
T
ítu

lo

N
o

m
e

 d
o
 A

u
to

r

This work addresses the numerical determination

of effective properties of a cellular media and its

topology optimization. Two optimization

approaches are addressed: the maximization of a

linear combination of the components of the

homogenized tensor of elastic properties and the

mechanical tailoring of the effective properties of a

cellular material.

Advisor: Eduardo Lenz Cardoso

Joinville, 2016

MASTER THESIS

ANALYSIS AND OPTIMIZATION

OF THREE DIMENSIONAL

MICROSTRUCTURES

YEAR

2016

B
R

U
N

O
 G

U
ILH

E
R

M
E

 C
H

R
IS

T
O

F
F

|
A

N
A

LY
S

IS
 A

N
D

 O
P

T
IM

IZ
A

T
IO

N
 O

F
 T

H
R

E
E

D
IM

E
N

S
IO

N
A

L M
IC

R
O

S
T

R
U

C
T

U
R

E
S

SANTA CATARINA STATE UNIVERSITY - UDESC

COLLEGE OF TECHNOLOGICAL SCIENCES - CCT

MASTER IN MECHANICAL ENGINEERING - PPGEM

BRUNO GUILHERME CHRISTOFF

JOINVILLE, 2016



BRUNO GUILHERME CHRISTOFF

ANALYSIS AND OPTIMIZATION OF THREE

DIMENSIONAL MICROSTRUCTURES

Master thesis presented to the Me-

chanical Engineering Department at

the College of Technological Sciences

of the Santa Catarina State University,

in fulfilment of the partial requirement

for the degree of Master in Mechanical

Engineering.

Advisor: Eduardo Lenz Cardoso

JOINVILLE, SC

2016



C556a Christoff , Bruno Guilherme

Analysis and optimization of three dimensional microstructures / Bruno Guilherme Christoff . -

2016.
204 p. : il. ; 21 cm

Orientador: Eduardo Lenz Cardoso
Bibliografia: p. 165-174.

Master dissertation – Santa Catarina State University, College of Technological Sciences, Post

Graduation Program in Mechanical Engineering, Joinville, 2016.

1. Porous materials. 2. Cellular materials. 3. Homogenization. 4. Topology optimization.

5. Three dimensional microstructures. I. Cardoso, Eduardo Lenz. II. Santa Catarina State
University, College of Technological Sciences, Post Graduation Program in Mechanical

Engineering. Títle. .

CDD 620.1 – 23.ed.







ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to the following per-
sons, who directly or indirectly helped me in some stage of the development
of this thesis.

To my advisor Eduardo Lenz Cardoso for the enormous support in
every aspect of this work, for the patience, for being a great professional,
besides being a good friend inside and outside the university and for all
the coffees and beers.

To professor Pablo Andrés Muñoz Rojas for all the bibliography
provided, for all the discussions concerning several aspects of this work and
also for the possibility of letting me visit an university abroad.

To professor Markus Merkel for kindly receiving me at Hochshule
Aalen.

To the Mechanical Engineering Department of the Santa Catarina
State University for the opportunity to carry on this master.

To CAPES for the concession of the master’s scholarship.

To my parents Lenir and Carlos, and to my brother Luis for the
endless support and for being part of my life in every step I take.

To all my friends of LAMEC for relieving the burden in the stages
of development of this work.

To the undergraduate Thiago Ponciano da Silva for the help with
the 3D printer.

To Rafa, Klein, Xanxa and Elvis for the Rock and Roll.





“Take the risk of thinking for yourself,

much more happiness, truth, beauty,

and wisdom will come to you that

way.”

Christopher Hitchens





ABSTRACT

CHRISTOFF, Bruno Guilherme. Analysis and Optimization of Three

Dimensional Microstructures. 204 pages. Master Thesis (Post Gradua-
tion Program in Mechanical Engineering) - Santa Catarina State University,
Joinville, 2016.

Cellular materials are a wide spread class of material found in nature. As
example one can list wood, cork and tubercular bone. As this kind of
structure provides excellent properties to the material and as presently the
rapid prototyping process allow a high resolution artificial material manu-
facturing, several researches are conduced in the artificial materials area.
Thus, this work develops a computational code for the determination of
the effective properties of a three dimensional media formed by the periodic
repetition of a base cell and for the optimization of such cell. Three well
established tools into the computational mechanics field are used. The first
one is the Homogenization by Asymptotic Expansion, used to evaluate the
effective properties of the three dimensional media. The second one is the
Topology Optimization and the third one is the Finite Element Method,
used to solve the equilibrium problems. The homogenization algorithm is
used to evaluate the variation of the effective mechanical and conductivity
thermal properties of a hollow sphere structure with regard to the geo-
metrical parameters of its base cell. The optimization algorithm is used in
order to obtain a base cell which maximizes a linear combination of the
components of the homogenized elasticity tensor of the media and to ob-
tain the geometry of a base cell which better approximates the mechanical
properties of a human bone, using as base material, the properties of a
biocompatible titanium alloy.

Key-words: Porous Materials. Cellular Materials. Homogenization. Topol-
ogy Optimization. Three Dimensional Microstructures





RESUMO

CHRISTOFF, Bruno Guilherme. Análise e Otimização de Microestru-

turas Tri-Dimensionais. 204 páginas .Dissertação (Programa de Pós Grad-
uação em Engenharia Mecânica) - Universidade do Estado de Santa Cata-
rina, Joinville, 2016.

Materiais celulares são um classe especializada de material muito encon-
trada na natureza. Como exemplos destes materiais pode-se citar a madeira,
a cortiça e o osso tubercular. Como este tipo de estrutura proporciona ao
material excelentes propriedades com um volume relativo baixo e como
atualmente os processos de prototipagem rápida permitem a fabricação
de materiais contendo microestruturas em escala bastante reduzida e com
alta precisão, diversas pesquisas são conduzidas relacionadas à materiais
celulares artificiais. Assim, este trabalho consiste no desenvolvimento de
um código computacional para obtenção das properiedades efetivas de um
meio tri dimensional formado pela repetição de uma célula base e para o
projeto otimizado de tal célula base. Três ferramentas bastante difundidas
na literatura são utilizadas. A primeira é a Homogeneização por Expan-
são Assintótica, utilizada para a determinação das propriedades efetivas
do meio. A segunda é a otimização topológica e a terceira o método dos
elementos finitos, utilizado para a solução dos problemas de equilíbrio. O
algoritmo de homogeneização é utilizado para a obtenção das propriedades
mecânicas e de condutividade térmica efetivas num meio formado por
esferas ocas. O algoritmo de otimização é utilizado para a obtenção de
geometrias que maximizam uma combinação linear qualquer das compo-
nentes do tensor elástico efetivo do meio e para a obtenção da geometria
da célula base que aproxime as propriedades mecânicas de um osso hu-
mano, utilizando como material base as propriedades mecânicas de uma
liga de titânio bio compatível.

Palavras-chave: Materiais Porosos. Materiais Celulares. Homogeneização.
Otimização Topológica. Microestruturas Tri-Dimensionais.
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1 INTRODUCTION

The introduction of rapid prototyping processes allows the high
resolution manufacturing of cellular materials with a predetermined mi-
crostructure, thus increasing the applications of this kind of material in
several areas of technology.

The correct prediction of properties in a composite and a cellular,
or porous media, plays an important role in engineering applications, due
to the fact that a proper material specification can provide lower cost,
lower weight and higher strength. Also, abreast the correct prediction of
properties, the optimization of these kind of microstructures allows tailoring
the effective mechanical properties in order to suit in a given application.

1.1 CELLULAR MATERIALS

Cellular, or porous material, can be understood as a material con-
taining a small structure that can be identified in the material. The most
important feature of a cellular material is its relative density, that is, the
density of the cellular material, divided by the density of the solid of which
the cellular material is made (GIBSON; ASHBY, 1997). Some materials
can be made with a relative density as low as 0.001. Also, cellular materi-
als can roughly be divided into two distinct groups, open and closed cell
materials (GRENESTEDT, 1999). The open cell materials consists of a
interconnected network of rods or beams, whereas the closed cell materials
consists in a network of interconnected shells or plates. Also, the material
can be partly open and partly closed.

Another way of defining a cellular material is through the concept
of composite. According to Mendonça (2005), a composite is a set of two
or more different materials, combined into a macroscopic scale in order to
work as a single material, aiming the acquisition of properties that none of
the base materials present individually. A cellular material can be seen as
a particularity of a composite, in which one of the constituent materials is
solid and another one is void.

1.1.1 Natural Cellular Materials and Engineering Applications

Cellular materials are widely spread in nature and in engineering
applications. This kind of structure provides excellent material properties
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like high energy absorption, good formability and excellent insulation. Also,
the possibility of tailoring their mechanical, thermal, electrical and other
properties makes this an unique class of material. In nature one can find
cellular materials in plant bodies and skeletons, applications in which cer-
tain mechanical properties with a small amount of material, or a small
weight, are required. This natural cellular materials have an adapted mi-
crostructure in order to prevail some service conditions, rendering them
very mechanically efficient (LUXNER, 2006).

Many natural structural materials are cellular solids, including
wood, cancellous bone and cork. Wood is still the world’s most widely
used material. It has orthotropic behavior and its stiffness is greater in
the axial direction, due to the cellular arrangement, showing a natural
adaptation of the necessity of a plant. Most bones are an elaborate con-
struction with an outer shell of compact bone and a core of porous cellular
cancellous bone within. This arrangement reduces the weight of the bone
while still provides a large bearing area, feature that reduces stresses at
joints. Also, this configuration forms a low weight sandwich shell, provid-
ing a lightweight structure without compromising its primary mechanical
function (GIBSON; ASHBY, 1997).

The main area of application of cellular materials is the thermal
insulation. The low conductivity of certain foams makes it very useful in
applications such as the insulation of booster rockets, refrigerated transport
system, among others.

The use of cellular solids is also widespread into the packaging
area. This kind of material becomes useful in this kind of application due
to two major reasons. The first one is an effective energy absorption in case
of impacts, that must be effective to protect the material being transported
and the second one is the light weight.

Nowadays, sandwich panels in modern aircraft are made of carbon
or glass fibres, separated by honeycomb, or other lightweight material, pro-
viding an enormous bending stiffness to the structure. The understanding
of the mechanics of the cancellous bone, allows to replace damaged bone
to man-made cellular materials with properties approximately equal to the
bones.

Cellular materials have been used also in marine buoyancy. Cork
has been used for fishing float for millennia. Nowadays, plastic foams are
widely used as supports for floating structures. This kind of material is more
resistant to damage than other solutions as flotation bags or chambers.
Also, they do not rust or corrode and can retain their buoyancy even when
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hardly damaged, due to the cellular composition.

1.1.2 Manufacturing

Cellular structures have complex geometries and cannot be man-
ufactured with standard manufacturing processes, such as machining or
casting. So, a great challenge faced by the research on cellular materials
lies on a viable way of manufacturing this kind of structure. The work of
Banhart (2000) shows several techniques of manufacturing cellular mate-
rials and metallic foams. Recently, these techniques improved significantly
enabling the manufacturing of cellular materials with complex geometries.

One could mention as the main cellular materials manufacturing
processes the Selective Laser Melting, SLM, the Selective Laser Sinter-
ing, SLS, the Fused Deposition Modelling, FDM and the Digital Light
Processing, DLP, which allow the manufacturing of materials with a high
complexity in a microscopic scale in regard to the manufactured piece.
The above mentioned methods are called Rapid Prototyping processes and
allow a controlled and localized melting of a powder metal. The works of
Smith, Guan and Cantwell (2013) and Wang (2005) show how the tech-
niques of manufacturing are used in a combined way. These techniques can
be used to manufacture either polymeric or metallic media. Still, the use
of rapid prototyping combined with biodegradable polymers has become
increasingly important in the medical area (LUXNER, 2006).

1.1.3 Properties Determination

The effective properties of a cellular material are dependent on
the properties of the base material, the relative fraction and the spatial
distribution of material on the domain.

Several analytical models are presented by Gibson and Ashby (1997)
to predict the effective mechanical properties of honeycombs, foams and
sandwich panels with foam cores. It is also discussed the mechanical be-
haviour of natural cellular materials as wood, cancellous bone and cork.
The work of Grenestedt (1999) uses analytical and numerical techniques
in order to predict the effective elastic behaviour of low density regular cel-
lular materials, considering that there are no imperfections in the material.
Still, the work of Christensen (2000) investigates the mechanical behaviour
for both two and three dimensional low density regular cellular solids. Zhu,
Hobdell and Windle (2000) investigates how cell irregularities affects the
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elastic properties of open-cell foams using a finite element analysis ap-
proach. Sanders and Gibson (2003) analyse the elastic moduli and initial
yield strength of body-centred and face-centered cubic packings of hollow
sphere foams with finite element models. In the work of Luxner, Stampfl
and Pettermann (2005), several finite element modelling concepts and lin-
ear analyses are used in order to study generic three dimensional structures
with the employment of both continuum element and beam element based
models.

As mentioned before, a cellular material can be seen as a particu-
larity of a composite, thus, it is worth mentioning some works concerning
the properties determination of composites. The effective properties of a
composite material are dependent of the properties of each constituent,
their relative volume fractions, the arrangement of the inclusions and the
quality of the adhesion among each phase. If the material is assumed as pe-
riodic or quasi-periodic, one can, under the assumption of linearity, use the
well-established concept of representative volume element (RVE) analysis.
In the RVE analysis, representative sections of the material distribution
are analysed under assumed boundary conditions to obtain the average or
effective properties of that mixture (HOLLISTER; KIKUCHI, 1994).

Among the several methods available to obtain the effective prop-
erties of a composite, the standard rule of mixtures is the simplest, Jones
(1999), although it can only be used with simple mixtures. Other well-
established methods found in the literature, like Paul (1960), Hashin (1962),
Hashin (1963), Hill (1965), Whitney (1967), Halpin and Tsai (1969),
Muskhelishvili (2010), must be used within some specific hypothesis con-
cerning the material distribution, the material properties of the constituents
and their relative volume fraction.

One of the RVE methods that can be used in order to account for
more general problems, like the mixture of anisotropic materials with com-
plex geometries and cellular materials, is the homogenization by asymptotic
expansion (KELLER, 1977) (SANCHEZ-PALENCIA, 1980), (SANCHEZ-HU-
BERT; SANCHEZ-PALENCIA, 1992). The basic idea of this method, used
in this work, is to obtain the macroscopic behaviour of a media formed by
a periodic microstructure, as a function of the microscale.

1.2 HOMOGENIZATION BY ASYMPTOTIC EXPANSION

In the context of linear elasticity, the effective properties of a
material with a periodic microstructure can be determined by the homog-
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enization by asymptotic expansion method. This method is based on the
assumption that there is a base cell (or RVE), that is to say, a small part of
the domain which repeats itself with a periodicity in the whole domain, that
is considerably smaller than the design domain (NEVES; RODRIGUES;
GUEDES, 2000).

The development of the method follows three basic considerations
(HOLLISTER; KIKUCHI, 1994). The first demands that the property being
evaluated can be written as an asymptotic expansion. The second consid-
eration is that the problem can be divided into two scales, one at the macro
scale, or design domain, and other in the micro scale. This two scales must
be related by an small scalar, ǫ, that should tend to zero, indicating that
the macro scale is far bigger that the micro scale. The last consideration is
that the boundaries of the RVE are periodic. That means that kinematic
constraints are imposed to the RVE, enforcing that the displacement field
(for the determination of the elastic properties) and the temperature field
(for the determination of the thermal conductivity properties) must have
the same values on opposite faces of the RVE.

This method allows to obtain the macroscopic behaviour, with the
consideration that the required properties can be written as a function of
the microscopic behaviour, at the base cell level, in the form of an asymp-
totic expansion in two or more scales. Thereby, the main objective of the
method is to describe the macroscopic behaviour of the cellular material
using only the informations of the base cell, avoiding a complicated prob-
lem and reducing drastically the computational effort on a finite element
problem, due to the fact that, using the homogenization method, only one
cell must be discretized and not the whole domain.

The evaluation procedure of effective properties of a media, from
a given base cell geometry, can be understood as a direct analysis of the
problem. Figure 1 illustrates the basic idea of the method, in which a
domain, formed by a repetition of several base cell is shown.

Like the elastic properties, the thermal conductivity properties of
a media formed by the repetition of several base cell can be obtained
by the homogenization by asymptotic expansion method, using the same
consideration as for the mechanical case.

The equilibrium equations needed to obtain the effective properties
of a porous, or composite, media can be solved through several numerical
methods. At this work, the finite element method is adopted.
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Figure 1 – Design domain, periodic material and base cell

Source: Author’s production, 2016, based on (NEVES; RODRIGUES; GUEDES, 2000)

1.3 OPTIMIZATION OF CELLULAR STRUCTURES

A quite frequent approach of a homogenization problem, is the
so called inverse analysis, that is used combined with the topology op-
timization method. This approach consists in, given the macroscopic re-
quirements of the porous media, to find the geometry of the base cell who
better fits these requirements.

The use of the topology optimization method in the context of a
continuum media is well established by Bendsøe and Kikuchi (1988), who
define an optimum distribution of material in order to satisfy a function
associated to the effective properties of the media, and the homogenization
method is used as a tool to evaluate such properties.

Still in this context, it is worth mentioning the work of Weihong
et al. (2007), which uses the methods of homogenization and topology
optimization to find the geometry of the base cell that provides the max-
imization of a linear combination of the components of the homogenized
constitutive tensor, and also the work of Lin, Kikuchi and Hollister (2004),
which uses both tools to find a bone support with a structure in which the
material has elastic properties close to the human bone.
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1.4 CONTEXTUALIZATION WITHIN THE UNIVERSITY RESEARCH
GROUP

In this section, some works developed in the Mechanical Com-
putational Laboratory (Laboratório de Mecânica Computacional-LAMEC)
of the Santa Catarina State University (Universidade do Estado de Santa

Catarina - UDESC), or with a partnership with some member of the re-
search group, are shown.

The works of Muñoz-Rojas, Carniel and Öchsner (2011) and Carniel
(2009) use sequential linear programming to optimize thermomechanical
properties, like the maximization of the shear modulus and the thermal
conductivity and a given direction. Bi and three dimensional results are
presented, although, the use of small moving limits requires a high number
of iterations to the convergence. To solve this issue, the authors propose the
use of an alternative algorithm of mathematical programming. To improve
the previous work, Muñoz-Rojas et al. (2011) suggest an hybrid approach
composed by an optimization without derivatives, the Globalized Bounded
Nelder-Mead Method - GBNM, followed by an optimization with deriva-
tives, the Sequential Linear Programming - SLP. With this approach it is
possible to achieve new topologies with improved results, when compared
with the previous work. Figures 2 and 3 show the micro structures obtained
by maximizing the ratio between the shear component of the elasticity ho-
mogenized tensor and the thermal conductivity component of the thermal
homogenized tensor for both works.

Figure 2 – Base cell and corresponding periodic material

Source: (CARNIEL, 2009)
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Figure 3 – Microstructure of the Base Cell

Source: (MUñOZ-ROJAS et al., 2011)

The work of Guth (2012) couples the homogenization method
with an optimization algorithm in order to obtain the optimum configu-
ration of materials composed by lattice cells, aiming the improvement of
the response of mechanical and thermal solicitations, including for some
cases, symmetry restrictions. Figure 4 shows an optimized base cell for the
maximization of thermal conductivity with thermal isotropy symmetry and
its correspondent periodic material.

Figure 4 – Base cell and corresponding periodic material

Source: (GUTH, 2012)

Franco (2014) studies an optimized design of titanium micro struc-
tures, in order to minimize the difference between the elasticity tensor of
the human bone and the material properties of a prosthesis, using the
topology optimization method and the plane stress consideration. Several
topologies achieve a satisfactory result and one of them is shown in figure
5, together with the correspondent periodic material.
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Figure 5 – Base cell and corresponding periodic material

Source: (FRANCO, 2014)

It is worth mentioning the work of Muñoz-Rojas et al. (2008), that
uses shape and topology optimization to achieve a maximization on the
thermal conduction properties on cellular materials. Figure 6 shows an uni-
tary cell obtained for the maximization of the sum of the thermal properties
in both principal directions and the correspondent periodic material.

Figure 6 – A quarter of base cell and corresponding periodic material

Source: (MUñOZ-ROJAS et al., 2008)

To conclude, the work of Guth, Luersen and Muñoz-Rojas (2012)
shows the lattice periodic material optimization, with symmetry restrictions
into the homogenized elastic constitutive tensor. Figure 7 shows the base
cell obtained for the minimization of the Poisson’s coefficient, with isotropy
restriction on the elasticity tensor and its correspondent periodic material.
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Figure 7 – Base cell and corresponding periodic material

Source: (GUTH; LUERSEN; MUñOZ-ROJAS, 2012)

1.5 OBJECTIVES

The present work has two main objectives. The first one consists
in, given a three dimensional base cell who represents the smallest repeti-
tive part of a porous media, to find the effective mechanical and thermal
properties of this media, the so called direct analysis. The second one con-
sists in, given an elastic constitutive parameters of the porous media, to
find the geometry of the base cell who better satisfies these requirements,
the so called inverse analysis.

It is developed a computational code using the Julia Language
(BEZANSON et al., 2012), using the finite element method (FEM) as a
tool combined with the homogenization by asymptotic expansion theory
for the direct analysis. In addition, a computational code for topology op-
timization is also developed. All stages of development of the algorithms
and the computational code are made by the author and the visualiza-
tion of the topologies is made by using the Gmsh software (GEUZAINE;
REMACLE, 2009)

Furthermore, as specific objectives, one can highlight:

• Review, understand and register the finite element method, the ho-
mogenization and the topology optimization theories;

• Implementation of a three dimensional finite element software for
the determination of the displacement, strain and stress fields in a
given domain, including the mesh generation;

• Implementation of a homogenization software for the determination
of the mechanical and thermal tensors of a porous media formed by
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the repetition of a base cell, bearing in mind that all calculation are
made at the base cell level;

• Implementation of a topology optimization software to be used com-
bined with the homogenization software, in order to determinate the
geometry of a base cell that satisfies some requirements of the porous
media formed by the repetition of these cells;

• Direct Analysis: To study the mechanical and thermal behaviour of
a porous media throughout the geometry of the base cell;

• Inverse Analysis to mechanical applications: To find the optimum
geometry of the base cell to maximize the linear combination of the
components of the homogenized tensor and to find the geometry
of the base cell whose homogenized tensor approximates a given
elasticity tensor.

1.6 OUTLINE OF THIS THESIS

The work is structured following the sequence:

• Chapter 2 presents the main concepts associated to the determina-
tion of the properties of a porous media through the homogenization
method. The concept of asymptotic expansion and the expressions
for the determination of the mechanical and thermal effective tensors
are obtained. Finally, the developed algorithm for the determination
of the equivalent properties of a porous media is explained;

• Chapter 3 presents the basic concepts of optimization in a general
approach. A historical review, the basic concepts to understand an
optimization problem, and the classification of the structural opti-
mization approaches are shown;

• Chapter 4 presents the the topology optimization method. The con-
cept of material parameterization is explained. Problems associated
to the method, and some of the approaches to avoid them are shown.
Last of all, the methods used in this work to solve a topology opti-
mization problem are presented;

• Chapter 5 presents the formulation of the problems addressed in this
work. Initially, the proposed optimization problems are shown. The
first one consists in to find the geometry of the base cell of a porous
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media whose linear combination of any components of its mechanical
tensor is maximized. The second one is the elastic tailoring of the
properties of a human bone. The formulation of the optimization
problems are presented, as well as the sensibility analysis. Finally, the
proposed solution algorithm is presented. Besides the optimization
problems, an analysis problem is proposed. It consists in, given the
topology of two distinct hollow spheres models, to find the effective
mechanical and thermal properties of the media with regard to their
base cell’s geometrical parameters. The models proposed and the
least square method, used to approximate an equation relating the
effective properties of the media and the geometrical parameters, are
presented;

• Chapter 6 shows the results of the developed work. Initially the results
for the hollow sphere structures analysis are shown. Then, the results
involving the optimization problems, the maximization of a linear
combination of the components of the constitutive mechanical tensor
and the obtainment of a target tensor are shown;

• Chapter 7 shows the conclusions of the work and the suggestions for
future works.
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2 HOMOGENIZATION

The effective properties of a heterogeneous material, with a regular
or nearly regular micro structure, can be determined through the homog-
enization by asymptotic expansion method.

