TATIANE MILKIEVICZ

MODELAGEM DO CRESCIMENTO DE SALMONELLA SPP. EM CARNE DE FRANGO SUBMETIDA A DIFERENTES REGIMES DE TEMPERATURA

Dissertação apresentada ao Curso de Pós-graduação em Ciência e Tecnologia de Alimentos, da Universidade do Estado de Santa Catarina (UDESC), como requisito parcial para obtenção de grau de Mestre em Ciência e Tecnologia em Alimentos.

Orientador: Weber da Silva Robazza Coorientador: Daniel Angelo Longhi

PINHALZINHO 2018

Ficha de Identificação da Obra elaborada pelo(a) autor(a), com auxílio do programa de geração automática da Biblioteca Setorial do CEO/UDESC

Milkievicz, Tatiane Modelagem do crescimento de Salmonella spp. em carne de frango submetida a diferentes regimes de temperatura / Tatiane Milkievicz. - Chapecó , 2018. 96 p.

Orientador: Weber da Silva Robazza Co-orientador: Daniel Angelo Longhi Dissertação (Mestrado) - Universidade do Estado de Santa Catarina, Centro de Educação Superior do Oeste, Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Chapecó, 2018.

1. Microbiologia Preditiva. 2. Salmonella. 3. Carne de Frango. I. Robazza, Weber da Silva. II. Longhi, Daniel Angelo. , .III. Universidade do Estado de Santa Catarina, Centro de Educação Superior do Oeste, Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos. IV. Título.

TATIANE MILKIEVICZ

MODELAGEM DO CRESCIMENTO DE SALMONELLA SPP. EM CARNE DE FRANGO SUBMETIDA A DIFERENTES REGIMES DE TEMPERATURA

Dissertação apresentada ao Curso de Mestrado em Ciência e Tecnologia de Alimentos como requisito parcial para obtenção do título de mestre em Ciência e Tecnologia de Alimentos da Universidade do Estado de Santa Catarina.

Banca Examinadora

Orientador:

Prof. Dr. Weber da Silva Robazza Universidade do Estado de Santa Catarina (UDESC)

Membros

Prof. Dr. Alessandro Cazonatto Galvão Universidade do Estado de Santa Catarina (UDESC)

Profa. Dra. Sheila Mello da Silveira Instituto Federal de Concórdia (IFC)

Membro Suplente

Profa. Dra. Andréia Zílio Dinon Universidade do Estado de Santa Catarina (UDESC) Dedico este trabalho à minha família.

AGRADECIMENTOS

Agradeço ao meu orientador Weber da Silva Robazza o qual é sempre presente e proativo e ao meu coorientador Daniel Ângelo Longhi que me auxiliou em várias dificuldades sempre de forma solícita. Também agradeço ao Prof. Dr. Alessandro Cazonatto Galvão, o qual foi muito atencioso e prestativo e ao mestrando Vinícius Badia pela sua generosidade e parceria em todos os momentos. Dedico esta dissertação a todos os meus familiares que fazem parte integral da minha vida e finalmente agradeço aos funcionários e colaboradores da Udesc, sempre dispostos a tornar nossa rotina mais agradável em todas as ocasiões.

RESUMO

No presente estudo, um modelo matemático capaz de predizer o crescimento de Salmonella em amostras de carne de frango expostas a ambientes com temperaturas constantes e variáveis foi desenvolvido e validado. Três diferentes modelos primários e secundários foram selecionados da literatura e aplicados para um total de 250 curvas isotérmicas de crescimento e perfis de temperatura variável. Após o ajuste dos modelos aos dados e a comparação de diferentes índices estatísticos (Critérios de Informação de Akaike e Bayesiano, Fator Bias e Accuracy, Erro Absoluto Médio e Erro da Raiz Quadrada Médio), o modelo primário de Huang foi considerado como aquele que forneceu o melhor ajuste aos dados experimentais. No que diz respeito aos modelos secundários, o modelo da raiz quadrada de Ratkowsky e o modelo de Huang foram considerados como fornecendo os melhores ajustes para a taxa máxima de crescimento específico em função da temperatura. A temperatura minima para o crescimento bacteriano foi estimada como sendo igual a aproximadamente 6 °C. Após a validação, algumas simulações foram realizadas para avaliar a influência de pequenas variações da temperatura correspondendo a situações de abuso da temperatura sobre o crescimento da Salmonella. Duas equações empíricas que predizem o tempo necessário para o aumento de 1 ou 2 logaritmos da população bacteriana em função da variação da temperatura foram obtidas. Tais resultados podem ser úteis para o desenvolvimento de sistemas de APPCC.

