient implementations of interior methods or are mostly

based on a predictor-corrector technique (MEHROTRA, 1992), where the

Cholesky decomposition of the normal equation or LDLT factorization of the

symmetric indefinite system augmented system is used to perform Newtons

method (together with some heuristics to estimate the penalty parameter). All

current interior point methods implementations rely heavily on very efficient

code for factoring sparse symmetric matrices.

Figure 20 – Internal Point Algorithm.

1

2

3

4

5

6

7

8

9

−1

1 2 3 4 5 6 7 8 9−1

u

b

b

b

q

Staring Point

Optimal Point

Second Point

Third Point

b

b
b
b
b

Source: Own author.

In an interior point method, each iteration considers points that are

strictly inside the feasible region, with the exception of the initial point which

may be outside the feasible region. In each iteration a new point x′ = x+aDx

is computed from the current pointx by finding a step directionDx. The step

92 Chapter 5. Optimization

direction is chosen to optimize the change in objective value from x to x′.

The parameter a is used to ensure that the new point x′ lies strictly inside the

feasible region.

5.2.2 Sensitivity Analysis

In numerical methods of optimization, one must determine the effect

of a change in the current design one the cost and constraint function i.e.

evaluate the gradient of response quantities with respect to design variable.

This is commonly known as design sensitivity analysis and can constitute a

major task in any structural optimization program. The gradient also important

in their own right as they represent trend for the structural performance or

constraint function. The derivatives of the cost and constraint function are

essential to compute a search direction in the optimization process.

The finite difference approximations for derivatives are one of the

simplest and of the oldest methods to solve differential equations. It was al-

ready known by L. Euler (1707-1783) ca. 1768, in one dimension of space and

was probably extended to dimension two by C. Runge (1856-1927) ca. 1908.

The advent of finite difference techniques in numerical applications began

in the early 1950s and their development was stimulated by the emergence

of computers that offered a convenient framework for dealing with complex

problems of science and technology. Theoretical results have been obtained

during the last five decades regarding the accuracy, stability and convergence

of the finite difference method for partial differential equations.

The principle of finite difference methods is close to the numerical

schemes used to solve ordinary differential equations. It consists in approxi-

5.2. FMINCON 93

mating the differential operator by replacing the derivatives in the equation

using differential quotients. The domain is partitioned in space and in time and

approximations of the solution are computed at the space or time points. The

error between the numerical solution and the exact solution is determined by

the error that is committed by going from a differential operator to a difference

operator. This error is called the discretization error or truncation error. The

term truncation error reflects the fact that a finite part of a Taylor series is used

in the approximation.

For the sake of simplicity, we shall consider the one-dimensional case

only. The main concept behind any finite difference scheme is related to the

definition of the derivative of a smooth function u at a point x ∈ R

u′(x) = lim
h→0

u(x+ h)− u(x)

h
(5.6)

and to the fact that when h tends to 0 (without vanishing), the quotient on the

right-hand side provides a ”good” approximation of the derivative. In other

words, h should be sufficiently small to get a good approximation. It remains

to indicate what exactly is a good approximation, in what sense. Actually,

the approximation is good when the error committed in this approximation

(i.e. when replacing the derivative by the differential quotient) tends towards

zero when h tends to zero. If the function u is sufficiently smooth in the

neighborhood of x, it is possible to quantify this error using a Taylor expansion.

94 Chapter 5. Optimization

5.3 Hybrid Optimization

Finding a global optimal solution is a challenging task in many appli-

cations due to the fact that data and models are usually nonlinear and subject

to different sources of error. In many cases the number of these parameters

may be significantly large since they generally depend on a prescribed level of

spatial and temporal resolution. Most successful approaches in global optimiza-

tion use some stochastic or heuristic strategies that do not depend on derivative

information, e.g., genetic algorithms, tabu searches, neural networks, and simu-

lated annealing, among others (MENEZES; OORSCHOT; VANSTONE, 1996)

. Despite inherent costs, their success resides in making a broad and systematic

exploration of the search domain, although this may vary with the nature of

the problem. Therefore, it is useful to obtain several local optimal solutions

and compare them before selecting a global one. However, the performance

of these algorithms depends significantly on the choice of parameters and

this task tends to be less obvious on large scale since the number of function

evaluations grows dramatically with the number of parameters. On the other

hand, the availability of derivative information, such as gradient, and Jacobian

or Hessian operators, allows for achieving higher rates of convergence towards

a local optimum.

One way to achieve these goals is through the coupling of two or more

different optimization algorithms, which have complementary characteristics,

which results in so-called hybrid algorithms. It is common to find hybrid

algorithms involving an algorithm of type heuristic used to cover the entire

search space and identify the region where the global minimum is found, and

5.3. Hybrid Optimization 95

an algorithm with mathematical reasoning, said non linear programming, able

to quickly reach the minimum, since the region has been identified. This type of

strategy improves reliability compared to methods of non linear programming,

because it is more likely to find the global minimum, and increases efficiency

compared with pure heuristic algorithms (WANG; ZHENG, 2001).

As the optimization problem of this work has many geometrical pa-

rameters as input arguments, therefore an ample search space and certainly

several local minima, a hybrid approach is proposed. First, the PSO is em-

ployed for exploring the problem space and avoiding getting stuck in local

minima. After the PSO finds the neighbourhood of the optimum, an interior

point algorithm is adopted for exploiting the valley and accelerate the search

for the bottom of it. But one important note is that the optimum found by

Interior Point may not be the global optimum because there is no guarantee

PSO algorithm find the global valley.

97

6 ORIENTATION WORKSPACE OPTIMIZATION FOR

A 6-RUS PARALLEL ROBOT
This work presents a method determine active joint optimal location

(position and orientation) for a flight simulator based on a 6 - RUS parallel

robot aiming at maximize its orientation workspace.

During the development of this work, the inverse kinematic of CEART-

robot was determined (International Congress of Mechanical Engineering),

(CAMPOS et al., 2014). As by product of this dissertation, an additional ar-

ticle was produced and published in CONEM 2014 (Congresso Nacional de

Engenharia Mecânica), when the Matlab program provided some preliminary

results, (FURTADO; CAMPOS; REIS, 2014).

6.1 Kinematical Performance Index for Two 6 - RUS Par-

allel Robots

The Six DOF IWF-robot is composed by six limbs connecting the

basis to the end-effector (see Figure 21). Each limb contains an active rotative

joint Ai (for i = 1, · · · , 6) fixed to the basis, a passive universal joint Bi

(composed by two orthogonal rotative joints) and a passive spherical jointCi

connected to the end-effector. The cranks and the passive links are connected

at Bi.

As the IWF-robot and the CEART-robot robots that have same kine-

matic chain and therefore belong to 6-RUS parallel manipulator family, it is

possible to compare their performance in the same task and study the geomet-

ric differences and their influence on performance. The Ceart CEART-robot

98 Chapter 6. Orientation Workspace Optimization For a 6-RUS Parallel Robot

Figure 21 – 6-Rus Kinematic Chain.

Source: (LAST et al., 2005).

was cenceived to result in a complete operating flight simulator built by the

university UDESC(Universidade do Estado De Santa Catarina. Hence both

configurations should be tested with a typical flight simulation task.

Based in the inverse kinematics presented in Chapter 2 and looking for

the differences between IWF-robot and CEART-robot, a better understanding

of 6-RUS robots and their geometrical parameters are required.

The angle βi refers to the Ymi (i = 1, ..., 6) axis (active joint coordi-

nates system) to Y‖ (a parallel axis to Y of overall system), and it determines

the active joint orientation (see Figure 22). With d (half-distance between

actuated joint pair: 1− 6, 2− 3 and 4− 5) and rb (base radius) constants; χa1

and χa2 that the active joint location. Each active joint has a local coordinates

system with origin at Omi (i = 1, ..., 6) (see Figure 23).

6.1. Kinematical Performance Index for Two 6 - RUS Parallel Robots 99

Figure 22 – Base layout, where design parameters are χa1 ,χa2, β1, β2, β3,
β4, β5 and β6.

A1

A2

A3

A4

A5

A6

X

Y

χa1

χa2

β1

β2

β3

β4

β5

β6

Y‖

Y‖

Y‖

Y‖

Y‖

rb

d

{O}

Source: Own author.

This system location determines the active joint situation. Active

joints system origin Omi are the Ai points from inverse kinematic calculus.

Active joint rotation angle θ is zero in the crank horizontal position as shown

in Figure 24.

6-RUS parallel architeture may be considered as a parallel robots

family. Each member of this family has different values for βi angles. CEART-

100 Chapter 6. Orientation Workspace Optimization For a 6-RUS Parallel Robot

Figure 23 – Active joint local system.

Source: Own author.

Figure 24 – Active Joint Angular Position θ.

Source: Own author.

robot is a member of this family with β1 = 120, β2 = 180, β3 = 240,

β4 = 300, β5 = 0 and β6 = 60, and IWF-robot is another member with

β1 = 0, β2 = 120, β3 = 120, β4 = 240, β5 = 240 and β6 = 0.

Let be considered constraint e (half-distance between pair of joints)

and rp (end-effector radius) constants;therefore knowing χj1 and χj2, the

points Ci may be determinated. These points are the spherical joints location

for each limb, i.e., the passive link connection with the end-effector (see Figure

25).

6.2. Geometrical Parameters of the IWF-robot and CEART-robot 101

Figure 25 – Platform angular layout, where the design parameters are χj1 ,χj2,
rp end e.

C1

C3

C4

C5

C6

X{P}

Y{P}

χj1

χj2

rp
e

{P}

C2

Source: Own author.

Table 3 – IWF-robot angles parameters.

Symbol 1 2 3 4 5 6 Geometric Parameter
χa 0 120 120 240 240 0 APact (Base)
χj 0 120 120 240 240 0 APjoint (End-Effector)
β 0 120 120 240 240 0 aact (Base)

Source: Own author.

6.2 Geometrical Parameters of the IWF-robot and CEART-

robot

Methods and strategies presented in this paper are implemented and

tested in a 6-RUS IWF-robot. The six limbs of IWF-robot are arranged in three

pairs, each pair contains two active joints whose, i.e. drive axes, are collinear

(see Figure 26).

102 Chapter 6. Orientation Workspace Optimization For a 6-RUS Parallel Robot

Figure 26 – IWF-robot active joint location.

Source: (CAMPOS et al., 2011).

Table 4 – IWF-robot Geometrical Parameters.

Symbol Value Geometric Parameter
rb 0.360 Base Radius
rp 0.05196 Platform Radius
ri 0.240 Length of Crank Link
Ri 0.564 Length of Passive Link
e 0.0516 HDBjoint (End-Effector)
d 0.0516 HDBact (Base)

Source: Own author.

IWF-robot have the geometrical parameters as in Table 3. Other

geometrical parameters necessary to define the kinematic structure of the

IWF-robot are presents in Table 4:

For the geometrical parameters of CEART-robot see Table 5. Other

geometrical parameters necessary to define the kinematic structure of the this

6.3. IWF-robot and CEART-robot Performance for Flight simulator Task 103

Table 5 – CEART-robot angles parameters.

Symbol 1 2 3 4 5 6 Geometric Parameter
χa 0 120 120 240 240 0 APact (Base)
χj 0 120 120 240 240 0 APjoint (End-Effector)
β 120 180 240 300 0 60 aact (Base)

Source: Own author.

Table 6 – CEART-robot Geometrical Parameters.

Symbol Value Geometric Parameter
rb 0.636885 Base Radius
rp 0.29173 end-effector Radius
li 0.194 Length of Crank Link
Li 0.650 Length of Passive Link
e 0.197555 HDBjoint (End-Effector)
d 0.402345 HDBact (Base)

Source: Own author.

robot are shown in Table 6.

6.3 IWF-robot and CEART-robot Performance for Flight

simulator Task

The IWF-robot and CEART-robot may have just a few kinematic

parameter values as difference, but they also have distinction of performance.

From this,a question arises, what setting has the best performance for a flight

simulation task?

6.3.1 Proposed task

An aircraft in flight is free to rotate in three dimensions: pitch, nose

up or down about an axis running from wing to wing; yaw, nose left or right

104 Chapter 6. Orientation Workspace Optimization For a 6-RUS Parallel Robot

about an axis running up and down; and roll, rotation about an axis running

from nose to tail. The axes are alternatively designated as lateral, vertical, and

longitudinal (see Figure 27).

Figure 27 – Pitch-Roll-Yaw of an Air Plane

Source: Learn To Fly Drones. Available: http://www.dronethusiast.com/learn-
fly-drones-newbies-guide-useful-resources/ Accessed: June 8, 2015.

The movement executed by the manipulator is a orientation rotation

in the initial position. As the orientation rotations in Z axis can be easily

performed by a additional motor, the optimization should be applied in orien-

tations in XY plane. For a given χa and βi angles (optimization parameter), a

rotation is performed around all orientation axes in the plane XY (see figure

28) to verify where the rotation is minimum and its value.

6.3. IWF-robot and CEART-robot Performance for Flight simulator Task 105

Figure 28 – Axis Orientation Rotation with α from 0o to 360o

360◦

Y Axis

X Axis

Spin Axis Orientation

α

Source: Own author.

6.3.2 IWF-robot and CEART-robot PERFORMANCE

In order to illustrate IWF-robot and CEART-robot maximum rotation

around 360o axes inXY plane, a polar graphics is made for each configuration.

The inner circle represents the maximum rotation that the manipulator may

perform in all orientation axes in the XY plane from 0o to 360o.

As figures 29 and 30 show, CEART-robot have a better performance

than IWF-robot in this movement. This optimization method intends to find a 6-

RUS configurations with a better result in this movement, i.e., with maximum

rotation around all XY axes.

If we have a closer look in these configurations it is possible to find

106 Chapter 6. Orientation Workspace Optimization For a 6-RUS Parallel Robot

Figure 29 – IWF-robot Polar Graphic.

Source: Own author.

deficiencies of each configuration. Therefore, using a kinematic algorithm, a

new task consisting of performing rotations around one single axis in order to

evaluate the kinematic index performance, can be done.

For instance IWF-robot with respect to Y axis,is shown in Figure 31.

It is observed that it fails the minimum work index value in 18◦ of rotation

in this axis. Which is the same angle present in Polar Graphic. IWF-robot

configuration typicality have direct singularity issues.

Figure 32 confirms this showing the IWF-robot was not near the

inverse singularity, as defined in Section 4.1.3.

6.3. IWF-robot and CEART-robot Performance for Flight simulator Task 107

Figure 30 – CEART-robot Polar Graphic.

Source: Own author.

Figure 31 – IWF-robot direct singularity index, see red arrow.

Source: Own author.

108 Chapter 6. Orientation Workspace Optimization For a 6-RUS Parallel Robot

Figure 32 – IWF-robot inverse singularity constraint.

Source: Own author.

The CEART-robot performance with respect to rotation around the Y

axis, see (Figure 33), shows that it didn’t fail in the work index until more than

30◦ of rotation in this axis. However the polar graphic has a smaller rotation

value, therefore it fails in the inverse singularity, see (Figure 34). CEART-robot

had a limited movement because the inverse singularity, shows up for 25◦ in

this case, as Section 4.1.3. defined the inverse singularity problem.

6.4 6-RUS Robot Optimization for Flight Simulator Task

In this work, a MATLAB algorithm is developed in order to optimize

a 6-RUS Robot. The selected parameters to optimize the orientation workspace

are the angles β1, β2, β3, β4, β5, β6 and d. These kinematics parameters define

the active joint locations. Other design parameters to optimize are; half of

the distance between a pair of spherical joins in the end-effector, e; radius of

the end-effector, rp and the end-effector height, which is the end-effector Z

6.4. 6-RUS Robot Optimization for Flight Simulator Task 109

Figure 33 – CEART-robot direct singularity index.

Source: Own author.

Figure 34 – CEART-robot inverse singularity constraint, see red arrow.

Source: Own author.

position.

The program initially receives a geometrical parameters to optimize

(optimization parameters) and execute the robot movement simulation through

inverse kinematic. The screw theory is applied to establish the wrenches and

twist in order to determined the singularity index that is the system constraint.

110 Chapter 6. Orientation Workspace Optimization For a 6-RUS Parallel Robot

As shown in section 4.2, the index can not have values below 0.0293

which determines a singular position.