The urge of the use of a particular method to obtain the effective
properties of this kind of media becomes clear when two approaches to
determine the behaviour of the material are considered. The first one is
the numerical approach. If a method such as the FEM is used to predict
the behaviour of the media, it would be necessary an extremely refined
mesh in order to represent the heterogeneities, rendering the problem very
difficult or even impracticable due to the computational effort needed.
The second one is to find the effective properties of the media through
experimental tests. It is clear that this approach may become impractical
due to the high number of experiments needed to be performed and the
cost associated. The homogenization method is a way to overcome these
issues and consists, basically, in replacing the heterogeneous material to
an equivalent material model.

In a mathematical way, one can see the homogenization as a limit
theory used to substitute differential equations with rapidly oscillating co-
efficients under the assumption of periodicity and using an asymptotic
expansion, by differential equations with constant, or quasi constant coef-
ficients.

The earliest studies on the homogenization field can be attributed
to Sanchez-Palencia (1974), Larsen (1975) and Keller (1977). Studies re-
garding mathematical aspects and engineering applications were developed
in parallel in the late seventies by several authors, as Benssousan, Lions
and Papanicolau (1978), Ciaranescu and Paulin (1979), Sanchez-Palencia
(1980). From then on, several authors refined the method, and contribu-
tions that are worth mentioning are the works of Léné and Leguillon (1982)
and Guedes and Kikuchi (1990), that use the finite element method in or-
der to solve the homogenization equations.

The effective properties of a porous material are dependent on the
properties of the base material, the relative volume of material in regard to
the whole domain, and the spatial distribution of material. In a composite,
both base material properties and their adhesion also influence the effec-
tive properties. If the material is assumed as periodic or quasi-periodic, one
can, under the assumption of linearity, use the well-established concept of
representative volume element (RVE) analysis. In the RVE analysis, repre-
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sentative sections of the material distribution are analysed under assumed
boundary conditions to obtain the average or effective properties of the me-
dia (HOLLISTER; KIKUCHI, 1994). One of the RVE methods that can be
used in order to account for more general problems, like the determination
of properties of a mixture of anisotropic materials with complex geometries
or porous materials, is the homogenization by asymptotic expansion.

The basic idea of the homogenization by asymptotic expansion,
used in this work, is to obtain the macroscopic behaviour of a media formed
by a periodic micro structure as a function of the micro scale, in other
words, to predict the effective behaviour by an analysis only on the RVE
of the material. It consists, basically, in solving an equilibrium problem to
obtain the displacement, or temperature, field on the microscopic level,
with which is possible to determine the effective homogenized elasticity
tensor of the media. In the work of Hollister and Kikuchi (1992) it is shown
that the effective properties of composites with a periodic structure, such as
stiffness and local strain, are better approximated using the homogenization
theory instead of the before mentioned approaches.

The development of the method follows three basic considerations
(HOLLISTER; KIKUCHI, 1994). The first demands that the displacement
field of the media can be written in an asymptotic expansion as

uǫ
(x,y) = u0

(x,y)+ǫu1
(x,y)+ǫ2u2

(x,y)+ ..., (2.1)

where x and y are the coordinates in the macroscopic and in the micro-
scopic levels, respectively, uǫ is the total displacement field and u0, u1 and
u2 are the contributions for the displacement of the macroscopic scale,
microscopic scale, and eventual smaller scales, respectively. The second
consideration is that the coordinates at each level are related by a small
parameter, ǫ, in the form

y =
x

ǫ
. (2.2)

As the coordinates in the microscopic scale are smaller than their macro-
scopic relatives, the parameter ǫ should tend to zero. The last main con-
sideration is that the displacements on the boundaries of the RVE are
periodic, in other words, the value of the displacement are the same in
opposite sides of the representative volume.

This chapter presents the basic definitions and the mathemati-
cal formulation concerning the homogenization method. At first the con-
cepts of periodicity and asymptotic expansion are presented. Hereupon,
the method is used in the context of linear elasticity, in order to obtain the
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effective fourth order mechanical tensor of a periodic media. Like for the
mechanical case, the method is also used to predict the effective thermal
conductivity tensor of the material. Both analytical and numerical develop-
ments are shown. Finally, the algorithm, used to evaluate the mechanical
and thermal effective properties of a porous media, developed in this work
is explained.

2.1 ASYMPTOTIC EXPANSION AND PERIODICITY

Among all classes of materials, one can emphasize one which has
a regular periodicity. This kind of material contains a regular and periodic
structure, and it is represented by a base cell, or a representative volume
element (RVE), the smallest structure on the domain in which one can find
a pattern of repetition. Figure 8 shows an example of a periodic material
in three dimensions where the microstructure is made of fibres embedded
in a matrix.

Figure 8 – Periodic expansion of a base cell. x are the macroscopic coordinates
and y are the microscopic coordinates

X

Source: Author’s production, 2016, based on (SIGMUND, 1994)

Materials containing this kind of structure obey the relation

F (x+NY ) =F (x), (2.3)

where F is a scalar, vectorial or even tensorial function, x contains the
spacial coordinates in the macroscopic scale, N is a diagonal matrix, given
by

N =




n1 0 0

0 n2 0

0 0 n3


 , (2.4)
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where n1, n2 and n3 are arbitrary integer numbers, which are responsible
for the translation of the function analysed in the principal directions, and
vector Y represents the period of the base cell, that is to say, the size of
the base cell. In R

3, Y is a retangular base cell, defined as

Y =]0, y0
1 [×]0, y0

2 [×]0, y0
3 [, (2.5)

where y0
1
, y0

2
and y0

3
are, respectively, the horizontal length, vertical length

and depth of the RVE.

The period of repetition of the base cell, Y , when compared with
the dimension of the whole domain, is assumed to be very small. This
consideration leads to the fact that, for these heterogeneous media, a
characteristic function will rapidly vary in a small neighbourhood of a point
of the domain. Therefore, it is defined an auxiliary position vector, on the
microscopic scale, given by y = (y1, y2, y3), which is responsible for the
description of the rapid oscillations of the function. Conversely, the vector
x is responsible for the description of a slow variation, or the effective
macroscopic behaviour of the function (HASSANI; HINTON, 1998a). The
relation between the length of the vectors in the macroscopic and in the
microscopic scales are given by equation 2.2.

Figure 9 shows the behaviour of a function which obeys the re-
lation of the equation 2.3. The highly oscillating function represents the
microscopic behaviour of the function, as the result of the variations on the
micro structure, on the other hand, the non oscillating function represents
the global, or macroscopic behaviour of the function.

Figure 9 – Micro and macroscopic behaviour of the function

Source: Author’s production, 2016
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The two scale asymptotic expansion method is classical in the field
of mechanic vibrations, when a small perturbation modify a motion which
should be otherwise periodic in time (SANCHEZ-PALENCIA, 1986). This
approach can be used in regard to the homogenization method, in order
to predict the effective properties of a media with a highly heterogeneous
micro structure.

Let Φǫ (x) be a general function describing the behaviour of the
problem being analysed. The relevant field variables can be approximated
by an asymptotic expansion in two (or more) scales as

Φǫ
(
x,y

)
=Φ0

(
x,y

)
+ǫΦ1

(
x,y

)
+ǫ2Φ2

(
x,y

)
+ ..., (2.6)

where Φǫ is the exact value of the field variable, Φ0 is the macroscopic
or average value of the field variable, Φ1 and Φ2 are the perturbations on
the field variable due to the micro structure, x and y are the vectors of
the coordinates into the macroscopic and microscopic scales, respectively
and ǫ is the scalar who relates both scales. The functions Φ1, Φ2, ... are
periodic with regard to y and the period is Y . If a function Φ is periodic,
its derivatives are also periodic with the same period and its integral, over
the period, equals zero. Also, if the function Φ depends both on x and
implicitly in y and y depends on x its derivatives can be written as

dΦ

d xi
=

∂Φ

∂xi
+

∂Φ

∂yi

d yi

d xi
, (2.7)

and, as the both scales are related by the scalar ǫ, equation 2.7 becomes

dΦ

d xi
=

∂Φ

∂xi
+

1

ǫ

∂Φ

∂yi
. (2.8)

2.2 ELASTICITY PROBLEM

The characteristics of each type of materials relating the kinemat-
ics and the equilibrium considerations are called constitutive equations. For
the elasticity problem, these laws relate one stress to one strain measure.
The simplest case, used in this work, is the linear elastic behaviour.

The Hooke’s generalized law is used to describe such behaviour.
This law is the simplest model and establishes a relation between the strain
and stress states. For a three dimensional case this relation is written as

σi j = Ci j kl εkl , (2.9)
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where σ is the second order stress tensor, ε is the second order strain
tensor and C is the fourth order elasticity tensor containing the elasticity
constants of the material. The indexes i , j , k and l can assume values
between 1 and 3. This model is able to describe isotropic, orthotropic and
anisotropic materials within the elastic linear consideration.

Now, considering the symmetries

Ci j kl = C j ikl = Ci j lk = C j i lk (2.10)

and

Ci j kl = Ckli j , (2.11)

the number of components needed to determine the constitutive law is 21.
Consequently, the constitutive tensor can be written in the matrix form as

C =




C1111 C1122 C1133 C1112 C1123 C1113

C2222 C2233 C2212 C2223 C2213

C3333 C3312 C3323 C3313

C1212 C1223 C1213

C2323 C2313

sym. C1313




. (2.12)

For an unidimensional case, the Hooke’s law becomes

σ= Eε, (2.13)

where E is the Young’s modulus of the material.

The Hooke’s Law is valid in each point of the domain and for ho-
mogeneous materials, the fourth order elasticity tensor is constant in the
domain. For the case of non homogeneous materials with a micro structure,
its properties vary rapidly in the micro scale. In this case, the homogeniza-
tion method can be used in order to determine equivalent properties, valid
in the whole macroscopic domain, whose tensor can be used for an anal-
ysis into the macro scale. This tensor is called Homogenized tensor and
is designated by CH. This tensor represents an equivalent homogeneous
tensor, used to approximate the heterogeneous behaviour of the media.

As a way of enlightenment, appendix A shows the evaluation of
the effective mechanical properties using the homogenization by asymptotic
expansion method for an unidimensional case.
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2.2.1 General Elasticity Problem

This section aims to show a summary of the homogenization
method applied to the determination of the mechanical properties of a
three dimensional media.

The method is based on a two-scale asymptotic expansion of
the properties of a highly heterogeneous media with a periodic, or quasi-
periodic microstructure. For a highly heterogeneous media, its properties
may vary within a small neighbourhood of a given point, hence, two scales,
one in the macroscopic level and another in the microscopic level, are con-
sidered for this development. Also, it is used the concept of RVE, with the
consideration that the dimension of the unit cell tends to zero and that
there is a small parameter, ǫ, relating both macroscopic and microscopic
scales.

The displacement field u, function of both macroscopic and mi-
croscopic scales, is written as

uǫ
(x)=u

(
x,y

)
, (2.14)

where the index ǫ refers to the dependency of the displacement field in the
micro scale, and it can be written using an asymptotic expansion. In this
case, it is used an expansion in two scales,

uǫ
(
x,y

)
=u0

(x)+ǫu1
(
x,y

)
+ǫ2u2

(
x,y

)
+O (n) , (2.15)

where the indexes 0 and 1 refer, respectively , to the contributions of the
macro scale and of the micro scale and O (n) refers to higher order terms.
The linear stress-strain and the infinitesimal strain-displacement relations
are given, respectively, by

σǫ
i j = C

ǫ
i j klε

ǫ
kl (2.16)

and

εǫkl =
1

2

(
∂uǫ

k

∂xl
+
∂uǫ

l

∂xk

)
, (2.17)

where σǫ
i j

, εǫ
kl

and Cǫ
i j kl

are, respectively, the stress, strain and elasticity

tensor within the solid domain, Ωǫ.
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Applying the principle of virtual displacements for linear elasticity,
one gets

∫

Ωǫ

Ci j kl

∂uǫ
k

∂xl

∂vi

∂x j
dΩ =

∫

Ωǫ

f ǫ
i vi dΩ+

∫

Γt

ti vi dΓ

+

∫

Sǫ
pǫ

i vi dS,

∀v ∈V ǫ
, (2.18)

where Ci j kl is the fourth order elasticity tensor, f is the body force vector,
t is the vector of tractions on the boundaries Γt , p is the vector of tractions
inside the holes, v is the virtual displacement vector, Ω is the domain, S

is the boundary of the cell and V ǫ is the set of kinematically admissible
displacements. The dependency of the quantities on the inhomogeneity is
indicated by the index ǫ.

Using the two scale expansion, equation 2.15, and the derivatives
for a function dependent on both scales, equation 2.8, one can expand
the principle of virtual displacements, equation 2.18, in terms of the small
parameter ǫ.

As the virtual displacement is an arbitrary function, one can choose
it only as a function of the microscopic scale,

v =v(y). (2.19)

By doing so it can be shown that

u0 =x0
(x), (2.20)

that is, the first term of the asymptotic expansion depends only on the
macroscopic scale x (HASSANI; HINTON, 1998a).

Alternatively, if the virtual displacement is arbitrarily chosen as a
function only of the macroscale,

v =v(x) (2.21)

and considering only the first order terms, in which u0 and u1 represents,
respectively, the macroscopic and the microscopic behaviour, it is possible
to find the homogenized elasticity tensor such that the virtual displacement
equation can be constructed into the macroscopic system of reference,
without explicitly using the parameter ǫ (HASSANI; HINTON, 1998a).

The development of the method is well established in the lit-
erature, and as found in Sanchez-Palencia (1986), Hassani and Hinton



2.2. ELASTICITY PROBLEM 53

(1998a), Guedes and Kikuchi (1990) and Muñoz-Rojas, Carniel and Öch-
sner (2011), the general elasticity problem can be summarized as:

1. Find χ and Ψ, which represent the displacement field at the micro-
scopic level, using the equations

∫

U

Ci j pq

∂χkl
p

∂yq

∂vi

∂y j
dY =

∫

Y

Ci j kl
∂vi

∂y j
dY (2.22)

and
∫

U

Ci j pq
∂Ψk

∂yq

∂vi

∂y j
dY =

∫

S

pi vi dY, (2.23)

where U represents the solid portion of the base cell, C is the fourth
order elasticity tensor of the base material, Y is the vector with the
dimensions of the base, y is the position vector on the micro scale,
p is the traction vector on the boundary, v is a virtual displacement
field and S is the boundary of the cell.

2. Find CH

i j kl
, τi j and bi by using

C
H

i j kl (x) =
1

|Y|

∫

U

(
Ci j kl −Ci j pq

∂χkl
p

∂yq

)
dY, (2.24)

τi j (x) =
1

|Y|

∫

U

Ci j kl
∂Ψk

∂yl
dY (2.25)

and

bi (x) =
1

|Y|

∫

U

fi dY, (2.26)

where CH is the homogenized fourth order elasticity tensor, x is the
position vector in the macroscopic scale, b is the average body force
vector and τ is the residual stress tensor.

With the homogenized tensor it is possible to solve the macroscopic equi-
librium problem, set as

∫

Ω
C

H

i j kl

∂u0

k
(x)

∂xl

∂vi (x)

∂x j
dΩ =

∫

Ω
τi j (x)

∂vi (x)

∂x j
dΩ+

∫

Ω
bi (x) vi (x)dΩ

+

∫

Γt

ti vi (x)dΓ, (2.27)
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where Ω is the global domain, u0 is the displacement field in the macro
scale, t are the tractions on the boundaries and Γ is the boundary. It is
interesting to notice that the macroscopic and microscopic problems are
not coupled, so, the global equilibrium is not a function of the micro scale.

The displacement field, χkl , is the periodic solution of the equation
2.22 and it is used in the equation 2.24 to find the elastic constants of the
effective tensor, 21 for the general three-dimensional case. For this case,
the indexes i , j , p, q, k and l can assume values between 1 and 3 and, in
order to obtain all the elastic constants, the so called "load cases" kl = 11,
kl = 22, kl = 33, kl = 12, kl = 23 and kl = 13 must be solved. There are
several ways to solve the integral equations of the homogenization method.
In this work, the base cell is discretized using the finite element method.

2.2.2 Numerical Solution

In a general way, the determination of the homogenized coeffi-
cients can be achieved in the sequence shown in the previous section. If
the body forces are not considered, the elastic constants can be obtained
by solving the equilibrium problem into the microscopic scale, equation
2.22, and then solving the equation 2.24 in order to evaluate all the elastic
constants of the media. In this work, the finite element method based on
Fang, Sun and Tzeng (2004) and Hassani and Hinton (1998b), is used to
evaluate these equations.

For sake of simplicity, it is adopted that

C =
[
c11 c22 c33 c12 c23 c13

]
, (2.28)

where ckl are the columns of the constitutive fourth order tensor of the
base material,

∂χkl
p

∂yq
= ε

(
χkl

)
(2.29)

and

∂vi

(
y
)

∂y j
= ε(v) . (2.30)

Overall, the equation 2.22 can be written as
∫

Y

εT
(v)Ci j klε(χkl

)dY =

∫

Y

εT
(v)ckl dY. (2.31)
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If the domain is divided into a finite number of elements, in order
to use a finite element formulation, the virtual displacements, v, and the
characteristic displacements of the unitary cell, χkl , can be written using
the concept of shape functions as

v =
N∑

i=1

N
g

i
v̂i = N

g v̂ (2.32)

and

χkl
=

N∑

i=1

N
g

i
χ̂kl

i = N
g χ̂kl (2.33)

where v̂ is the nodal virtual displacement vector, with

v̂ =
{
v̂1 ... v̂i

}T
, i = 1, ...,N, (2.34)

χ̂kl is the nodal displacement relative to the load case kl , with

χ̂kl
=

{
χ̂kl

1
... χ̂kl

i

}T
, i = 1, ...,N, (2.35)

and

N
g

i
=




1 0 0

0 1 0

0 0 1


N

g

i
, (2.36)

where N
g

i
is the global shape function associated with the node i and the

element type and N is the total number of nodes in the discrete domain.
For the general three dimensional case,

χ=





χ1

χ2

χ3



 (2.37)

represents the displacements of a point within an element and

χ̂i =





χ̂i1

χ̂i2

χ̂i3



 (2.38)

represents the displacement of a node i .
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Taking the differential linear operator, defined by,

L=




∂
∂y1

0 0

0
∂

∂y2
0

0 0
∂

∂y3

∂
∂y2

∂
∂y1

0

0
∂

∂y3

∂
∂y2

∂
∂y3

0
∂

∂y1




, (2.39)

one can obtain the associated global strain matrix, given by

B =LN g
, (2.40)

and one can write

ε(v)=Lv =LN g v̂ =Bv̂ (2.41)

and

ε(χkl
) =Lχkl =LN g χ̂kl =Bχ̂kl

. (2.42)

Using equations 2.42 and 2.41, the equation 2.31 can be written
as

v̂T

∫

Y

BTCBdYχ̂kl = v̂T

∫

Y

BTckl dY. (2.43)

As v̂ represents a nodal virtual displacement, it can be eliminated from
both sides of the above equation, yielding

∫

Y

BTCBdYχ̂kl =

∫

Y

BTckl dY. (2.44)

Equation 2.44 is very similar to a standard finite element stiffness equation,
and can be written as

Kχ̂kl =fkl , (2.45)

where K is the global stiffness matrix, χ̂kl is the characteristic displace-
ment field of the base cell and fkl represents a load vector, which induces
an unitary strain in the kl case analysed. Thus, in order to obtain all elastic
constants, equation 2.45 must be solved for the six distinct "load cases".

For a single element, the local stiffness matrix is given by

Ke =

∫

Y

BeTCBe dY, (2.46)
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where B is the strain-displacement matrix, C is the constitutive elasticity
matrix of the element, and the load vector is given by

f e
kl =

∫

Y

BeTckl dY, (2.47)

where ckl is the column of the constitutive matrix relative to the load
case kl analysed. For one element, e, and for a single node, i, the strain-
displacement matrix is given by

Be
i =




∂Ne
i

∂y1
0 0

0
∂Ne

i

∂y2
0

0 0
∂Ne

i

∂y3

∂Ne
i

∂y2

∂Ne
i

∂y1
0

0
∂Ne

i

∂y3

∂Ne
i

∂y2

∂Ne
i

∂y3
0

∂Ne
i

∂y1




, (2.48)

where Ne
i

is the shape function of the i -th node of the e-th element. For
the whole element, one can write

B =
[
Be

1
Be

2
... Be

n

]
, (2.49)

where n is the total number of nodes of the element. The assembly of
the global stiffness matrix and the global load vector is usual and is given,
respectively by

K =
m⊎

e=1

Ke (2.50)

and

fkl =
m⊎

e=1

f e
kl , (2.51)

where m is the total number of elements of the mesh and
⋃

is the assembly
operator (BATHE, 2009). With all the definitions above it is possible to
obtain the characteristic displacement field of the base cell, χ, using the
equation 2.45.

With an analogous procedure, equation 2.24 can be written as

C
H

i j kl =
1

|Y|

∫

Y

(
Ci j kl −cT

i j ε
(
χkl

))
dY, (2.52)
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and using the operator of equation 2.42, it becomes

C
H

i j kl =
1

|Y|

∫

Y

(
Ci j kl −cT

i j Bχ̂kl
)

dY. (2.53)

The equilibrium problem of the equation 2.45 must be solved for
six load cases. Then, the characteristic displacement fields are used in
equation 2.53 in order to obtain the 21 components of the homogenized
elasticity tensor.

2.2.3 Physical Interpretation of the Load Cases

It is interesting to notice that the body force vector used for the
determination of the homogenized coefficients has a physical interpreta-
tion, which is an initial prescribed strain load case. For the demonstration,
it is used the nodal force vector of the element e induced by an initial
strain, given by

(
f ε0

)e
=

∫

Ye
BeTCε0dY, (2.54)

where ε0 is the initial strain tensor (ZIENKIEWICZ; TAYLOR, 2000).

A simple base cell is used in order to make the visualization of
the force vector induced by the load case kl easier. An unitary domain,
discretized by 4×4×4 elements is used, and a reinforcement in the x and
z directions, as shown in figure 10, is used to evaluate these force vectors.
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Figure 10 – Adopted topology

Source: Author’s production, 2016.

For the load case 1, in which the indexes assume the values k = 1

and l = 1, the force vector obtained through the homogenization method
is given by

f e
11 =

∫

Ye
BeTc11dY, (2.55)

and the distribuition of forces in the base cell is shown in figure 11.

Figure 11 – Load case 1
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Source: Author’s production, 2016.

Comparing equations 2.54 and 2.55, it is possible to verify that
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Cε0 = c1, (2.56)

or




C1111 C1122 C1133 0 0 0

C1122 C2222 C2233 0 0 0

C1133 C2233 C3333 0 0 0

0 0 0 C1212 0 0

0 0 0 0 C2323 0

0 0 0 0 0 C3131








ε0
11

ε0
22

ε0
33

2ε0
12

2ε0
23

2ε0
13





=





C1111
C1122
C1133

0

0

0





,

which implies in

ε0
11

= 1 ε0
22

= 0 ε0
33

= 0

ε0
12

= 0 ε0
23

= 0 ε0
13

= 0
.

For the load case 2 the indexes assume the values k = 2 and l = 2

and the homogenized force vector is

f e
22 =

∫

Ye
BeTc22dY, (2.57)

generating a force distribution in the base cell shown in figure 12.

Figure 12 – Load case 2
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Source: Author’s production, 2016.

Comparing equations 2.54 and 2.57, the strain induced in each
element of the base cell is given by

ε0
11

= 0 ε0
22

= 1 ε0
33

= 0

ε0
12

= 0 ε0
23

= 0 ε0
13

= 0
.
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For the third load case the indexes assume the values k = 3 and
l = 3, and the homogenization force vector is given by

f e
33 =

∫

Ye
BeTc33dY (2.58)

and it is shown in figure 13.