Palavras-chave: *Salmonella*. Carne de Frango. Modelagem Matemática. Temperatura. Contaminação.

ABSTRACT

In this study, a model to predict *Salmonella* growth in chicken meat subjected to both isothermal and non-isothermal temperature profiles was developed and validated. Three different primary and three different secondary models were selected from the literature and tested against 250 isothermal growth curves and 4 non-isothermal temperature profiles. After fitting the models and comparing different statistical indices (Akaike and Bayesian Information Criteria, Accuracy and Bias Factors, Mean Absolute Error, and Root Mean Square Error), the primary model of Huang was considered to provide the best fit, and the square-root and Huang models were considered to be the best secondary models to describe the experimental data. The minimum temperature for bacterial growth was estimated to be approximately 6 °C. After the validation, a few simulations were conducted to evaluate the influence of small temperature shifts corresponding to situations of temperature abuse on the bacterial population. Two empirical equations that predict the time to a 1-log and a 2-log increase in the bacterial loads in terms of the amplitude of the temperature shift were obtained. Such results can be useful for the development of HACCP systems.

Keywords: *Salmonella*. Chicken Meat. Mathematical Modeling. Temperature. Contamination.

LISTA DE ILUSTRAÇÕES

Figura 1 – Curva típica de crescimento microbiano20
Figura 2 – Definição clássica da duração da fase <i>lag</i> 23
Figura 3 – Definição da duração da fase <i>lag</i> de acordo com o modelo de Robazza et al24
Figura 4 – Valores de μ_{max} (a) e λ (b) em função da temperatura obtidos para cada modelo primário
Figura 5 – Ajustes obtidos para os três modelos secundários empregando os parâmetros estimados com o modelo primário de Baranyi-Roberts
Figura 6 – Ajustes obtidos para os três modelos secundários empregando os parâmetros estimados com o modelo primário de Huang
Figura 7 – Ajustes obtidos para os três modelos secundários empregando os parâmetros estimados com o modelo primário de Robazza et al
Figura 8 – Ajustes obtidos para a dependência da duração da fase <i>lag</i> com a temperatura37
Figura 9 – Resultados obtidos para o primeiro perfil dinâmico de temperaturas usando o modelo secundário de a) Ratkowsky et al. e b) Huang
Figura 10 – Resultados obtidos para o segundo perfil dinâmico de temperaturas usando o modelo secundário de a) Ratkowsky et al. e b) Huang
Figura 11 – Resultados obtidos para o terceiro perfil dinâmico de temperaturas usando o modelo secundário de a) Ratkowsky et al. e b) Huang40
Figura 12 – Resultados obtidos para o quarto perfil dinâmico de temperaturas usando o modelo secundário de a) Ratkowsky et al. e b) Huang40
Figura 13 – Gráficos obtidos para os primeiros 48 ajustes dos modelos primários83