Figure 35 – Flowchart of MATLAB program optimization program.

Inverse Kinematic

Start rotation in atual axis - From 0o to 360o

Parameters values: β1, β2,β3, β4, β5, β6, rp, e, f and Z (Optimization Parameters)

Diferential Kinematic

Power Inspired Measure -Index (Constrain)

Continue the movement until the index be less than 0.0293. (Until Singularity)

Save maximum rotation value (In atual axis)

Change the rotation axis - From 0o to 360o (new axis in Plane XY)

Find the lowest rotation among all axes

PSO change the parameters values to maximize this rotation.

Parameters values: β1, β2,β3, β4, β5, β6, rp, e, f and Z (Optimization Parameters)

Optimized parameter by PSO

FMINCON change the parameters values to maximize this rotation.

Optimized parameter!

PSO find a Candidate of Optimum?

FMINCON find the Optimum?

PSO

Inverse Kinematic

Start rotation in atual axis - From 0o to 360o

Diferential Kinematic

Power Inspired Measure -Index (Constrain)

Continue the movement until the index be less than 0.0293. (Until Singularity)

Save maximum rotation value (In atual axis)

Change the rotation axis - From 0o to 360o (new axis in Plane XY)

Find the lowest rotation among all axes

FMINCON

YES

NO

NO

YES

Source: Own author.

6.4. 6-RUS Robot Optimization for Flight Simulator Task 111

The algorithm calculates the power inspired measure, aiming to evalu-

ate the closeness to a direct singularity. This algorithm minimizes the power of

the six wrenches (through the linesBiCi, i = 1, ..., 6) over the less constrained

end-effector twist, for a given configuration.

This algorithm takes the instantaneous position for points B, and

C, to build the wrenches acting upon the end-effector, see (Figure 14). For

convenience,it is choose the wrenches with magnitude τ = 1. Given that

only spherical joints connect the passive links with the end-effector, only pure

forces are transmitted to the end-effector, i.e. null pitch wrenches with CiBi

directions.

The Graminiam matrix M is formed from the normalized wrenches

$
′

i Equation 2.5 and then the eigenvalue problem is stated by Equation 2.12. A

minimum power function
√
λmin and the less constrained end-effector twist

$min (axis and pitch) are calculated while the end-effector is moving. Theoret-

ically, when the manipulator is at a singular pose, the end-effector has only a

very small instantaneous motion. However, in practice, all manipulators have

some amount of clearances (and similarly some compliance) and allow some

finite motion at the end-effector. This motion is denoted as the unconstrained

end-effector motion. The power based measure
√
λmin indicates how much

unconstrained end-effector motion is allowed.

The optimization algorithms evaluate the index value to adjust β

angles value, e, f ,rp and end-effector Z position to maximize the rotation,

(positives and negatives) around axis in the plane XY , evaluating the in-

dex value. The program starts with an initial estimation of the angles. Then

112 Chapter 6. Orientation Workspace Optimization For a 6-RUS Parallel Robot

maximum value of these rotations is defined, for this configuration, until the

movement produced the minimum index value.

After this loop, the PSO algorithm is applied to estimate new angles

with better rotations values. This is the applied optimization algorithm to

escape from local minimum. PSO tries to find the global minimum until no

better values are found. Then it sends the resultant design parameters for initial

estimation to Internal Point Algorithm. Then Intenal Point stars with design

parameters found by PSO and establishes the optimum, see (Figure 35).

6.5 Optimization Result and Kinematic Analysis

This section presents the optimization result performed by the pro-

posed program. Some kinematic analysis may be made from 6-RUS optimized

configuration using mathematical software e.g. Matlab and with a ADAMS

CAE model.

6.5.1 Software Tool: Matlab

Aiming at a better orientation workspace, optimization method is

applied for 6-RUS robot by Matlab algorithm which reconfigure some geo-

metrical parameters. The geometrical parameters to optimize the orientation

workspace are βi angles, e, f , rp and Z position (see Figures 22 and 25).

A MATLAB (MATrix LABoratory) program to perform the calcu-

lations and apply this optimization is developed. MATLAB is a high-level

language and interactive environment for numerical computation, visualization,

and programming.

6.5. Optimization Result and Kinematic Analysis 113

Figure 36 – Optimized 6-RUS Polar Graphic.

Source: Own author.

Table 7 – Active joints orientation angle for 6-RUS optimized robot.

Symbol 1 2 3 4 5 6 Geometric Parameter
β 60 159 181 285 302 44 aact (Base)

Source: Own author.

The Z position for optimized orientation workspace is Z = 0.4042.

Table 7 presents β angles values and Table 8 the geometrical parameters. Polar

graphics for 6-RUS optimized configuration, shows that the robot may perform

at least 47.5◦ degrees rotations in all orientation axes in the XY plane.

Aiming at get closer look to this configurations just rotate around

one axis to evaluate the kinematic index performance. Optimized 6-RUS

114 Chapter 6. Orientation Workspace Optimization For a 6-RUS Parallel Robot

Table 8 – 6-RUS optimized parameters.

Symbol Value Geometric Parameter
rp 0.1972 End-Effector Radius
e 0.0766 HDBjoint (End-Effector)
d 0.0501 HDBact (Base)

Source: Own author.

performance in rotation in Y axis shows that the minimum work index value

remains suitable until 60◦ of rotation around this axis, see (Figure 37), however

polar graphic has a max rotation of 57◦ in this axis, so it fails due in some

constraint.

Figure 37 – Direct singularity index for Y rotation, see red arrow.

Source: Own author.

Considering the 6-RUS optimized robot movement around Y axis, it

is possible to observe that some pair of limbs, about 57◦ collided, see Figure

38 for the minimum distance between any pair of limbs (MDBL), therefore

the movement limited due limbs proximity/collision. See Figure 39 to verify

the minimum distance between any pair of cranks (MDBC), remain constant

6.5. Optimization Result and Kinematic Analysis 115

Figure 38 – Passive links minimum distance.

Source: Own author.

Figure 39 – Cranks minimum distance, see red arrow.

Source: Own author.

i.e. the cranks do not have any problem with collision due this movement.

Distance between cranks d distance remains constant. Another con-

straint to analyze is the inverse singularity proximity index, which fails about

65◦, meaning that some limb or limbs are fully extended or contracted. There-

fore some discontinuity in the crank movement may be seen, see (Figure 41

and 42). In the neighborhood of 65◦ the cranks movement has a discontinuity

116 Chapter 6. Orientation Workspace Optimization For a 6-RUS Parallel Robot

Figure 40 – Inverse singularity constraint for Y rotation, see red arrow.

Source: Own author.

which means it reached the physical limit.

Figure 41 – Crank 1 movement for Y rotation, see red arrow.

Source: Own author.

6.5.2 Software Tool: ADAMS

This section presents CAE (Computed Aided Engineering) model

analyses for IWF-robot and CEART-robot to confirm the developed algorithm

results. Using the optimized parameters a CAE model for ADAMS is built to

6.5. Optimization Result and Kinematic Analysis 117

Figure 42 – Crank 6 movement for Y rotation, see red arrow.

Source: Own author.

analyze 6-RUS optimized configuration. This parametric model is developed

to enable the robot configuration update from a script. This script accesses

another .cmd file containing the positions of the points Ai, Bi, Ci and the

orientation of active joints to define 6-RUS in a new configuration. Then the

optimized 6-RUS model is analyzed to verify the direct singularity and inverse

singularity proximity.

ADAMS (acronym of Automated Dynamic Analysis of Mechanical

Systems) is a multibody dynamics simulation software equipped with Fortran

and C++ numerical solvers. ADAMS was originally developed by Mechan-

ical Dynamics Incorporation which then was acquired by MSC Software

Corporation.

6.5.2.1 CAE Analyze: IWF-robot

Direct singularity problems mean that even with totally fixed limbs,

there is an end-effector motion that may not be prevented. Therefore, in direct

singular position, if forces/torques are applied to mobile end-effector, high

118 Chapter 6. Orientation Workspace Optimization For a 6-RUS Parallel Robot

magnitude reaction force/torques may be appear in robot actuators. IWF-robot

CAE layout may seen in Figure 43.

Figure 43 – IWF-robot layout in ADAMS.

Source: Own author.

Constant torques in all axis are applied in IWF-robot end-effector

in original position. The magnitude of the reaction forces is smaller them

100 Newtons (see Figure 44). The same constant torques are applied in IWF-

robot end-effector into a singular position. As expected the reaction forces are

significantly greater in magnitude, up to approximately 5000 Newtons (see

Figure 45).

Figure 44 – IWF-robot torque application in initial position.

Source: Own author.

6.5. Optimization Result and Kinematic Analysis 119

Figure 45 – IWF-robot torque application near direct singularity.

Source: Own author.

6.5.2.2 CAE Analyze: CEART-robot

CEART-robot have inverse singularity issues as Matlab demonstrates,

see Section 6.3.2. Inverse singularity may be detected by ADAMS executing

a movement until singular position. The CAE models movement should be

the same as performed by program. CEART-robot CAE layout may seen in

Figure 46.

Figure 46 – CEART-robot layout in ADAMS.

Source: Own author.

120 Chapter 6. Orientation Workspace Optimization For a 6-RUS Parallel Robot

Figure 47 shows that Cranks 3 and 4 have discontinuities in their

movements at similar rotation angle 25◦. Which means the legs are fully

extended and ADAMS may automatic detect the inverse singularity when if

some CAE model joint broken.

Figure 47 – CEART-robot rotation in Y axis, inverse singularity near 25◦.

Source: Own author.

6.5.2.3 CAE Analyze: Optimized 6-RUS Robot

Optimized 6-RUS layout from ADAMS verified presents almost a

symmetrical configuration (see Figure 48). As in Section 6.5.1, may verify the

optimization results consistency, analyze the direct singularity proximity and

the inverse singularity constraint, during Y rotation.

Constant torques are applied in Optimized 6-RUS end-effector in a

singular position. As expected reaction forces reached high magnitudes, up to

approximately 40000 Newtons, see (Figure 49).

As Figure 50 show that Cranks 1 and 6 have discontinuities in there

movement at similar rotation angle, about 65◦, the robot reach inverse singular

position. Therefore the CAE model demonstrated that Matlab algorithm have

kinematic consistency.

6.5. Optimization Result and Kinematic Analysis 121

Figure 48 – Optimized 6-RUS layout in ADAMS.

Source: Own author.

Figure 49 – Optimized 6-RUS robot torque application near direct singularity.

Source: Own author.

Figure 50 – Optimized 6-RUS movement for Y rotation.

Source: Own author.

123

7 CONCLUSIONS

This work presents a procedure to 6-RUS robot optimization to be

used as flight simulator. This optimization method is based on direct/inverse

singularity closeness and collision avoidance in order to maximize a 6-RUS

parallel robot end-effector orientation, it is presented and verified using com-

mercial CAE software. This method has direct application in flight simulators

based on 6-RUS parallel robot where high orientation is an important project

parameter. In order to obtain the optimum robot, some geometrical parameters

are modified like, active joints location, the end-effector radius and end-effector

height. The obtained robot is compared with IWF-robot and CEART-robot and

a considerable advantage may be observed in the CAE software evaluation.

The model built by Ceart is taken as base, therefore the size should be

similar. It is shown that IWF-robot also belongs to the same family of CEART-

robot, but it has distinct performances, which motivate the optimization of

6-RUS configuration in order to work as flight simulation. The proposed task

is maximize the rotation of the end-effector around all axes in XY plane.

Therefore the orientation workspace should be optimized. The optimization is

performed using the PSO based algorithm, in order to escape from local min-

ima. The FMINCON function, configured to use the interior point algorithm

is employed to accelerate the search for bottom of the valley indicated by the

PSO as the best particles locations.

The optimized robot has better performance than both models men-

tioned above. Additionally, the CAE model in ADAMS demonstrated, through

simulation, that the optimization method developed is consistent. It is observed

124 Chapter 7. Conclusions

that symmetrical results are related in some way with crank and passive link

radius, since these bodies may collide.

Just some parameters of 6-RUS kinematic chain are optimized, there-

fore a more complex optimization may applied. The relationship between

optimized non-symmetrical models and constraints may produce another anal-

ysis. Further studies about the kinematic relations and the forward kinematics

index in this robot are interesting topics, as an extension of this work.

Some important points are the apparent between both relationship

among forward kinematics index and the inverse kinematics constraint, and

the mobile end-effector size. This relationship may be observed in three points:

IWF robot configuration with little end-effector (compared with basis) have

problem with direct singularity. In the Ceart robot bigger than IWF-robot

mobile end-effector presents problems due to inverse singularity. Additionally,

the optimized has a significantly larger end-effector than the IWF-robot. But

smaller end-effector than CEART robot. However the range that show direct

and inverse singularities are nearly the same.

This work motivates to build a real model with optimized config-

urations and develop studies also in other important areas such dynamics

(rigid body movements). Other considerations on a prototype structure are the

stiffness and the joints clearance that mayalso be considered in future works.

125

REFERENCE
BALL, R. S. A Treatise on the Theory of Screws. Cambridge: Cambridge
University Press, 1900. ISBN 0521636507 -reedicao 1998. Cited 2 times in
pages 33 and 42.

BARBOSA, M. R.; PIRES, E. S.; LOPES, A. M. Design optimization of a
parallel manipulator based on evolutionary algorithms. v. 73, pp, p. 79?86,
2005. Cited in page 30.

BONEV, I. A. Geometric analysis of parallel mechanisms. [S.l.: s.n.], 2003.
75–81 p. Cited in page 33.

BROGARDH, T. Pkm research-important issues, as seen from a product
development perspective at abb robotics. In: Workshop on Fundamental Issues
and Future Research Directions for Parallel Mechanisms and Manipulators,
Quebec, Canada. [S.l.: s.n.], 2002. Cited in page 29.

CAMPOS, A. Cálculo da Matriz Cinemática de Rede do Manipulador
Paralelo 3RRR baseado na Lei de Kirchhoff e na Teoria de Helicóides.
Florianópolis, SC, 2001. Cited in page 33.

CAMPOS, A. et al. Inverse kinematics for general 6-rus parallel robots
applied on udesc-ceart flight simulator. In: ABCM Symposium Series in
Mechatronics. [S.l.]: ABCM, Rio de Janeiro, RJ, Brazil, 2014. v. 6, p.
PI.SIII.09,(456–464). Cited in page 97.

CAMPOS, A.; GUENTHER, R.; MARTINS, D. Differential kinematics of
serial manipulators using virtual chains. Journal of the Brazilian Society of
Mechanical Sciences and Engineering, SciELO Brasil, v. 27, p. 345–356,
2005. Cited in page 63.

CAMPOS, A. et al. Base angular layout optimization of the hexa parallel
robot based on a singularity index. In: 21st International Congress of
Mechanical Engineering, October, 24th-28th, Natal, Rio Grande do Norte,
Brazil. [S.l.: s.n.], 2011. Cited 4 times in pages 37, 38, 43, and 102.

CLERC, M.; KENNEDY, J. The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. Evolutionary Computation,
IEEE Transactions on, IEEE, v. 6, n. 1, p. 58–73, 2002. Cited in page 86.

DANDURAND, A. The rigidity of compound spatial grids. Structural
Topology, n. 10, 1984. Cited in page 65.

DANIALI, H. R. M.; ZSOMBOR-MURRAY, P. J.; ANGELES, J. Singularity
analysis of planar parallel manipulators. Mechanism and Machine Theory,
v. 30, n. 5, p. 665–678, 1995. Cited 2 times in pages 60 and 64.

126 Reference

DAVIDSON, J. K.; HUNT, K. H. Robots and Screw Theory. [S.l.]: Oxford
University Press, 2004. Cited in page 58.

DAVIDSON, J. K.; HUNT, K. H. Robots and Screw Theory: Applications of
Kinematics and Statics to Robotics. Nova Iorque: Oxford University Press
Inc., 2004. ISBN 0-19-856245-4. Cited in page 62.

DONCKELS, B. Particle Swarm Optimization, Shuffled Complex Evolution
and SIMPSA (Nonlinear Simplex + Simulated Annealing). 2006. Disponível
em: <http://biomath.ugent.be/~brecht/index.html>. Cited in page 85.