Figure 13 – Load case 3
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Source: Author’s production, 2016.

Again, with the comparison of equations 2.54 and 2.58 one can
obtain the strain induced in each element of the mesh, given by

ε0
11

= 0 ε0
22

= 0 ε0
33

= 1

ε0
12

= 0 ε0
23

= 0 ε0
13

= 0
.

The same procedure is adopted for the fourth, fifth and sixth load
cases, in which the indexes assume, respectively, k = 1 and l = 2, k = 2

and l = 3 and k = 1 and l = 3. The homogenized force vectors are given,
respectively, by

f e
12 =

∫

Ye
BeTc12dY, (2.59)

f e
23 =

∫

Ye
BeTc23dY (2.60)
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and

f e
13 =

∫

Ye
BeTc13dY, (2.61)

inducing the distribution of forces shown in figures 14, 15 and 16, respec-
tively.

Figure 14 – Load case 4
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Source: Author’s production, 2016.

Figure 15 – Load case 5
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Figure 16 – Load case 6
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Comparing the force vector induced by an initial strain, equation
2.54, and the equations 2.59, 2.60 and 2.61, obtained with the homoge-
nization procedure, one obtains the strain induced in each element of the
base cell for the three cases mentioned, respectively given by

ε0
11

= 0 ε0
22

= 0 ε0
33

= 0

2ε0
12

= 1 ε0
23

= 0 ε0
13

= 0
,

ε0
11

= 0 ε0
22

= 0 ε0
33

= 0

ε0
12

= 0 2ε0
23

= 1 ε0
13

= 0

and

ε0
11

= 0 ε0
22

= 0 ε0
33

= 0

ε0
12

= 0 ε0
23

= 0 2ε0
13

= 1
.

With the development shown above, it can be seen that each load
case kl induces an unitary strain in the direction related to these indexes.

2.3 THERMAL PROBLEM

The thermal conductivity in a material can be find through the
Fourier Law, given by

q =−Kt∇T, (2.62)
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where q is the heat flux, Kt is the material’s thermal conductivity tensor
and ∇T is the temperature gradient. In a matrix form, the Fourier law can
be written as





qX1

qX2

qX3



=−




Kt11 Kt12 Kt13

Kt12 Kt22 Kt23

Kt13 Kt23 Kt33








dT

dX1
dT

dX2
dT

dX3





. (2.63)

As for the elasticity problem, the above equations are valid point
to point in the domain. For linear homogeneous materials the conductivity
tensor is constant in all the domain. For non homogeneous materials, this
tensor vary in the microstructure, and the homogenization method can be
used in order to obtain an equivalent homogenized conductivity tensor,
designated by KtH that can be used to an analysis in the macro scale.

2.3.1 General Thermal Conductivity Problem

In parallel to the previous section, this one aims to show the basic
equations of the homogenization method, when applied to the thermal
properties of a three dimensional media. It is assumed that the thermal
conductivity tensor, Kt is an Y-periodic function, so

Kt(x) =Kt
(
x,y

)
=Kt

(
x,y+Y

)
(2.64)

with

y =
x

ǫ
, ǫ> 0, (2.65)

where x and y are, respectively, the position vector at the macroscopic
and microscopic coordinates and ǫ is a small scalar. The temperature field
inside of each unit cell, T, is expanded asymptotically, which yields

T
ǫ
= T

(
x,y

)
= T0 (x)+ǫT1

(
x,y

)
, (2.66)

in which only the first order terms are considered and where, such as for
the elasticity problem, the index ǫ refers to the dependency of the variable
with the micro structure of the media, and the indexes 0 and 1 refers to the
contributions of macro and micro scales, respectively. Also, it is considered
that T1 is periodic, with period Y , in the micro scale. Having in mind that
T depends both on macro and micro scales and that they are related by
the scalar ǫ, using the expression for the derivatives, equation 2.7, one can
write the temperature gradient as

∇x T =∇x T0(x)+ǫ∇x T1(x,y)+∇y T1(x,y). (2.67)
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In a detailed analysis, Muñoz-Rojas, Carniel and Öchsner (2011)
and Muñoz-Rojas et al. (2008) show that the effective properties of the
media can be obtained by finding an admissible temperature field at the
microscopic level, R, which satisfies

1

|Y|

∫

Y

[
I −∇y R

(
x,y

)]T
Kt

(
x,y

)[
∇yδT1

(
x,y

)]
dY = 0, (2.68)

leading to the homogenized conductivity thermal tensor, given by

KtH =
1

|Y|

∫

Y

Kt
(
x,y

)[
I −∇y R

(
x,y

)]
dY , (2.69)

or, in the index form,

Kt H
i j =

1

|Y|

∫

Y

(
Kti j −Kti p

∂R j

∂yp

)
dY. (2.70)

The temperature field, R j is the periodic solution of equation
2.68 and it is used in equation 2.70 in order to obtain all the thermal
conductivity constants for the effective tensor. For this case, the indexes
i , j and p assume values between 1 and 3. To obtain all the constants,
it is sufficient to solve the equations for three "flux cases", represented by
the index j . So, the flux cases j = 1, j = 2 and j = 3 must be solved. As
for the mechanical case, this flux cases have a physical meaning, a induced
unitary temperature gradient in j direction.

2.3.2 Numerical Solution

The procedure of determination of the homogenized coefficients
is similar to the procedure presented for the mechanical coefficients. The
equation 2.68 can be written as

CtR j =Q j , (2.71)

where Ct is the global conductivity matrix, R j is the characteristic tem-
perature field of the unitary cell referent to the flux vector Q j , which
induces an unitary thermal gradient in j direction.

All coefficients can be obtained by solving the system of equation
2.71 for three distinct "flux cases", j = 1, j = 2, j = 3, inducing an uni-
tary thermal gradient in each principal direction. For a single element, the
conductivity matrix can be written as

Cte =

∫

Y
BeTKtBe dY , (2.72)
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where B is the matrix containing the derivatives of the shape functions of
the element, Y is the domain, Kt is the thermal conductivity matrix of
the element. Similarly, the flux vector can be written as

Qe
j =

∫

Y

BeTkt j dY , (2.73)

where kt j is the column of the conductivity matrix related to the "flux
case" j . For one element, e, and for a single node, i , the matrix B is given
by

Be
i =




∂Ne
i

∂y1

∂Ne
i

∂y2

∂Ne
i

∂y3


 , (2.74)

where Ne
i

is the shape function of the i -th node of the e-th element. For
the whole element, one can write

Be
=

[
Be

1
Be

2
... Be

n

]
, (2.75)

where n is the total number of nodes of the element. As for the elastic
case, the global thermal conductivity matrix and the global flux vector can
be obtained in the usual way, and are given, respectively, by

Ct=
m⊎

e=1

Cte (2.76)

and

Q=
m⊎

e=1

Qe
, (2.77)

where m is the total number of elements of the mesh. With the procedure
above is possible to obtain the characteristic temperature field given in
equation 2.71 and all homogenized components of the thermal tensor can
be obtained by equation 2.70 if the linear system are solved for three "flux
cases".

2.4 PERIODIC BOUNDARY CONDITIONS

As shown in previous sections, it is possible to evaluate all the
elastic constants of the media by solving the equilibrium problem of equa-
tion 2.45 and all conductivity thermal properties through the equilibrium
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problem of equation 2.71. These linear systems are boundary value prob-
lems and must be solved, after an appropriate discretization, on the RVE
domain. This kind of problem needs essential boundary conditions in or-
der to be solved, and on a homogenization procedure the problems must
respect the periodicity considerations, which introduces a kinematic con-
straint on the RVE. This imposed periodicity constraint enforces that the
displacement field, for the mechanical case, and the temperature field, for
the thermal conductivity case, have the same values on opposite faces of
the RVE. Figure 17 shows a representation of the periodic considerations,
in which the opposite borders have same shapes. Also, this consideration
reflects the consideration of repeatability of the RVE through the entire
macroscopic domain.

Figure 17 – Periodicity consideration

Source: Author’s production, 2016

There are several methods that can be used to ensure the peri-
odicity constraints. In this work, the condensation method, presented by
Yang and Becker (2004), is used. At first, it is considered that at least one
of the vertices of the domain is constrained. The periodicity constraints
are obtained by the use of a transformation matrix, T , that relates all the
degrees of freedom of the system to the constrained degrees of freedom.
For instance, in three dimensional RVE, identical displacements or temper-
atures must be specified for corresponding nodes on opposite faces. That
is, the RVE has the same deformed shapes on opposite faces and the same
is valid for the temperature field.

The transformation matrix T has in its rows all the degrees of
freedom of the system and in its columns all the reference degrees of
freedom, in other words, the degrees of freedom that has a compatibility
with another degree of freedom are not included in the columns of the
transformation matrix. The matrix is composed only by zeros and ones. If
the element on position i j of the transformation matrix is zero, it means
that the degree of freedom i have no compatibility with the degree of
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freedom j . On the other hand, if this position is an one, both degrees
of freedom have a compatibility, that is, these degrees of freedom are
in opposite faces of the RVE and must have the same displacement, or
temperature.

As a way of enlightenment, the bi dimensional case of figure 18 is
considered. For this example, each node of the mesh has a scalar property
associated. The degrees of freedom 1, 2 and 4 are the references. The
degree of freedom 5 is independent, that is, it has no compatibility nodes.
The degrees of freedom 3, 6, 7, 8 and 9 are dependent on the reference
degrees of freedom. Yet, the periodicity consideration requires that the
nodes 3, 7 and 9 have the same property of the node 1. Also, the node 6

has the same property of the node 4 and the node 8 has the same property
of the node 2.

Figure 18 – Example for periodicity consideration
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For this simple case, the transformation from the original system
to the reduced one can be written as

[
1 2 3 4 5 6 7 8 9

]T
= T





1

2

4

5





, (2.78)
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and the transformation matrix can be written as

T =




1 0 0 0

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

1 0 0 0




. (2.79)

This transformation ensures the periodicity consideration in the opposite
faces of the RVE. Now, if a vectorial property is considered, then the
degrees of freedom in the same directions on compatible nodes are periodic.

Let χ̃ be the reduced charachteristic displacement field of the
RVE. The original displacement field, χ is related to χ̃ by

χ=Tmχ̃ (2.80)

where Tm is the transformation matrix for the mechanical case. Therefore,
the global system of equation 2.45 becomes

K̃χ̃= f̃ , (2.81)

in which K̃ is the reduced global stiffness matrix, that can be written in
terms of the transformation matrix as

K̃ =T T
mKTm (2.82)

and f̃ is the reduced force vector, that can also be written in terms of the
transformation matrix as

f̃ =T T
mf . (2.83)

Equation 2.81 is the reduced system of the problem, and must be solved
for χ̃. The recover of the displacement field χ is made through equation
2.80.

A similar procedure is adopted to the thermal equilibrium problem,
in which R̃ is the reduced characteristic temperature field of the RVE,
which are related to R by

R=Tt R̃, (2.84)
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where Tt is the transformation matrix for the thermal case. The global
reduced equilibrium problem, for this case, is given by

C̃tR̃= Q̃, (2.85)

where C̃t is the reduced global thermal conductivity matrix, given by

C̃t=T T
t CtTt (2.86)

and Q̃ is the reduced flux vector, written in terms of the transformation
matrix as

Q̃=T T
t Q. (2.87)

Equation 2.87 is the reduced system of the thermal conductivity problem,
and must be solved for R̃. The recover of the temperature field, with the
periodicity constraints, is obtained by equation 2.84.

These transformations ensure the periodicity considerations on the
RVE.

2.5 DESCRIPTION OF THE ALGORITHM

This section describes the basic procedure used in order to evaluate
the effective properties of a porous media. All computational codes were
developed by the authors and written in the free software Julia, and the
visualization of the topologies is made with the aid of the free Software
Gmsh.

2.5.1 Data Input and Initial Calculations

The information needed to find the equivalent properties of a
porous media can be divided into mesh information and material infor-
mation. As mesh information, it must be informed the dimensions of the
domain (length, width and height of the RVE) and the number of finite
elements in each direction. As material information, it must be informed
the properties of the base material (Young’s Modulus, Poisson’s Coeffi-
cient and the thermal Conductivity coefficient) and the minimum density
adopted, in order to model the voids of the domain by using an interpola-
tion scheme. Still, it must be informed which is the material distribution
of the domain.
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2.5.1.1 Mesh Generation

The mesh generation follows the node numeration and reference
system showed in figure 19. In this figure, i , j and k represents the number
of nodes in the x, y and z directions, respectively. The code was written
in a general way, such that the dimensions of the base cell and the number
of elements in each direction must be informed by the user. In this work,
for all cases, a structured mesh is employed.

Figure 19 – Reference for the mesh generation
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Source: Author’s production, 2016

The algorithm is used in order to determine the coordinate matrix
of the base cell, containing the spatial coordinates of each node of the
mesh and the connectivity matrix, relating each element of the mesh to its
nodes.

Also, a vector of the size of the total number of elements of the
finite element mesh is used to store the pseudo density of each element. For
the analysis case, a position containing an one refers to an element that
contains material, and a position containing the minimum density refers to
a void element. Several material distribution codes were written in order
to analyse different kinds of structures.

2.5.1.2 Compatibility Matrix

The compatibility matrix for the mechanical and for the thermal
problems are distinct. The compatibility matrix of the mechanical case
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associates three degrees of freedom in opposite nodes, that is, the degree
of freedom in x direction has to be associated with the degree of freedom
in the x direction of the opposite node and so on. In the thermal problem,
a scalar is associated to each node of the mesh. So, only one degree of
freedom is associated to each node. The codes were written separately.

2.5.2 Base Material

For all cases studied, the base material is considered isotropic, and
its mechanical constitutive tensor is given by

C =
E

(1+ν) (1−2ν)




1−ν ν ν 0 0 0

1−ν ν 0 0 0

1−ν 0 0 0

1
2

(1−2ν) 0 0

1
2

(1−2ν) 0

sym.
1
2

(1−2ν)


 , (2.88)

where E is the Young’s Modulus and ν is the Poisson’s Coefficient, and its
thermal conductivity tensor is given by

Kt=




kt 0 0

0 kt 0

0 0 kt


 , (2.89)

where kt is the thermal conductivity coefficient.

For the analysis case, a scheme of material interpolation is used
to determine the properties of all elements of the mesh, post as

P = ρvP
0

, (2.90)

where P represents the effective property of the element, P
0 the property

of the base material and ρv is the pseudo-density of the element. For a
void element, the pseudo-density, ρv , is assumed to be very small, so, the
influence of the void elements is negligible on the assembly of the global
matrices. For a element with material, the pseudo-density, ρv , assumes
the value one, so, the property of this element is the property of the base
material. This approach is used in order to allow the coupling of this code
with the topology optimization method.

This interpolation scheme renders the problem simpler, due to
the fact that the void elements do not need to be removed from the
finite element mesh, thus, the connectivities of the elements do not need
to be changed when the material distribution changes. Conversely, this
approach is computational inefficient, since the void elements contribute
in the assembly of the global matrices.
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2.5.3 Solution of the Linear System

The Finite Element Method (FEM), (BATHE, 2009), (HUGHES,
2000), (ZIENKIEWICZ; TAYLOR, 2000), is used to solve the equilibrium
problems. The dimensions of a three dimensional finite element equilib-
rium problem increases in the third power with the number of elements in
the mesh. This leads to an expensive computational effort and makes the
solution of these problems the most computational demanding part of the
algorithm.

If a linear interpolation is used to discrete the domain, poor re-
sults may be achieved, and the number of elements needed to achieve a
satisfactory result may be large, increasing the computational effort. If a
quadratic element is employed, a smaller number of elements may be used,
however, this element render the linear system bigger, increasing the com-
putational effort as well. Thus, there is a compromise between the number
of elements and the quality of the results to achieve a better result without
increasing the computational effort.

For the mechanical case, the element chosen for the discretiza-
tion is the Trilinear Isoparametric Hexahedral Element with incompatible
modes. This element increases the accuracy obtained for the displacement
and stress fields and does not affect the computational efficiency of global
matrix assembly, when compared to the usual Hexahedral trilinear element.
This element was implemented as an expansion of the concepts presented
by Hughes (2000) and Cook (1995) for the Four Node Bilinear Isoparamet-
ric Element. Appendix B shows the determination of the stiffness matrix
and the stress field for this element.

For the thermal case, the usual Trilinear Isoparametric Hexahedral
Element is used.

Also, in order to improve the efficiency of this particular part of
the algorithm, it was used the conjugate gradient method, together with
a diagonal scaling procedure and with a parallel code.

2.5.3.1 Conjugate Gradient Method

The equilibrium problem in a finite element analysis is a system
of linear equations of the form

Ax= b, (2.91)
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where x is an unknown vector, b is a known vector and A is a known,
square, symmetric and positive-definite matrix.

Classic methods, such as the LU decomposition and Cholesky De-
composition, Capra and Canale (2008), can be used to solve the problems.
These methods factor matrix A and solve the equations by backsubstitu-
tion. If the linear system is very large, factoring the matrix may be imprac-
tical due to the memory limitation.

The conjugate gradient method can be used to avoid this issue.
This is a memory-efficient iterative method for solving large sparse systems
of linear equations.

As shown by Komzsik and Poschmann (1993), the linear system is
solved with an iterative method by minimizing the error of the approximate
solution in each step. In a step, the approximate solution leads to

b−Ax= r 6=0, (2.92)

where r is the residue. The conjugate gradient method minimizes the error
function

Φ (x) =
1

2
xTAx−xTb, (2.93)

whose first derivative is given by the negative of residual of equation 2.92.
The iterative problem consists in solving consecutive steps of the approxi-
mate solution as

xk+1 =xk +ψs
kdk , (2.94)

where d is the search direction and ψs is the step, used in order to minimize
the error function.

The direction can be found through a linear combination of the
form

dk =−dk−1 +βs
k−1

dk−1 (2.95)

where βs is a scalar, who can be obtained by a

βs
k−1

=
rT

k−1
Adk−1

dT

k−1
Adk−1

. (2.96)

The step can be found as

ψs
k =−

rT

k−1
dk

dT

k
Adk

. (2.97)
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For the first iteration of the problem, the direction and the step
can be found, respectively, by

d= r (2.98)

and

ψs =
rr r

rTAr
. (2.99)

The convergence of the method is guaranteed in a number of
iterations equal to the size of the linear system.

2.5.3.2 Diagonal Scaling

The condition number of a matrix can be defined as the ratio of
its maximum singular value to its minimum singular value. The conjugate
gradient method achieves a faster rate of convergence for smaller condition
number. Thus, it is desirable to decrease the condition number of the
coefficient matrix in order to improve the efficiency of the iterative method.

As shown by Pini and Gambolati (1990), the use of the simple and
inexpensive diagonal scaling is superior to other methods in a wide range
of problems. In the diagonal scaling, an auxiliary problem, in the form

DADx′
=Db (2.100)

where D is a diagonal matrix, chosen in order to reduce the condition
number of A and solved for x′. The original variables are recovered as

x=D−1x′
. (2.101)

As shown by Takapoui and Javadi (2014), this can significantly decrease
the number of iterations needed in order to achieve the convergence. The
diagonal matrix is written such as

D =
√

Ai i , (2.102)

rendering the terms of the scaled matrix unitary.

2.5.3.3 Parallel Code

The solution of the linear systems for the mechanical case is the
most demanding part of the algorithm. As the six linear system needed



76 Chapter 2. HOMOGENIZATION

to solve the mechanical homogenization system are independent on each
other, a scheme of parallelization is adopted in order to solve each linear
system in a different core. Figure 20 shows the scheme adopted. At first,
the global matrix stiffness and the six global load vectors (one for each
load case) are assembled, then the stiffness matrix is conditioned, and then
each process receives one linear system to solve in parallel. The algorithm
continues after all the linear systems are solved. The procedure of solution
for the thermal case is equivalent, however, only three linear systems are
solved in parallel.

Figure 20 – Solution of the linear systems
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Source: Author’s production, 2016

2.5.4 Mechanical Homogenized Coefficients

For the determination of the homogenized coefficients the data
needed are the information of the coordinates of the nodes, connectivity
of the elements, compatibility matrix, information of the boundary condi-
tions, the properties of the base material (Young’s Modulus and Poisson’s
Modulus) and the vector containing the densities of each element.

First, the local stiffness matrix for one element is determined. As
all elements of the mesh have equal sizes, the local stiffness matrix is equal
for all of them. The body forces follow the same principle. All elements have
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the same body force vector, but it has to be regarded that six distinct local
body forces must be determined, in order to solve the six load cases needed
on the homogenization procedure. The assembly of the global stiffness
matrix and the global body force vector follow the standard procedure,
yet, the contribution of each element on the assemblies are weighted by
the pseudo densities of each element (material interpolation). After this,
the compatibility conditions are imposed upon the stiffness matrix and the
body force vector and the six linear systems are solved, as the scheme of
figure 20, in order to obtain the characteristic displacement fields of the
base cell. The strain fields now can be obtained and finally the homogenized
components of the fourth order elasticity tensor can be determined. A
summary of the procedure to obtain the homogenized tensor is shown in
figure 21.

Figure 21 – Mechanical homogenized coefficients
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2.5.5 Thermal Homogenized Coefficients

The procedure is equivalent to the mechanical case. As data, it
distinguish from the mechanical case only by the base material property,
that now is the thermal conduction coefficient, and from the compatibility
matrix, that now uses only one degree of freedom for node.

The thermal analysis is quite similar for the mechanical steps,
but for this case, the stiffness matrix and the force vector are changed,
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respectively, by the conductivity matrix and flux vector. It is sufficient
to solve the linear system for three flux cases in order to determine the
temperature field of the base cell and to obtain all the components of the
homogenized thermal conductivity tensor. Figure 22 shows the summary
of the steps for the determination of the homogenized tensor.

Figure 22 – Thermal homogenized coefficients
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2.5.6 Analysis Problem

Figure 23 shows an summary of the whole analysis procedure. At
first the data needed for both mechanical and thermal homogenization
tensors determination is read. The distribution of densities and the mesh
generation are made in the code itself.

The compatibility matrix are distinct between the mechanical and
thermal cases, due to the fact that for the mechanical case each node has
three associated degrees of freedom and for the thermal case, only one.
Finally, the homogenized mechanical and thermal tensors can be deter-
mined through the procedures presented in figures 21 and 22, respectively.
The algorithm ends by writing an output file containing the homogenized
tensors.
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Figure 23 – Algorithm of the analysis program
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Source: Author’s production, 2016

The validation of the implemented mechanical and thermal algo-
rithms is shown in appendix C. This appendix uses simple geometries which
allow to compare the results obtained with other mathematical procedures.
Also, results found into literature for specific arrangements of micro struc-
tures are used as comparison.
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3 OPTIMIZATION

In a brief way, optimization is a mathematical procedure used to
obtain the best result for a problem under a certain set of constraints.
Thus, the basic objective of optimization is to obtain the minimum (or the
maximum) of a problem that can be written as a function of certain design
variables.

This chapter presents the main concepts of optimization in a gen-
eral context. At first a brief historical review is presented, then the basic
optimization concepts and the types of optimization are shown.

3.1 HISTORICAL CONTEXT

According to Rao (2009), the existence of optimization methods
may be traced back to Newton, Lagrange and Cauchy. The development
of methods which use differential calculus are only suitable due to the con-
tributions of Newton and Leibnitz in this area. The principles of variational
methods, which deal with the minimization of funtionals, were established
by Bernoulli, Euler, Lagrange and Weirstrass. The development of opti-
mization methods for constrained problem was first made by Lagrange,
apud Rao (2009), and nowadays it is employed the therm Lagrange Multi-
plier, which refers to a scalar used as a penalty in constrained optimization
problems. Also it is worth to quote Cauchy, that made the first applica-
tion of the Steepest Descent method for the solution of non constrained
problem, and which is used until the present day.

Although the great initial effort, a small progress was made until
the first half of the twentieth century, when the development of high-
speed computers allowed the implementation of the optimization methods,
encouraging the research on the optimization field.