LISTA DE TABELAS

Tabela 1 – Número de ajustes em que cada modelo prevê o maior e o menor valor de μ_{max} 3	1
Tabela 2 – Número de ajustes em que cada modelo prevê o maior e o menor valor de λ 3	1
Tabela 3 – Índices estatísticos de melhor desempenho obtidos para cada modelo primário3	2
Tabela 4 – Parâmetros obtidos após o ajuste de cada modelo secundário onde foram empregados os valores de μ_{max} obtidos com o modelo primário de Baranyi-Roberts	5
Tabela 5 – Parâmetros obtidos após o ajuste de cada modelo secundário onde foram empregados os valores de μ_{max} obtidos com o modelo primário de Huang3	5
Tabela 6 – Parâmetros obtidos após o ajuste de cada modelo secundário onde foram empregados os valores de μ_{max} obtidos com o modelo primário de Robazza et al	6
Tabela 7 – Parâmetros obtidos após o ajuste da função dada pela Equação 13 onde foram empregados os valores de λ obtidos com os três modelos primários3	8
Tabela 8 – Índices estatísticos obtidos quando foram utilizados o modelo secundário de Ratkowsky et al. e o de Huang para os quatro perfis não-isotérmicos de temperatura4	1
Tabela 9 – Tempos necessários para o aumento de 1 ou 2 logaritmos da população de Salmonella em cinco diferentes cenários correspondendo a pequenos incrementos na temperatura, ΔT42	2
Tabela 10 – Valores de λ e μ_{max} obtidos após ajuste dos três modelos primários para cada conjunto de dados estudado	5
Tabela 11 – Valores de RMSE e MAE obtidos após o ajuste de cada modelo primário6	6
Tabela 12 – Valores de AIC, BIC, AF e BF obtidos após o ajuste de cada modelo primário7	7

SUMÁRIO

Página

1	INTRODUÇÃO	13
2	OBJETIVOS	15
2.1	OBJETIVOS GERAIS	15
2.2	OBJETIVOS ESPECÍFICOS	15
3	REVISÃO BIBLIOGRÁFICA	16
3.1	CONSUMO DE CARNE DE FRANGO	16
3.2	CONTAMINAÇÃO COM SALMONELLA	17
3.3	INFLUÊNCIA DA TEMPERATURA E PROCESSAMENTO NA QUALIDADE DA CARNE DE FRANGO	3 18
3.4	MICROBIOLOGIA PREDITIVA	18
3.4.1	Modelos Primários	19
3.4.1.1	Modelo Primário de Baranyi-Roberts	20
3.4.1.2	Modelo Primário de Huang	22
3.4.1.3	Modelo Primário de Robazza et al	23
3.4.2	Modelos Secundários	24
3.4.3	Modelagem em um Regime Dinâmico de Temperaturas	26
4	MATERIAIS E MÉTODOS	26
4.1	DADOS EXPERIMENTAIS	27
4.2	MODELOS PRIMÁRIOS	27
4.3	MODELOS SECUNDÁRIOS	27
4.4	ANÁLISE ESTATÍSTICA	28
4.5	MODELOS DINÂMICOS	29
5	RESULTADOS E DISCUSSÃO	30
5.1	MODELOS PRIMÁRIOS	30
5.2	MODELOS SECUNDÁRIOS	33
5.2.1	Taxa Máxima de Crescimento Específico	33
5.2.2	Duração da Fase <i>Lag</i>	37
5.3	REGIME DINÂMICO DE TEMPERATURAS	
5.4	ALGUMAS SIMULAÇÕES	41
6	CONCLUSÕES	43
	REFERÊNCIAS	44
	APÊNDICES	55

APÊNDICE A – RESULTADOS OBTIDOS ATRAVÉS DO AJUSTE DOS MODELOS PRIMÁRIOS	55
APÊNDICE B – GRÁFICOS DOS PRIMEIROS AJUSTES OBTIDOS COM OS TRÊS MODELOS PRIMÁRIOS	5 83
APÊNDICE C – CÓDIGOS DOS PROGRAMAS	89

1 INTRODUÇÃO

Desde 2004 a indústria avícola brasileira ocupa a posição de líder mundial na exportação de carne de frango (ABPA, 2017). O Brasil exporta seus produtos para cerca de 150 países localizados em 5 continentes diferentes. Em 2016, o setor avícola nacional empregava mais de 3,6 milhões de pessoas e era responsável por aproximadamente 1,5 % do produto interno bruto do país (ABPA, 2017). Neste mesmo ano, a produção total brasileira alcançou a cifra de 12,9 milhões de toneladas, o que colocou o Brasil como terceiro maior produtor mundial de carne de frango, sendo que deste total, aproximadamente 66 % era destinado ao consumo doméstico (ABPA, 2017).