DUFFY, J. The fallacy of modern hybrid control theory that is based on
’orthogonal complements’ of twist and wrench space. Journal of Robotic
Systems, v. 7, n. 2, p. 139–144, 1990. Cited in page 68.

FICHTER, E. F. A stewart platform-based manipulator: general theory and
practical construction. The International Journal of Robotics Research, Sage
Publications, v. 5, n. 2, p. 157–182, 1986. Cited 2 times in pages 33 and 64.

FORSGREN, A.; GILL, P. E.; WRIGHT, M. H. Interior methods for nonlinear
optimization. SIAM review, SIAM, v. 44, n. 4, p. 525–597, 2002. Cited in
page 90.

FURTADO, C.; CAMPOS, A.; REIS, A. Orientation workspace optimization
for a 6-rus parallel robot. In: ABCM Symposium Series in Mechatronics. [S.l.]:
ABCM, Rio de Janeiro, RJ, Brazil, 2014. v. 6, p. PII.SIII.09,(1075–1084).
Cited 3 times in pages 32, 36, and 97.

GOSSELIN, C. Kinematic analysis, optimization and programming of parallel
robotic manipulators. Journal of Mechanical Design, American Society of
Mechanical Engineers, v. 110, p. 35–41, 1988. Cited 3 times in pages 57, 59,
and 60.

HAO, F.; MCCARTHY, J. Conditions for line-based singularities in spatial
platform manipulators. J. Rob. Syst., v. 15, n. 1, p. 43–55, 1998. Cited 2 times
in pages 65 and 67.

HESSELBACH, J. et al. Direct kinematic singularity detection of a hexa
parallel robot. Submited to ICRA2005, IEEE. Cited in page 82.

HUNT, K. H. Kinematic Geometry of Mechanisms. Oxford: Clarendon Press,
1978. Cited in page 64.

HUNT, K. H. Structural kinematics of in-parallel-actuated robot-arms. Trans.
ASME, Journal of Mechanisms, Transmissions and Design, v. 105, p. 705–712,
Dec 1983. Cited 2 times in pages 33 and 34.

http://biomath.ugent.be/~brecht/index.html

Reference 127

HUNT, K. H. Kinematic geometry of mechanisms. [S.l.]: Clarendon Press
Oxford, 1990. Cited in page 67.

HUNT, K. H. Review: Don’t cross-thread the screw!*. Journal of Robotic
Systems, Wiley Online Library, v. 20, n. 7, p. 317–339, 2003. Cited 4 times in
pages 38, 40, 41, and 42.

KACHITVICHYANUKUL, V. Comparison of three evolutionary algorithms:
Ga, pso, and de. Industrial Engineering & Management Systems, v. 11, n. 3, p.
215–223, 2012. Cited in page 88.

KARMARKAR, N. A new polynomial-time algorithm for linear programming.
In: ACM. Proceedings of the sixteenth annual ACM symposium on Theory of
computing. [S.l.], 1984. p. 302–311. Cited in page 90.

KELAIAIA, R.; ZAATRI, A. et al. Multiobjective optimization of a linear
delta parallel robot. Mechanism and Machine Theory, Elsevier, v. 50, p.
159–178, 2012. Cited 2 times in pages 30 and 79.

KENNEDY, J. F.; KENNEDY, J.; EBERHART, R. C. Swarm intelligence.
[S.l.]: Morgan Kaufmann, 2001. Cited 2 times in pages 85 and 86.

LAST, P. et al. Hexa-parallel-structure calibration by means of angular
passive joint sensors. In: IEEE. Mechatronics and Automation, 2005 IEEE
International Conference. [S.l.], 2005. v. 3, p. 1300–1305. Cited 3 times in
pages 35, 82, and 98.

LIPKIN, H.; DUFFY, J. Hybrid twist and wrench control for a robotic
manipulator. Trans. ASME, Journal of Mechanisms, Transmissions and
Design, v. 110, p. 138–144, June 1988. Cited in page 68.

LIU, K. et al. The singularities and dynamics of a stewart platform
manipulator. Journal of Intelligent and Robotic Systems, Springer, v. 8, n. 3, p.
287–308, 1993. Cited in page 64.

MEHROTRA, S. On the implementation of a primal-dual interior point
method. SIAM Journal on optimization, SIAM, v. 2, n. 4, p. 575–601, 1992.
Cited in page 91.

MENEZES, A. J.; OORSCHOT, P. C. V.; VANSTONE, S. A. Handbook of
applied cryptography. [S.l.]: CRC press, 1996. Cited in page 94.

MERLET, J. Parallel Robots. [S.l.]: Kluwer Academic Publisher, 2000. Cited
6 times in pages 34, 58, 62, 64, 65, and 66.

128 Reference

MERLET, J. P. Singular configurations of parallel manipulators and Grassman
geometry. International Journal of Robotics Research, v. 8, n. 5, 1989. Cited
2 times in pages 65 and 67.

MERLET, J.-P. Parallel robots. [S.l.: s.n.], 2001. v. 74. Cited in page 33.

MERLET, J.-P. Jacobian, manipulability, condition number, and accuracy
of parallel robots. Journal of Mechanical Design, American Society of
Mechanical Engineers, v. 128, n. 1, p. 199–206, 2006. Cited in page 30.

MERLET, J.-P. Parallel robots. [S.l.]: Springer Science & Business Media,
2012. v. 74. Cited 2 times in pages 29 and 30.

MURRAY, R. M.; LI, Z.; SASTRY, S. S. A Mathematical Introduction to
Robotic Manipulation. Ann Arbor: CRC Press, 1994. Cited in page 68.

PIERROT, F. A new design of a 6-dof parallel robot. J. of Robotics and
Mechatronics, v. 2, n. 4, p. 308–315, 1990. Cited in page 34.

POINSOT, L. Sur la composition des moments et la composition des aires. J.
Éc Polyt. Paris, v. 6, p. 182–205, 1806. Cited in page 40.

POTTMANN, H.; PETERNELL, M.; RAVANI, B. Approximation in
line space—applications in robot kinematics and surface reconstruction.
In: Advances in robot kinematics: analysis and control (Salzburg, 1998).
dordrecht: Kluwer Acad. Publ., 1998. p. 403–412. Cited 3 times in pages 69,
71, and 75.

RAO, S. S.; RAO, S. Engineering optimization: theory and practice. [S.l.]:
John Wiley & Sons, 2009. Cited in page 85.

SCHUTTE, J. F.; GROENWOLD, A. A. A study of global optimization using
particle swarms. Journal of Global Optimization, Springer, v. 31, n. 1, p.
93–108, 2005. Cited in page 89.

SCIAVICCO, L.; SICILIANO, B. Modeling and Control of Robot
Manipulators. [S.l.]: McGraw-Hill, 1996. (Electrical and Computer
Engineering). ISBN 0070572178. Cited 2 times in pages 47 and 59.

SICILIANO, B. et al. Robotics: Modelling, Planning and Control.
Springer London, 2010. (Advanced Textbooks in Control and
Signal Processing). ISBN 9781846286414. Disponível em: <https:
//books.google.com.br/books?id=jPCAFmE-logC>. Cited 2 times in pages
30 and 31.

https://books.google.com.br/books?id=jPCAFmE-logC
https://books.google.com.br/books?id=jPCAFmE-logC

Reference 129

STAN, S.-D.; MATIES, V.; BALAN, R. Multi-objective design optimisation
of a planar micro parallel robot using genetic algorithms. Journal of Control
Engineering and Applied Informatics, v. 9, n. 1, p. 41–46, 2007. Cited in
page 30.

TAHMASEBI, F. Kinematic Synthesis and Analysis of a Novel Class of
Six-DOF Parallel Minimanipulators. Tese (Doutorado) — The University of
Maryland, 1992. Cited in page 64.

TSAI, L.-W. Robot Analysis: the Mechanics of serial and parallel
manipulators. New York: John Wiley & Sons, 1999. ISBN 0-471-32593-7.
Cited 6 times in pages 43, 57, 58, 59, 60, and 62.

VOGLEWEDE, P. Measuring Closeness to Singularities of Parallel
Manipulators with Application to the Design of Redundant Actuation. Tese
(Doutorado) — George W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology, 2004. Cited 7 times in pages 60, 67, 69, 71,
73, 74, and 76.

WANG, L.; ZHENG, D.-Z. An effective hybrid optimization strategy for
job-shop scheduling problems. Computers & Operations Research , Elsevier,
v. 28, n. 6, p. 585–596, 2001. Cited in page 95.

WOLF, A.; SHOHAM, M. Investigation of parallel manipulators using linear
complex approximation. ASME, Journal of Mechanical Design, v. 125, n. 3, p.
564–572, 2003. Cited 2 times in pages 70 and 71.

WOLF, A.; SHOHAM, M. Investigation of parallel manipulators using linear
complex approximation. Journal of Mechanical Design, American Society of
Mechanical Engineers, v. 125, n. 3, p. 564–572, 2003. Cited in page 75.

XU, Y. X.; KOHLI, D.; WENG, T. C. Direct differential kinematics of
hybrid-chain manipulators including singularity and stability analyses.
Journal of Mechanical Design, v. 116, n. 2, p. 614–621, jun. 1994. Cited in
page 64.

YOSHIKAWA, T. Foundations of Robotics: Analysis and Control. [S.l.]: MIT
Press, 1990. Cited in page 68.

ZABALZA, I. et al. Total and partial stationary configurations for a 6-rus
hunt-type parallel manipulator. In: Proceedings of the 11th world congress in
mechanism and machine science, IFTOMM. [S.l.: s.n.], 2003. p. 18–21. Cited
in page 34.

ZHANG, D. Global stiffness optimization of parallel robots using kinetostatic
performance indices. 2010. Cited in page 30.

131

8 APPENDIX A: MATLAB ALGORITHM

The Appendix A presents the kinematical and screw based algorithm

developed in Matlab by this work and also the optimization method with all

sub programs.

8.1 Main Program

clear all

%---------------------- MAIN ------------------

%-------------------- PROGRAM ----------------

%---- INDEX Based in Work --------------------------

global limit_cine_dire;

% --

%---- INDEX Based in Work Limit Value --------------

limit_cine_dire=0.0293;

% --

% ----- CONSTRAINS LIMITS --------------------------

global limit_cine_inv;

132 Chapter 8. Appendix A: Matlab algorithm

global limit_dist_limb;

global limit_crank;

% ---

% ---- CONSTRAINS LIMITS VALUES --------------------

limit_dist_limb=0.03; % limbs collision

limit_crank=0.031; % Cranks collision

limit_cine_inv=1; % Inverse Kinematics

%--

%---------------------- START ------------

%------------------- OPTIMIZATION ------

% ------------------- Inicial Values ---------------

%X0=[Beta1 Beta2 Beta3 Beta4 Beta5 Beta6 rP e f Z];

X0=[66 160 180 284 302 44 0.1972 0.0766 0.0501 0.4042];

% -------------------Superior Limit -----------------

Lb=[0,0,0,0,0,0,0.1,0.01,0.01,0.2];

% -------------------Inferior Limit -----------------

Ub=[360,360,360,360,360,360,0.7,0.7,0.7,0.8];

% --

8.1. Main Program 133

%---------------------- START -------------

%----------------------- PSO --------------

%-------------------- PSO Configuration --------

options = PSOSET(’SWARM_SIZE’, 30 ,’MAX_ITER’,3000,

’COGNITIVE_ACC’,2.8, ’SOCIAL_ACC’,1.3);

%---------------------------PSO-------------

[X1 , Fval] = PSO(’Prog_1’,X0,Lb,Ub,options);

%-------------------------- END PSO ---------

%--

e_inicial=X1;

%---

%---------------------- START -------------

%--------------------- FMINCON ------------

%---

%-------------------- FMINCON Configuration ---

%---

options2 = optimset(’Algorithm’,’interior-point’,

134 Chapter 8. Appendix A: Matlab algorithm

’Display’,’iter’,’GradObj’,’on’,’TolFun’,1.5,

’AlwaysHonorConstraints’, ’none’,’Display’,

’iter’,’PlotFcns’,{@optimplotx, @optimplotfval,

@optimplotconstrviolation,

@optimplotfirstorderopt,@optimplotstepsize},

’InitBarrierParam’,0.05);

%---------------------------FMINCON ----------------

[X2 xfval exitflag output] =fmincon(@Prog_2,

e_inicial,[],[],[],[],[0 0 0 0 0 0 0.1 0.1

0.02 0.1], [360 360 360 360 360 360 1 1 1 1],

@Constrain_grad,options2);

%---

%-------------------------- END FMINCON ------------

%---

%---

%--------------------- END OPTIMIZATION ------------

%---

8.2. Program 1 135

8.2 Program 1

function Y = Prog_1(X)

% Return Program 10 Result in Y

Y=Kinematic_Program(10,X);

end

136 Chapter 8. Appendix A: Matlab algorithm

8.3 Kinematic and Screw Based Program

function W = Kinematic_Program(prog,X)

rad = pi/180;

%---- INDEX Based in Work ------------------

global limit_cine_dire;

% ----- CONSTRAINS LIMITS ------------------

global limit_cine_inv;

global limit_dist_limb;

global limit_crank;

% --

for alpha=0:1:360

delta=(alpha)*rad;

Fun_Obja=50;

FDE_R=5;

for kappa=0:1:120

hhh=hhh+1;

%--

%Given Position of the TCP in [m] and [degrees]

8.3. Kinematic and Screw Based Program 137

%--

TCP=[0 0 -X(10) (kappa*cos(delta)) (kappa*sin(delta)) 0]’;

%--

% TCP angles from degrees to radians

%--

TCP(4) = TCP(4) *rad;

TCP(5) = TCP(5) *rad;

TCP(6) = TCP(6) *rad;

%%%%%%%%%%% CEART’S FLIGHT SIMULATOR DATA %%%%%%%%%

rB = 0.636885;% radius of the Base [m] % (rB)

li = 0.194; % length of the first link [m]% (li)

Li = 0.650; % length of the passive link [m] % (Li)

xsi(1:6) = [0 120 120 240 240 0]*rad;

%%%%%%%%%%%%%%%%%%%%%%% OPTIMIZATION PARAMETERS %%%%%%%

rP = X(7);%radius of the moving plattform[m]%(rP)

e = X(8);%half distance between actuators[m]%(e)

138 Chapter 8. Appendix A: Matlab algorithm

f = X(9);%half distance between joints[m]%(f)

zeta(1:6) = [X(1) X(2) X(3) X(4) X(5) X(6)]*rad;

PTCP= [0 0 0]’;

cXsi = cos(xsi);

sXsi = sin(xsi);

cZeta= cos(zeta);

sZeta= sin(zeta);

%---

% Computation of the plattform vectors from the middle

% ------to the actuators/joints---------------------

%---

for i=1:6

m = (-1)^(i-1)*e;

n = (-1)^(i-1)*f;

A(:,i) = [rB*cos(xsi(i))-m*sin(xsi(i)); ...

rB*sin(xsi(i))+m*cos(xsi(i)); 0];

8.3. Kinematic and Screw Based Program 139

P(:,i) = [rP*cos(xsi(i))-n*sin(xsi(i)); ...

rP*sin(xsi(i))+n*cos(xsi(i)); 0] - PTCP;

end

%--

cosPsi = cos(TCP(4));

sinPsi = sin(TCP(4));

cosTheta = cos(TCP(5));

sinTheta = sin(TCP(5));

cosPhi = cos(TCP(6));

sinPhi = sin(TCP(6));

Rot=[cosPhi*cosTheta cosPhi*sinTheta*sinPsi-sinPhi*cosPsi

cosPhi*sinTheta*cosPsi+sinPhi*sinPsi;

sinPhi*cosTheta sinPhi*sinTheta*sinPsi+cosPhi*cosPsi

sinPhi*sinTheta*cosPsi-cosPhi*sinPsi;

-sinTheta cosTheta*sinPsi cosTheta*cosPsi];

C = Rot * P;

% ---------------------------------

% ---- Begin IKP HexaII -----------

140 Chapter 8. Appendix A: Matlab algorithm

% ---------------------------------

for i=1:6

IKP_g = A(:,i) - C(:,i) - TCP(1:3);