Modern optimization methods and contributions were pioneered
by the works of Courant (1943) upon penalty functions, Dantzig (1951) on
the simplex method for linear programming and the works of Karush (1939)
and Kuhn and Tucker (1951), who obtained the necessary and sufficient
conditions for the achievement of the optimum in a constrained problem,
known as the Karush-Kuhn-Tucker (KKT) conditions.

Thereafter, particularly in the sixties, several numerical methods to
solve non-linear optimization problems were developed. For unconstrained
optimization problems, it is worth mentioning the work of Fletcher and
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Reeves (1964) on conjugate gradient method and, for constrained prob-
lems, the works of Rosen (1961) on gradient projection method and of
Zoutendijk (1960) on the method of feasible directions.

In a concept of structural optimization applied to engineering
problems, the solution of non-linear problems were pioneered by Schmit
(1960). Also, early literature can be found from the early sixties by several
authors, among it one can mention the works of Johnson (1961), Wilde
and Beightler (1967) and Fox (1971).

In specific ways, several authors have added to this collection in-
cluding books on specialized topics such as structural topology optimiza-
tion, and at the scope of this work it worth mentioning the work of Bendsøe
and Sigmund (2003) on topology optimization.

3.2 BASIC CONCEPTS

Representing a real optimization problem into a mathematical for-
mulation is a decisive step in the solution of such problem. If the formu-
lation is not quite appropriate as it should, possibly the solution will not
be the optimum solution sought, or even the solution can be inappropri-
ate. A special effort must be taken in order to transcribe correctly the
real problem into a mathematical formulation. As shown by Arora (2007),
any problem of optimization, or structural optimization, has three basic
components (design variables, objective function and constraints):

• Design variables, designated by ρ: a set of scalars, or a vector, who
describes the design of the structure. The design variables may rep-
resent geometrical parameters of the structure like an area or the
length of a bar. They are changed during the optimization process
in order to find the optimum design;

• Objective function, designated by f (ρ): a function used to describe
the parameter which it is intended to optimize and that gives, usually,
a scalar measure of this parameter. In structural optimization, the
objective function can play the role of the weight of the structure,
the displacement of a certain point, its stiffness, among others;

• Equality and inequality constraints, designated, respectively, by h(ρ)

and g(ρ): such as the objective function, the constraints are functions
describing a certain parameter of the structure. The set of design
variables must satisfy the constraints of the problem in order make
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the problem feasible. In structural optimization, the constraints can
represent a maximum volume for the structure, a maximum stress
that can be applied in some part of the structure, among others;

• Side constraints, designated by ρ and ρ: values imposed directly on
the design variables that represent, respectively, its lower and upper
bounds.

Therefore, an optimization problem can be written, on the standard mini-
mization form, as

Minimize
ρ

f (ρ)

Subject to g j (ρ)≤ 0, j = 1, . . . ,ng

hk (ρ) = 0, k = 1, . . . ,nh

ρ
i
≤ ρi ≤ ρi , i = 1, . . . ,nd ,

(3.1)

where ρ is the vector of design variables, g j (ρ) is the j -th inequality con-
straint, hk (ρ) is the k-th equality constraint, ρ

i
and ρi are, respectively,

the inferior and superior bounds of the i -th design variable, nd is the num-
ber of design variables, ng is the number of inequality constraints and nh

is the number of equality constraints.

For a better understanding of an optimization problem, the con-
cepts of necessary and sufficient conditions, regular point, Lagrange mul-
tipliers and KKT conditions must be presented.

3.2.1 Local and Global Minima

If the design variables, ρ, are within a feasible region, Ω f , satis-
fying all the constraints, it is said that the function has a global minimum
at ρ∗ if

f (ρ∗
) ≤ f (ρ) ∀ρ⊆Ω f . (3.2)

Likewise, a local minimum is defined as the lower value of the objective
function within a small neighbourhood.

According to Belegundu and Chandrupatla (1999), when the ob-
jective function is convex (for a minimization problem) or concave (for
a maximization problem) and the feasible set is a convex set, any local
minimum is also a global minimum.
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In structural optimization, most of the problems are not convex,
consequently, the problems have several local minima. In a general way,
when using gradient based methods, one can find different solutions when
different initial points are chosen.

Also, it is not ensured that an optimization problem has a mini-
mum. The existence of a minimum is ensured by the Weiestrass theorem,
stating that if f (ρ) is continuum in a closed and limited feasible region,
then f (ρ) has, at least, one global minimum in this region (ARORA, 2007).

3.2.2 Necessary and Sufficient Conditions

For the discussion of the local optimally conditions for an uncon-
strained problem, one must assume that the function f (ρ) has a minimum
at the point ρ∗. As shown by Arora (2007), it is necessary that the first
derivatives of the function f (ρ), at ρ∗, are equal to zero,

∂ f (ρ∗)

∂ρi
= 0; i = 1 ... nd . (3.3)

The sufficient condition for a local minimum, is that the Hessian
matrix of the objective function, given by

H
(
ρ∗

)
=

[
∂2 f

∂ρi∂ρ j

]
, (3.4)

is positive definite at point ρ∗. Mathematically, a positive definite matrix
is written as

aTHa> 0 ∀a 6=0. (3.5)

This condition ensures that the point ρ∗ is a local minimum for the function
f (ρ).

3.2.3 Regular Point

The definition of a regular point is important to the derivation of
the necessary and sufficient conditions on a constrained problem.

For a constrained problem, it is assumed that the function f (ρ)

has a minimum at the regular point ρ∗ and the constraints hk (ρ) and
g j (ρ) of the problem are differentiable functions. According to Belegundu
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and Chandrupatla (1999), if the point ρ∗ is a feasible point and if the gra-
dients of the all equality constraints and all active inequalities are linearly
independent at ρ∗, then the point is considered a regular point.

If a candidate minimum point is not a regular point, the necessary
and sufficient conditions are not valid.

3.2.4 Lagrange Multipliers

Initially the necessary conditions are obtained for a problem with
only equality constraints, and then generalized for a problem with equality
and inequality constraints. Let the constrained optimization problem given
by

Minimize
ρ

f (ρ)

Subject to hk (ρ)= 0, k = 1, . . . ,nh .

(3.6)

According to Arora (2007) there is a scalar associated with each constraint,
called Lagrange Multiplier and, making an analogy, this scalar can be un-
derstood as the force required to impose this constraint to the problem.
The Lagrangian Function is obtained adding a Lagrange Multiplier for each
constraint of the problem, such that

L(ρ,λ) = f (ρ)+

nh∑

k=1

λk hk (ρ) = f (ρ)+λTh(ρ). (3.7)

The condition for the minimum can be written as

∇L(ρ∗
,λ∗

) = 0. (3.8)

If ρ∗ is a regular point that minimizes the objective function, then
there is an unique set of Lagrange Multipliers, λ∗, in which

∂ f (ρ∗)

∂ρi
+

nk∑

k=1

λ∗
k

∂hk (ρ∗)

∂ρi
= 0 (3.9)

and

hk (ρ∗
) = 0. (3.10)

Differentiating L(ρ,λ) with respect to λk one can recover the equality
constraints as

∂L(ρ∗,λ∗)

∂λk
= 0 ⇒hk (ρ∗

) = 0; k = 1 to nk . (3.11)
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The gradient condition of equation 3.8 is stationary with respect to
ρ and λ, consequently, the problem can now be treated as an unconstrained
problem in the variables ρ and λ. For this case, the Lagrange multipliers
can assume both positive and negative values.

A point that does not satisfy the conditions of the theorem can
not be a local minimum point, but one can not conclude that a point who
satisfies the conditions is a minimum point, being simply a candidate.

The presented concepts can be extended to a problem with equal-
ity and non equality constraints.

3.2.5 KKT Conditions

The necessary conditions of a general optimization problem are
given by the Karush-Kuhn-Tucker (KKT) conditions. These conditions
were obtained, separately, by Karush (1939) and Kuhn and Tucker (1951).
One can see the necessary conditions of a general problem as an extension
of the Lagrange Multiplier theorem, where the inequalities g j (ρ) É 0 are
considered. The general optimization problem is given by

Minimize
ρ

f (ρ)

Subject to g j (ρ)≤ 0, j = 1, . . . ,ng

hk (ρ) = 0, k = 1, . . . ,nh .

(3.12)

Having in mind that the values of the inequalities are either nega-
tive or zero, then a positive scalar can be added to each constraint in order
to transform it in an equality constraint. This positive scalar, s j , associated
to each inequality constraint is called slack variable. Also, in order to avoid
an extra constraint of the kind s j > 0, one can write the slack variable as
s2

j
instead of s j . Therefore, the inequality g j (ρ) É 0 can be written as an

equivalent equality constraint as

g j (ρ)+ s2
j = 0. (3.13)

When the variable s j has zero value, its corresponding inequality constraint
is satisfied as an equality and called an active constraint.

For this case, besides the Lagrange Multipliers, λ, associated to
the equality constraints, it is also considered the Kuhn-Tucker Multipliers,
µ, associated to the inequality constraints. Hence, the Lagrangian Function
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associated to the optimization problem of the equation 3.12 can be written
as

L(ρ,λ,µ,s) = f (ρ)+

nh∑

k=1

λk hk (ρ)+

ng∑

j=1

µ j (g j (ρ)+ s2
j )

= f (ρ)+λTh(ρ)+µT
(g(ρ)+s2

). (3.14)

According to Arora (2007), if ρ∗ is a regular point of the feasible
set that is a local minimum for the problem of equation 3.12, then there
exists a set of multipliers λ∗ and µ∗ such that the Lagrangian function of
equation 3.14 is stationary with respect to ρ, λ, µ and s at the regular
point ρ∗.

The necessary conditions in regard to the general optimization
problem posed in equation 3.12, according to Arora (2007) can be sum-
marized as:

• Gradient conditions:

∂L

∂ρi
=

∂ f

∂ρi
+

nh∑

k=1

λ∗
k

∂hk

∂ρi
+

ng∑

j=1

µ∗
j

∂g j

∂ρi
= 0, (3.15)

∂L

∂λk
= 0 ⇒ hk (ρ∗

) = 0 (3.16)

and

∂L

∂µ j
= 0 ⇒ (g j (ρ∗

)+ s2
j ) = 0; (3.17)

• Feasibility check for inequalities:

s2
j Ê 0; (3.18)

• Switching conditions:

∂L

∂s j
= 0 ⇒ 2µ∗

j s j = 0; (3.19)

• Non-negativity of Karush-Kuhn-Tucker Multipliers for inequalities:

µ∗
j Ê 0; (3.20)
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• Regularity check: the gradients of the active constraints must be
linearly independent.

It is worth mentioning some important points related to the KKT necessary
conditions:

• The KKT conditions are not applicable if the minimum candidate
point is not regular;

• If a point does not satisfy the KKT conditions it can not be a local
minimum, unless it is an irregular point;

• The points satisfying the KKT conditions can be both constrained
or unconstrained;

• If there are no inequality constraint active, and there are equality
constraint on the problem, then the point is stationary, and it may
be a minimum, a maximum or an inflection point.

3.3 STRUCTURAL OPTIMIZATION

If the optimization problem is written such that it uses structural
concepts, it is called structural optimization. Several criteria can be used to
define the concept of optimum in a structural optimization. One can define
a structural problem in order to minimize the weight of a structure without
compromising its structural function, in order to maximize its stiffness
for a pre determined volume of the structure, in order to avoid buckling
phenomena among others. As shown by Christensen and Klarbring (2008),
structural optimization can be divided into three distinct forms:

• Parametric Optimization: in this case, the design variables, ρ, are
some sort of dimensions or parameters of the structure, as for ex-
ample, an area of a cross section of a lattice bar or the thickness
distribution on a plate. Figure 24 shows an example of Parametric
Optimization;

• Shape Optimization: in this case, the design variables, ρ, represent
the shape or boundary of some part of the structure. On a gen-
eral way, the shape is written as a set of equations and the shape
optimization consists in find the integration domain to satisfy the
equilibrium problem in an optimum manner. Figure 25 shows an ex-
ample of a shape optimization problem;



3.3. STRUCTURAL OPTIMIZATION 89

• Topology Optimization: is the most general form of structural op-
timization, allowing voids and new boundaries to be added to the
structure. In this case, the design variables ρ represent the distribu-
tion of material on a given fixed domain. Figure 26 shows an example
of topology optimization.

Figure 24 – Parametric optimization
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Source: Author’s production, based on Christensen and Klarbring (2008)

Figure 25 – Shape optimization
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Source: Author’s production, based on Bendsøe and Sigmund (2003)
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Figure 26 – Topology optimization
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Source: Author’s production, based on Bendsøe and Sigmund (2003)
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4 TOPOLOGY OPTIMIZATION

The main purpose of topology optimization is to determine the
distribution of a set of materials within a certain fixed region in order to
extremize an objective function. In this work, it is required to find which
points of domain should contain a base isotropic material and which points
should be void. In a discrete form, it is required to find which elements of
the finite element mesh should have material and which should not have
material (BENDSØE; SIGMUND, 2003). Only the loads, the boundary
conditions, the volume of the structure and possible additional constraints,
such as prescribed holes or regions where there are, necessarily, material
are known in advance.

This chapter addresses the main considerations about the topology
optimization. At first, a brief historical review of the method is presented,
than, important considerations, such as the material parameterization, the
problems related to the method and filtering techniques are discussed.
Finally, the solutions methods adopted to solve the problems in this work
are presented.

4.1 HISTORICAL REVIEW

Several studies indicate that pioneer study on topology optimiza-
tion is the work of Michell (1904). Based on the studies of Maxwell, apud
Cardoso (2005), Michell searched for the minimum volume of a structure
formed by bar elements, respecting the equilibrium relations and the stress
constraints. For many decades, the work of Michell remained almost un-
known, for being considered too academic and with no practical appeal,
until the early sixties. Since this decade, its work was continued by several
authors as Cox (1956), Hemp (1973), Prager (1974) and Owen (1975).
Also, it is worth mentioning the work of Rozvany and Adidam (1972), that
extended the work of Michell for beam elements.

The topology optimization of continuum mechanics was developed
on the early eighties, using a relaxation method through the consideration
of composites. Cheng and Olhoff (1981) presented a study on the maxi-
mization of the stiffness of thin plates considering the thickness as design
variable. This work observed that as more refined the domain, more rein-
forcements appear, indicating one of the problems associated with topology
optimization of continuum media, the mesh dependency. To avoid this is-
sue, Cheng and Olhoff (1982) proposed an alternative parameterization of
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the problem, using geometrical pre determined parameters of the reinforce-
ments rather than the thickness of the place. Years later, Kohn and Strang
(1986) generalized this approach for elasticity problems.

As an extension of these works, it was proposed the use of the ho-
mogenization theory, (BENDSØE; KIKUCHI, 1988), to describe the effec-
tive properties of a composite material. The homogenization theory allows
a continuum and consistent parameterization of the material properties,
ensuring a well posed problem. It is worth mentioning the works of Bend-
søe and Kikuchi (1988), Guedes and Kikuchi (1990) and Sanchez-Hubert
and Sanchez-Palencia (1992), in which the development of concepts and
mathematics are established and also the works of Hassani and Hinton
(1998a) and Hassani and Hinton (1998b) where a good review of the ho-
mogenization method is presented.

Simpler methods of parameterization, such as SIMP (Solid Isotropic
Material with Penalization), (BENDSØE, 1989), that intends to relax the
0-1 parameterization are widely used until the present day. This parameter-
ization uses an interpolation of the properties of the base material in order
to obtain the effective properties of the media. An exponent n is used in
order to adjust the interpolation degree. If the chosen exponent equals to
1, that is to say, a linear interpolation, structures with intermediate den-
sities may occur, also known as region containing porous material. This
was interpreted by Bendsøe and Sigmund (1999) as regions with isotropic
microstructures.

According to Rozvany (2001), the SIMP parameterization requires
a smaller number of parameters and it can be used in a general problem,
which is not possible for another kinds of parameterizations. Conversely,
according to Stolpe and Svanberg (2001), the SIMP parameterization de-
pends on the expoent n and has no mathematical guaranty of convergence.
Yet, another issue on account of the use of the SIMP parameterization,
according to Bendsøe (1989), is the mesh dependency, indicating that the
problem is not sufficiently relaxed.

In order to obtain a controlled complexity of the topology and a
problem independent on the discretization of the domain, regularization
methods were proposed. It is worth mentioning the works of Ambrosio and
Buttazzo (1993), that proposes to restrict the solution space imposing a
perimeter restriction, and Sigmund (1997), that uses a filtering scheme in
order to avoid intrinsic problems of the parameterizations used on topology
optimization
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4.2 MATERIAL PARAMETERIZATION

In the topology optimization procedure, one can find the optimum
distribution of isotropic material within a certain domain, in other words,
one must find in which points of the domain there is material and in which
points there is void. Being the design domain, Ω, and a sub domain, Ωmat ,
where there is effectively material, it is desired to use the parameterization

P (x)= κ(x)P (x)
0
, (4.1)

where P (x)0 is a property of the base material and κ(x) is a discrete
function, defined in every point, x, of the domain Ω, such that

κ(x)=

{
1 x ∈Ωmat

0 x ∈Ω/Ωmat , (4.2)

where Ωmat is the region in which there is material and Ω/Ωmat is the
region in which there is no material. For this formulation, the effective
property, P (x), can only assume the discrete values 0 and P (x)0 in every
point of the domain.

As shown by Kohn and Strang (1986), the discrete problem de-
fined in equation 4.1 is ill-posed, leading to numerical issues due to the non
existence of solution, besides being non-differentiable. Therefore, it is nec-
essary a relaxation of the discrete problem (BENDSØE; KIKUCHI, 1988).
This relaxation allows the design variables to assume intermediate values
between 0 and 1. At first, these intermediate densities have no physical
meaning, and one expects that at the end of optimization procedure only
discrete values (0/1) remain.

The most popular way of addressing this kind problem is to replace
the discrete variables with continuum variables and then to apply some
sort of penalization, imposing the design variables to assume values 0 or
1. The well established SIMP (Solid Isotropic Material with Penalization)
(BENDSØE; SIGMUND, 1999) has been widely used for these kind of
problems, and, for the determination of the effective components of the
constitutive tensor, it is set as

Ci j kl (x)= ρ(x)
p

C
0

i j kl , p > 1 (4.3)

0 ≤ ρ(x) ≤ 1, x ∈Ω,

where ρ(x) is the vector containing the pseudo densities, or design vari-
ables, in every point of the domain Ω. The pseudo densities are interpolated
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Figure 27 – SIMP
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source: Author’s production, 2016.

between Ci j kl

(
ρ= 0

)
= 0 and Ci j kl

(
ρ= 1

)
= C0

i j kl
, and it is required that,

at the end of the procedure, all densities assume either 0 or 1 as its value.

At SIMP, one chooses as the penalization factor p > 1, so, inter-
mediate density values become unfavourable, since the stiffness obtained is
relatively small in comparison to the volume, or amount of material involved
(BENDSØE; SIGMUND, 2003). Figure 27 shows the relation between a
generic component of the constitutive tensor and the pseudo density with
the variation of the penalization factor. One can see that for p = 1 there
is a linear relation between the effective component of the tensor and the
pseudo density, and for p →∞, the density becomes once again discrete,
as the parameterization shown in equation 4.1.

As shown in Bendsøe and Sigmund (2003), the FEM can be used
alongside SIMP in topology optimization problems. In this case, the domain
Ω is divided into n finite elements, and the vector ρ(x) contains the pseudo
density of each element of the finite element mesh.

In the present work the domain is discretized by finite elements
and it is assumed that every element’s constitutive tensor has an effective
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property

Ce = ρ
p
e C0

e , (4.4)

where ρe is the pseudo density of the e-th element, assumed as a constant
within each element and C0

e is the base material’s fourth order elasticity
tensor. In this way, one can write the effective stiffness matrix, for one
element, as

Ke =

∫

Ωe

BTCeBdΩe = ρ
p
e

∫

Ωe

BTC0
e BdΩe = ρ

p
e K0

e , (4.5)

where B is the strain-displacement matrix and K0
e is the stiffness matrix of

the base material. The assembly of the global stiffness matrix is performed
by the operator

K =
n⊎

e=1

Ke , (4.6)

where n is the total number of elements of the mesh (BATHE, 2009). To
avoid numerical issues due to a singular stiffness matrix, a minimum value
for the pseudo density is assumed, such as 0 < ρmin ≤ ρe ≤ 1 (BENDSØE;
SIGMUND, 1999). The minimum pseudo density also prevents that the
derivatives of such element equals to zero.

4.3 PROBLEMS RELATED TO TOPOLOGY OPTIMIZATION

As shown by Sigmund (1994), two significant issues may occur
with the material distribution obtained by the topology optimization. The
first one is the appearance of patterns similar to a checkerboard, in which
a region has, alternately, solid and void elements. The second one is the
mesh-dependency of the results, in which different results are obtained for
different mesh sizes. However, these problems can be avoided by using
restriction methods.

4.3.1 Checkerboard

A problem related to the topology optimization is when alternat-
ing solid and void elements patterns, similar to a checkerboard, appear in
certain regions of the domain. These patches of checkerboard patterns ap-
pear often in solutions obtained by a direct implementation of the material
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distribution method that use the displacement based finite element method
(BENDSØE; SIGMUND, 2003). The work of da Silva (2016) shows how
the checkerboard patterns appear in a problem of compliance minimization
for different sizes of finite element meshes (Figure 28).

Figure 28 – The checkerboard problem in a compliance minimization problem
for several finite element mesh sizes. Mesh with a) 300 ; b) 1200 ;
c) 4800; and d) 19200 finite elements.

source: (da Silva, 2016)

As shown by Diaz and Sigmund (1995), numerical approximations
obtained by the finite element method may present the checkerboard is-
sue due to the overestimate stiffness caused by this kind of pattern. In
other words, the checkerboard pattern causes an artificially stronger ma-
terial arrangement than any other possible arrangements with the same
volume of material. This condition induces a preference on the use of
checkerboard patterns on problems of stiffness maximization. As it is an
artificially induced issue, this phenomenon can not be interpreted as an
optimum solution.

4.3.2 Mesh dependency

According to Bendsøe and Sigmund (2003), the 0-1 SIMP topol-
ogy optimization lacks existence of solution in its continuum formulation.
Basically, this happens due to the fact that, maintaining the volume, the
introduction of new holes, or more reinforcements, will increase the effi-
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ciency of a given structure. In the limit of the process, micro structures
which increase the efficiency of the material appear. This microstructures
are typically not isotropic and the initial description of only isotropic ma-
terial of the problem can not be used.

In computational implementation, this effect can be understood
as a numerical instability. In a finite element discretization, a more refined
structure, with more reinforcements, appears when a finer finite element
mesh is employed. As for the continuum approach, the limit induces the
generation of microstructures.

The work of da Silva (2016) shows how different solutions can be
obtained for different finite element meshes in a problem of compliance
minimization (Figure 29).

Figure 29 – The mesh-dependency problem in a compliance minimization prob-
lem for several finite element mesh sizes. Mesh with a) 300 ; b)
1200 ; c) 4800; and d) 19200 finite elements

source: (da Silva, 2016)

4.3.3 Restriction Methods

To avoid the checkerboard and the mesh dependency problems,
one can use the so called restriction methods. The main purpose of these
methods is to restrict the solution space and the complexity of the topolo-
gies obtained, ensuring a mesh independence and the possibility of manu-
facturability in density-based topology.
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According to Sigmund (2007), the restriction methods for density
based topology optimization can be divided into three categories:

1. Mesh-independent filtering methods, which can be divided into den-
sity filters and sensibility filters. These are very popular approaches
due to their efficiency and ease of implementation;

2. Constraint methods, such as perimeter control, global gradient con-
trol and local gradient control;

3. Other methods like wavelet parameterization and level-set.

Also, it is worth mentioning the existence of hibrid methods (CARDOSO;
FONSECA, 2003) in which the box-constraints are changed due to a fil-
tering scheme.

At this work, a filtering based on sensitivity method is used, in
order to achieve the following results:

• Checkerboard-free solution;

• Reinforcement size control;

• Mesh-independent solution.