Nos últimos anos, uma série de escândalos envolvendo práticas ilegais na produção de carne por algumas das grandes empresas exportadoras tem colocado em cheque a qualidade da carne brasileira e gerado sanções ao produto nacional nos grandes mercados consumidores (REUTERS, 2017a; REUTERS 2017b; POULTRYWORLD, 2017, 2018). Estes eventos têm gerado restrições aos demais produtores brasileiros e somente reforçam a necessidade de um grande controle do processo produtivo e uso de mecanismos adequados de controle e fiscalização para que a carne nacional tenha atributos de qualidade suficientes para que ela seja bem aceita no mercado externo.

Os produtos cárneos em geral possuem alto teor proteico e muitos nutrientes, sendo estas características muito favoráveis ao desenvolvimento bacteriano (MEZAROBA et al. 2016). A qualidade microbiológica destes produtos depende, em geral, de fatores intrínsecos como, por exemplo, o status fisiológico do animal no momento do abate, o pH, a acidez, o potencial redox, a atividade de água e a presença de antimicrobianos (MCDONALD; SUN; KENNY, 2000) e também de fatores extrínsecos como, por exemplo, a temperatura, o tempo de armazenamento, a embalagem e outras condições de distribuição (NYCHAS et al., 2008).

A *Salmonella* spp. é uma bactéria que está presente no trato intestinal dos animais de sangue quente, sendo um dos principais agentes patogênicos presentes nos alimentos (AKBAR; ANAL, 2013; NASTASIJEVIC et al., 2015b; WIGLEY, 2013) e a principal causa de doenças bacterianas transmitidas por alimentos em humanos (EROL et al., 2013; FACHMANN et al., 2017). As principais fontes de infecção para os seres humanos incluem produtos à base de carne, incluindo o consumo de carne de frango contaminada (ANTUNES et al., 2016; XIONG et al., 2016).

Durante seu processamento, a carne de frango passa por diversos estágios nos quais a temperatura pode sofrer variações significativas (YANG et al., 2001). É um fato conhecido que mesmo pequenas concentrações de *Salmonella* spp. podem causar doenças no consumidor (SRINIVASAN et al., 2004). Portanto, é importante que se mantenha a população bacteriana sob um controle rigoroso, de forma a possibilitar que o produto final possa ser consumido sem apresentar riscos para a população. Neste contexto, este trabalho visa contribuir fornecendo um entendimento quantitativo da cinética de crescimento de *Salmonella* spp. em carne de frango sujeita a diferentes regimes de temperatura.

2 OBJETIVOS

A seguir são apresentados os objetivos que nortearam a pesquisa.

2.1 OBJETIVO GERAL

Modelar o crescimento de *Salmonella* spp. em carne de frango submetida a diferentes regimes de temperatura.

2.2 OBJETIVOS ESPECÍFICOS

- Comparar o desempenho de três diferentes modelos secundários para descrever a dependência da taxa máxima de crescimento específico com a temperatura para o crescimento isotérmico de *Salmonella* spp. em carne de frango.
- Estimar valores para a temperatura mínima e para a temperatura máxima de crescimento isotérmico de *Salmonella* spp. em carne de frango.
- Estimar valores para a temperatura ótima e taxa ótima de crescimento específico para o crescimento isotérmico de *Salmonella* spp. em carne de frango.
- Avaliar a eficácia de modelos dinâmicos para diferentes perfis de temperatura durante o crescimento não-isotérmico de *Salmonella* spp. em carne de frango.

3 REVISÃO BIBLIOGRÁFICA

Nesta seção está contida uma revisão, na qual são abordados os tópicos que justificam a realização do presente estudo. A seção é iniciada com uma contextualização da importância do consumo da carne de frango, seguida do problema da contaminação com *Salmonella*, sua incidência e as condições de processamento que afetam a proliferação da bactéria. Também é incluída uma apresentação da microbiologia preditiva e das classes de modelos matemáticos englobados por este ramo da microbiologia de alimentos. Finalmente, são descritos em maiores detalhes os modelos matemáticos utilizados no presente estudo.

3.1 CONSUMO DE CARNE DE FRANGO

A seleção de alimentos por parte do consumidor é governada por fatores tais como cultura, religião, estilo de vida, preocupações com a saúde e tendências alimentares (POPA, DRAGHICI, POPA, 2011). No caso de produtos cárneos, devido à problemática do bem-estar animal, fatores como a religião são particularmente relevantes (ERIAN; PHILLIPS, 2017).