IKP_u = 2*li*(IKP_g(1)*cZeta(i) + IKP_g(2)*sZeta(i));

IKP_v = -2 * li * IKP_g(3);

IKP_w = li^2-li^2-IKP_g(1)^2-IKP_g(2)^2-IKP_g(3)^2;

IKP_N = real(sqrt(IKP_u^2 + IKP_v^2 - IKP_w^2));

aaa=IKP_u^2 + IKP_v^2;

bbb=IKP_w^2;

ccc(i,1)=aaa/bbb;

%---

q(i,1) = pi - atan2(IKP_w, IKP_N) - atan2(IKP_u, IKP_v);

if (i==1 | i==3 | i==5)

q(i,1) = pi/2 - atan2(IKP_N,IKP_w) - atan2(IKP_u,IKP_v);

end

%---

8.3. Kinematic and Screw Based Program 141

end

% --

% ---- End IKP RUS -------------------------------------

% --

% --

% ---- Begin Jacobian Matrix --------------------------

toleranz = 1e-6;

for i=1:6

b(:,i) = [cos(zeta(i))*cos(q(i)); sin(zeta(i))*cos(q(i));

-sin(q(i))]*li;

end

B = b + A;

TCPMatlix = repmat(TCP(1:3),1,6);

c = -TCPMatlix - C + B;

%--

% Differentation of the Kardan angles with Sciavicco

%--

DkardanDPsi = [0

cosPhi*sinTheta*cosPsi+sinPhi*sinPsi

142 Chapter 8. Appendix A: Matlab algorithm

-cosPhi*sinTheta*sinPsi+sinPhi*cosPsi;

0

sinPhi*sinTheta*cosPsi-cosPhi*sinPsi

-sinPhi*sinTheta*sinPsi-cosPhi*cosPsi;

0

cosTheta*cosPsi -cosTheta*sinPsi];

DkardanDTheta =[-cosPhi*sinTheta cosPhi*cosTheta*sinPsi

cosPhi*cosTheta*cosPsi; -sinPhi*sinTheta

sinPhi*cosTheta*sinPsi sinPhi*cosTheta*cosPsi;

-cosTheta -sinTheta*sinPsi -sinTheta*cosPsi];

DkardanDPhi = [-sinPhi*cosTheta

-sinPhi*sinTheta*sinPsi-cosPhi*cosPsi

-sinPhi*sinTheta*cosPsi+cosPhi*sinPsi;

cosPhi*cosTheta cosPhi*sinTheta*sinPsi-sinPhi*cosPsi

cosPhi*sinTheta*cosPsi+sinPhi*sinPsi;

0 0 0];

JacobiMatlix = -2 * c’;

for i=1:6

JacobiMatlix(i,4)=JacobiMatlix(i,1:3)*DkardanDPsi*P(:,i);

JacobiMatlix(i,5)=JacobiMatlix(i,1:3)*DkardanDTheta*P(:,i);

JacobiMatlix(i,6)=JacobiMatlix(i,1:3)*DkardanDPhi*P(:,i);

8.3. Kinematic and Screw Based Program 143

end

% ---

% ---- End Jacobian Matrix ---------------------------

% ---

%---

%Vector from Base to the Point Ci

%---

CiWKS = C + TCPMatlix;

%--

%--

%Vector from point Bi to Ci

%--

Bi_Ci_WKS = CiWKS - B;

%--

%the given lines which are the wrenches in axis-order

%--

n=norm(Bi_Ci_WKS(:,1));

L_1=[cross(CiWKS(:,1),Bi_Ci_WKS(:,1));...

144 Chapter 8. Appendix A: Matlab algorithm

Bi_Ci_WKS(:,1)]/n;

L_2=[cross(CiWKS(:,2),Bi_Ci_WKS(:,2));...

Bi_Ci_WKS(:,2)]/n;

L_3=[cross(CiWKS(:,3),Bi_Ci_WKS(:,3));...

Bi_Ci_WKS(:,3)]/n;

L_4=[cross(CiWKS(:,4),Bi_Ci_WKS(:,4));...

Bi_Ci_WKS(:,4)]/n;

L_5=[cross(CiWKS(:,5),Bi_Ci_WKS(:,5));...

Bi_Ci_WKS(:,5)]/n;

L_6=[cross(CiWKS(:,6),Bi_Ci_WKS(:,6));...

Bi_Ci_WKS(:,6)]/n;

%--

%The Gramian matrix which represents the set of lines

%--

M=L_1*L_1’+L_2*L_2’+L_3*L_3’+L_4*L_4’+L_5*L_5’+L_6*L_6’;

%--

%--

%Matrix with the diagonal elements:

%--

D = eye(3);

D(6,6) = 0;

8.3. Kinematic and Screw Based Program 145

%--

%The determinant has to become zero

%--

de=det(M);

%--

%MMM defines the eigenvalue problem

%--

MMM=inv(M)*D;

%--

%%%

% Solving the eigenvalue problem

%%%

[evect,eval]=eig(MMM);

desvi_std=sqrt(eval(4,4)+eval(5,5)+eval(6,6));

%---

%seperate the maximum eigenvalue and his eigenvector

%---

146 Chapter 8. Appendix A: Matlab algorithm

[max_auto, pos_max_auto]=max(max(eval));

%--

%The distance of the eigenvector to the set of lines

% is the work

%--

lam=1/max_auto;

%--

%The following equations are needed to draw the axis

%of the founded screw the relationship between the angle

%velocity and the velocity around the screw axis defines

%the pitch of the screw

%--

Complx=evect(:,pos_max_auto);

%--

%Here are the components of the screw

%--

dire_C=[Complx(1) Complx(2) Complx(3)];

mome_C=[Complx(4) Complx(5) Complx(6)];

8.3. Kinematic and Screw Based Program 147

%----limbs and Cranks Colission ---------------------

A_A = [1, A(1,1),A(2,1),A(3,1);...

2, A(1,2),A(2,2),A(3,2);...

3, A(1,3),A(2,3),A(3,3);...

4, A(1,4),A(2,4),A(3,4);...

5, A(1,5),A(2,5),A(3,5);...

6, A(1,6),A(2,6),A(3,6)];

A_B = [1, B(1,1),B(2,1),B(3,1);...

2, B(1,2),B(2,2),B(3,2);...

3, B(1,3),B(2,3),B(3,3);...

4, B(1,4),B(2,4),B(3,4);...

5, B(1,5),B(2,5),B(3,5);...

6, B(1,6),B(2,6),B(3,6)];

A_C = [1, CiWKS(1,1),CiWKS(2,1),CiWKS(3,1);...

2, CiWKS(1,2),CiWKS(2,2),CiWKS(3,2);...

3, CiWKS(1,3),CiWKS(2,3),CiWKS(3,3);...

4, CiWKS(1,4),CiWKS(2,4),CiWKS(3,4);...

5, CiWKS(1,5),CiWKS(2,5),CiWKS(3,5);...

6, CiWKS(1,6),CiWKS(2,6),CiWKS(3,6)];

% ------------ limb 1 and 6 ----------------------

148 Chapter 8. Appendix A: Matlab algorithm

V_1=CiWKS(:,1)-B(:,1);

V_6=CiWKS(:,6)-B(:,6);

a1_6=B(:,6)-B(:,1);

N1_6=cross(V_1,V_6);

N_uni1_6=(N1_6)/norm(N1_6);

Dist1_6=norm(a1_6’*N_uni1_6);%Distancia entre limbs

% Cacula pontos

[A1e6,B1e6,C1e6,D1e6]=

Calcula_pontos_ABCD_1e6(li,e,zeta(1),zeta(6));

% crank 1 e 6

[distance1e6 varargout1e6]=

DistBetween2Segment(A1e6, B1e6, C1e6, D1e6);

%--

% ------------ limb 2 and 3 ----------------------

V_2=CiWKS(:,2)-B(:,2);

V_3=CiWKS(:,3)-B(:,3);

a2_3=B(:,3)-B(:,2);

8.3. Kinematic and Screw Based Program 149

N2_3=cross(V_2,V_3);

N_uni2_3=(N2_3)/norm(N2_3);

Dist2_3=norm(a2_3’*N_uni2_3); % Distancia entre limbs

% Cacula pontos

[A2e3,B2e3,C2e3,D2e3]=

Calcula_pontos_ABCD_2e3(li,e,zeta(2),zeta(3));

% crank 2 e 3

[distance2e3 varargout2e3]=

DistBetween2Segment(A2e3, B2e3, C2e3, D2e3);

%---

% ------------ limb 4 and 5 ----------------------

V_4=CiWKS(:,4)-B(:,4);

V_5=CiWKS(:,5)-B(:,5);

a4_5=B(:,5)-B(:,4);

N4_5=cross(V_4,V_5);

N_uni4_5=(N4_5)/norm(N4_5);

Dist4_5=norm(a4_5’*N_uni4_5); % Distancia entre limbs

% Cacula pontos

150 Chapter 8. Appendix A: Matlab algorithm

[A4e5,B4e5,C4e5,D4e5]=

Calcula_pontos_ABCD_4e5(li,e,zeta(4),zeta(5));

% crank 4 e 5

[distance4e5 varargout4e5]=

DistBetween2Segment(A4e5, B4e5, C4e5, D4e5);

%--

%--- INDEX Based in Work -----------------

work=sqrt(lam);

%%

%--- Inversa Kinematic -------------------

ICI=min(ccc);

%%

%--- Distancia entre limbs --------------

Dist=[Dist1_6 Dist2_3 Dist4_5];

dist=min(Dist);

%%%

% --- Cranks Colission--------------

8.3. Kinematic and Screw Based Program 151

EPS=[distance1e6 distance2e3 distance4e5];

eps=min(EPS);

%%

% ----- CONSTRAINS LIMITS ---------------------

if (dist<limit_dist_limb)

Fun_Obja=hh;

FDE_R=1;

break;

end

if (eps<limit_crank)

Fun_Obja=hh;

FDE_R=2;

break;

end

if (ICI<limit_cine_inv)

Fun_Obja=hh;

FDE_R=3;

break;

end

152 Chapter 8. Appendix A: Matlab algorithm

%---- INDEX Based in Work Limit Value ------------

if (work<limit_cine_dire)

Fun_Obja=hh;

FDE_R=4;

break;

end

end

Work(alpha+1)=work;

VICI(alpha+1)=ICI;

DDist(alpha+1)=dist;

EEps(alpha+1)=eps;

Fun_Objb(alpha+1)=Fun_Obja;

FER(alpha+1)=FDE_R;

end

[Fun_ObjP,I]=min(Fun_Objb);

IWork=Work(I);

IICI=VICI(I);

Idist=DDist(I);

Ieps=EEps(I);

8.3. Kinematic and Screw Based Program 153

IFDER=FER(I)

if(prog==5)

W=Idist;

if(prog==6)

W=Ieps;

if(prog==7)

W=IWork;

if(prog==8)

W=IICI;

elseif(prog==10)

W=-Fun_ObjP;

end

154 Chapter 8. Appendix A: Matlab algorithm

8.4 Program 2

function [F,G] = Prog_2(e)

F=Prog_1(e);

% Return Gradient of Function Objective

G=F_Diff_Function_Obj(e);

end

8.5. Function Objective Gradient 155

8.5 Function Objective Gradient

function dwde = F_Diff_Function_Obj(e)

delta_e=[1 1 1 1 1 1 5e-2 5e-2 5e-2 5e-2];

lam_e_mais_e_1=Prog_1(e+[delta_e(1) 0 0 0 0

0 0 0 0 0]);

lam_e_menos_e_1=Prog_1(e-[delta_e(1) 0 0 0 0

0 0 0 0 0]);

lam_e_mais_e_2=Prog_1(e+[0 delta_e(2) 0 0 0

0 0 0 0 0]);

lam_e_menos_e_2=Prog_1(e-[0 delta_e(2) 0 0 0

0 0 0 0 0]);

lam_e_mais_e_3=Prog_1(e+[0 0 delta_e(3) 0 0

0 0 0 0 0]);

lam_e_menos_e_3=Prog_1(e-[0 0 delta_e(3) 0 0

0 0 0 0 0]);

lam_e_mais_e_4=Prog_1(e+[0 0 0 delta_e(4) 0

156 Chapter 8. Appendix A: Matlab algorithm

0 0 0 0 0]);

lam_e_menos_e_4=Prog_1(e-[0 0 0 delta_e(4) 0

0 0 0 0 0]);

lam_e_mais_e_5=Prog_1(e+[0 0 0 0 delta_e(5)

0 0 0 0 0]);

lam_e_menos_e_5=Prog_1(e-[0 0 0 0 delta_e(5)

0 0 0 0 0]);

lam_e_mais_e_6=Prog_1(e+[0 0 0 0 0

delta_e(6) 0 0 0 0]);

lam_e_menos_e_6=Prog_1(e-[0 0 0 0 0

delta_e(6) 0 0 0 0]);

lam_e_mais_e_7=Prog_1(e+[0 0 0 0 0 0

delta_e(7) 0 0 0]);

lam_e_menos_e_7=Prog_1(e-[0 0 0 0 0 0

delta_e(7) 0 0 0]);

lam_e_mais_e_8=Prog_1(e+[0 0 0 0 0 0 0

delta_e(8) 0 0]);

lam_e_menos_e_8=Prog_1(e-[0 0 0 0 0 0 0

delta_e(8) 0 0]);

lam_e_mais_e_9=Prog_1(e+[0 0 0 0 0 0 0

8.5. Function Objective Gradient 157

0 delta_e(9) 0]);

lam_e_menos_e_9=Prog_1(e-[0 0 0 0 0 0 0

0 delta_e(9) 0]);

lam_e_mais_e_10=Prog_1(e+[0 0 0 0 0 0 0

0 0 delta_e(10)]);

lam_e_menos_e_10=Prog_1(e-[0 0 0 0 0 0 0

0 0 delta_e(10)]);

dwde_1=(lam_e_mais_e_1-lam_e_menos_e_1)

/(2*delta_e(1));

dwde_2=(lam_e_mais_e_2-lam_e_menos_e_2)

/(2*delta_e(2));

dwde_3=(lam_e_mais_e_3-lam_e_menos_e_3)

/(2*delta_e(3));

dwde_4=(lam_e_mais_e_4-lam_e_menos_e_4)

/(2*delta_e(4));

dwde_5=(lam_e_mais_e_5-lam_e_menos_e_5)

/(2*delta_e(5));

dwde_6=(lam_e_mais_e_6-lam_e_menos_e_6)

/(2*delta_e(6));

dwde_7=(lam_e_mais_e_7-lam_e_menos_e_7)

/(2*delta_e(7));

dwde_8=(lam_e_mais_e_8-lam_e_menos_e_8)

158 Chapter 8. Appendix A: Matlab algorithm

/(2*delta_e(8));

dwde_9=(lam_e_mais_e_9-lam_e_menos_e_9)

/(2*delta_e(9));

dwde_10=(lam_e_mais_e_10-lam_e_menos_e_10)

/(2*delta_e(10));

dwde=[dwde_1 dwde_2 dwde_3 dwde_4 dwde_5 dwde_6 dwde_7

dwde_8 dwde_9 dwde_10];

8.6. Constraints Program 159

8.6 Constraints Program

function [c ceq gradc gradceq] = Constrain_grad(X)

global limit_dist_limb;

global limit_crank;

global limit_cine_inv;

global limit_cine_dire;

c=[];

gradc=[];

% ------------- CONSTRAINS LIMITS -----------

c(1)=limit_dist_limb-p4_novo(5,X);

c(2)=limit_crank-p4_novo(6,X);

c(3)=limit_cine_dire-p4_novo(7,X);

c(4)=limit_cine_inv-p4_novo(8,X);

% --- Gradient Matrix for Each Optimzation Parameters

160 Chapter 8. Appendix A: Matlab algorithm

and Constrains-------------------------------

gradc=[-F_Diff(5,1,X), -F_Diff(6,1,X), -F_Diff(7,1,X),

-F_Diff(8,1,X);...

-F_Diff(5,2,X), -F_Diff(6,2,X), -F_Diff(7,2,X),

-F_Diff(8,2,X);...

-F_Diff(5,3,X), -F_Diff(6,3,X), -F_Diff(7,3,X),

-F_Diff(8,3,X);...