4.3.3.1 Filtering Methods

The filtering methods can be divided into density and sensitivity
methods. According to Sigmund (2007), for the first case, the density of
each element is changed as a weighted average of the densities inside of a
predetermined neighbourhood, and than the finite element solver is called
and the sensitivities are determinated. For the second case, the procedure
is opposite. At first, the finite element problem is solved, than the sen-
sitivities are determinated and finally they are heuristically modified as a
weighted averages of the sensitivities of a predetermined neighbourhood.
The sensitivities method is used in this work.

Sensitivity filtering can be found in the works of Sigmund (1994)
and Sigmund and Petersson (1998). The basic idea is to apply the filter
on the design sensitivities at each iteration of the algorithm. The filter
makes the design sensitivity of a specific element on the finite element
mesh dependent on a weighted average over the element itself and its
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neighbours and, according to Sigmund and Petersson (1998), it is very
efficient in removing checkerboards.

The neighbourhood of an element e, represented by Ne , is usually
defined as the elements whose centroids are within a sphere (for the three-
dimensional case) centred on the centroid of the element e with a radius
R. Mathematically one can write

Ne = {i ,∥ ci −ce ∥≤ R}, (4.7)

where ci is the centroid of the element i and ce is the centroid of the
element e.

It follows that the filtering method can be understood as an op-
erator applied to the sensitivity in the form

∂̃ f

∂ρe
=

∑
i∈Ne

we (ci )
∂ f
∂ρi∑

i∈Ne
we (ci )

, (4.8)

where f is the objective function, ρe is the pseudo density of the element
subjected to the filtering, ρi is the pseudo density of a neighbour element,
∂̃ f
∂ρe

is the modified sensibility of the element e and we (ci ) is usually a
linear weight function associated to the element e, which can be written
as

we (ci ) =
R−Die

R
, (4.9)

where Die is the Euclidean distance between the filtered element and its
neighbours.

4.4 SOLUTION OF THE TOPOLOGY OPTIMIZATION PROBLEM

Several methods can be used in order to solve a topology opti-
mization problem. The simplest method is the Optimality Criteria, but it
can used only in particular situations. Here, besides the Optimality Crite-
ria, two other methods to solve the topology optimization problems are
presented: the Sequential Linear Programming (SLP) and the Method of
Moving Asymptotes (MMA).

4.4.1 Optimality Criteria

The first approach used in this work to solve the topology opti-
mization problem is the Optimality Criteria (OC). Let the minimization
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problem given by

Minimize
ρ

Φ(ρ)

Subject to V ≤ V f ,

(4.10)

where Φ is the objective function, ρ is the vector containing the pseudo
densities of the elements, V is the total volume of the structure and V f is
the admissible volume. The volume of the structure can be found as

V =
n∑
e

Veρe , (4.11)

where Ve and ρe are the volume and pseudo-density of the element e of
the mesh. This method is based in Bendsøe and Sigmund (2003), and it
upgrades the pseudo densities of each element such as

ρk+1
e = ρk

e β
η
e (4.12)

respecting the limits

ρk+1
e ∈

[
ρk

e −de ,ρk
e +de

]
(4.13)

ρk+1
e ∈

[
ρmin ,1.0

]
, (4.14)

where de is a positive moving limit of the e-th element, ρmin is the mini-
mum admissible pseudo density, η is a relaxation parameter and βe is the
update parameter, given by

βe =
max

(
0,−

dΦ(ρ)
dρe

)

λ
dV(ρ)

dρe

, (4.15)

where λ is the Kuhn Tucker Multiplier that can be obtained by a bisection
algorithm. The Optimality Criteria can be summarized as follows:

1. Set the initial parameters of bisection, generally

λ1 = 0 (4.16)

and

λ2 =Λ, (4.17)

where Λ is a large number, the tolerance for the stop criteria, tol ,
and the structure’s admissible volume, V f ;
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2. Find λ as

λ=
λ1 +λ2

2
; (4.18)

3. For each element in the finite element mesh, find βe , using equation
4.15 and update its pseudo density through equation 4.12, respecting
the imposed limits;

4. Find the structure’s volume, equation 4.11, and update the bisection
limits as:

• if V > V f then λ1 =λ;

• if V < V f then λ2 =λ.

5. Test the tolerance as:

• if tol <λ2 −λ1 back to step 2;

• if tol >λ2 −λ1 the algorithm ends.

The Optimality Criteria was chosen due to its simplicity, low com-
putational cost and speed. Although it can be used only with restricted
problems, and only with volume restriction, it can handle very well pro-
posed problems.

4.4.2 Sequential Linear Programming

The Sequential Linear Programming (SLP) is a method used to
solve non-linear problems and consists in the use of series of linear approx-
imations. Each linear problem is generated by approximating the objective
function and the constraints using a first order Taylor series expansion
about the current design point ρ. According to Rao (2009), the SLP algo-
rithm can be posed as follows:

1. Start with an initial design vector ρ. Iteration k = 1;

2. Linearize the objective function and the constraints using a first order
Taylor series, about the initial point as

Φ
(
ρ

)
≈Φ

(
ρi

)
+∇Φ

(
ρi

)T (
ρ−ρi

)
, (4.19)

g
(
ρ

)
≈ g

(
ρi

)
+∇g

(
ρi

)T (
ρ−ρi

)
, (4.20)

h
(
ρ

)
≈ h

(
ρi

)
+∇h

(
ρi

)T (
ρ−ρi

)
; (4.21)
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3. State a standard optimization problem using the linearized objective
function and constraints;

4. Select the proper moving limits;

5. Solve the linearized problem in order to obtain the design variables,
ρk+1;

6. Evaluate the original constraint at the point ρk+1 and verify if they
are satisfied within a small tolerance. If all the constraints are satis-
fied, than the procedure is stopped and

ρopt ≃ρk+1. (4.22)

If some of the constraints are not within the small tolerance neigh-
bourhood, than set the design variable vector as ρk =ρk+1, iteration
as k = k +1 and back to item 2.

This method is an efficient technique for solving convex problems
with nearly linear objective and constraint functions, since each iteration
provides a linear problem, which can be solved with a certain efficiency.
According to Arora (2007), some observations to highlight some features
and limitations of the SLP method are:

1. The selection of moving limits is one trial and error and can be best
achieved using an interactive procedure;

2. The method may not converge to the precise minimum, since no
descent function is used, and a line search is not performed;

3. The method can cycle between two points if the optimum solution
is not a vertex of the feasible set;

4. The method is quite simple conceptually and numerically. Though
the method may not be use to reach a precise minimum, it can be
used in some practical problems.

This method was used in order to handle more general problems,
as for example, problems with symmetry constraints in the components of
the homogenized tensors.

For the implementation, an external library, Hanson and Hirbert
(1981), is used.
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4.4.3 Method of Moving Asymptotes

The method of moving asymptotes (MMA) is a non-linear iter-
ative method used in structural optimization, and is based on a convex
approximation.

According to Svanberg (1987), the solution of an optimization
problem, defined by Ψ0, set as

Minimize
ρ

Φ(ρ)

Subject to g j (ρ)≤ ĝ j , j = 1, . . . ,ng

ρ
i
≤ ρi ≤ ρi , i = 1, . . . ,nd ,

(4.23)

where ĝ j is a scalar associated to the j -th constraint, ng is the number of
constraints and nd is the number of design variables, can be summarized
as follows:

1. Set an initial point, ρ0, and set the iteration as k = 0;

2. For the iteration k, find the values of the objective function and the
constraints, as well as their derivatives;

3. Generate a sub-problem, Ψk , to replace to original problem, by re-
placing the original objective function, Φ and the constraints by ex-
plicit functions given, respectively by Φk and g k

j
;

4. Solve the sub-problem Ψk and let the optimal solution of this problem
be the next iteration point, ρk+1. Set the iteration as k = k +1 and
go to step 2.

The process is interrupted when some convergence criterium is fulfilled.

In a brief way, the functions Φk and g k
j

are obtained by the lin-
earization of the original functions in variables of the form

1

ρi −Li
(4.24)

and

1

Ui −ρi
, (4.25)
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where Li and Ui are known as moving asymptotes. The moving asymptotes
parameters are chosen, at the iteration k, such that

L
k
i < ρk

i < U
k
i i = 1, . . . ,nd . (4.26)

Now, the sub problem, Ψk , is defined as

Minimize
ρ

nd∑

i=1

(
pk

oi

Uk
i
−ρi

+
qk

oi

ρi −Lk
i

)
+ r k

o

Subject to
nd∑

i=1

(
pk

j i

Uk
i
−ρi

+
qk

j i

ρi −Lk
i

)
+ r k

j ≤ ĝ j , j = 1, . . . ,ng

max
{
ρ

i
,αk

i

}
≤ ρi ≤ mi n

{
ρi ,βk

i

}
, i = 1, . . . ,nd ,

(4.27)

where the functions p, q and r are dependent on the value of the original
functions at the current design point, its derivatives and on the value of
the moving asymptotes. In addition, the index 0 refers on the objective
function and the index j refers to the constraints. The parameters αk

i
and

βk
i

are move limits and are generally chosen such that

L
k
i <αk

i < ρk
i < βk

i < U
k
i (4.28)

and the moving asymptotes are heuristically chosen.

A detailed review of the method can be found in Svanberg (1987),
Bruyneel, Duysinx and Fleury (2001) and Svanberg (2007).
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5 FORMULATION

This chapter shows the formulation used in the optimization prob-
lems proposed in this work and the models used in the analysis problem.

As the possibility of production of a porous media became possible
with the rapid prototyping methods, the tailoring of the properties of the
porous media became a very interesting study field. This procedure is called
inverse analysis, and intends to find the topology of the base cell of the
porous media who better fits a macroscopic requirement of the porous
media.

With regard to the concepts of topology optimization within the
homogenization context, two distinct problems are proposed. The first one
consists in the maximization of a linear combination of the components
of the homogenized constitutive tensor. This intends to find the topology
of the base cell who maximizes certain components of the homogenized
tensor, rendering the porous media to be specialized in some sort of appli-
cation and with a pre-determined volume of material.

The second one consists in the approximation of the homogenized
constitutive tensor based on a given constitutive tensor. This approach
enables the tailoring of a material with a predetermined property, allowing
a wide range of applications in several areas. In this work, the mechanical
constitutive tensor of the human bone is used as the target tensor, and as
base material for the porous media, it is used a bio-compatible titanium
alloy. This application becomes very important in medical applications,
specially in the area of bone implants.

Besides the optimization procedure, this chapter addresses an
analysis procedure. The proposal is to study the behaviour of two distinct
hollow sphere materials. The effective homogenized elasticity and thermal
conductivity tensors are evaluated and a relation between the geometrical
parameters of the RVE and the effective properties are investigated.

According to Öchsner, Hosseini and Merkel (2009), hollow sphere
structures are novel lightweight material in the group of cellular materials
which can provide to the material a combination of very specific character-
istics, such as the ability to absorb high amounts of energy, potential for
noise control, vibration damping and thermal insulation. Also, according to
Sanders and Gibson (2003), hollow sphere structures can be manufactured
from a broad range of materials and assembled in a periodic structure with
relatively small number of imperfections. These factors show that this kind
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of structures can play a significant role in technology and render this an
important study subject.

5.1 OPTIMIZATION PROBLEMS

5.1.1 Linear Combination of the Components of the Homogenized

Constitutive Tensor

The objective function, Φ, is given by the linear combination of
the homogenized constitutive tensor, thus, one can write

Φ=
21∑

i=1

αi C
H
i , (5.1)

where αi is an arbitrary scalar and Ci is the i -th component of the ho-
mogenized constitutive tensor. Accordingly, the optimization problem can
be written as

Maximize
ρ

Φ(ρ)

Subject to
n∑

e=1

ρe ve ≤ V f

ρmin ≤ ρe ≤ 1,

(5.2)

where ρe and ve are, respectively, the pseudo density and the volume of the
e-th element of the mesh and V f is an admissible volume for the structure.

As the objective function is a linear combination, its derivatives
are a linear combination as well. So, taking the derivatives of equation 5.1
with regard to the pseudo density of an element q of the finite element
mesh, one can write

∂Φ

∂ρq
=

21∑

i=1

αi

∂CH
i

∂ρq
. (5.3)

At this point it becomes clear that to evaluate the derivative of the ob-
jective function, the derivatives of every component of the homogenized
constitutive tensor must be obtained.
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5.1.2 Target Tensor

The objective function Φ, for this case, is given by the L2 norm of
the difference between the components of a given tensor and the homog-
enized tensor. Mathematically, one can write

Φ=
∣∣∣∣CH

(
ρ

)
−C∗

∣∣∣∣
2

. (5.4)

For the three-dimensional case, the equation 5.4 is written as

Φ=

√(
CH

i j kl
−C∗

i j kl

)2

, (5.5)

where i , j ,k, l = 1,2,3. Thus, the optimization problem can be defined as

Minimize
ρ

Φ(ρ)

Subject to
n∑

e=1

ρe ve ≤ V f

ρmin ≤ ρe ≤ 1.

(5.6)

Throughout the chain rule is possible to find the derivatives of the
objective function with regard to the pseudo-density of an element q of
the mesh as

∂Φ

∂ρq
=

1

2

(√(
CH

i j kl
−C∗

i j kl

)2

)2

(
C

H

i j kl −C
∗
i j kl

) ∂CH

i j kl

∂ρq
. (5.7)

Yet, using the equations 5.5 and 5.7, one obtains

∂Φ

∂ρq
=

1

Φ

(
C

H

i j kl −C
∗
i j kl

) ∂CH

i j kl

∂ρq
. (5.8)

As for the previous case, the evaluation of the derivatives of the homog-
enized components of the constitutive tensor with regard to the pseudo
densities of the elements of the mesh is needed.

5.2 SENSITIVITY ANALYSIS

In order to find the derivatives of the objective function, one must
find the derivatives of all components of the homogenized constitutive ten-
sor with respect of the pseudo-density of each element of the mesh. From
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the integral equation 2.24, the generic component CH

i j kl
of the homoge-

nized tensor is given by

C
H

i j kl =
1

|Y|

∫

Y

(
Ci j kl −cT

i j ∂χkl
)

dY, (5.9)

where ci j is the column related to the indexes i j of the base material
constitutive tensor and ∂χkl is the strain field of the unit cell in regard to
the load case kl . Numerically, the equation 5.9 becomes

C
H

i j kl =
1

|Y|

n∑

e=1

ng∑

m=1

[(
Ci j kl −cT

i j ∂χkl
e

)
WmJm

]
, (5.10)

where Wm is the quadrature weight, Jm is the determinant of Jacobian
matrix, n is the number of elements used for the discretization of the
domain and ng is the number of points used for the numerical integration.
Using the SIMP to evaluate the effective properties of an element,

C = ρP
e C0

, (5.11)

equation 5.10 becomes

C
H

i j kl =
1

|Y|

n∑

e=1

ng∑

m=1

[(
ρP

e C
0

i j kl −ρP
e

(
c0

i j

)T

∂χkl
e

)
WmJm

]
. (5.12)

Writing the strain field, ∂χkl
e , as

∂χkl
e =Bemχkl

e , (5.13)

where Bem is the strain-displacement matrix, which contains the deriva-
tives of the shape functions of the e-th element in the m-th Gauss point,
and a localization matrix He , which does the mapping between the global
and local vectors as

χe =Heχ, (5.14)

one can write equation 5.12 as

C
H

i j kl =
1

|Y|

n∑

e=1

ng∑

m=1

[(
ρP

e C
0

i j kl −ρP
e

(
c0

i j

)T

BemHeχkl

)
WmJm

]
. (5.15)

As the displacement field χkl is a function of the elements pseudo-
densities, the derivatives of the equation 5.15 contain the derivatives of the
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displacement field with respect to the pseudo-densities. To avoid a costly
evaluation of these derivatives, the adjoint method is used.

This method consists in adding a null therm to the equation, in
this case, the equilibrium problem, given by

fkl =Kχkl ⇒Kχkl −fkl = 0, (5.16)

where K is the global stiffness matrix and fkl is the global force vector,
in order to obtain an auxiliary problem able to avoid the calculation of the
derivatives of the displacement field. Adding the equilibrium problem to
equation 5.15, one gets

C
H

i j kl =
1

|Y|

n∑

e=1

ng∑

m=1

[(
ρP

e C
0

i j kl −ρP
e

(
c0

i j

)T

BemHeχkl

)
WmJm

]

+ λT
i j

[
Kχkl −fkl

]
, (5.17)

where the λi j is the adjoint vector, that can be chosen as any vector, since
the added therm has zero as value. The force global vector can be obtained
through

fkl =
n⊎

e=1

fkl
e , (5.18)

where fkl
e is the force vector for the e-th element, given by

fkl
e =

1

|Y|

∫

Y

BT
e ckl dY. (5.19)

The numerical solution of equation 5.19, using the SIMP for the effective
properties, is

fkl
e =

1

|Y|

ng∑

m=1

[
BT

emρP
e ckl WmJm

]
. (5.20)

Using the localization matrix, He , equation 5.18 can be written as

fkl =
n∑

e=1

HT
e fkl

e , (5.21)

and global force vector as

fkl
=

1

|Y|

n∑

e=1

ng∑

m=1

[
HTBT

emρP
e ckl WmJm

]
. (5.22)
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Finally, the homogenized component of the tensor, is given by

C
H

i j kl =
1

|Y|

n∑

e=1

ng∑

m=1

[(
ρP

e C
0

i j kl −ρP
e

(
c0

i j

)T

BemHeχkl

)
WmJm

]

+λT
i j

[
Kχkl −

1

|Y|

n∑

e=1

ng∑

m=1

(
HeBT

emρP
e ckl

)
WmJm

]
. (5.23)

The derivatives of the equation 5.23, with respect to the pseudo
density of an element q of the mesh, are given by

∂CH

i j kl

∂ρq
=

1

|Y|

n∑

e=1

ng∑

m=1

[(
∂ρP

e

∂ρq
C

0

i j kl −
∂ρP

e

∂ρq

(
c0

i j

)T

BemHeχkl

− ρP
e

(
c0

i j

)T

BemHe
∂χkl

∂ρq

)
WmJm

]
+λT

i j

∂K

∂ρq
χkl +λT

i j K
∂χkl

∂ρq

− λT
i j

1

|Y|

n∑

e=1

ng∑

m=1

[
HT

e BT
em

∂ρP
e

∂ρq
c0

kl WmJm

]
. (5.24)

Collecting the terms that are dependent of the derivatives of the displace-
ment field, one finds

∂CH

i j kl

∂ρq
=

1

|Y|

n∑

e=1

ng∑

m=1

[(
∂ρP

e

∂ρq
C

0

i j kl −
∂ρP

e

∂ρq

(
c0

i j

)T

BemHeχkl

)
WmJm

]

+ λT
i j

∂K

∂ρq
χkl

−λT
i j

1

|Y|

n∑

e=1

ng∑

m=1

[
HT

e BT
em

∂ρP
e

∂ρq
c0

kl WmJm

]

+

(
λT

i j K −
1

|Y|

n∑

e=1

ng∑

m=1

ρP
e

(
c0

i j

)T

BemHe WmJm

)
∂χkl

∂ρq
. (5.25)

As λi j is an arbitrary vector, it can be chosen in order to enforce
to zero the therms multiplying the derivatives of the displacement field
with regard to the pseudo densities (last line of equation 5.25). By doing
so, one obtains an auxiliary problem, given by

λT
i j K =

1

|Y|

n∑

e=1

ng∑

m=1

[
ρP

e

(
c0

i j

)T

BemHe WmJm

]
, (5.26)

which is used to find the derivatives of the homogenized constitutive tensor,
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given by

∂CH

i j kl

∂ρq
=

1

|Y|

n∑

e=1

ng∑

m=1

[(
∂ρP

e

∂ρq
C

0

i j kl −
∂ρP

e

∂ρq

(
c0

i j

)T

BemHeχkl

)
WmJm

]

− λT
i j

1

|Y|

n∑

e=1

ng∑

m=1

[
HT

e BT
em

∂ρP
e

∂ρq
c0

kl WmJm

]

+ λT
i j

∂K

∂ρq
χkl

. (5.27)

Using the Kronecker delta, defined as

δeq =

{
1 if e = q

0 if e 6= q
, (5.28)

one can write

∂ρP
e

∂ρq
= δeq

(
PρP−1

e

)
. (5.29)

The assembly of the global stiffness matrix is made by the operator

K =
n⊎

e=1

ρP
e Ke , (5.30)

and its derivatives are given by

∂K

∂ρq
=

n⊎
e=1

∂ρP
e

ρq
Ke . (5.31)

Finally, using the Kronecker delta, one can write equation 5.31 as

∂K

∂ρq
=

n⊎
e=1

δeq PρP−1
e K0

e . (5.32)

In summary, the auxiliary problem of equation 5.26 must be solved
in order to obtain the derivatives of a component of the homogenized tensor
with respect to an element of the mesh using equation 5.27. Equations 5.29
and 5.32 are used as auxiliary expressions.

Appendix D shows the validation of the sensitivity analysis by
means of the central difference method.
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5.3 ALGORITHM DESCRIPTION

This section describes an optimization problem involving porous
materials. First, the data needed for the problem, in addition to the data
used to find the homogenized coefficients, is shown, and then an algorithm
is presented. All codes were written in the free Language Julia and the
output files containing the topologies are written in order to be displayed
in the free software Gmsh.

5.3.1 Data

Besides the data needed to determine the homogenized mechan-
ical tensor, the optimization problem needs extra information for the pro-
cedure.

In relation to SIMP, the penalization factor, P, must be informed,
as well as the relaxation parameter, η and the limits for the bisection
algorithm. For the filtering scheme, the filtering radius, which indicates
the size of the neighbourhood of an element, must be informed.

As two distinct optimization problems were suggested, one has to
chose between the maximization of a linear combination of the components
of the homogenized constitutive tensor and the approximation of a target
constitutive tensor.

Also, one among three distinct optimization procedures must be
chosen: the Optimum Criteria, the Sequential Linear Programming and the
Method of Moving Asymptotes.

Finally, two distinct constraints can be used in the program. The
first one is the volume constraint, in which a maximum volume for the
RVE is adopted and the second one is a constraints that imposes that two
components of the homogenized tensor have equal numerical values.

5.3.2 Optimization Problem

Figure 30 shows a summary of the topology algorithm developed,
which takes the requirements for the macroscopic media and gives the
distribution of densities of the base cell that better fits these requirements.

At first, the algorithm reads the data provided by the user, such
as geometrical and material parameters and the requirements for the op-
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timization procedure. The pre-processing consists in the mesh generation
and the specification of the boundary conditions, the compatibility ma-
trix for the periodicity consideration and the vectors containing the initial
pseudo density and the move limits of each element of the mesh.

The optimization procedure follows figure 31, and it stops when
a certain number of iterations is reached. At first the homogenized me-
chanical tensor is calculated, then the sensitivity analysis is made, that is
to say, the gradient of the objective function and the gradient of the con-
straints are computed. The filtering method is applied in the gradient of
the objective function and then the optimization procedure is called. Three
optimization methods were implemented for solving the problem, the Op-
timum Criteria (OC), the Sequential Linear Programming (SLP) and the
Method of Moving Asymptotes (MMA), and the user can choose between
one of these methods to solve the problem. The vector of densities and
the vector of moving limits are updated and the optimization procedure
returns to the beginning.

When the number of iterations is reached, the optimization proce-
dure is ended and then the densities distribution is written in a text format,
compatible with the software Gmsh, in order to visualize the RVE obtained
topology.

Figure 30 – Algorithm of the optimization program
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Source: Author’s production, 2016.
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Figure 31 – Algorithm of the optimization procedure
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5.4 ANALYSIS PROBLEM

The cellular materials chosen to be studied are the so called hollow
sphere structures (HSS). Two different topologies are proposed and the ho-
mogenization method is used in order to evaluate the effective mechanical
and thermal properties of this kind of structure.

The first model is shown in figure 32, where a RVE is represented
in two dimensions for sake of simplicity. For a media formed by this kind
of structure, two adjacent base cells are connected by a flat reinforcement.
The domain is considered unitary and the geometry is described by three
geometrical parameters, the internal diameter, ρi , the outer diameter ρo

and the diameter of the reinforcement, RR.