A carne e os produtos cárneos fornecem quantidades relevantes de nutrientes essenciais quando comparados com outros alimentos (MARANGONI et al., 2015; WALES; ALLEN; DAVIES, 2010). A proteína proveniente da carne se distingue da proteína oriunda dos demais alimentos pela riqueza em aminoácidos essenciais (SONG et al., 2016). Neste contexto, a carne de aves tem um componente proteico definido como de "alta qualidade" em função do seu aproveitamento pelo corpo humano (PETRACCI; CAVANI, 2012). De acordo com a Autoridade Europeia de Segurança dos Alimentos (EFSA, em inglês), a ingestão diária adequada de proteínas é de 0,66 g de proteína / kg de peso corporal por dia (EFSA, 2012). O teor de proteína da maioria das carnes (incluindo frango) varia entre 15 e 35 % (MARANGONI et al., 2015).

Além do alto teor proteico, do ponto de vista nutricional, a carne de frango tem ácidos graxos monoinsaturados, sendo excelente fonte de vitaminas do grupo B e ferro (MARANGONI et al., 2015). Ela também possui baixo teor de colágeno (proteína estrutural) e, consequentemente, melhor digestibilidade, uma vez que esta é reduzida pelo colágeno. O conteúdo de proteínas de alto valor biológico, vitaminas e minerais associados a um baixo teor de gordura (a maioria dos quais é composta de ácidos graxos insaturados) permite que essas carnes sejam incorporadas de forma ideal na dieta em todas as idades (MARANGONI et al., 2015; PETRACCI; CAVANI, 2012).

O rápido aumento da demanda é atribuído à versatilidade e facilidade de manuseio e cozimento e ao baixo custo (MENEGAS et al., 2013; ERIAN; PHILLIPS, 2017). Devido à sua baixa gordura e colesterol, a carne de frango é bem reconhecida como alimento saudável para animais em comparação com outras carnes. (LEE et al., 2017). A demanda por produtos cárneos com menor teor de gordura ou com composições de ácidos graxos mais saudáveis tem aumentado nos últimos anos (MENEGAS et al., 2013). Essa é uma das razões pelas quase a carne de frango (Gallus gallus domesticus) é hoje a principal fonte de proteína na dieta humana (PERRY-GAL et al., 2015). Dados referentes ao consumo aparente recente e os dados de mercado da Austrália e de outros países, como os EUA, sugerem que houve um aumento geral no consumo de carne de frango aumentou em todo o mundo nos últimos 20 anos e excede o consumo de outras carnes em muitos países (ERIAN; PHILLIPS, 2017; HUSSAIN et al., 2015; LEE et al., 2017).

3.2 CONTAMINAÇÃO COM SALMONELLA

Salmonella é uma bactéria patogênica de origem alimentar global, a qual afeta seres humanos e animais de sangue quente (ANSARI et al., 2017; SOUSA et al., 2015; CHEN et al., 2015). Observa-se que cerca de 95 % das infecções causadas por Salmonella são de origem alimentar (MEAD et al., 1999). Em humanos, as doenças mais comuns causadas por bactérias do gênero Salmonella incluem a febre tifoide, febre e gastroenterite (PIELAAT et al., 2016; MADIGAN et al, 2015; QUIÑONES, AGUILAR, GUERRERO, 2016; SMADI et al., 2012). É difícil ter uma visão mais precisa das infecções por Salmonella, devido à limitação e a qualidade dos dados (YOUNG et al., 2014; MARK et al., 2015; URFER et al., 2000). Segundo a Organização Mundial da Saúde (OMS), desde 1990, esta bactéria tem sido considerada a mais comum causa de gastroenterite em todo o mundo (CHEN et al., 2015; 2017; ELMAJDOUB et al., 2016; FARDSANEI et al., 2016; YOUNG et al., 2017). De acordo com a Rede Ativa de Vigilância de Doenças de Origem Alimentar (FoodNet, na sigla em inglês), foi registrada uma taxa de incidência de 15,7 infecções de salmonelose nãotifoidal para cada 100.000 pessoas no ano de 2015 (CDC, 2015). No perfil epidemiológico brasileiro, no ano de 2015, de um total de 673 surtos de intoxicação por alimentos, estima-se que a Salmonella spp. tenha sido a principal responsável pelo surto em cerca de 14,5 % dos casos (BRASIL, 2015).