-F_Diff(5,4,X), -F_Diff(6,4,X), -F_Diff(7,4,X),

-F_Diff(8,4,X);...

-F_Diff(5,5,X), -F_Diff(6,5,X), -F_Diff(7,5,X),

-F_Diff(8,5,X);...

-F_Diff(5,6,X), -F_Diff(6,6,X), -F_Diff(7,6,X),

-F_Diff(8,6,X);...

-F_Diff(5,7,X), -F_Diff(6,7,X), -F_Diff(7,7,X),

-F_Diff(8,7,X);...

-F_Diff(5,8,X), -F_Diff(6,8,X), -F_Diff(7,8,X),

-F_Diff(8,8,X);...

-F_Diff(5,9,X), -F_Diff(6,9,X), -F_Diff(7,9,X),

-F_Diff(8,9,X);...

-F_Diff(5,10,X), -F_Diff(6,10,X), -F_Diff(7,10,X),

-F_Diff(8,10,X)];

ceq = [];

8.6. Constraints Program 161

gradceq = [];

162 Chapter 8. Appendix A: Matlab algorithm

8.7 Constraints Finite Differences Program

Constrains Program

function dwde = F_Diff_Constrains(p,v,e)

delta_e=[1 1 1 1 1 1 5e-2 5e-2 5e-2 5e-2];

if(v==1)

lam_e_mais_e_1=Grad_Contrains(p,e+[delta_e(1)

0 0 0 0 0 0 0 0 0]);

lam_e_menos_e_1=Grad_Contrains(p,e-[delta_e(1)

0 0 0 0 0 0 0 0 0]);

dwde_1=(lam_e_mais_e_1-lam_e_menos_e_1)/(2*delta_e(1));

dwde=[dwde_1 0 0 0 0 0 0 0 0 0];

elseif(v==2)

lam_e_mais_e_2=Grad_Contrains(p,e+[0 delta_e(2)

0 0 0 0 0 0 0 0]);

lam_e_menos_e_2=Grad_Contrains(p,e-[0 delta_e(2)

8.7. Constraints Finite Differences Program 163

0 0 0 0 0 0 0 0]);

dwde_2=(lam_e_mais_e_2-lam_e_menos_e_2)/(2*delta_e(2));

dwde=[0 dwde_2 0 0 0 0 0 0 0 0];

elseif(v==3)

lam_e_mais_e_3=Grad_Contrains(p,e+[0 0 delta_e(3)

0 0 0 0 0 0 0]);

lam_e_menos_e_3=Grad_Contrains(p,e-[0 0 delta_e(3)

0 0 0 0 0 0 0]);

dwde_3=(lam_e_mais_e_3-lam_e_menos_e_3)/(2*delta_e(3));

dwde=[0 0 dwde_3 0 0 0 0 0 0 0];

elseif(v==4)

lam_e_mais_e_4=Grad_Contrains(p,e+[0 0 0 delta_e(4)

0 0 0 0 0 0]);

lam_e_menos_e_4=Grad_Contrains(p,e-[0 0 0 delta_e(4)

0 0 0 0 0 0]);

dwde_4=(lam_e_mais_e_4-lam_e_menos_e_4)/(2*delta_e(4));

dwde=[0 0 0 dwde_4 0 0 0 0 0 0];

164 Chapter 8. Appendix A: Matlab algorithm

elseif(v==5)

lam_e_mais_e_5=Grad_Contrains(p,e+[0 0 0 0 delta_e(5)

0 0 0 0 0]);

lam_e_menos_e_5=Grad_Contrains(p,e-[0 0 0 0 delta_e(5)

0 0 0 0 0]);

dwde_5=(lam_e_mais_e_5-lam_e_menos_e_5)/(2*delta_e(5));

dwde=[0 0 0 0 dwde_5 0 0 0 0 0];

elseif(v==6)

lam_e_mais_e_6=Grad_Contrains(p,e+[0 0 0 0 0 delta_e(6)

0 0 0 0]);

lam_e_menos_e_6=Grad_Contrains(p,e-[0 0 0 0 0 delta_e(6)

0 0 0 0]);

dwde_6=(lam_e_mais_e_6-lam_e_menos_e_6)/(2*delta_e(6));

dwde=[0 0 0 0 0 dwde_6 0 0 0 0];

elseif(v==7)

lam_e_mais_e_7=Grad_Contrains(p,e+[0 0 0 0 0 0

delta_e(7) 0 0 0]);

8.7. Constraints Finite Differences Program 165

lam_e_menos_e_7=Grad_Contrains(p,e-[0 0 0 0 0 0

delta_e(7) 0 0 0]);

dwde_7=(lam_e_mais_e_7-lam_e_menos_e_7)/(2*delta_e(7));

dwde=[0 0 0 0 0 0 dwde_7 0 0 0];

elseif(v==8)

lam_e_mais_e_8=Grad_Contrains(p,e+[0 0 0 0 0 0 0

delta_e(8) 0 0]);

lam_e_menos_e_8=Grad_Contrains(p,e-[0 0 0 0 0 0 0

delta_e(8) 0 0]);

dwde_8=(lam_e_mais_e_8-lam_e_menos_e_8)/(2*delta_e(8));

dwde=[0 0 0 0 0 0 0 dwde_8 0 0];

elseif(v==9)

lam_e_mais_e_9=Grad_Contrains(p,e+[0 0 0 0 0

0 0 0 delta_e(9) 0]);

lam_e_menos_e_9=Grad_Contrains(p,e-[0 0 0 0 0

0 0 0 delta_e(9) 0]);

dwde_9=(lam_e_mais_e_9-lam_e_menos_e_9)/(2*delta_e(9));

166 Chapter 8. Appendix A: Matlab algorithm

dwde=[0 0 0 0 0 0 0 0 dwde_9 0];

elseif(v==10)

lam_e_mais_e_10=Grad_Contrains(p,e+[0 0 0 0 0 0

0 0 0 delta_e(10)]);

lam_e_menos_e_10=Grad_Contrains(p,e-[0 0 0 0 0 0

0 0 0 delta_e(10)]);

dwde_10=(lam_e_mais_e_10-lam_e_menos_e_10)/(2*delta_e(10));

dwde=[0 0 0 0 0 0 0 0 0 dwde_10];

end

8.8. Constraints Gradient Program 167

8.8 Constraints Gradient Program

function W = Grad_Contrains(prog,X)

W=Kinematic_Program(prog,X)

end

169

9 APPENDIX B: ADAMS SCRIPT

The Appendix B presents ADAMS parametric mode script in .cmd

and another .cmd file containing the positions points Ai, Bi, Ci and the

orientation of active joints to define 6-RUS in a new configuration.

9.1 ADAMS Parametric Model Script

In this Appendix are appended algorithms

!

!-------- Default Units for Model ------!

!

!

defaults units &

length = meter &

angle = deg &

force = newton &

mass = kg &

time = sec

!

defaults units &

coordinate_system_type = cartesian &

orientation_type = body313

!

170 Chapter 9. Appendix B: Adams Script

!------- Default Attributes for Model ------!

!

!

defaults attributes &

inheritance = bottom_up &

icon_visibility = on &

grid_visibility = off &

size_of_icons = 5.0E-002 &

spacing_for_grid = 1.0

!

!------ Adams/View Model ------!

!

!

model create &

model_name = MODEL_1

!

view erase

!

!-------- Materials ---!

!

!

material create &

material_name = .MODEL_1.steel &

adams_id = 1 &

youngs_modulus = 2.07E+011 &

9.1. ADAMS Parametric Model Script 171

poissons_ratio = 0.29 &

density = 7801.0

!

!----------- Rigid Parts ---!

!

! Create parts and their dependent markers and graphics

!

!------------------ ground ---!

!

!

! ****** Ground Part ******

!

defaults model &

part_name = ground

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.ground.MARKER_63 &

adams_id = 63 &

location = 0.0, 0.0, -0.45 &

orientation = 180.0d, 90.0d, 180.0d

172 Chapter 9. Appendix B: Adams Script

!

marker create &

marker_name = .MODEL_1.ground.MARKER_1 &

adams_id = 1 &

location = 0.0, 0.0, 0.0 &

orientation = 0.0d, 0.0d, 0.0d

!

marker create &

marker_name = .MODEL_1.ground.MARKER_3 &

adams_id = 3 &

location = -0.14735, 0.65034, 0.0 &

orientation = 180.0d, 90.0d, 180.0d

!

marker create &

marker_name = .MODEL_1.ground.MARKER_4 &

adams_id = 4 &

location = -0.48953, 0.45278, 0.0 &

orientation = 240.0007046147d, 90.0d, 90.0d

!

marker create &

marker_name = .MODEL_1.ground.MARKER_5 &

adams_id = 5 &

location = 0.63689, 0.19756, 0.0 &

orientation = 120.0007277808d, 90.0d, 270.0d

!

9.1. ADAMS Parametric Model Script 173

marker create &

marker_name = .MODEL_1.ground.MARKER_6 &

adams_id = 6 &

location = 0.63689, -0.19756, 0.0 &

orientation = 59.9992722192d, 90.0d, 270.0d

!

marker create &

marker_name = .MODEL_1.ground.MARKER_7 &

adams_id = 7 &

location = -0.14735, -0.65034, 0.0 &

orientation = 0.0d, 90.0d, 0.0d

!

marker create &

marker_name = .MODEL_1.ground.MARKER_8 &

adams_id = 8 &

location = -0.48953, -0.45278, 0.0 &

orientation = 299.9992953853d, 90.0d, 90.0d

!

marker create &

marker_name = .MODEL_1.ground.MARKER_28 &

adams_id = 28 &

location = -0.48953, 0.45278, 0.0 &

orientation = 240.0007046147d, 90.0d, 90.0d

!

marker create &

174 Chapter 9. Appendix B: Adams Script

marker_name = .MODEL_1.ground.MARKER_30 &

adams_id = 30 &

location = -0.14735, 0.65034, 0.0 &

orientation = 180.0d, 90.0d, 180.0d

!

marker create &

marker_name = .MODEL_1.ground.MARKER_32 &

adams_id = 32 &

location = 0.63689, 0.19756, 0.0 &

orientation = 120.0007277808d, 90.0d, 270.0d

!

marker create &

marker_name = .MODEL_1.ground.MARKER_78 &

adams_id = 78 &

location = 0.63689, -0.19756, 0.0 &

orientation = 59.9992722192d, 90.0d, 270.0d

!

marker create &

marker_name = .MODEL_1.ground.MARKER_36 &

adams_id = 36 &

location = -0.14735, -0.65034, 0.0 &

orientation = 0.0d, 90.0d, 0.0d

!

marker create &

marker_name = .MODEL_1.ground.MARKER_38 &

9.1. ADAMS Parametric Model Script 175

adams_id = 38 &

location = -0.48953, -0.45278, 0.0 &

orientation = 299.9992953853d, 90.0d, 90.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.ground &

material_type = .MODEL_1.steel

!

! ****** Points for current part ******

!

point create &

point_name = .MODEL_1.ground.Origem &

location = 0.0, 0.0, 0.0

!

!

!

file command read file_name="H:\Adams\6RUS_Otimi.cmd"

!

!

! ****** Graphics for current part ******

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.ground.Base &

adams_id = 2 &

center_marker = .MODEL_1.ground.MARKER_1 &

176 Chapter 9. Appendix B: Adams Script

angle_extent = 360.0 &

length = 1.0E-002 &

radius = 0.636885 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.ground.Motor2 &

adams_id = 27 &

center_marker = .MODEL_1.ground.MARKER_3 &

angle_extent = 360.0 &

length = 0.2 &

radius = 5.0E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.ground.Motor3 &

adams_id = 28 &

center_marker = .MODEL_1.ground.MARKER_4 &

angle_extent = 360.0 &

length = 0.1999956 &

radius = 5.0E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

9.1. ADAMS Parametric Model Script 177

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.ground.Motor1 &

adams_id = 29 &

center_marker = .MODEL_1.ground.MARKER_5 &

angle_extent = 360.0 &

length = 0.1999906 &

radius = 5.0E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.ground.Motor6 &

adams_id = 30 &

center_marker = .MODEL_1.ground.MARKER_6 &

angle_extent = 360.0 &

length = 0.2000042602 &

radius = 5.0E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.ground.Motor5 &

adams_id = 31 &

center_marker = .MODEL_1.ground.MARKER_7 &

178 Chapter 9. Appendix B: Adams Script

angle_extent = 360.0 &

length = 0.2 &

radius = 5.0E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.ground.Motor4 &

adams_id = 32 &

center_marker = .MODEL_1.ground.MARKER_8 &

angle_extent = 360.0 &

length = 0.2000042602 &

radius = 5.0E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

part attributes &

part_name = .MODEL_1.ground &

name_visibility = off

!

!--------- Plataforma_Movel ------!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

9.1. ADAMS Parametric Model Script 179

!

part create rigid_body name_and_position &

part_name = .MODEL_1.Plataforma_Movel &

adams_id = 2 &

location = 0.0, 0.0, 0.0 &

orientation = 0.0d, 0.0d, 0.0d

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.Plataforma_Movel

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_2 &

adams_id = 2 &

location = 0.0, 0.0, -0.45 &

orientation = 0.0d, 0.0d, 0.0d

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.cm &

adams_id = 65 &

location = 2.7749703067E-008, 0.0, -0.4471429616 &

orientation = 270.0d, 90.0d, 90.0d

!

marker create &

180 Chapter 9. Appendix B: Adams Script

marker_name = .MODEL_1.Plataforma_Movel.MARKER_9 &

adams_id = 9 &

location = 0.29173, 0.40235, -0.45 &

orientation = 270.0d, 0.0d, 0.0d

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_10 &

adams_id = 10 &

location = 0.29173, -0.40235, -0.45 &

orientation = 270.0d, 0.0d, 0.0d

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_11 &

adams_id = 11 &

location = 0.20258, -0.45382, -0.45 &

orientation = 149.9999771292d, 180.0d, 0.0d

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_12 &

adams_id = 12 &

location = -0.49431, -5.147E-002, -0.45 &

orientation = 149.9999771292d, 180.0d, 0.0d

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_13 &

9.1. ADAMS Parametric Model Script 181

adams_id = 13 &

location = -0.49431, 5.147E-002, -0.45 &

orientation = 30.0000228708d, 0.0d, 0.0d

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_14 &

adams_id = 14 &

location = 0.20258, 0.45382, -0.45 &

orientation = 30.0000228708d, 0.0d, 0.0d

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_40 &

adams_id = 40 &

location = 0.29173, -0.40235, -0.45 &

orientation = 94.956350251d, 42.9586685434d, 180.0d

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_42 &

adams_id = 42 &

location = 0.29173, 0.40235, -0.45 &

orientation = 73.2416392566d, 26.1876223141d, 0.0d

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_44 &

adams_id = 44 &

182 Chapter 9. Appendix B: Adams Script

location = 0.20258, 0.45382, -0.45 &

orientation = 226.7586338166d, 26.1881763255d, 180.0d

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_46 &

adams_id = 46 &

location = -0.49431, 5.147E-002, -0.45 &

orientation = 170.9292629715d, 57.8167932806d, 0.0d

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_48 &

adams_id = 48 &

location = -0.49431, -5.147E-002, -0.45 &

orientation = 351.8862688373d, 57.6947548425d, 180.0d

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_50 &

adams_id = 50 &

location = 0.20258, -0.45382, -0.45 &

orientation = 290.9299094419d, 57.8167388276d, 180.0d

!

marker create &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_64 &

adams_id = 64 &

location = 0.0, 0.0, -0.45 &

9.1. ADAMS Parametric Model Script 183

orientation = 180.0d, 90.0d, 180.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.Plataforma_Movel &

material_type = .MODEL_1.steel

!

! ****** Graphics for current part ******

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.Plataforma_Movel.Plataforma &

adams_id = 4 &

center_marker = .MODEL_1.Plataforma_Movel.MARKER_2 &

angle_extent = 360.0 &

length = 1.0E-002 &

radius = 0.29173 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

geometry create shape link &

link_name = .MODEL_1.Plataforma_Movel.LINK_33 &

i_marker = .MODEL_1.Plataforma_Movel.MARKER_9 &

j_marker = .MODEL_1.Plataforma_Movel.MARKER_10 &

width = 4.0E-002 &

depth = 2.0E-002

!