Figure 32 – Hollow sphere - model 1
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Source: Author’s production, 2016.



5.4. ANALYSIS PROBLEM 115

Figure 33 shows the base cell of the second case analysed. For
this case, two adjacent spheres are connected by a flat area. Again, the
domain is considered unitary. This model has two geometrical parameters,
the outer diameter, ρo and the inside diameter, ρi and the flat area is a
function of both parameters.

Figure 33 – Hollow sphere - model 2
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Source: Author’s production, 2016.

By varying the geometrical parameters of both base cells, and ob-
taining the homogenized mechanical and thermal properties of the media,
one can generate a set of equations relating the geometrical parameters of
the RVE and the effective properties of the media. Thus, a point cloud,
relating the geometrical properties of the base cell and the effective prop-
erties, can be generated and the least square method can be used in order
to approximate an equation for the properties.

5.4.1 Least Square Method

In order to find the homogenized components of the tensors in
intermediate configurations, the least square method is used to adjust a
surface based on the data given by the simulations. Using the Least Square
Function, given by,

Φ=

√√√√
np∑

i=1

(
f

(
ρ

)
−Vi

)2
, (5.33)

where np is the number of simulations made, ρ is the vector containing
the design variables and Vi is the value of a component of the tensor at
the i−th simulation, it is possible to adjust the coefficients of the function
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that better fit the simulations for some of the coefficients of the tensor.
The optimal set of parameters is found when

∇aΦ=0, (5.34)

where a is the vector containing the coefficients of the function f . When
the gradient goes to zero, the minimum of the function is achieved, indi-
cating that the coefficients which better fit the simulation points for that
function were achieved.
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6 RESULTS

This chapter is divided in three main sections. The first one shows
the results for the analysis case, in which the variation of the properties of
a media formed by hollow spheres base cells in relation to the geometrical
parameters of the base cell is investigated. The second section shows the
results obtained for the maximization of a linear combination of the compo-
nents of the mechanical homogenized tensor. The third section shows the
topology of the base cells obtained that provides a better approximation
for a given constitutive tensor.

6.1 EFFECTIVE PROPERTIES OF HOLLOW SPHERE STRUCTURES
(HSS)

This section shows the results obtained for the analysis of two
hollow spheres cellular material models. It is intended to show how the
effective elasticity and thermal conductivity properties vary in therms of
the geometrical parameters of the RVE.

The discretization into finite elements of both geometries studied
can be seen in figures 34 and 35, showing the distribution of material on
the base cell and its cross-section for each case. The domain is an unit
cube and is discretized by 50×50×50 elements in all cases. The data used
is shown in table 1, where the base material plays the role of an aluminium
alloy.

Figure 34 – Hollow sphere structure - Case 1

Source: Author’s production, 2016



118 Chapter 6. RESULTS

Figure 35 – Hollow sphere structure - case 2

Source: Author’s production, 2016

Table 1 – Simulation data

Young Modulus (E) [GPa] 70.0

Poisson (ν) 0.3

Thermal Condutivity (Kt )
[
Wm−1K−1

]
237.0

Void Density (ρmin ) 10−9

6.1.1 Numerical Results

For both cases studied, the mechanical homogenized tensor has
the form

Ch =




CH
1111

CH
1122

CH
1133

0 0 0

CH
2222

CH
2233

0 0 0

CH
3333

0 0 0

CH
1212

0 0

CH
2323

0

sym. CH
1313




, (6.1)

in which CH
1111

= CH
2222

= CH
3333

, CH
1122

= CH
1133

= CH
2233

and CH
1212

= CH
2323

=

CH
1313

. The equalities on the components of the tensor indicate a cubic
symmetry on the homogenized tensor, since the normal components in the
three principal directions are equal to each other, and so are the three shear
components, although, the shear components cannot be related with the
normal and coupled normal components. The thermal conductivity tensor,
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for both topologies, has the form

KtH =




kt H
11

0 0

0 kt H
22

0

0 0 kt H
33


 , (6.2)

in which kt H
11

= kt H
22

= kt H
33

.

6.1.1.1 First Hollow Sphere Model

This section shows the results for the hollow sphere case where two
adjacent spheres are joined together by a reinforcement. The finite model
used is shown in figure 34 and the internal, external and reinforcement
diameters are used as design variables, as shown in figure 32.

Figures 36, 37 and 38 show the variation of the components CH
1111

,
CH

1122
and CH

1212
of the homogenized mechanical tensor, respectively. In all

figures, one can see the variation of components as a function of the
internal and external diameters of the hollow sphere and for four distinct
values of reinforcements, RR.

Figure 36 – CH
1111
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Figure 37 – CH
1122
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Figure 38 – CH
1212
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Figure 39 shows the component of the homogenized thermal con-
ductivity tensor, as a function of the same variables as for the mechanical
case.

Figure 39 – KtH
11
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For this case, the inner diameter, the outer diameter and the re-
inforcement diameter are used to adjust an equation for each component
of the tensors. It is presented a surface for each component and for each
value of reinforcement, although a single equation for each component
is obtained. The surfaces obtained are valid only if the internal diameter
is smaller than the external diameter and in the regions where there are
sampled points.

A complete third degree polynomial surface is used in order to
avoid numerical ill behaviour that may be caused for an high order poly-
nomial surface, expected for the big number of simulated points used for
the approximation.

Figures 40, 41, 42 and 43 show the surfaces obtained to adjust
the component CH

1111
of the homogenized elastic tensor for reinforcements

of, respectively, RR = 0.2, RR = 0.3, RR = 0.4 and RR = 0.5.
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Figure 40 – Surface and simulated points for the CH
1111

component, reinforce-
ment of RR = 0.2
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Figure 41 – Surface and simulated points for the CH
1111

component, reinforce-
ment of RR = 0.3

Internal Diameter

External Diameter

C

[m]

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0.75

0.8

0.85

0.9

0.95

1

0

1

2

3

4

5

6

7

8

CH
1111 [MPa]

[m]

Source: Author’s production, 2016

Figure 42 – Surface and simulated points for the CH
1111

component, reinforce-
ment of RR = 0.4
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Figure 43 – Surface and simulated points for the CH
1111

component, reinforce-
ment of RR = 0.5
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Figures 44, 45, 46 and 47 show the surfaces obtained to adjust
the component CH

1122
of the homogenized elastic tensor for reinforcements

of, respectively, RR = 0.2, RR = 0.3, RR = 0.4 and RR = 0.5.

Figure 44 – Surface and simulated points for the CH
1122

component, reinforce-
ment of RR = 0.2

Source: Author’s production, 2016
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Figure 45 – Surface and simulated points for the CH
1122

component, reinforce-
ment of RR = 0.3
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Figure 46 – Surface and simulated points for the CH
1122

component, reinforce-
ment of RR = 0.4
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Figure 47 – Surface and simulated points for the CH
1122

component, reinforce-
ment of RR = 0.5
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Figures 48, 49, 50 and 51 show the surfaces obtained to adjust
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the component CH
1212

of the homogenized elastic tensor for reinforcements
of, respectively, RR = 0.2, RR = 0.3, RR = 0.4 and RR = 0.5.

Figure 48 – Surface and simulated points for the CH
1212

component, reinforce-
ment of RR = 0.2
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Figure 49 – Surface and simulated points for the CH
1212

component, reinforce-
ment of RR = 0.3
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Figure 50 – Surface and simulated points for the CH
1212

component, reinforce-
ment of RR = 0.4

Internal Diameter

External Diameter

C

[m]

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0.75

0.8

0.85

0.9

0.95

1

0

1

2

3

4

5

CH
1212

[MPa]

[m]

Source: Author’s production, 2016



126 Chapter 6. RESULTS

Figure 51 – Surface and simulated points for the CH
1212

component, reinforce-
ment of RR = 0.5
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Figures 52, 53, 54 and 55 show the surfaces obtained to adjust
the component Kt H

11
of the homogenized conductivity thermal tensor for

reinforcements of, respectively, RR = 0.2, RR = 0.3, RR = 0.4 and RR = 0.5.

Figure 52 – Surface and simulated points for the KtH
11

component, reinforce-
ment of RR = 0.2
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Figure 53 – Surface and simulated points for the KtH
11

component, reinforce-
ment of RR = 0.3
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Figure 54 – Surface and simulated points for the KtH
11

component, reinforce-
ment of RR = 0.4
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Figure 55 – Surface and simulated points for the KtH
11

component, reinforce-
ment of RR = 0.5
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The components of the mechanical and thermal homogenized ten-
sors can be determinated by the equations,

C
H
1111 = 26.06RR

3 +44.12ρo RR
2 −146.90ρi RR

2 +81.59RR
2

− 131.27ρo
2

RR +251.15ρi ρo RR +77.64ρo RR −68.30ρi
2

RR

− 121.68ρi RR −4.90RR +42.85ρo
3 −84.52ρi ρo

2

− 11.34ρo
2 −101.70ρi

2ρo +219.93ρi ρo −71.65ρo

+ 84.37ρi
3 −65.94ρi

2 −45.15ρi +33.45 [MPa] ,

C
H
1122 = 10.10RR

3 +23.55ρo RR
2 −51.50ρi RR

2 +33.70RR
2

− 82.60ρo
2

RR +205.59ρi ρo RR +11.25ρo RR −158.84ρi
2

RR

+ 37.26ρi RR −26.78RR +43.66ρo
3 −84.24ρi ρo

2

− 29.24ρo
2 −77.04ρi

2ρo +205.43ρi ρo −52.06ρo

+ 121.32ρi
3 −156.14ρi

2 +18.81ρi +13.545 [MPa],

C
H
1212 = −5.03RRr 3 −38.53ρo RR

2 −9.64ρi RR
2 +56.47RR

2

− 104.34ρo
2

RR +86.13ρi ρo RR +168.32ρo RR −42.90ρi
2

RR

− 41.77ρi RR −70.30RR +60.63ρo
3 −200.20ρi ρo

2

+ 27.35ρo
2 +103.43ρi

2ρo +194.80ρi ρo −129.43ρo

+ 18.26ρi
3 −153.24ρi

2 +49.29ρi +29.85 [MPa],

Kt H
11 = 22.18RR

3 −478.80ρo RR
2 +163.70ρi RR

2 +336.33RR
2

− 490.54ρo
2

RR +805.19ρi ρo RR +799.87ρo RR −140.194ρi
2

RR

− 976.21ρi RR −16.88RR +810.61ρo
3 −1964.54ρi ρo

2

− 553.47ρo
2 +1001.49ρi

2ρo +2079.92ρi ρo −435.75ρo

− 137.13ρi
3 −815.66ρi

2 −156.49ρi +172.95
[
Wm−1

K
−1

]
,

where RR is the diameter of the reinforcement, ρi and ρo are, respectively,
the inner and the outer diameters of the hollow sphere.
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6.1.1.2 Second Hollow Sphere Model

For the case in which two adjacent spheres are connected by a flat
area, as shown in figure 33, the components of the mechanical and thermal
conductivity homogenized tensor are shown as a function of the external
and internal diameters of the hollow sphere. The flat area is determined as
a function of the both diameters, enforcing that the whole sphere has the
same thickness. The finite element model is shown in figure 35.

Figures 56, 57, 58 and 59 show the variation of components CH
1111

,
CH

1212
and CH

1122
of the homogenized elasticity tensor and Kt H

11
of the ho-

mogenized thermal, respectively.

Figure 56 – CH
1111
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Figure 57 – CH
1212

values obtained for the second model

0.85
0.9

0.95

1

1.05

1.1

1.15

1.2 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22

0

1

2

3

4

5

6

CH
1212

'D?@CDGHJ@RLMGNtOPJM@QDtRTJ 1@URHtLDLP@tLMtL.POt' GMRHT 2?3?6

VHtLDHON DROWLtLD

XYtLDHON DROWLtLD

CH
1212

[MPa]

[m]

[m]

Source: Author’s production, 2016

Figure 58 – CH
1122

values obtained for the second model

0.85
0.9

0.95

1

1.05

1.1

1.15

1.2 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22

0

1

2

3

4

5

6

7

CH
1122

'DZ] _̂̀ bc]Rfh̀ jtkpch]q_ttvc 1]wtbtf_fp]tfhtf.pkt' ̀ htbv 2Z3Z7

ybtf_bkj Dtkzftf_

{|tf_bkj Dtkzftf_

CH
1122

[m]

[m]

[MPa]

Source: Author’s production, 2016



6.1. EFFECTIVE PROPERTIES OF HOLLOW SPHERE STRUCTURES (HSS) 131

Figure 59 – KtH
11
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For this case, the inner and outer diameters of the hollow sphere
are used to adjust a fifth order polynomial surface to the simulated data.
Numerical bad behaviour were observed for higher orders on the adjustment
of the surfaces. As for the previous case, the surfaces obtained are valid
when the internal diameter is smaller than the external diameter and where
there are sampled points.

Figures 60, 61, 62 and 63 show the surfaces obtained for the
components CH

1111
, CH

1212
and CH

1122
of the homogenized elasticity tensor

and Kt H
11

of the homogenized thermal, respectively.

Figure 60 – Surface and simulated points for CH
1111
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Figure 61 – Surface and simulated points for CH
1212
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Figure 62 – Surface and simulated points for CH
1112
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Figure 63 – Surface and simulated points for KtH
11
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The components of the tensors can be obtained by

C
H
1111

= −36851.09ρo
5 −143951.33ρi ρo

4 +319371.33ρo
4 +445271.42ρi

2 ρo
3

− 203868.68ρi ρo
3
−564869.50ρo

3
−553081.38ρi

3 ρo
2
+102800.87ρi

2 ρo
2

+ 230403.45ρi ρo
2 +504778.69ρo

2 +347902.52ρi
4 ρo −110446.77ρi

3 ρo

+ 52830.71ρi
2 ρo −201584.61ρi ρo −205423.15ρo −84237.18ρi

5

+ 20030.83ρi
4 +22039.32ρi

3 −42914.18ρi
2 +76875.36ρi

+ 24921.40 [MPa] ,

C
H
1122

= −1560.00ρo
5 −18751.25ρi ρo

4 +11531.95ρo
4 +62594.92ρi

2 ρo
3

− 35324.86ρi ρo
3
+23523.66ρo

3
−64338.91ρi

3 ρo
2
−18434.66ρi

2 ρo
2

+ 70668.90ρi ρo
2 −81965.11ρo

2 +41798.35ρi
4 ρo −22445.51ρi

3 ρo

+ 53199.48ρi
2 ρo −82681.88ρi ρo +82582.43ρo −11526.87ρi

5

+ 10285.98ρi
4 −6854.88ρi

3 −13581.88ρi
2 +28768.71ρi

− 27488.29 [MPa] ,

C
H
1212

= −11729.13ρo
5 −28798.39ρi ρo

4 +87755.58ρo
4 +141984.66ρi

2 ρo
3

− 140792.10ρi ρo
3
−118017.64ρo

3
−200614.77ρi

3 ρo
2
+99462.67ρi

2 ρo
2

+ 138420.48ρi ρo
2 +76426.99ρo

2 +132996.72ρi
4 ρo −64118.51ρi

3 ρo

− 14873.43ρi
2 ρo −94516.34ρi ρo −13548.79ρo −32937.03ρi

5

+ 10527.23ρi
4 +15146.01ρi

3 −10106.84ρi
2 +32067.81ρi

− 4735.81 [MPa] ,

Kt H
11

= −187634.72ρo
5 −616855.47ρi ρo

4 +1579529.74ρo
4 +2887243.37ρi

2 ρo
3

− 2762467.12ρi ρo
3
−2081219.45ρo

3
−4186231.64ρi

3 ρo
2
+2403743.13ρi

2 ρo
2

+ 2274302.55ρi ρo
2 +1473847.44ρo

2 +2704782.61ρi
4 ρo −1105834.82ρi

3 ρo

− 1036963.33ρi
2 ρo −1029394.96ρi ρo −506587.66ρo −647953.96ρi

5

+ 117296.50ρi
4 +387351.16ρi

3 −2820.61ρi
2 +297022.48ρi

+ 38836.78

[
Wm−1

K
−1

]
,

where ρi and ρo are, respectively, the inner and outer diameters of the
hollow sphere.
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6.1.2 Summary

In this section an analysis problem regarding porous materials was
shown. The properties of two distinct hollow spheres models, with respect
to the geometrical parameters of the RVE, were obtained. The interpo-
lation approach, used to evaluate the effective properties, and the finite
element structured mesh, were chosen in order to make the analysis prob-
lem compatible with a topology optimization problem.

The validation of the algorithm, presented in appendix C, shows
that the homogenization by asymptotic expansion method provides good
results for the determination of effective properties of a porous media in
comparison with results of the literature. Thus, the present work can be
used with a good accuracy within its limitations.

The expressions obtained for the determination of the effective
properties of the media open a wide range of possibilities concerning the
manufacturing of these materials. Several combinations of the geometrical
parameters of the hollow spheres were analysed, thus, the designer can
chose the material bearing in mind its manufacturing limitations.

Also, with the equations obtained is possible to design a macro-
scopic structure. For instance, it is possible to use these equations alongside
an optimization procedure in order to find the best distribution of hollow
spheres in the domain that extremizes some requirement of the structure.

In all surfaces analysed, the points whose inner and outer diam-
eters of the hollow sphere are near to each other, in other words, the
thickness of the hollow sphere is small, the behaviour of the surface is not
regular, and at these points the error presented is higher than in other re-
gions of the surface. This behaviour is due, basically, to the discretization
of the domain. It is not possible to represent the thin thickness with a
good accuracy with the finite element mesh used. Figure 64 shows a cross
section of a hollow sphere with the smallest thickness evaluated. One can
see a region where two elements are connected only by the edges. This
fact induces the domain to have a smaller stiffness, behaviour that was
observed in the simulated points in comparison with the surface obtained.

If these points are removed from the approximation, the results
improve substantially. The maximum relative errors between the surface
and the simulated points, for the first and second cases are shown, respec-
tively, in tables 2 and 3. As one can see, the larger errors occur in the CH

1122

component of the mechanical tensor.
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Figure 64 – Mesh detail

Source: Author’s production, 2016

Table 2 – Maximum error - Case 1

Component Maximum Error (%)

CH
1111

10.85
CH

1212
7.48

CH
1122

12.16
Kt H

11
3.68

Table 3 – Maximum error - Case 2

Component Maximum Error (%)

CH
1111

4.94
CH

1212
3.19

CH
1122

6.32
Kt H

11
3.76

Also, it is noted that for the first case the errors were considerably
larger than for the second case. This can be explained by the amount of
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points in each case. For the first case, three design variables were used,
instead of the two for the second case, which induces a greater number of
points used to adjust an equation for all the simulated points. As the least
square method is sensitive to the number of sampled points, larger errors
may be achieved for the case with three design variables.

Furthermore, it is interesting to consider the symmetry of the do-
main, that induces to analyse only an eighth of the domain, increasing the
refinement of the mesh. This approach is not possible with the homogeniza-
tion method used, due to the fact that the displacement, or temperature,
field on opposite faces of the RVE must have the same shape. With the
symmetry consideration, this consideration can not be imposed, rendering
the problem not suitable.

The best way to improve the results for small thickness of the
hollow sphere is a refinement of the mesh. The main issue associated with
this, is the computational effort. For the presented problem a 50×50×50

element mesh is used, leading to the maximum computational effort of the
equipment used. In comparison, five distinct finite element meshes were
used in order to obtain the homogenized properties of a random media.
The processing time and the computational effort were obtained, and table
4 shows the results.

Table 4 – Computational effort

Mesh time (s) RAM (Gb)

10×10×10 15.5 1.7
20×20×20 38.4 2.4
30×30×30 199.9 3.2
40×40×40 244.5 4.7
50×50×50 602.0 7.9

6.2 MAXIMIZATION OF THE COMPONENTS OF THE HOMOGE-
NIZED TENSOR

This section shows the results obtained for the maximization of
a linear combination of the components of the homogenized fourth order
elasticity tensor. Three distinct problems are addressed. The first one is
the linear combination of the components CH

1111
and CH

2323
. The second

one is the linear combination of CH
1212

, CH
2323

and CH
1313

, and the third one



6.2. MAXIMIZATION OF THE COMPONENTS OF THE HOMOGENIZED

TENSOR 137

is the linear combination of CH
1111

, CH
2222

and CH
3333

. The first case aims at
showing how the topology obtained is dependent on the initial topology,
the second case aims to show the variation of the obtained topologies with
the volume fraction variation and the third one aims to show the influence
of the finite element mesh discretization. An unit RVE is used in all cases
and table 5 shows the data used in all the simulations, where the base
material chosen plays the role of an steel alloy.

Table 5 – Simulation data

Young’s Modulus (E) [GPa] 200.0

Poisson’s Modulus (ν) 0.3

Minimum Density (ρmin ) 10−3

Penalization (P) 3.0

Filtering Radius (R)[m] 0.07

6.2.1 Maximization of the Linear Combination of the Components

1111 and 2323 of the Homogenized Tensor

The first case studied is the maximization of the linear combination

C
H
1111 +C

H
2323,

meaning that is required the maximization of the normal stiffness on the
x direction and the shear stiffness on y z plane. The domain is discretized
by 40×40×40 elements and the admissible volume of the structure, V f , is
constant and equals to 55% of the RVE’s total volume.

The optimization problem can be set as

Maximize
ρ

C
H
1111 +C

H
2323

Subject to V ≤ V f ,

(6.3)

where V is the volume of the structure. The optimization procedure adopted
is the Optimum Criteria.

Three distinct initial topologies are used for this case. The first one
is an initial cell with a completely random distribution of pseudo-densities.
The second one is an initial cell with a reinforcement in each principal
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plane, namely, one reinforcement on x y plane, one on y z plane and one on
xz plane of the RVE. The third initial topology is a RVE which a sphere
is removed from its centre.

Figures 65, 66 and 67 show the final topologies obtained for the
three initial density distributions, respectively.

Figure 65 – Maximization of CH
1111

+CH
2323

, topology obtained for the first initial
material distribution

y

z �

Source: Author’s production, 2016.

Figure 66 – Maximization of CH
1111

+CH
2323

, topology obtained for the second
initial material distribution

y

z �

Source: Author’s production, 2016.

The numerical results obtained are shown in table 6. The topolo-
gies and the numerical results show that this problem does not have an
unique solution. The result obtained for the first initial topology clearly
differs from the other two. As an initial random distribution of material
was used, it is not possible to guarantee a symmetry of the RVE. Also,
it can be seen in the first topology obtained that there is no contact in
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Figure 67 – Maximization of CH
1111

+CH
2323

, topology obtained for the third initial
material distribution

y

z �

Source: Author’s production, 2016.

one section of the figure. This is physically impossible, but mathematically
the topology obtained is possible, since that this part contributes to the
normal stiffness on x direction.

The results obtained from the second and third initial topologies
are very similar, as well as its topologies, when the porous media is con-
sidered. The slightly difference is the complete symmetry of the unit cell,
present on the third case but not on the second, due to the fact that this
topology have different hole sizes.

Nevertheless, one can notice, for all topologies obtained, that there
are reinforcements with 45◦ in y z plane, associated with the shear stiff-
ness, and normal reinforcements on x direction, associated with the normal
stiffness, as expected.

Table 6 – Components 1111 and 2323 of the homogenized tensor

CH
1111

[GPa] CH
2323

[GPa]

Initial Topology 1 123.59 30.21

Initial Topology 2 126.38 31.00

Initial Topology 3 126.80 31.96

Finally, a case with a different bound of relative volume, 10%,
is performed in order to manufacture the media relative to the obtained
RVE. Figure 68 shows the media formed by the repetition of six base cells
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in each direction, that was printed using a Projet 3D 1000 printer. One
can see the reinforcements on the x direction and the 45◦ reinforcements
in y z plane in the global domain.

Figure 68 – Maximization of the components 1111 e 2323

y

z

y

z

Source: Author’s production, 2016.