As populações de aves, especialmente de frango (OSCAR, 2007; 2017) e peru, são frequentemente colonizadas com *Salmonella*, embora sintomas detectáveis não estejam aparentes ainda na produção primária (NASTASIJEVIC et al., 2015a; OLNOOD et al., 2015; ANTUNES et al., 2016). Por essa razão, a carne de frango é uma importante fonte de infecção zoonótica por *Salmonella* (GHOLLASI-MOOD et al., 2017; RUBINELLI et al., 2017). Neste sentido, o risco proveniente da contaminação cruzada é tão importante quanto o risco associado com o cozimento insuficiente (LUBER, 2005). Além disso, verificou-se que o risco de contaminação para o consumidor é maior quando consumindo carne de frango que foi refrigerada no varejo em relação à carne congelada (ZHU et al., 2017).

3.3 INFLUÊNCIA DA TEMPERATURA E PROCESSAMENTO NA QUALIDADE DA CARNE DE FRANGO

Durante os estágios de processamento, armazenamento e até o seu consumo, a carne de frango está sujeita a diversas flutuações da temperatura. Diferentes estudos demonstraram que a qualidade bacteriológica da carne de frango varia com estas flutuações da temperatura, além de ser afetada pelo estado sanitário e pela higiene pessoal dos colaboradores (DE MELO et al., 2012; CINTRA et al., 2016). Em um estudo realizado em carne de frango, o tempo de redução decimal (valor D) de seis diferentes cepas de Salmonella oscilou entre 30 minutos e 14 segundos para temperaturas que variaram entre 55 °C e 70 °C, respectivamente (MURPHY et al., 1999; 2000). Neste contexto, para retardar o crescimento de micro-organismos e prolongar a vida de prateleira, a cadeia de frio é amplamente utilizada no mercado de produtos avícolas (MASOUMBEIGI et al., 2017). No entanto, o controle da temperatura durante o transporte, distribuição e armazenamento (comercial e doméstico) é muitas vezes falho sendo observadas condições diferentes das recomendadas pelo fabricante (0 a 4 °C), sendo muitas vezes utilizadas temperaturas que podem passar de 15 °C (BRIZIO; PRENTICE, 2014). A dificuldade de verificar a história real da temperatura dos alimentos dificulta a previsão de seu prazo de validade (BRIZIO; PRENTICE, 2014; MASOUMBEIGI et al., 2017).

Dentro de toda a cadeia de produção de produtos cárneos em geral, o processamento possui um papel chave, tendo em vista que neste estágio, é possível que a contaminação cruzada seja prevenida ou mesmo potencializada (MUNTHER et al., 2016). Diferentes estudos demonstraram que a *Salmonella* é facilmente transferida de carne de frango e outros

alimentos para lâminas, utensílios e mãos (DE BOER; HAHNÉ, 1990; KUSUMANINGRUM et al., 2003; CHEN; ZHAO; DOYLE, 2014). Em muitas vezes o ambiente da fábrica pode ser propício à formação de biofilmes da bactéria em superfícies de contato (WANG et al., 2013). Os estágios críticos do processamento que são mais susceptíveis à contaminação cruzada incluem a escaldagem, depenagem, evisceração e resfriamento das carcaças (CARRASCO; MORALES-RUEDA; GARCÍA-GIMENO, 2012).

3.4 MICROBIOLOGIA PREDITIVA

A microbiologia preditiva é uma área da microbiologia de alimentos que tem por objetivo quantificar a resposta de micro-organismos a diferentes condições ambientais às quais eles podem ser expostos (MCMEEKIN et al., 2013). Neste contexto, muitos modelos matemáticos têm sido desenvolvidos nos últimos 25 anos com o intuito de descrever a cinética bacteriana em função do tempo e em função de parâmetros ambientais, tais como, temperatura, pH e concentração de ácidos orgânicos. A premissa desses modelos é que o padrão de comportamento dos micro-organismos, a despeito de variações individuais, é semelhante quando eles estão sujeitos ao mesmo ambiente.