184 Chapter 9. Appendix B: Adams Script

geometry create shape link &

link_name = .MODEL_1.Plataforma_Movel.LINK_34 &

i_marker = .MODEL_1.Plataforma_Movel.MARKER_11 &

j_marker = .MODEL_1.Plataforma_Movel.MARKER_12 &

width = 4.0E-002 &

depth = 2.0E-002

!

geometry create shape link &

link_name = .MODEL_1.Plataforma_Movel.LINK_35 &

i_marker = .MODEL_1.Plataforma_Movel.MARKER_13 &

j_marker = .MODEL_1.Plataforma_Movel.MARKER_14 &

width = 4.0E-002 &

depth = 2.0E-002

!

part attributes &

part_name = .MODEL_1.Plataforma_Movel &

color = GREEN &

name_visibility = off

!

!---------- Crank2 --------!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

9.1. ADAMS Parametric Model Script 185

part create rigid_body name_and_position &

part_name = .MODEL_1.Crank2 &

adams_id = 3 &

location = 0.0, 0.0, 0.0 &

orientation = 0.0d, 0.0d, 0.0d

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.Crank2

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.Crank2.MARKER_15 &

adams_id = 15 &

location = -0.14735, 0.65034, 0.0 &

orientation = 90.0d, 46.6041299865d, 270.0d

!

marker create &

marker_name = .MODEL_1.Crank2.cm &

adams_id = 66 &

location = -7.6869999987E-002, 0.65034, 6.6640 &

orientation = 270.0d, 133.3958700135d, 90.0d

!

marker create &

marker_name = .MODEL_1.Crank2.MARKER_29 &

186 Chapter 9. Appendix B: Adams Script

adams_id = 29 &

location = -0.14735, 0.65034, 0.0 &

orientation = 180.0d, 90.0d, 180.0d

!

marker create &

marker_name = .MODEL_1.Crank2.MARKER_55 &

adams_id = 55 &

location = -6.39E-003, 0.65034, 0.13328 &

orientation = 270.0d, 133.3958700135d, 180.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.Crank2 &

material_type = .MODEL_1.steel

!

! ****** Graphics for current part ******

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.Crank2.CYLINDER_36 &

adams_id = 36 &

center_marker = .MODEL_1.Crank2.MARKER_15 &

angle_extent = 360.0 &

length = 0.1939929896 &

radius = 1.5E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

9.1. ADAMS Parametric Model Script 187

!

part attributes &

part_name = .MODEL_1.Crank2 &

color = CYAN &

name_visibility = off

!

!--------- limb2 ------!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

part create rigid_body name_and_position &

part_name = .MODEL_1.limb2 &

adams_id = 4 &

location = 0.0, 0.0, 0.0 &

orientation = 0.0d, 0.0d, 0.0d

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.limb2

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.limb2.MARKER_16 &

188 Chapter 9. Appendix B: Adams Script

adams_id = 16 &

location = -6.39E-003, 0.65034, 0.13328 &

orientation = 46.7586338166d, 153.8118236745d, 229.87d

!

marker create &

marker_name = .MODEL_1.limb2.cm &

adams_id = 67 &

location = 9.8095000002E-002, 0.55208, -0.15836 &

orientation = 46.7586338166d, 153.8118236745d, 0.0d

!

marker create &

marker_name = .MODEL_1.limb2.MARKER_43 &

adams_id = 43 &

location = 0.20258, 0.45382, -0.45 &

orientation = 226.7586338166d, 26.1881763255d, 180.0d

!

marker create &

marker_name = .MODEL_1.limb2.MARKER_56 &

adams_id = 56 &

location = -6.39E-003, 0.65034, 0.13328 &

orientation = 270.0d, 133.3958700135d, 180.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.limb2 &

material_type = .MODEL_1.steel

9.1. ADAMS Parametric Model Script 189

!

! ****** Graphics for current part ******

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.limb2.CYLINDER_37 &

adams_id = 37 &

center_marker = .MODEL_1.limb2.MARKER_16 &

angle_extent = 360.0 &

length = 0.6500031767 &

radius = 1.5E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

part attributes &

part_name = .MODEL_1.limb2 &

color = MAGENTA &

name_visibility = off

!

!---------- Crank1 ----!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

part create rigid_body name_and_position &

190 Chapter 9. Appendix B: Adams Script

part_name = .MODEL_1.Crank1 &

adams_id = 5 &

location = 0.0, 0.0, 0.0 &

orientation = 0.0d, 0.0d, 0.0d

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.Crank1

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.Crank1.MARKER_17 &

adams_id = 17 &

location = 0.63689, 0.19756, 0.0 &

orientation = 29.9954980575d, 122.3437522524d, 227.15d

!

marker create &

marker_name = .MODEL_1.Crank1.cm &

adams_id = 68 &

location = 0.6778597794, 0.1265853822, -5.183E-002 &

orientation = 209.9954980575d, 57.6562477476d, 90.0d

!

marker create &

marker_name = .MODEL_1.Crank1.MARKER_31 &

adams_id = 31 &

9.1. ADAMS Parametric Model Script 191

location = 0.63689, 0.19756, 0.0 &

orientation = 120.0007277808d, 90.0d, 270.0d

!

marker create &

marker_name = .MODEL_1.Crank1.MARKER_53 &

adams_id = 53 &

location = 0.71883, 5.561E-002, -0.10379 &

orientation = 30.0024917749d, 133.393966442d, 0.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.Crank1 &

material_type = .MODEL_1.steel

!

! ****** Graphics for current part ******

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.Crank1.CYLINDER_38 &

adams_id = 38 &

center_marker = .MODEL_1.Crank1.MARKER_17 &

angle_extent = 360.0 &

length = 0.1939998064 &

radius = 1.5E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

192 Chapter 9. Appendix B: Adams Script

part attributes &

part_name = .MODEL_1.Crank1 &

color = RED &

name_visibility = off

!

!-------------- limb1 -------!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

part create rigid_body name_and_position &

part_name = .MODEL_1.limb1 &

adams_id = 6 &

location = 0.0, 0.0, 0.0 &

orientation = 0.0d, 0.0d, 0.0d

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.limb1

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.limb1.MARKER_18 &

adams_id = 18 &

9.1. ADAMS Parametric Model Script 193

location = 0.71883, 5.561E-002, -0.10379 &

orientation = 230.9286730075d, 122.1831904104d, 66.6d

!

marker create &

marker_name = .MODEL_1.limb1.cm &

adams_id = 69 &

location = 0.5052810842, 0.2289791198, -0.2768941211&

orientation = 50.9286730075d, 57.8168095896d, 0.0d

!

marker create &

marker_name = .MODEL_1.limb1.MARKER_41 &

adams_id = 41 &

location = 0.29173, 0.40235, -0.45 &

orientation = 73.2416392566d, 26.1876223141d, 0.0d

!

marker create &

marker_name = .MODEL_1.limb1.MARKER_54 &

adams_id = 54 &

location = 0.71883, 5.561E-002, -0.10379 &

orientation = 30.0024917749d, 133.393966442d, 0.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.limb1 &

material_type = .MODEL_1.steel

!

194 Chapter 9. Appendix B: Adams Script

! ****** Graphics for current part ******

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.limb1.CYLINDER_39&

adams_id = 39 &

center_marker = .MODEL_1.limb1.MARKER_18 &

angle_extent = 360.0 &

length = 0.6500000857 &

radius = 1.5E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

part attributes &

part_name = .MODEL_1.limb1 &

color = GREEN &

name_visibility = off

!

!---------- Crank6 --------!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

part create rigid_body name_and_position &

part_name = .MODEL_1.Crank6 &

9.1. ADAMS Parametric Model Script 195

adams_id = 7 &

location = 0.0, 0.0, 0.0 &

orientation = 0.0d, 0.0d, 0.0d

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.Crank6

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.Crank6.MARKER_19 &

adams_id = 19 &

location = 0.63689, -0.19756, 0.0 &

orientation = 329.9975082251d, 46.606033558d, 40.0458d

!

marker create &

marker_name = .MODEL_1.Crank6.cm &

adams_id = 70 &

location = 0.6016466973,-0.2585970604,6.66E-002&

orientation = 149.9975082251d, 133.393966442d, 90.0d

!

marker create &

marker_name = .MODEL_1.Crank6.MARKER_79 &

adams_id = 79 &

location = 0.63689, -0.19756, 0.0 &

196 Chapter 9. Appendix B: Adams Script

orientation = 59.9992722192d, 90.0d, 270.0d

!

marker create &

marker_name = .MODEL_1.Crank6.MARKER_51 &

adams_id = 51 &

location = 0.5664, -0.31964, 0.13328 &

orientation = 209.9999053376d, 97.6129683539d, 180.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.Crank6 &

material_type = .MODEL_1.steel

!

! ****** Graphics for current part ******

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.Crank6.CYLINDER_40 &

adams_id = 40 &

center_marker = .MODEL_1.Crank6.MARKER_19 &

angle_extent = 360.0 &

length = 0.1939904637 &

radius = 1.5E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

part attributes &

9.1. ADAMS Parametric Model Script 197

part_name = .MODEL_1.Crank6 &

color = MAIZE &

name_visibility = off

!

!------------- limb6 -------!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

part create rigid_body name_and_position &

part_name = .MODEL_1.limb6 &

adams_id = 8 &

location = 0.0, 0.0, 0.0 &

orientation = 0.0d, 0.0d, 0.0d

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.limb6

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.limb6.MARKER_20 &

adams_id = 20 &

location = 0.5664, -0.31964, 0.13328 &

198 Chapter 9. Appendix B: Adams Script

orientation = 286.7583607434d, 153.8123776859d, 105.12d

!

marker create &

marker_name = .MODEL_1.limb6.cm &

adams_id = 71 &

location = 0.4290648925, -0.3609950324, -0.1583 &

orientation = 106.7583607434d, 26.1876223141d, 270.0d

!

marker create &

marker_name = .MODEL_1.limb6.MARKER_39 &

adams_id = 39 &

location = 0.29173, -0.40235, -0.45 &

orientation = 94.956350251d, 42.9586685434d, 180.0d

!

marker create &

marker_name = .MODEL_1.limb6.MARKER_52 &

adams_id = 52 &

location = 0.5664, -0.31964, 0.13328 &

orientation = 209.9999053376d, 97.6129683539d, 180.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.limb6 &

material_type = .MODEL_1.steel

!

! ****** Graphics for current part ******

9.1. ADAMS Parametric Model Script 199

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.limb6.CYLINDER_41 &

adams_id = 41 &

center_marker = .MODEL_1.limb6.MARKER_20 &

angle_extent = 360.0 &

length = 0.6500005945 &

radius = 1.5E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

part attributes &

part_name = .MODEL_1.limb6 &

color = CYAN &

name_visibility = off

!

!---------------- Crank5 ---------!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

part create rigid_body name_and_position &

part_name = .MODEL_1.Crank5 &

adams_id = 9 &

200 Chapter 9. Appendix B: Adams Script

location = 0.0, 0.0, 0.0 &

orientation = 0.0d, 0.0d, 0.0d

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.Crank5

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.Crank5.MARKER_21 &

adams_id = 21 &

location = -0.14735, -0.65034, 0.0 &

orientation = 270.0d, 122.3441167062d, 90.0d

!

marker create &

marker_name = .MODEL_1.Crank5.cm &

adams_id = 72 &

location = -0.2293, -0.65034, -5.1894999996E-002&

orientation = 270.0d, 122.3441167062d, 90.0d

!

marker create &

marker_name = .MODEL_1.Crank5.MARKER_35 &

adams_id = 35 &

location = -0.14735, -0.65034, 0.0 &

orientation = 0.0d, 90.0d, 0.0d

9.1. ADAMS Parametric Model Script 201

!

marker create &

marker_name = .MODEL_1.Crank5.MARKER_61 &

adams_id = 61 &

location = -0.31125, -0.65034, -0.10379 &

orientation = 90.0d, 57.6558832938d, 0.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.Crank5 &

material_type = .MODEL_1.steel

!

! ****** Graphics for current part ******

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.Crank5.CYLINDER_42 &

adams_id = 42 &

center_marker = .MODEL_1.Crank5.MARKER_21 &

angle_extent = 360.0 &

length = 0.1939989023 &

radius = 1.5E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

part attributes &

part_name = .MODEL_1.Crank5 &

202 Chapter 9. Appendix B: Adams Script

color = MAGENTA &

name_visibility = off

!

!------------ limb5 --------!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

part create rigid_body name_and_position &

part_name = .MODEL_1.limb5 &

adams_id = 10 &

location = 0.0, 0.0, 0.0 &

orientation = 0.0d, 0.0d, 0.0d

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.limb5

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.limb5.MARKER_22 &

adams_id = 22 &

location = -0.31125, -0.65034, -0.10379 &

orientation = 110.9299094419d, 122.1832611724d, 281.3d

9.1. ADAMS Parametric Model Script 203

!

marker create &

marker_name = .MODEL_1.limb5.cm &

adams_id = 73 &

location = -5.4335000002E-002, -0.55208, -0.276&

orientation = 290.9299094419d, 57.8167388276d, 90.0d

!

marker create &

marker_name = .MODEL_1.limb5.MARKER_49 &

adams_id = 49 &

location = 0.20258, -0.45382, -0.45 &

orientation = 290.9299094419d, 57.8167388276d, 180.0d

!

marker create &

marker_name = .MODEL_1.limb5.MARKER_62 &

adams_id = 62 &

location = -0.31125, -0.65034, -0.10379 &

orientation = 90.0d, 57.6558832938d, 0.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.limb5 &

material_type = .MODEL_1.steel

!

! ****** Graphics for current part ******

!

204 Chapter 9. Appendix B: Adams Script

geometry create shape cylinder &

cylinder_name = .MODEL_1.limb5.CYLINDER_43 &

adams_id = 43 &

center_marker = .MODEL_1.limb5.MARKER_22 &

angle_extent = 360.0 &

length = 0.6500021103 &

radius = 1.5E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

part attributes &

part_name = .MODEL_1.limb5 &

color = RED &

name_visibility = off

!

!------------- Crank4 ----!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

part create rigid_body name_and_position &

part_name = .MODEL_1.Crank4 &

adams_id = 11 &

location = 0.0, 0.0, 0.0 &

9.1. ADAMS Parametric Model Script 205

orientation = 0.0d, 0.0d, 0.0d

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.Crank4

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.Crank4.MARKER_23 &

adams_id = 23 &

location = -0.48953, -0.45278, 0.0 &

orientation = 209.9989718535d, 46.6050190096d, 139.95d

!

marker create &

marker_name = .MODEL_1.Crank4.cm &

adams_id = 74 &

location = -0.5247709307, -0.3917383878, 6.6646E-002 &

orientation = 209.9989718535d, 46.6050190096d,90.0d

!

marker create &

marker_name = .MODEL_1.Crank4.MARKER_37 &

adams_id = 37 &

location = -0.48953, -0.45278, 0.0 &

orientation = 299.9992953853d, 90.0d, 90.0d

!

206 Chapter 9. Appendix B: Adams Script

marker create &

marker_name = .MODEL_1.Crank4.MARKER_60 &

adams_id = 60 &

location = -0.56001, -0.3307, 0.13328 &

orientation = 149.9995784755d, 58.0644131243d, 0.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.Crank4 &

material_type = .MODEL_1.steel

!

! ****** Graphics for current part ******

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.Crank4.CYLINDER_44 &

adams_id = 44 &

center_marker = .MODEL_1.Crank4.MARKER_23 &

angle_extent = 360.0 &

length = 0.1940012969 &

radius = 1.5E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

part attributes &

part_name = .MODEL_1.Crank4 &

color = GREEN &

9.1. ADAMS Parametric Model Script 207

name_visibility = off

!

!----------- limb4 ------!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

part create rigid_body name_and_position &

part_name = .MODEL_1.limb4 &

adams_id = 12 &

location = 0.0, 0.0, 0.0 &

orientation = 0.0d, 0.0d, 0.0d

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.limb4

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.limb4.MARKER_24 &

adams_id = 24 &

location = -0.56001, -0.3307, 0.13328 &

orientation = 166.7597088237d, 153.8121943277d, 345

!