6.2.2 Maximization of the Linear Combination of the Components

1212, 2323 and 1313 of the Homogenized Tensor

For this case, it is required the maximization of the linear combi-
nation

C
H
1212 +C

H
2323 +C

H
1313, (6.4)

meaning that the maximization of the shear stiffness on the three planes
simultaneously is required. Several volumes for the structure are used, and
restrictions of equality among the three shear components of the homoge-
nized tensor are imposed. The RVE is discretized by 40×40×40 elements
and, for all cases, the initial material distribution is the same. The opti-
mization problem can be set as

Maximize
ρ

C
H
1212 +C

H
2323 +C

H
1313

Subject to V ≤ V f

|CH
1212 −C

H
1313| ≤ tol

|CH
2323 −C

H
1313| ≤ tol

|CH
1212 −C

H
2323| ≤ tol ,

(6.5)
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where tol is a small scalar adopted to ensure that the constrained compo-
nents have close values. As more constraints are used besides the volume
constraint, the optimum criteria can not be used. Due to this fact, the
Sequential Linear Programming is used as optimization procedure.

Figures 69, 70, 71 and 72 show the topologies obtained for the
base cell with relative volumes of 10%, 20%, 30% and 40%, respectively,
and table 7 shows the numerical results.

Figure 69 – Maximization of CH
1212

+CH
2323

+CH
1313

, V f = 0.1

y

z �

Source: Author’s production, 2016.

Figure 70 – Maximization of CH
1212

+CH
2323

+CH
1313

, V f = 0.2

y

z �

Source: Author’s production, 2016.
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Figure 71 – Maximization of CH
1212

+CH
2323

+CH
1313

, V f = 0.3

y

z �

Source: Author’s production, 2016.

Figure 72 – Maximization of CH
1212

+CH
2323

+CH
1313

, V f = 0.4

y

z �

Source: Author’s production, 2016.

Table 7 – Shear components of the homogenized tensor

Volume Fraction CH
1212

, CH
2323

, CH
1313

[GPa]

0.1 2.74

0.2 7.95

0.3 12.88

0.4 18.75
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As can be seen in all topologies, there are 45◦ reinforcements in
the three planes. As a way of enlightenment, two prototypes were printed
using the Projet 1000 3D printer, the first using the base cell of figure 69
and the second using the base cell of figure 70. The prototypes are shown
in figures 73 and 74, in which it becomes clear the reinforcements of 45◦

in all planes, condition expected for the increasing of the shear stiffness on
the three planes of the media.

Figure 73 – Maximization of CH
1212

+CH
2323

+CH
1313

, media with V f = 0.1

y

z z

Source: Author’s production, 2016.

Figure 74 – Maximization of CH
1212

+CH
2323

+CH
1313

, media with V f = 0.2

z

y

z

Source: Author’s production, 2016.
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6.2.3 Maximization of the Linear Combination of the Components

1111, 2222 and 3333 of the Homogenized Tensor

This cases addresses the maximization of the linear combination

C
H
1111 +C

H
2222 +C

H
3333, (6.6)

meaning that is required the maximization of normal stiffness in the three
principal directions and, again, it is imposed the equality restrictions on the
components of the tensor. Two different meshes were used, the first one
with 30×30×30 elements and the second one with 40×40×40 elements
in order to investigate the influence of the discretization on the results.
The initial material distribution is equal for both cases. The optimization
problem can be set as

Maximize
ρ

C
H
1111 +C

H
2222 +C

H
3333

Subject to V ≤ V f

|CH
1111 −C

H
2222| ≤ tol

|CH
2222 −C

H
3333| ≤ tol

|CH
1111 −C

H
3333| ≤ tol .

(6.7)

For this case, as an alternative, the method of moving asymptotes is used
as optimization procedure. Figure 75 and 76 show the topologies obtained
for both cases.

Figure 75 – Maximization of CH
1111

+CH
2222

+CH
3333

, mesh of 30×30×30 elements

y

z �

Source: Author’s production, 2016.
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Figure 76 – Maximization of CH
1111

+CH
2222

+CH
3333

, mesh of 40×40×40 elements

y

z �

Source: Author’s production, 2016.

The results for both meshes are shown in table 8. These results
show that the filter used makes the problem mesh independent, since the
topologies obtained for both cases are equal. In addiction, both topolo-
gies present reinforcements on the three principal directions, behaviour
expected to increase the normal stiffness.

Table 8 – Normal components of the homogenized tensor

Mesh CH
1111

, CH
2222

, CH
3333

[GPa]

30×30×30 99.68

40×40×40 100.26

6.2.4 Summary

It has been shown that the topology optimization combined with
homogenization method provides a powerful tool to design lightweight ma-
terials. The results presented in this section show, in a general way, how
a linear combination of the components of the elastic tensor of a porous
media can be maximized. The topologies obtained seem to be consistent
with the expected results.

It may be regarded that several aspects of an optimization prob-
lem can be analysed with this approach. It has been shown the influence
of the mesh and the initial material distribution in these kind of prob-
lems. Also, it has been shown that several optimization procedures can be
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used in order to achieve the optimum design of a porous material. The
optimum criteria was the simplest approach used. This is a fast and easy
to implement method, although, it can be used only in specific problems,
and does not allow to include extra constraints to the problem. The other
possibilities, were the sequential linear programming and the method of
moving asymptotes, which allow to address more general problems and
include extra constraints to the problem. Nevertheless, these methods are
considerably more complex than the optimum criteria, being more difficult
to implement and requiring a greater computational effort.

The most important aspect is the range of possibilities, in the
context of structural optimization, that this approach offers. It is clear
that this tool provides to the designer the possibility of tailoring a material
in a very specific way. For example, structures subjected to a particular
loading condition can be designed in order to improve the efficiency of this
material in regard to this solicitation, having as a key target, for instance,
mass reduction.

Finally, even if only three distinct cases of linear combination were
studied, many other cases can be addressed, as for example, the design of
a porous media which maximizes a coupled component of the mechani-
cal tensor. Also, this approach can be extended in order to evaluate the
engineering constants of the material, by looking, for example, the maxi-
mization of the Young’s Modulus in a given direction or the minimization
of the Poisson’s Coefficient in a particular plane.

6.3 TAILORING OF MECHANICAL PROPERTIES

This section shows the results obtained for the problem of approx-
imating a given fourth order elasticity tensor. Five different initial material
distributions are chosen in order to obtain the topologies of the RVE that
match the properties of a human bone.

In the work of Yoon and Katz (1976), the authors use an ultrasonic
wave propagation in order to obtain the elastic tensor of dry human cortical
bone. The fourth order tensor obtained is

C∗ =




23.4 9.06 9.11 0 0 0

23.4 9.11 0 0 0

32.5 0 0 0

7.17 0 0

8.71 0

sym. 8.71




[GPa], (6.8)
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which is the tensor used for the approximation in this work.

The simulation input data is shown in table 9, where the base
material plays the role of a biocompatible titanium alloy, chosen in order
to aim a medical application. Furthermore, a mesh of 40×40×40 elements,
an unit RVE and the Optimum Criteria as optimization procedure, are used
in all cases.

Table 9 – Simulations properties

Young’s Modulus (E) [GPa] 113.8

Poisson’s Coefficient (ν) 0.342

Minimum Density (ρmin ) 10−3

Penalization (P) 3.0

Filtering Radius (R) [m] 0.07

The optimization problem can be set as

Minimize
ρ

||C∗−CH||2

Subject to V ≤ V f ,

(6.9)

where C∗ is the target tensor, CH is the homogenized tensor, V is the
volume of the structure and V f is the admissible volume.

As shown before, the topology optimization is dependent on the
initial densities distribution. Thereby, five distinct initial material distribu-
tions are used in order to find possible different minima for the problem
and to investigate the non uniqueness of solution of the problem.

6.3.1 Topologies

The initial material distribution for the first case is shown in figure
77, and the mechanical tensor for this initial distribution is

CH =




25.45 5.86 5.86 0 0 0

25.45 5.86 0 0 0

25.45 0 0 0

4.61 0 0

4.61 0

sym. 4.61




[GPa]. (6.10)
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Figure 77 – Initial material distribution - Case 1

y

xz

Source: Author’s production, 2016.

The optimization procedure results in the base cell’s topology shown in
figure 78, and the mechanical tensor for the media formed by the repetition
of this base cell is

CH =




23.38 9.15 9.28 0 0 0

23.38 9.29 0 0 0

32.52 0 0 0

6.89 0 0

8.27 0

sym. 8.27




[GPa]. (6.11)

Figure 78 – Final material distribution - Case 1

y

z �

Source: Author’s production, 2016.
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The initial topology used for the second case is shown in figure
79, whose homogenized tensor is given by

CH =




1.44 1.35 1.35 0 0 0

1.44 1.35 0 0 0

1.44 0 0 0

1.23 0 0

1.23 0

sym. 1.23




[GPa]. (6.12)

Figure 79 – Initial material distribution - Case 2

y

xz

Source: Author’s production, 2016.

The topology obtained for this case is shown in figure 80, whose mechanical
tensor is

CH =




23.28 9.38 9.14 0 0 0

23.28 9.14 0 0 0

32.38 0 0 0

6.15 0 0

8.50 0

sym. 8.50




[GPa]. (6.13)
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Figure 80 – Final material distribution - Case 2

y

z �

Source: Author’s production, 2016.

The third case studied starts with the topology shown in figure
81, whose homogenized tensor is given by

CH =




39.23 16.75 16.75 0 0 0

39.23 16.75 0 0 0

39.23 0 0 0

11.64 0 0

11.64 0

sym. 11.64




[GPa]. (6.14)

Figure 81 – Initial material distribution - Case 3

y

xz

Source: Author’s production, 2016.
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Figure 82 shows the topology obtained. The homogenized tensor, for this
case, is given by

CH =




23.35 9.21 9.20 0 0 0

23.34 9.20 0 0 0

32.47 0 0 0

7.00 0 0

8.51 0

sym. 8.51




[GPa]. (6.15)

Figure 82 – Final material distribution - Case 3

y

z �

Source: Author’s production, 2016.

The fourth case uses, as the initial topology, the RVE shown in
figure 83, whose homogenized tensor is

CH =




6.27 1.84 1.84 0 0 0

6.27 1.84 0 0 0

6.27 0 0 0

2.85 0 0

2.85 0

sym. 2.85




[GPa]. (6.16)
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Figure 83 – Initial material distribution - Case 4

y

xz

Source: Author’s production, 2016.

Figure 84 shows the RVE obtained, whose homogenized tensor is

CH
=




23.35 9.20 9.31 0 0 0

23.36 9.31 0 0 0

32.48 0 0 0

6.97 0 0

8.35 0

sym. 8.34




[GPa]. (6.17)

Figure 84 – Final material distribution - Case 4

y

z �

Source: Author’s production, 2016.

The last case studied uses as the initial material distribution the
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RVE shown in figure 85, whose homogenized tensor is




1.46 1.37 1.36 0 0 0

1.46 1.36 0 0 0

2.80 0 0 0

1.26 0 0

1.24 0

sym. 1.24




[GPa]. (6.18)

Figure 85 – Initial material distribution - Case 5

y

xz

Source: Author’s production, 2016.

As the result of the optimization, the RVE of figure 86 is obtained and its
homogenized tensor is given by

CH =




23.28 9.33 9.41 0 0 0

23.29 9.42 0 0 0

32.46 0 0 0

6.84 0 0

8.26 0

sym. 8.28




[GPa]. (6.19)
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Figure 86 – Final material distribution - Case 5
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z �

Source: Author’s production, 2016.

6.3.2 Summary

In all cases, the topologies of the RVE are different, indicating
the non uniqueness of the solution, although the numerical results are
very similar to each other. The fourth order elasticity tensor obtained for
all cases approximates the target tensor with a certain accuracy. It can
be seen that the normal components of the tensor, in all cases, are very
well approximated. The shear and the coupled components have a better
or a worst approximation depending on the topology obtained. Also, it
can be seen that even for very different initial material distributions and,
consequently, initial homogenized tensors, the procedure leads to good
results.

The value of the objective function, given by the norm of the
difference of the target tensor and the homogenized tensor, for each case,
is shown in table 10. As one can see, the third case has the lowest value of
the objective function and the second the highest, showing that the third
RVE gives a better approximation to the target tensor.

Other comparison is the relative error, set as

EC
H

i j kl =
|C∗

i j kl
−CH

i j kl
|

C∗
i j kl

100%. (6.20)

Table 11 shows the relative error of the homogenized components of all
topologies. Again, it can be seen that the result obtained for the third case
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Table 10 – Objective function value

Topology Φ= ||C∗−CH||2

1 0.7293
2 1.1314
3 0.3977
4 0.6473
5 0.8898

gives a better estimative for the target tensor, where the largest error is
smaller than 3%.

Table 11 – Relative error

1 2 3 4 5

ECH
1111

(%) 0.09 0.51 0.04 0.21 0.51
ECH

3333
(%) 0.06 0.37 0.09 0.06 0.12

ECH
1122

(%) 0.99 3.53 1.65 1.54 2.98
ECH

1133
(%) 1.87 0.33 0.99 2.96 3.29

ECH
1212

(%) 3.91 14.23 2.37 2.79 4.60
ECH

2323
(%) 5.05 2.41 2.29 4.13 5.17

It is important to consider that:

• The properties of a human bone may vary substantially due to several
factors;

• Only one target tensor was analysed, as well as one base material;

• The biocompatible titanium alloy has a higher stiffness than the
bone, what can result in an inappropriate prosthesis manufactured
with the raw material.

• The main objective of such problem is to obtain an artificial material,
with properties in the same order of magnitude of the properties of
the bone, in order to substitute a damaged tissue.

Thus, one can conclude that the results obtained were very satisfactory.
If errors smaller than 5% in every component of the homogenized tensor
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with respect to the target tensor may be achieved, then when a range of
properties is considered, this result becomes more acceptable. Also, only
the mechanical properties of one kind of alloy were used. If another kind
of base material is used, it may be found a better result. A prosthesis
made of these microstructures would provide a better approximation of
the bone properties than one with a raw material, rendering this a very
useful material.

Finally, as a summary of all results, figures 87, 88, 89, 90 and
91 show the media formed by each of the topologies obtained and fig-
ure 92 shows graphically the numerical results for all topologies, in which
the components of the target tensor are shown in the full lines and the
components of the homogenized tensors are shown in the discrete points.

Figure 87 – Media for the mechanical tailoring - case 1

y

z
�

Source: Author’s production, 2016.
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Figure 88 – Media for the mechanical tailoring - case 2

y

z
�

Source: Author’s production, 2016.

Figure 89 – Media for the mechanical tailoring - case 3
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z
�

Source: Author’s production, 2016.
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Figure 90 – Media for the mechanical tailoring - case 4
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z
�

Source: Author’s production, 2016.

Figure 91 – Media for the mechanical tailoring - case 5
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z
�

Source: Author’s production, 2016.
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7 CONCLUSION

In the present work numerical simulations regarding to the porous
materials behaviour are studied. The linear elastic tensor and the thermal
conductivity tensor are evaluated using the homogenization by asymptotic
expansion and the equilibrium problems are solved using the finite element
method. Also, the topology optimization is used in order to find the ge-
ometry of the base cell of a porous media regarding two distinct problems.
The first one is the maximization of a linear combination of the homog-
enized mechanical tensor of the porous media and the second one is to
approximate a target tensor.

Regarding the analysis problem, it has been found that:

• The homogenization by asymptotic expansion method, implemented
in this work is efficient due to the fact that several models are used
as reference and are compared with the results obtained with the
implemented method, providing good results;

• The homogenization method can be used in order to predict the
effective properties of either porous media or composites, described
by an RVE.

In regard to the optimization problems, the following conclusions
are considered:

• Several optimization methods can be used. The simplest is the op-
timum criteria. Even though this method is very fast in comparison
to other consolidated methods, its application is very limited, being
restricted to some kind of problems. The SLP and MMA can be used
in a more general way, however, the computational effort associated
to these methods is considerably higher than that needed for the
optimum criteria;

• The initial material distribution influences the final topology and the
numerical results. This fact was observed in this work and shows
that the problems is not convex, rendering the global minimum not
guaranteed;

• The application of the topology optimization in order to maximize
a linear combination of the components of the homogenized tensor
presents satisfactory results. Since the evaluation of properties and
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the derivatives of the problem were both validated, the results ob-
tained are reliable. Also, the topologies obtained, when the macro-
scopic media is considered, show expected reinforcements for the
given applications, for instance, when it is required the maximiza-
tion of a normal component of the fourth order elasticity tensor,
reinforcements in this particular principal direction appear in the op-
timization procedure. In addition, if it is required the maximization
of a shear component, 45◦ reinforcements appear in that particular
plane;

• It has been shown that it is possible to find the topology of a base cell
whose homogenized tensor approximates the properties of a target
tensor, in the case of this work, the human bone mechanical tensor.
The results showed that an excellent accuracy may be achieved. As
mentioned before, the problem is not convex, leading to several local
minima, fact that leads to the finding of more than one topology for
the approximation. For the best result achieved, the error in every
component is less than 3%;

• An artificial biocompatible alloy has mechanical properties in a higher
order of magnitude as those of the human bone. Thus, the main
purpose of this kind of approach is the use of biocompatible base
material properties in order to render the properties of the porous
media in the same order of magnitude as those the human bone, what
has been achieved in this work. Also, considering that the properties
of a natural tissue varies in a wide range, the errors achieved may be
acceptable.

As final remarks, it has been shown that the three well established
tools in the computational mechanics used at this work, the finite element
method, the homogenization by asymptotic expansion and the topology
optimization, when used combined can handle several kinds of problems.
Cellular materials can be used as specialized materials, and this may be
achieved by the use of the methods presented at this work, which enable
rendering the requirements and properties of the media. Finally, this kind
of material opens a wide range of practical applications, making this an
interesting subject of research.

7.1 SUGGESTIONS FOR FURTHER WORKS

Several aspects can be used in order to enrich this work:
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• The computational effort is a limitation of this work. If a more pow-
erful computer is used, it would be possible to use a more refined
mesh, increasing the accuracy of the results and improving the RVE
topologies details;

• The use of different kinds of finite elements could provide a better
approximation for the geometries used. A shell element, for instance,
can be used in order to approximate a hollow sphere RVE;

• The use of a post processing, such as a shape optimization, can be
used in order to obtain a continuous geometry;

• The use of the rapid prototyping processes, which allow the man-
ufacture of this kind of material, enabling an experimental analysis
and comparison with the numerical results;

• The use of the homogenization method to evaluate other equivalent
properties, such as the electrical conductivity on a composite.

————————————————————
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APPENDIX A – UNIDIMENSIONAL HOMOGENIZATION

As a way to enlightenment the homogenization method, this ap-
pendix shows the determination of the longitudinal stress in a heteroge-
neous bar. The mathematical development and the concepts herein pre-
sented are based on the works of Hassani and Hinton (1998a) and Hollister
and Kikuchi (1992).

In accordance with the theory, it is assumed that the material has
a periodic micro structure, as shown in figure 93, in which each highlighted
section has a distinct Young’s Modulus.

Figure 93 – Unidimensional media

¯

°

Source: Author’s production, 2016, based on (HASSANI; HINTON, 1998a)

The governing equations of an unidimensional linear elastic problem, are
the Hooke’s law, given by

σǫ = E
ǫ ∂uǫ

∂x
(A.1)

and the first Cauchy’s law for the motion, given by

∂σǫ

∂x
+γǫ = 0, (A.2)

where σ is the axial stress on the bar, u is the displacement, E is the Young’s
Modulus, x is the spatial coordinate into the macroscopic scale and γ is
the specific weight. The ǫ index at equations A.1 and A.2 denote the
dependency of the variables in regard to the non linearity of the problem.

Also, it is considered that Eǫ and γǫ are macroscopically uniform
in the domain and vary only microscopically, so, one can write

E
ǫ

(x, x/ǫ) = E
ǫ

(x/ǫ) = E(y) (A.3)
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and

γǫ (x, x/ǫ) = γǫ (x/ǫ) = γ(y), (A.4)

where y is the spatial coordinates into the microscopic scale. Using the pe-
riodic expansion, equation 2.6, the expressions for displacement and stress
become

uǫ
(x) = u0

(
x, y

)
+ǫu1

(
x, y

)
+ǫ2u2

(
x, y

)
+ ... (A.5)

and

σǫ
(x) =σ0

(
x, y

)
+ǫσ1

(
x, y

)
+ǫ2σ2

(
x, y

)
+ ..., (A.6)

where ui and σi , for i = 1,2, ..., are periodic in y and the length of the
period is Y.

Reminding that:

• The derivatives of a periodic function are also periodic;

• The integral of the derivative of a periodic function over the domain
is zero;

• If Φ=Φ
(
x, y

)
and y depends on x, so

dΦ

d x
=

∂Φ

∂x
+
∂Φ

∂y

d y

d x
(A.7)

and using equation 2.2, one can write

dΦ

d x
=

∂Φ

∂x
+

1

ǫ

∂Φ

∂y
. (A.8)

Replacing the expression of displacement and stress, equations A.5
and A.6, into the elasticity expression, equation A.1, and into the equilib-
rium expression, equation A.2, and taking in consideration the mathemat-
ical relations for a periodic function, one can get the relations

σ0
+ ǫσ1

+ǫ2σ2
+ ...

= E
(
y
)[∂u0

∂x
+

1

ǫ

∂u0

∂y
+ǫ

∂u1

∂x
+
∂u1

∂y
+

+ ǫ2 ∂u1

∂x
+ǫ

∂u2

∂y
+ ...

]
(A.9)
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and

∂σ0

∂x
+

1

ǫ

∂σ0

∂y
+ǫ

∂σ1

∂x
+
∂σ1

∂y
+ ...+γ

(
y
)
= 0. (A.10)

Collecting the terms that have the same ǫ exponent at equation
A.9, one can obtain

σ0
= E

(
y
)[∂u0

∂x
+
∂u1

∂y

]
, (A.11)

0 = E
(
y
) ∂u0

∂y
, (A.12)

and

σ1 = E
(
y
)[∂u1

∂x
+
∂u2

∂y

]
. (A.13)

In a similar way, with the equilibrium expression, equation A.10,

∂σ0

∂x
+
∂σ1

∂y
+γ

(
y
)
= 0 (A.14)

and

∂σ0

∂y
= 0. (A.15)

From an analysis of equations A.12 and A.15 one can conclude
that u0 and σ0 have a dependency only on the variable x, in other words,
u0 = u0 (x) and σ0 =σ0 (x). This fact shows that the properties mentioned
are dependent only on the macroscopic scale, being independent on the
microscopic scale. Thereby, equation A.11 can written as

σ0
(x) = E

(
y
)
[

du0 (x)

d x
+
∂u1

(
x, y

)

∂y

]
. (A.16)

Dividing both sides of equation A.16 by E(y) and taking its integral
on the period Y,

∫

Y

σ0 (x)

E
(
y
) d y =

∫

Y

du0 (x)

d x
d y +

∫

Y

∂u1
(
x, y

)

∂y
d y. (A.17)
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Recalling the facts that an integral of a derivative of a periodic

function over the period equals zero and that σ0(x) and du0(x)

d x are inde-
pendent of the y scale, one can conclude that

σ0
(x) =

du0(x)

d x Y
∫

Y
1

E(y)
d y

. (A.18)

Now, replacing equation A.18 in equation A.16 one gets

E
(
y
)
[

du0 (x)

d x
+
∂u1

(
x, y

)

∂y

]
=

du0(x)

d x
Y

∫
Y

1

E(y)
d y

, (A.19)

and rearranging,

∂u1
(
x, y

)

∂y
=

du0 (x)

d x


 Y

E
(
y
)∫

Y

d y

E(y)

−1


 . (A.20)

Integrating equation A.20, one can conclude that u1(x, y) has the form

u1
(
x, y

)
= χ

(
y
) du0 (x)

d x
+ξ(x), (A.21)

where χ(y) depends only on the microscopic variable, y , and ξ is an inte-
gration constant, function only on the macroscopic variable, x, due to the
integration on the variable y . Hence, from equations A.21 and A.16 one
can write the stress as

σ0
(x) = E

(
y
)[du0 (x)

d x
+
∂χ

(
y
)

∂y

du0 (x)

d x

]
, (A.22)

and its derivatives as

d

d y

[
E

(
y
)(

1+
∂χ

(
y
)

∂y

)]
= 0. (A.23)

An important consideration is that χ assumes the same values in
opposite faces of Y, as a result of the periodicity consideration. Therefore,
χ(0) = χ(Y). Integrating equation A.23, one gets

E
(
y
)[

1+
∂χ

(
y
)

∂y

]
= a, (A.24)
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where a is a constant. Rewriting equation A.24, one gets

∂χ
(
y
)

∂y
=

a

E
(
y
) −1, (A.25)

and integrating on the microscopic scale, y ,

χ
(
y
)
=

∫Y

0

(
a

E
(
y
) −1

)
d y +b, (A.26)

where b is an integration constant. Now, using the periodicity condition,
χ(0) = χ(Y), and isolating the constant a, equation A.26 becomes

a =
Y

∫
Y

0
1

E(y)
d y

. (A.27)

Comparing the equations A.22 and A.24,

σ0
(x) = a

du0 (x)

d x
, (A.28)

and replacing the value of the constant a, one obtains

σ0
(x) =

1

1

Y

∫
Y

0

d y

E(y)

du0 (x)

d x
. (A.29)

Equation A.29 has a very similar form of a unidimensional lin-
ear elastic problems for a homogeneous material. Also, one notices that

σ0 (x) and du0(x)

d x
are independent on the microscale. For a linear elastic

homogeneous material, the problem can be written as

σ (x) = E
du (x)

d x
. (A.30)

The only difference between equations A.29 and A.30 is the Young’s Mod-
ulus. Thus, it is defined the homogenized Young’s Modulus as

E
H =

1

1

Y

∫Y

0

d y

E(y)
d y

, (A.31)

and equation A.29 becomes

σ0
(x) = E

H du0 (x)

d x
, (A.32)

which can be used in the macroscale of the problem, as the method sug-
gests.
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APPENDIX B – TRILINEAR ISOPARAMETRIC

HEXAHEDRAL ELEMENT WITH INCOMPATIBLE MODES

It shall be regarded that when a finite element is submitted to
a pure bending load, as shown in figure 94, the accuracy of the results
attained with elements with linear interpolation tends to be low. This phe-
nomenon occurs due to the fact that this finite element responds in shear
rather than bending, behaviour illustrated in figure 95, in which the ex-
act expected solution and the numerical solution for this kind of element
are shown. This spurious shearing is responsible for an artificial overly
stiff behaviour. Clearly, a possibility would be use a higher order element,
however, the objective is to achieve a good behaviour without introduc-
ing additional nodes (HUGHES, 2000). This becomes interesting when is
considered that the higher order elements in comparison to the ones with
linear interpolation requires a considerably higher computational effort.
Several approaches are used to obtain good results without compromising
the computational effort, and at this work is used the Incompatible Modes
Element.

Figure 94 – Pure bending in a finite element
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Source: Author’s production, 2016

Figure 95 – Low order approximation and exact solution for a bending case

Source: Author’s production, 2016
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APPENDIX B. TRILINEAR ISOPARAMETRIC HEXAHEDRAL ELEMENT WITH

INCOMPATIBLE MODES

The development here presented is made as an expansion of the
concepts presented by (HUGHES, 2000) and (COOK, 1995) for the four
node element, bearing in mind to use this concepts in relation to the eight
node element.

From the standard expansion for the approximation of the dis-
placement in terms of trilinear shape functions of a typical element, the
quadratic modes are added as

uh
(
ξ,η,ζ

)
=

8∑

a=1

Na

(
ξ,η,ζ

)
ûe

a +
11∑

a=9

Na

(
ξ,η,ζ

)
αe

a , (B.1)

where ûe are the nodal displacements of the e-th element, αe
a are the gen-

eralized displacements of the e-th, associated to the incompatible modes,
ξ, η and ζ are the natural coordinates and Na are the shape function. This
expansion is used in order to obtain the strain-displacement matrix of the
element or directly the local stiffness matrix and only, not being used to
obtain the body forces of the element.

Following the coordinate system adopted in figure 96, the shape
function for the standard eight node trilinear isoparametric element are
given by

N1 =
1

8
(1−ξ)

(
1−η

)
(1+ζ) , (B.2)

N2 =
1

8
(1+ξ)

(
1−η

)
(1+ζ) , (B.3)

N3 =
1

8
(1+ξ)

(
1−η

)
(1−ζ) , (B.4)

N4 =
1

8
(1−ξ)

(
1−η

)
(1−ζ) , (B.5)

N5 =
1

8
(1−ξ)

(
1+η

)
(1+ζ) , (B.6)

N6 =
1

8
(1+ξ)

(
1+η

)
(1+ζ) , (B.7)

N7 =
1

8
(1+ξ)

(
1+η

)
(1−ζ) , (B.8)

N8 =
1

8
(1−ξ)

(
1+η

)
(1−ζ) , (B.9)

and the incompatible modes add three quadratic shape function in the
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form

N9 =
(
1−ξ2

)
(B.10)

N10 =
(
1−η2

)
(B.11)

N11 =
(
1−ζ2

)
. (B.12)

It is worth mentioning that there are no nodes associated to the incom-
patible modes, and they can be thought as internal element degrees of
freedom. Also, the addition of the incompatible modes result in the ele-
ment displacements being discontinuous between the nodes of the element
(HUGHES, 2000).

Figure 96 – Nodes and coordinates system for the eight node element
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Source: Author’s production, 2016

As the incompatible modes are unique to each element, they can
be eliminated on the element level. This leads to a condensed stiffness
matrix, with the same dimension of the standard eight node element.

From the standard definition of the stiffness matrix, one has

Ke
=

∫

Ωe
BeTCBe dΩ, (B.13)

where C is the fourth order elasticity tensor, Ωe is the element domain
and B is the strain-displacement matrix, written as

Be =
[
Be

d
Be

α

]
, (B.14)

where

Be
d =

[
Be

1
Be

2
Be

3
Be

4
Be

5
Be

6
Be

7
Be

8

]
(B.15)

refers to the standard nodal displacements and

Be
α =

[
Be

9
Be

10
Be

11

]
(B.16)
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APPENDIX B. TRILINEAR ISOPARAMETRIC HEXAHEDRAL ELEMENT WITH

INCOMPATIBLE MODES

refers to the incompatible displacements of the element. Each Ba are
defined in the usual way and normal size (6×3). Consequently, matrix B

has 6 rows and 33 columns and the local stiffness matrix, obtained with
this expanded strain-displacement matrix, has 33 rows and 33 columns,
and can be written in a partitioned form as

Ke =

[
Kdd Kdα

Kαd Kαα

]
, (B.17)

where Kdd is the usual 24×24 stiffness matrix for the eight node trilinear
isoparametric element, Kdα = KT

αd
has dimension 24× 9 and Kαα has

dimension 9×9.

Bearing in mind that there are no forces corresponding to the
incompatible modes, one can write the equilibrium problem as

[
Kdd Kdα

Kαd Kαα

]{
ûe

αe

}
=

{
f

0

}
. (B.18)

From the above equation, one can write

Kαd ûe +Kαααe =0, (B.19)

and solving for αe one obtains

αe =−K−1
ααKαd ûe

. (B.20)

The value of α can be eliminated from the equilibrium problem using the
above equation, leading to a standard 24×24 stiffness matrix, given by

Ke
est =Kdd −KdαK−1

ααKαd . (B.21)

Equation B.21 is the local stiffness matrix of the incompatible modes of
the element, and its acquisition procedure is frequently referred as Static
Condensation in the related literature. From this point on, the global stiff-
ness procedure is performed in the usual way and the nodal displacements
can be achieved with the usual equilibrium problem.

The stress computation is made in an usual way, including the
contribution of the incompatible modes as

σ (x) = D (x)ǫ(x)

= D (x)

[
8∑

a=1

Ba (x)ûe
a +

11∑

a=9

Ba (x)αe
a

]
. (B.22)
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According to Lesaint (1976), an element with arbitrary shape
presents erratic behaviour and fail the patch test. However, this erratic be-
haviour does not occur in elements with rectangle or parallelogram forms,
which are used at this work.





187

APPENDIX C – VALIDATION OF THE HOMOGENIZATION

This appendix shows the validation of the mechanical and thermal
homogenization procedure implemented in this work. Simple topologies
were chosen in order to compare the results obtained with established
mathematical theories and with results found into literature.

MECHANICAL VALIDATION

Reinforcement in the Principal Planes

The first model used consists in a reinforcement in a given plane of
the base cell. Reinforcement in the three principal planes, x y , y z and xz,
are analysed separately and the homogenized tensors are evaluated. The
models for the base cell used in the simulations are shown in figure 97,
where the voids are represented in white and the reinforcements in black,
and the data used in the homogenization program is shown in table 12.

Figure 97 – Reinforcement in the planes x y, yz and xz, respectively

Source: Author’s production, 2016.

Table 12 – Data for the plane reinforcement cases

Young’s Modulus
(
E0

)
[Pa] 200.0

Poisson’s Coefficient (ν) 0.0
Minimum Density

(
ρ
)

10−6

Mesh 50x50x50

The mechanical homogenized tensors, for the cases shown in figure
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97, are given in a general form, respectively, by

C
H =




CH
1111

0 0 0 0 0

CH
2222

0 0 0 0

0 0 0 0

CH
1212

0 0

0 0

sym. 0




,

with CH
1111

= CH
2222

,

C
H =




0 0 0 0 0 0

CH
2222

0 0 0 0

CH
3333

0 0 0

0 0 0

CH
2323

0

sym. 0




,

with CH
2222

= CH
3333

and

C
H
=




CH
1111

0 0 0 0 0

0 0 0 0 0

CH
3333

0 0 0

0 0 0

0 0

sym. CH
1313




,

with CH
1111

= CH
3333

.

As expected, the components that depend on the non reinforced
axis have negligible values and so the coupled components, due to the null
value of Poisson’s Coefficient.

As a comparison, the mixture rule is used, and, as shown by Men-
donça (2005) the Young’s Modulus of a composite media, in a certain
direction, can be found by

E
H = V f E

0 +
(
1−V f

)
E

0
v , (C.1)

where E0 is the base material’s Young’s Modulus, E0
v is the voids Young

modulus, given by

E
0
v = ρE

0
, (C.2)
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V f is the volumetric fraction of material, and the shear modulus is given
by

G
H = V f G

0 +
(
1−V f

)
G

0
v , (C.3)

where G0 is the base material’s shear modulus and G0
v is the void’s shear

modulus, given by

G
0
v = ρG

0
. (C.4)

For each case, it is used a range of material fraction from zero,
where there is no reinforcement at all, to one, where one has a solid media.
The results obtained with the homogenization procedure, and with the
mixture rule are shown in figure 98.

Figure 98 – Young and shear modulus versus volumetric fraction. In the full lines
the mixture rule solution. In the discrete points the homogenization
solution
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Source: Author’s production, 2016.

As the Poisson’s coefficient adopted in the simulations is equal to
zero, the components CH

1111
, CH

2222
and CH

3333
of the homogenized tensor

provide directly the Young’s Modulus in its respective directions. Due to
the symmetry of the three geometries, the normal components of the ten-
sors are equal among themselves, just changing its directions. Thus, the
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components CH
1111

and CH
2222

for the first case are equal to the components
CH

2222
and CH

3333
for the second case and for the components CH

1111
and

CH
3333

for the third case.

Also, the components CH
1212

, CH
2323

and CH
1313

provides directly the
Shear Modulus of the media, and as for the normal components, the values
of the shear components are equal among the three studied cases.

Figure 98 shows the comparison of the results obtained with the
homogenization procedure and with the mixture rule. As the components
for the three cases are numerically the same, this graphic represents the
results for all cases. Continuous lines represent the results for the mixture
rule, equations C.1 and C.3, and the discrete points represent the solution
obtained with the homogenization method. The blue line (or top line),
and the associated discrete points represent the Young’s Modulus and the
green line (bottom) and the associated discrete points represent the Shear
Modulus.

Uniaxial Reinforcement

For the second validation, two unidimensional reinforcement were
used. The first one consists in a squared reinforcement in y direction,
with geometry depicted in figure 99. The second one consists in a circular
reinforcement in x direction, as shown in figure 100. In both figures, the
white portion represents the voids and the dark portion represents the base
material. The data used for both cases is shown in table 13.

Figure 99 – Square reinforcement
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Source: Author’s production, 2016.
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Figure 100 – Circular reinforcement
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Source: Author’s production, 2016.

Table 13 – Data for uniaxial reinforcement cases

Young’s Modulus
(
E0

)
[Pa] 200.0

Poisson’s Modulus (ν) 0.0
Minimum Density

(
ρ
)

10−6

Mesh 50x50x50

For the square reinforcement in the y direction, the homogenized
mechanical tensor has the form

C
H =




0 0 0 0 0 0

CH
2222

0 0 0 0

0 0 0 0

0 0 0

0 0

sym. 0




.

For the circular reinforcement in x direction case the homogenized tensor
is given by

C
H =




CH
1111

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0




.
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Once again, the comparative is used with regard to the mixture
rule, equation C.1, but in this case, only for the longitudinal component
of the tensor in which the reinforcement is applied.

Figures 101 and 102 show the comparison between the Young’s
Modulus obtained by the rule of mixtures and the homogenized compo-
nents for the cases with square reinforcement in y and circular reinforce-
ment in x, respectively.

Figure 101 – Young’s modulus versus volumetric fraction, square reinforcement
in y direction
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Source: Author’s production, 2016.

Figure 102 – Young’s modulus versus volumetric fraction, circular reinforcement
in x direction
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For these simple geometries, the comparisons show that the ho-
mogenization method provides good results.

Spheres

The next validation consists in a base cell in which a sphere is
withdraw from the middle and an eight of a sphere is withdraw from each
corner of the cell, as shown in the figure 103, where the voids are repre-
sented in white and the base material is represented in black. The data
used in the simulations is shown in table 14.

Figure 103 – Hollow sphere model
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Source: Author’s production, 2016.

Table 14 – Simulation data

Young’s Modulus
(
E0

)
[Pa] 200.0

Poisson’s Modulus (ν) 0.25
Minimum Density

(
ρ
)

10−9

Mesh 50x50x50

The homogenized constitutive elastic tensor for this case has the
form

C
H =




CH
1111

CH
1122

CH
1133

0 0 0

CH
2222

CH
2233

0 0 0

CH
3333

0 0 0

CH
1212

0 0

CH
2323

0

sym. CH
1313




,
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with CH
1111

= CH
2222

= CH
3333

, CH
1122

= CH
1133

= CH
2233

and CH
1212

= CH
2323

= CH
1313

.

Through the elastic constitutive homogenized tensor is possible
to determinate the effective physical properties of the media, such as the
Young’s Modulus, the Poisson’s Modulus, the Bulk Modulus and the Shear
Modulus, as a function of the volume of the void spheres. The results
presented by Segurado and Llorca (2002) are used as a comparison with
the results obtained for the simulations.

The authors use a random distribution of void sphere in an unitary
domain and evaluates its effective elastic properties through a three dimen-
sional finite element analysis (3D Simulations). Also, they compare their
results with three analytical methods: the Mori-Tanaka mean-field anal-
ysis (MT), the generalized self-consistent method (GSC) and Torquato’s
third-order approximation (TOA).

A volume fraction of void sphere between 0.0 and 0.5 is used in
regard of the total volume of the domain. Figures 104, 105, 106 and 107
show the results comparison.

Figure 104 – Young’s modulus
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Figure 105 – Shear modulus
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Figure 106 – Bulk modulus
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Figure 107 – Poisson’s coefficient
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Once again, the comparisons show that the homogenization proce-
dure provides good results. Although the results presented for the Poisson’s
Coefficient, figure 107, seems to deviate from the results used as compari-
son, the scale of this figures shows that the numerical results are very close
to each other and that the Poisson’s coefficient do not vary significantly
in this range of volume fraction.

Composites

Another possibility of the use of the homogenization method, is to
evaluate the properties of a media composed of two or more materials. The
last mechanical validation presented use two different kind of materials on
the geometry of the base cell, forming a composite. Two cases were chosen,
the first one, shown in figure 108, is a glass fibre in an epoxy matrix, and
the second one, shown in figure 109, is a glass sphere in an epoxy matrix.
For both figures, the white portion represents the epoxy matrix and the
black portion represents the glass reinforcement. The data used in the
simulations is shown in table 15.
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Figure 108 – Glass fibre with volumetric fraction of 0.51 in an epoxy matrix
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Source: Author’s production, 2016.

Figure 109 – Glass spheres volumetric fraction of 0.54 in an epoxy matrix
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Source: Author’s production, 2016.

Table 15 – Simulation data

Glass Young Modulus
(
E f

)
[GPa] 70.0

Glass Poisson Modulus
(
ν f

)
0.20

Matrix Young Modulus (Em) [GPa] 3.0
Matriz Poisson Modulus (νm) 0.38
Mesh 50x50x50

For the case shown in figure 108, the Young’s Modulus in the lon-
gitudinal direction of the fibre it is calculated by the mixture rule, equation
C.1, and the Young’s Modulus in the transversal direction of the fibre, and
the Shear Modulus are calculated by the equations proposed by Halpin
(1969), given by

P

Pm
=

1+ζηV f

1−ηV f
, (C.5)
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where

η=

P f

Pm
−1

P f

Pm
+ζ

, (C.6)

where P is the required property and ζ represents a measure of the rein-
forcement, which depends on the form of the cross section of the fibre.
Mendonça (2005) suggests for circular fibres, a value of ζ= 2. The consti-
tutive elastic tensor, obtained with the homogenization procedure, for this
case, is given by

C
H
=




CH
1111

CH
1122

CH
1133

0 0 0

CH
2222

CH
2233

0 0 0

CH
3333

0 0 0

CH
1212

0 0

CH
2323

0

sym. CH
1313




,

with CH
2222

= CH
3333

, CH
1122

= CH
1133

and CH
1212

= CH
1313

.

The comparison between the results obtained with the homoge-
nization method and with the equations mentioned are shown in figure
110

Figure 110 – Properties of the epoxy matrix reinforced by glass fibres
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The constitutive tensor for the case shown in figure 109 has the
form

C
H
=




CH
1111

CH
1122

CH
1133

0 0 0

CH
2222

CH
2233

0 0 0

CH
3333

0 0 0

CH
1212

0 0

CH
2323

0

sym. CH
1313




,

with CH
1111

= CH
2222

= CH
3333

, CH
1122

= CH
1133

= CH
2233

and CH
1212

= CH
2323

= CH
1313

.

For this case is used the work of Segurado and Llorca (2002) as
comparison. The authors use a unitary domain in which 30 glass fibres
spheres are allocated randomly into an epoxy matrix. A three dimensional
finite element analysis (3D Simulations) is made by the authors and com-
pared with TOA and MT methods. The comparison of the results for the
Young’s Modulus and for the Shear Modulus are shown in figures 111 and
112.

Figure 111 – Properties of the epoxy matrix reinforced by glass spheres -
Young’s modulus
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Figure 112 – Properties of the epoxy matrix reinforced by glass spheres - Shear
modulus
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THERMAL VALIDATION

This section aims to validate the thermal homogenization code
written. Two models were chosen to do the validation. The first one consists
in the reinforcement in the principal planes of the base cell, and the second
ones is the a model of open cell hollow spheres. Mathematical models and
results found into the literature are used for the comparison.

Reinforcement in the Principal Planes

The first model chosen is equal to the first model used in the
mechanical validation, and can be seen in figure 97. The data used in the
simulations is shown in table 16. As comparison, the rule of mixtures is
used.
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Table 16 – Data for the plane reinforcement cases

Thermal Conductivity
(
Kt 0

)
[Wm−1K−1] 100.0

Minimum Density
(
ρ
)

10−6

Mesh 50x50x50

Figure 113 – Effective thermal conductivity versus volumetric fraction. In the
full line is the mixture rule solution. In the discrete points is the
homogenization solution
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Open Cell Hollow Spheres

The second validation consist in a open cell hollow sphere struc-
ture, as shown in figure 114. The data used in the simulations is shown
in table 17. The effective thermal conductivity is calculated through the
homogenization method and the results given by Krishnan, Garimella and
Murthy (2008) are used as a comparison. The authors use a direct sim-
ulation to evaluate the thermal conductivity properties of an open cell
foam formed by a body centred cell (BCC). Figure 115 shows the result
comparison.
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Table 17 – Data for the plane reinforcement cases

Thermal Conductivity
(
Kt 0

)
[Wm−1K−1] 218.0

Minimum Density
(
ρ
)

10−6

Mesh 50x50x50

Figure 114 – Open cell hollow sphere structure
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Source: Author’s production, 2016.

Figure 115 – Thermal properties validation
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APPENDIX D – SENSITIVITY VALIDATION

This chapter aims to validate the derivatives of the components
of the fourth order elasticity tensor. The central finite difference is used.
Let the function f (x), written in Taylor’s series , truncated on the first
order therm. For a forward perturbation, h, one can write

f (x +h) = f (x)+ f ′
(x)h, (D.1)

and for a backward perturbation,

f (x +h) = f (x)− f ′
(x)h. (D.2)

Using the expression D.1, one can obtain an expression for the
derivatives of the function in regard to the forward finite difference, given
by

f ′
(x) =

f (x +h)− f (x)

h
. (D.3)

All the same, the expression D.2 can be used to determinate the derivatives
in regard to the backward finite difference, so

f ′
(x) =

f (x −h)+ f (x)

h
. (D.4)

Besides, using the difference of the expressions D.1 and D.2,

f (x +h)− f (x −h) = 2 f ′
(x)h, (D.5)

the derivatives of the function in regard to the central difference can be
obtained as

f ′
(x) =

f (x +h)− f (x −h)

2h
. (D.6)

For the validation of the analytical derivatives of the homogenized
constitutive tensor in regard to the pseudo-densities, the central finite dif-
ference is used in order to compare the results.

A range of five different perturbations were used in the central
difference method, equation D.6, in order to compare with the analytical
derivatives, equation 5.27.

Tables 18, 19 and 20 show the comparison for all components of
the homogenized constitutive tensor for the five perturbations. A mesh of
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20×20×20 elements was used and the derivatives were calculated based
on an element chosen randomly. It expected a value that approaches 1.0,
indicating that the derivatives calculated for both methods have the same
value.

Table 18 – Validation of the analytical derivatives through the central finite
difference method

C/h 1x10−1 1x10−2 1x10−3 1x10−4 1x10−5

CH
1111

0.99655 0.99996 0.99999 0.99999 0.99999

CH
1122

0.99522 0.99995 0.99999 0.99999 0.99999

CH
1133

0.99506 0.99995 0.99999 1.00000 1.00000

CH
1112

0.99838 0.99998 0.99999 0.99999 0.99999

CH
1123

1.00267 1.00002 1.00000 1.00000 1.00000

CH
1113

1.00071 1.00001 1.00001 1.00001 0.99999

CH
2222

0.99681 0.99996 0.99999 1.00000 1.00000

Table 19 – Validation of the analytical derivatives through the central finite
difference method

C/h 1x10−1 1x10−2 1x10−3 1x10−4 1x10−5

CH
2233

0.99538 0.99995 0.99999 1.00001 0.99999

CH
2212

1.00366 1.00004 1.00000 1.00000 1.00000

CH
2223

1.00249 1.00003 1.00000 1.00000 1.00000

CH
2213

1.00007 1.00000 1.00000 1.00000 1.00000

CH
3333

0.99708 0.99997 1.00000 1.00000 1.00000

CH
3312

0.98826 0.99988 1.00000 1.00000 1.00000

CH
3323

0.99232 0.99992 1.00000 1.00000 1.00000

Table 20 – Validation of the analytical derivatives through the central finite
difference method

C/h 1x10−1 1x10−2 1x10−3 1x10−4 1x10−5

CH
3313

0.99945 0.99999 1.00000 1.00000 1.00000

CH
1212

0.99853 0.99999 1.00000 1.00000 1.00000

CH
1223

0.99972 0.99998 0.99999 0.99999 1.00000

CH
1213

0.99829 0.99998 0.99999 1.00000 1.00000

CH
2323

0.99818 0.99998 1.00000 1.00000 1.00000

CH
2313

0.98669 0.99987 1.00000 1.00000 1.00000

CH
1313

0.99801 0.99998 0.99999 0.99999 1.00000
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