208 Chapter 9. Appendix B: Adams Script

marker create &

marker_name = .MODEL_1.limb4.cm &

adams_id = 75 &

location = -0.527159992, -0.1910849658, -0.158314&

orientation = 166.7597088237d, 153.8121943277d, 90.0d

!

marker create &

marker_name = .MODEL_1.limb4.MARKER_47 &

adams_id = 47 &

location = -0.49431, -5.147E-002, -0.45 &

orientation = 351.8862688373d, 57.6947548425d,180.0d

!

marker create &

marker_name = .MODEL_1.limb4.MARKER_59 &

adams_id = 59 &

location = -0.56001, -0.3307, 0.13328 &

orientation = 149.9995784755d, 58.0644131243d, 0.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.limb4 &

material_type = .MODEL_1.steel

!

! ****** Graphics for current part ******

!

geometry create shape cylinder &

9.1. ADAMS Parametric Model Script 209

cylinder_name = .MODEL_1.limb4.CYLINDER_45 &

adams_id = 45 &

center_marker = .MODEL_1.limb4.MARKER_24 &

angle_extent = 360.0 &

length = 0.6500012678 &

radius = 1.5E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

part attributes &

part_name = .MODEL_1.limb4 &

color = MAIZE &

name_visibility = off

!

!----------- Crank3 ------------!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

part create rigid_body name_and_position &

part_name = .MODEL_1.Crank3 &

adams_id = 13 &

location = 0.0, 0.0, 0.0 &

orientation = 0.0d, 0.0d, 0.0d

210 Chapter 9. Appendix B: Adams Script

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.Crank3

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.Crank3.MARKER_25 &

adams_id = 25 &

location = -0.48953, 0.45278, 0.0 &

orientation = 149.9997266839d, 122.3443306798d, 312.8

!

marker create &

marker_name = .MODEL_1.Crank3.cm &

adams_id = 76 &

location = -0.448555, 0.52375, -5.1894999991E-002 &

orientation = 149.9997266839d, 122.3443306798d, 90.0d

!

marker create &

marker_name = .MODEL_1.Crank3.MARKER_27 &

adams_id = 27 &

location = -0.48953, 0.45278, 0.0 &

orientation = 240.0007046147d, 90.0d, 90.0d

!

marker create &

9.1. ADAMS Parametric Model Script 211

marker_name = .MODEL_1.Crank3.MARKER_57 &

adams_id = 57 &

location = -0.40758, 0.59472, -0.10379 &

orientation = 329.9997266839d, 57.6556693202d, 180.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.Crank3 &

material_type = .MODEL_1.steel

!

! ****** Graphics for current part ******

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.Crank3.CYLINDER_46 &

adams_id = 46 &

center_marker = .MODEL_1.Crank3.MARKER_25 &

angle_extent = 360.0 &

length = 0.1939977582 &

radius = 1.5E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

part attributes &

part_name = .MODEL_1.Crank3 &

color = CYAN &

name_visibility = off

212 Chapter 9. Appendix B: Adams Script

!

!--------------- limb3 -----------------!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

part create rigid_body name_and_position &

part_name = .MODEL_1.limb3 &

adams_id = 14 &

location = 0.0, 0.0, 0.0 &

orientation = 0.0d, 0.0d, 0.0d

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.limb3

!

! ****** Markers for current part ******

!

marker create &

marker_name = .MODEL_1.limb3.MARKER_26 &

adams_id = 26 &

location = -0.40758, 0.59472, -0.10379 &

orientation = 350.9292629715d, 122.1832067194d, 163.31

!

marker create &

9.1. ADAMS Parametric Model Script 213

marker_name = .MODEL_1.limb3.cm &

adams_id = 77 &

location = -0.450945, 0.323095, -0.276895 &

orientation = 170.9292629715d, 57.8167932806d, 90.0d

!

marker create &

marker_name = .MODEL_1.limb3.MARKER_45 &

adams_id = 45 &

location = -0.49431, 5.147E-002, -0.45 &

orientation = 170.9292629715d, 57.8167932806d, 0.0d

!

marker create &

marker_name = .MODEL_1.limb3.MARKER_58 &

adams_id = 58 &

location = -0.40758, 0.59472, -0.10379 &

orientation = 329.9997266839d, 57.6556693202d, 180.0d

!

part create rigid_body mass_properties &

part_name = .MODEL_1.limb3 &

material_type = .MODEL_1.steel

!

! ****** Graphics for current part ******

!

geometry create shape cylinder &

cylinder_name = .MODEL_1.limb3.CYLINDER_47 &

214 Chapter 9. Appendix B: Adams Script

adams_id = 47 &

center_marker = .MODEL_1.limb3.MARKER_26 &

angle_extent = 360.0 &

length = 0.6500030919 &

radius = 1.5E-002 &

side_count_for_body = 20 &

segment_count_for_ends = 20

!

part attributes &

part_name = .MODEL_1.limb3 &

color = MAGENTA &

name_visibility = off

!

!---------------- Joints ----------!

!

!

constraint create joint revolute &

joint_name = .MODEL_1.JuntaR3 &

adams_id = 1 &

i_marker_name = .MODEL_1.Crank3.MARKER_27 &

j_marker_name = .MODEL_1.ground.MARKER_28

!

constraint attributes &

constraint_name = .MODEL_1.JuntaR3 &

name_visibility = off

9.1. ADAMS Parametric Model Script 215

!

constraint create joint revolute &

joint_name = .MODEL_1.JuntaR2 &

adams_id = 2 &

i_marker_name = .MODEL_1.Crank2.MARKER_29 &

j_marker_name = .MODEL_1.ground.MARKER_30

!

constraint attributes &

constraint_name = .MODEL_1.JuntaR2 &

name_visibility = off

!

constraint create joint revolute &

joint_name = .MODEL_1.JuntaR1 &

adams_id = 3 &

i_marker_name = .MODEL_1.Crank1.MARKER_31 &

j_marker_name = .MODEL_1.ground.MARKER_32

!

constraint attributes &

constraint_name = .MODEL_1.JuntaR1 &

name_visibility = off

!

constraint create joint revolute &

joint_name = .MODEL_1.Junta_R6 &

adams_id = 20 &

i_marker_name = .MODEL_1.ground.MARKER_78 &

216 Chapter 9. Appendix B: Adams Script

j_marker_name = .MODEL_1.Crank6.MARKER_79

!

constraint attributes &

constraint_name = .MODEL_1.Junta_R6 &

name_visibility = off

!

constraint create joint revolute &

joint_name = .MODEL_1.JuntaR5 &

adams_id = 5 &

i_marker_name = .MODEL_1.Crank5.MARKER_35 &

j_marker_name = .MODEL_1.ground.MARKER_36

!

constraint attributes &

constraint_name = .MODEL_1.JuntaR5 &

name_visibility = off

!

constraint create joint revolute &

joint_name = .MODEL_1.JuntaR4 &

adams_id = 6 &

i_marker_name = .MODEL_1.Crank4.MARKER_37 &

j_marker_name = .MODEL_1.ground.MARKER_38

!

constraint attributes &

constraint_name = .MODEL_1.JuntaR4 &

name_visibility = off

9.1. ADAMS Parametric Model Script 217

!

constraint create joint spherical &

joint_name = .MODEL_1.JuntaS6 &

adams_id = 7 &

i_marker_name = .MODEL_1.limb6.MARKER_39 &

j_marker_name = .MODEL_1.Plataforma_Movel.MARKER_40

!

constraint attributes &

constraint_name = .MODEL_1.JuntaS6 &

name_visibility = off

!

constraint create joint spherical &

joint_name = .MODEL_1.JuntaS1 &

adams_id = 8 &

i_marker_name = .MODEL_1.limb1.MARKER_41 &

j_marker_name = .MODEL_1.Plataforma_Movel.MARKER_42

!

constraint attributes &

constraint_name = .MODEL_1.JuntaS1 &

name_visibility = off

!

constraint create joint spherical &

joint_name = .MODEL_1.JuntaS2 &

adams_id = 9 &

i_marker_name = .MODEL_1.limb2.MARKER_43 &

218 Chapter 9. Appendix B: Adams Script

j_marker_name = .MODEL_1.Plataforma_Movel.MARKER_44

!

constraint attributes &

constraint_name = .MODEL_1.JuntaS2 &

name_visibility = off

!

constraint create joint spherical &

joint_name = .MODEL_1.JuntaS3 &

adams_id = 10 &

i_marker_name = .MODEL_1.limb3.MARKER_45 &

j_marker_name = .MODEL_1.Plataforma_Movel.MARKER_46

!

constraint attributes &

constraint_name = .MODEL_1.JuntaS3 &

name_visibility = off

!

constraint create joint spherical &

joint_name = .MODEL_1.JuntaS4 &

adams_id = 11 &

i_marker_name = .MODEL_1.limb4.MARKER_47 &

j_marker_name = .MODEL_1.Plataforma_Movel.MARKER_48

!

constraint attributes &

constraint_name = .MODEL_1.JuntaS4 &

name_visibility = off

9.1. ADAMS Parametric Model Script 219

!

constraint create joint spherical &

joint_name = .MODEL_1.JuntaS5 &

adams_id = 12 &

i_marker_name = .MODEL_1.limb5.MARKER_49 &

j_marker_name = .MODEL_1.Plataforma_Movel.MARKER_50

!

constraint attributes &

constraint_name = .MODEL_1.JuntaS5 &

name_visibility = off

!

constraint create joint spherical &

joint_name = .MODEL_1.JOINT_13 &

adams_id = 13 &

i_marker_name = .MODEL_1.Crank6.MARKER_51 &

j_marker_name = .MODEL_1.limb6.MARKER_52

!

constraint attributes &

constraint_name = .MODEL_1.JOINT_13 &

name_visibility = off

!

constraint create joint spherical &

joint_name = .MODEL_1.JOINT_14 &

adams_id = 14 &

i_marker_name = .MODEL_1.Crank1.MARKER_53 &

220 Chapter 9. Appendix B: Adams Script

j_marker_name = .MODEL_1.limb1.MARKER_54

!

constraint attributes &

constraint_name = .MODEL_1.JOINT_14 &

name_visibility = off

!

constraint create joint spherical &

joint_name = .MODEL_1.JOINT_15 &

adams_id = 15 &

i_marker_name = .MODEL_1.Crank2.MARKER_55 &

j_marker_name = .MODEL_1.limb2.MARKER_56

!

constraint attributes &

constraint_name = .MODEL_1.JOINT_15 &

name_visibility = off

!

constraint create joint spherical &

joint_name = .MODEL_1.JOINT_16 &

adams_id = 16 &

i_marker_name = .MODEL_1.Crank3.MARKER_57 &

j_marker_name = .MODEL_1.limb3.MARKER_58

!

constraint attributes &

constraint_name = .MODEL_1.JOINT_16 &

name_visibility = off

9.1. ADAMS Parametric Model Script 221

!

constraint create joint spherical &

joint_name = .MODEL_1.JOINT_17 &

adams_id = 17 &

i_marker_name = .MODEL_1.limb4.MARKER_59 &

j_marker_name = .MODEL_1.Crank4.MARKER_60

!

constraint attributes &

constraint_name = .MODEL_1.JOINT_17 &

name_visibility = off

!

constraint create joint spherical &

joint_name = .MODEL_1.JOINT_18 &

adams_id = 18 &

i_marker_name = .MODEL_1.Crank5.MARKER_61 &

j_marker_name = .MODEL_1.limb5.MARKER_62

!

constraint attributes &

constraint_name = .MODEL_1.JOINT_18 &

name_visibility = off

!

constraint create joint revolute &

joint_name = .MODEL_1.Atuador_rotacao &

adams_id = 19 &

i_marker_name = .MODEL_1.ground.MARKER_63 &

222 Chapter 9. Appendix B: Adams Script

j_marker_name = .MODEL_1.Plataforma_Movel.MARKER_64

!

constraint attributes &

constraint_name = .MODEL_1.Atuador_rotacao &

name_visibility = off

!

!---------------- Forces -------!

!

!

!------------- Simulation Scripts ----!

!

!

simulation script create &

sim_script_name = .MODEL_1.Last_Sim &

commands = &

"simulation single_run transient type=auto_select

end_time=5.0 number_of_steps=5000 model_name=.MODEL_1

initial_static=no"

!

!------- Adams/View UDE Instances ------!

!

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

9.1. ADAMS Parametric Model Script 223

undo begin_block suppress = yes

!

ude create instance &

instance_name = .MODEL_1.general_motion_1 &

definition_name = .MDI.Constraints.general_motion &

location = 0.0, 0.0, 0.0 &

orientation = 0.0, 0.0, 0.0

!

!--- Adams/View UDE Instance ------------!

!

!

variable modify &

variable_name = .MODEL_1.general_motion_1.i_marker&

object_value = (.MODEL_1.ground.MARKER_63)

!

variable modify &

variable_name = .MODEL_1.general_motion_1.j_marker &

object_value = (.MODEL_1.Plataforma_Movel.MARKER_64)

!

variable modify &

variable_name = .MODEL_1.general_motion_1.constraint&

object_value = (.MODEL_1.Atuador_rotacao)

!

variable modify &

variable_name = .MODEL_1.general_motion_1.t1_type&

224 Chapter 9. Appendix B: Adams Script

integer_value = 0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.t2_type&

integer_value = 0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.t3_type&

integer_value = 0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.r1_type&

integer_value = 0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.r2_type&

integer_value = 0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.r3_type&

integer_value = 1

!

variable modify &

variable_name = .MODEL_1.general_motion_1.t1_func&

string_value = "0 * time"

9.1. ADAMS Parametric Model Script 225

!

variable modify &

variable_name = .MODEL_1.general_motion_1.t2_func&

string_value = "0 * time"

!

variable modify &

variable_name = .MODEL_1.general_motion_1.t3_func&

string_value = "0 * time"

!

variable modify &

variable_name = .MODEL_1.general_motion_1.r1_func&

string_value = "0 * time"

!

variable modify &

variable_name = .MODEL_1.general_motion_1.r2_func&

string_value = "0 * time"

!

variable modify &

variable_name = .MODEL_1.general_motion_1.r3_func&

string_value = "1 * time"

!

variable modify &

variable_name = .MODEL_1.general_motion_1.t1_ic_disp&

real_value = 0.0

!

226 Chapter 9. Appendix B: Adams Script

variable modify &

variable_name = .MODEL_1.general_motion_1.t2_ic_disp&

real_value = 0.0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.t3_ic_disp&

real_value = 0.0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.r1_ic_disp&

real_value = 0.0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.r2_ic_disp&

real_value = 0.0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.r3_ic_disp&

real_value = 0.0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.t1_ic_velo&

real_value = 0.0

!

variable modify &

9.1. ADAMS Parametric Model Script 227

variable_name = .MODEL_1.general_motion_1.t2_ic_velo&

real_value = 0.0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.t3_ic_velo&

real_value = 0.0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.r1_ic_velo&

real_value = 0.0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.r2_ic_velo&

real_value = 0.0

!

variable modify &

variable_name = .MODEL_1.general_motion_1.r3_ic_velo&

real_value = 0.0

!

ude modify instance &

instance_name = .MODEL_1.general_motion_1

!

undo end_block

!

!---------- Accgrav -----------!

228 Chapter 9. Appendix B: Adams Script

!

!

force create body gravitational &

gravity_field_name = gravity &

x_component_gravity = 0.0 &

y_component_gravity = 0.0 &

z_component_gravity = 9.80665

!

!--------- Analysis settings -----!

!

!

!-------- Function definitions -------!

!

!

!-------- Adams/View UDE Instance --------!

!

!

ude modify instance &

instance_name = .MODEL_1.general_motion_1

!

!--------- Expression definitions -------!

!

!

defaults coordinate_system &

default_coordinate_system = ground

9.1. ADAMS Parametric Model Script 229

!

marker modify &

marker_name = .MODEL_1.ground.MARKER_63 &

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.TCP))

!

marker modify &

marker_name = .MODEL_1.ground.MARKER_1 &

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.Origem))

!

marker modify &

marker_name = .MODEL_1.ground.MARKER_3 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A2)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A2,

.MODEL_1.ground.A2_2,"Z"))

!

marker modify &

marker_name = .MODEL_1.ground.MARKER_4 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A3)) &

230 Chapter 9. Appendix B: Adams Script

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A3,

.MODEL_1.ground.A3_2,"Z"))

!

marker modify &

marker_name = .MODEL_1.ground.MARKER_5 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A1)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A1,

.MODEL_1.ground.A1_2,"Z"))

!

marker modify &

marker_name = .MODEL_1.ground.MARKER_6 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A6)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A6,

.MODEL_1.ground.A6_2,"Z"))

!

marker modify &

marker_name = .MODEL_1.ground.MARKER_7 &

location = &

9.1. ADAMS Parametric Model Script 231

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A5)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A5,

.MODEL_1.ground.A5_2, "Z"))

!

marker modify &

marker_name = .MODEL_1.ground.MARKER_8 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A4)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A4,

.MODEL_1.ground.A4_2,"Z"))

!

marker modify &

marker_name = .MODEL_1.ground.MARKER_28 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A3)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A3,

.MODEL_1.ground.A3_2,"Z"))

!

marker modify &

232 Chapter 9. Appendix B: Adams Script

marker_name = .MODEL_1.ground.MARKER_30 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A2)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A2,

.MODEL_1.ground.A2_2,"Z"))

!

marker modify &

marker_name = .MODEL_1.ground.MARKER_32 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A1)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A1,

.MODEL_1.ground.A1_2,"Z"))

!

marker modify &

marker_name = .MODEL_1.ground.MARKER_36 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A5)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A5,

.MODEL_1.ground.A5_2,"Z"))

9.1. ADAMS Parametric Model Script 233

!

marker modify &

marker_name = .MODEL_1.ground.MARKER_38 &

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.A4)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A4,

.MODEL_1.ground.A4_2,"Z"))

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.ground.Base &

length = (1.0cm) &

radius = (0.636885m)

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.ground.Motor2 &

length = (0.2meter) &

radius = (5.0cm)

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.ground.Motor3 &

length = (0.1999956meter) &

radius = (5.0cm)

!

geometry modify shape cylinder &

234 Chapter 9. Appendix B: Adams Script

cylinder_name = .MODEL_1.ground.Motor1 &

length = (0.1999906meter) &

radius = (5.0cm)

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.ground.Motor6 &

length = (0.2000042602meter) &

radius = (5.0cm)

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.ground.Motor5 &

length = (0.2meter) &

radius = (5.0cm)

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.ground.Motor4 &

length = (0.2000042602meter) &

radius = (5.0cm)

!

marker modify &

marker_name = .MODEL_1.ground.MARKER_78 &

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.A6)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A6,

9.1. ADAMS Parametric Model Script 235

.MODEL_1.ground.A6_2,"Z"))

!

material modify &

material_name = .MODEL_1.steel &

youngs_modulus = (2.07E+011(Newton/meter**2)) &

density = (7801.0(kg/meter**3))

!

marker modify &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_2&

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.TCP))&

relative_to = .MODEL_1.Plataforma_Movel

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_9&

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.C1)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.C1,

.MODEL_1.ground.C6, "X"))&

relative_to = .MODEL_1.Plataforma_Movel

!

236 Chapter 9. Appendix B: Adams Script

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_10&

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.C6))&

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.C1,

.MODEL_1.ground.C6, "X"))&

relative_to = .MODEL_1.Plataforma_Movel

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_11&

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.C5))&

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.C5,

.MODEL_1.ground.C4,"X")) &

relative_to = .MODEL_1.Plataforma_Movel

!

defaults coordinate_system &

9.1. ADAMS Parametric Model Script 237

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_12&

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.C4)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.C5,

.MODEL_1.ground.C4,"X"))&

relative_to = .MODEL_1.Plataforma_Movel

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_13&

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.C3)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.C3,

.MODEL_1.ground.C2,"X")) &

relative_to = .MODEL_1.Plataforma_Movel

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

238 Chapter 9. Appendix B: Adams Script

!

marker modify &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_14 &

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.C2)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.C3,

.MODEL_1.ground.C2,"X"))&

relative_to = .MODEL_1.Plataforma_Movel

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_40&

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.C6))&

relative_to = .MODEL_1.Plataforma_Movel

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_42&

location = &

9.1. ADAMS Parametric Model Script 239

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.C1))&

relative_to = .MODEL_1.Plataforma_Movel

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_44&

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.C2))&

relative_to = .MODEL_1.Plataforma_Movel

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_46&

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.C3))&

relative_to = .MODEL_1.Plataforma_Movel

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

240 Chapter 9. Appendix B: Adams Script

marker_name = .MODEL_1.Plataforma_Movel.MARKER_48 &

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.C4)) &

relative_to = .MODEL_1.Plataforma_Movel

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_50 &

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.C5))&

relative_to = .MODEL_1.Plataforma_Movel

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Plataforma_Movel.MARKER_64 &

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.TCP))&

relative_to = .MODEL_1.Plataforma_Movel

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

9.1. ADAMS Parametric Model Script 241

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.Plataforma_Movel.

Plataforma&

length = (1.0cm) &

radius = (0.29173m)

!

geometry modify shape link &

link_name = .MODEL_1.Plataforma_Movel.LINK_33 &

width = (4.0cm) &

depth = (2.0cm)

!

geometry modify shape link &

link_name = .MODEL_1.Plataforma_Movel.LINK_34 &

width = (4.0cm) &

depth = (2.0cm)

!

geometry modify shape link &

link_name = .MODEL_1.Plataforma_Movel.LINK_35 &

width = (4.0cm) &

depth = (2.0cm)

!

marker modify &

marker_name = .MODEL_1.Crank2.MARKER_15 &

location = &

242 Chapter 9. Appendix B: Adams Script

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.A2)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A2,

.MODEL_1.ground.B2,"Z"))&

relative_to = .MODEL_1.Crank2

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Crank2.MARKER_29 &

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.A2)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A2,

.MODEL_1.ground.A2_2,"Z"))&

relative_to = .MODEL_1.Crank2

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Crank2.MARKER_55 &

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.B2)) &

9.1. ADAMS Parametric Model Script 243

relative_to = .MODEL_1.Crank2

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.Crank2.CYLINDER_36 &

length = (0.1939929896meter) &

radius = (1.5cm)

!

marker modify &

marker_name = .MODEL_1.limb2.MARKER_16 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},.MODEL_1.ground.B2))&

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.B2,

.MODEL_1.ground.C2,"Z"))&

relative_to = .MODEL_1.limb2

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.limb2.MARKER_43 &

location = &

244 Chapter 9. Appendix B: Adams Script

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.C2))&

relative_to = .MODEL_1.limb2

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.limb2.MARKER_56 &

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.B2))&

relative_to = .MODEL_1.limb2

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.limb2.CYLINDER_37 &

length = (0.6500031767meter) &

radius = (1.5cm)

!

marker modify &

marker_name = .MODEL_1.Crank1.MARKER_17 &

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.A1)) &

orientation = &

9.1. ADAMS Parametric Model Script 245

(ORI_ALONG_AXIS(.MODEL_1.ground.A1,

.MODEL_1.ground.B1,"Z"))&

relative_to = .MODEL_1.Crank1

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Crank1.MARKER_31 &

location = &

(LOC_RELATIVE_TO({0, 0, 0}, .MODEL_1.ground.A1)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A1,

.MODEL_1.ground.A1_2,"Z"))&

relative_to = .MODEL_1.Crank1

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Crank1.MARKER_53 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B1))&

relative_to = .MODEL_1.Crank1

246 Chapter 9. Appendix B: Adams Script

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.Crank1.CYLINDER_38 &

length = (0.1939998064meter) &

radius = (1.5cm)

!

marker modify &

marker_name = .MODEL_1.limb1.MARKER_18 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B1)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.B1,

.MODEL_1.ground.C1,"Z"))&

relative_to = .MODEL_1.limb1

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.limb1.MARKER_41 &

location = &

9.1. ADAMS Parametric Model Script 247

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.C1)) &

relative_to = .MODEL_1.limb1

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.limb1.MARKER_54 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B1)) &

relative_to = .MODEL_1.limb1

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.limb1.CYLINDER_39 &

length = (0.6500000857meter) &

radius = (1.5cm)

!

marker modify &

marker_name = .MODEL_1.Crank6.MARKER_19 &

location = &

248 Chapter 9. Appendix B: Adams Script

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A6)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A6,

.MODEL_1.ground.B6,"Z"))&

relative_to = .MODEL_1.Crank6

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Crank6.MARKER_51 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B6)) &

relative_to = .MODEL_1.Crank6

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.Crank6.CYLINDER_40 &

length = (0.1939904637meter) &

radius = (1.5cm)

!

9.1. ADAMS Parametric Model Script 249

marker modify &

marker_name = .MODEL_1.Crank6.MARKER_79 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A6))&

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A6,

.MODEL_1.ground.A6_2,"Z"))&

relative_to = .MODEL_1.Crank6

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.limb6.MARKER_20 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B6))&

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.B6,

.MODEL_1.ground.C6,"Z"))&

relative_to = .MODEL_1.limb6

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

250 Chapter 9. Appendix B: Adams Script

!

marker modify &

marker_name = .MODEL_1.limb6.MARKER_39 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.C6)) &

relative_to = .MODEL_1.limb6

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.limb6.MARKER_52 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B6))&

relative_to = .MODEL_1.limb6

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.limb6.CYLINDER_41 &

length = (0.6500005945meter) &

radius = (1.5cm)

9.1. ADAMS Parametric Model Script 251

!

marker modify &

marker_name = .MODEL_1.Crank5.MARKER_21 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A5)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A5,

.MODEL_1.ground.B5,"Z")) &

relative_to = .MODEL_1.Crank5

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Crank5.MARKER_35 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A5)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A5,

.MODEL_1.ground.A5_2,"Z"))&

relative_to = .MODEL_1.Crank5

!

defaults coordinate_system &

252 Chapter 9. Appendix B: Adams Script

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Crank5.MARKER_61 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B5)) &

relative_to = .MODEL_1.Crank5

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.Crank5.CYLINDER_42 &

length = (0.1939989023meter) &

radius = (1.5cm)

!

marker modify &

marker_name = .MODEL_1.limb5.MARKER_22 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B5)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.B5,

.MODEL_1.ground.C5,"Z")) &

9.1. ADAMS Parametric Model Script 253

relative_to = .MODEL_1.limb5

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.limb5.MARKER_49 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.C5)) &

relative_to = .MODEL_1.limb5

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.limb5.MARKER_62 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B5)) &

relative_to = .MODEL_1.limb5

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

254 Chapter 9. Appendix B: Adams Script

geometry modify shape cylinder &

cylinder_name = .MODEL_1.limb5.CYLINDER_43 &

length = (0.6500021103meter) &

radius = (1.5cm)

!

marker modify &

marker_name = .MODEL_1.Crank4.MARKER_23 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A4)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A4,

.MODEL_1.ground.B4,"Z")) &

relative_to = .MODEL_1.Crank4

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Crank4.MARKER_37 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A4)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A4,

9.1. ADAMS Parametric Model Script 255

.MODEL_1.ground.A4_2,"Z")) &

relative_to = .MODEL_1.Crank4

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Crank4.MARKER_60 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B4)) &

relative_to = .MODEL_1.Crank4

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.Crank4.CYLINDER_44 &

length = (0.1940012969meter) &

radius = (1.5cm)

!

marker modify &

marker_name = .MODEL_1.limb4.MARKER_24 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

256 Chapter 9. Appendix B: Adams Script

.MODEL_1.ground.B4)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.B4,

.MODEL_1.ground.C4,"Z")) &

relative_to = .MODEL_1.limb4

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.limb4.MARKER_47 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.C4)) &

relative_to = .MODEL_1.limb4

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.limb4.MARKER_59 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B4)) &

relative_to = .MODEL_1.limb4

9.1. ADAMS Parametric Model Script 257

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.limb4.CYLINDER_45 &

length = (0.6500012678meter) &

radius = (1.5cm)

!

marker modify &

marker_name = .MODEL_1.Crank3.MARKER_25 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A3)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A3,

.MODEL_1.ground.B3,"Z"))&

relative_to = .MODEL_1.Crank3

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Crank3.MARKER_27 &

location = &

258 Chapter 9. Appendix B: Adams Script

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.A3)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.A3,

.MODEL_1.ground.A3_2,"Z"))&

relative_to = .MODEL_1.Crank3

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.Crank3.MARKER_57 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B3)) &

relative_to = .MODEL_1.Crank3

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.Crank3.CYLINDER_46 &

length = (0.1939977582meter) &

radius = (1.5cm)

!

9.1. ADAMS Parametric Model Script 259

marker modify &

marker_name = .MODEL_1.limb3.MARKER_26 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B3)) &

orientation = &

(ORI_ALONG_AXIS(.MODEL_1.ground.B3,

.MODEL_1.ground.C3,"Z"))&

relative_to = .MODEL_1.limb3

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.limb3.MARKER_45 &

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.C3)) &

relative_to = .MODEL_1.limb3

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

marker modify &

marker_name = .MODEL_1.limb3.MARKER_58 &

260 Chapter 9. Appendix B: Adams Script

location = &

(LOC_RELATIVE_TO({0, 0, 0},

.MODEL_1.ground.B3)) &

relative_to = .MODEL_1.limb3

!

defaults coordinate_system &

default_coordinate_system = .MODEL_1.ground

!

geometry modify shape cylinder &

cylinder_name = .MODEL_1.limb3.CYLINDER_47 &

length = (0.6500030919meter) &

radius = (1.5cm)

!

model display &

model_name = MODEL_1

9.2. Positions Points File 261

9.2 Positions Points File

point create point_name = .MODEL_1.ground.TCP

location = 0.00000, 0.00000, -0.45000

point create point_name = .MODEL_1.ground.A1

location = 0.63689, 0.19756, 0.00000

point create point_name = .MODEL_1.ground.A2

location = -0.14735, 0.65034, 0.00000

point create point_name = .MODEL_1.ground.A3

location = -0.48953, 0.45278, 0.00000

point create point_name = .MODEL_1.ground.A4

location = -0.48953, -0.45278, 0.00000

point create point_name = .MODEL_1.ground.A5

location = -0.14735, -0.65034, 0.00000

point create point_name = .MODEL_1.ground.A6

location = 0.63689, -0.19756, 0.00000

point create point_name = .MODEL_1.ground.A1_2

location = 0.46368, 0.09756, 0.00000

point create point_name = .MODEL_1.ground.A2_2

location = -0.14735, 0.85034, 0.00000

point create point_name = .MODEL_1.ground.A3_2

location = -0.31633, 0.35278, 0.00000

point create point_name = .MODEL_1.ground.A4_2

location = -0.66274, -0.55278, 0.00000

262 Chapter 9. Appendix B: Adams Script

point create point_name = .MODEL_1.ground.A5_2

location = -0.14735, -0.45034, 0.00000

point create point_name = .MODEL_1.ground.A6_2

location = 0.81009, -0.29756, 0.00000

point create point_name = .MODEL_1.ground.B1

location = 0.56640, 0.31964, 0.13328

point create point_name = .MODEL_1.ground.B2

location = -0.31125, 0.65034, -0.10379

point create point_name = .MODEL_1.ground.B3

location = -0.56001, 0.33070, 0.13328

point create point_name = .MODEL_1.ground.B4

location = -0.40758, -0.59472, -0.10379

point create point_name = .MODEL_1.ground.B5

location = -0.00639, -0.65034, 0.13328

point create point_name = .MODEL_1.ground.B6

location = 0.71883, -0.05561, -0.10379

point create point_name = .MODEL_1.ground.C1

location = 0.29173, 0.40235, -0.45000

point create point_name = .MODEL_1.ground.C2

location = 0.20258, 0.45382, -0.45000

point create point_name = .MODEL_1.ground.C3

location = -0.49431, 0.05147, -0.45000

point create point_name = .MODEL_1.ground.C4

location = -0.49431, -0.05147, -0.45000

point create point_name = .MODEL_1.ground.C5

9.2. Positions Points File 263

location = 0.20258, -0.45382, -0.45000

point create point_name = .MODEL_1.ground.C6

location = 0.29173, -0.40235, -0.45000