No que diz respeito à carne de frango, muitos trabalhos envolvendo a aplicação dos conceitos da microbiologia preditiva podem ser encontrados na literatura da área (MCDONALD; SUN, 1999). Diferentes modelos foram empregados para descrever o crescimento de *Salmonella* (JUNEJA; HUANG; THIPPAREDDI, 2007), *Clostridium perfringens* (JUNEJA et al., 2011), *Proteus mirabilis* (ZHAO et al., 2014), *Pseudomonas* spp. e bactérias ácido lácticas (LI et al., 2014; LYTOU; PANAGOU; NYCHAS, 2016).

3.4.1 Modelos Primários

Esta categoria de modelos expressa matematicamente a população bacteriana em função do tempo, assumindo que as condições ambientais (como, por exemplo, a temperatura) permaneçam constantes (regime estacionário). Diversos modelos se encaixam nesta categoria, sendo que estes modelos são elaborados de forma a resultar numa curva sigmoide, que é o comportamento teórico esperado para o crescimento bacteriano em um regime estacionário. Os principais parâmetros que descrevem as curvas de crescimento são a duração da fase *lag*, λ , e a taxa máxima de crescimento específico, μ_{max} .

A Figura 1 apresenta uma curva de crescimento teórica contendo os diferentes estágios pelos quais o micro-organismo passa durante o seu crescimento. Como pode ser observado na Figura 1, durante o seu crescimento, os micro-organismos primeiro passam por um período de adaptação (fase *lag*) no qual, as células microbianas estão adaptando seu metabolismo para o crescimento. Em seguida, as células crescem exponencialmente até que a quantidade de substrato seja praticamente exaurida (fase exponencial). Após isso, as células atingem um ponto no qual elas começam a competir entre si e a taxa de mortes se torna igual à taxa de geração de novas células (fase estacionária). Finalmente, a taxa de mortes das células supera a taxa de geração de novas células e atinge-se a fase de declínio. Do ponto de vista da segurança alimentar, somente as três primeiras fases são relevantes, porque na fase de declínio, o alimento já não está propício para o consumo. Portanto, todos os modelos primários têm por objetivo descrever a fase *lag*, a fase exponencial e a fase estacionária.

Fonte: ROBAZZA et al., 2010.

No presente estudo, serão empregados três modelos primários da literatura: o modelo de Baranyi-Roberts (BARANYI et al., 1993; BARANYI; ROBERTS, 1994), o modelo de Huang (HUANG, 2012) e o modelo de Robazza et al. (ROBAZZA et al., 2017). Os três modelos têm uma fundamentação teórica biológica e são oriundos de três equações diferenciais e de hipóteses diferentes na sua fundamentação teórica.

3.4.1.1 Modelo Primário de Baranyi-Roberts

O modelo de Baranyi-Roberts (BARANYI et al., 1993; BARANYI; ROBERTS, 1994) é o modelo mais conhecido na área da microbiologia preditiva. Uma das razões que justificam seu uso amplamente difundido está relacionada ao fato de ter sido o primeiro modelo que incluiu um termo para expressar a fase de adaptação (*lag*) do micro-organismo no meio em que ele está exposto. Além disso, o modelo se encontra já implementado em softwares de uso livre como o *ComBase Predictor* (BARANYI; TAMPLIN, 2004). Graças a estes recursos, o usuário não precisa dominar os conceitos de modelos matemáticos ou técnicas de programação e pode apenas aplicar os modelos e obter o resultado desejado. O modelo de Baranyi-Roberts é baseado em um sistema composto por duas equações diferenciais, que são dadas pelas Equações 1 e 2:

$$\frac{dy(t)}{dt} = \mu_{\max} \left[\frac{1}{1 + e^{-Q(t)}} \right] \{ 1 - \exp[y(t) - y_{\max}] \}$$
(1)
sujeita à condição $y(0) = y_0$

$$\frac{dQ(t)}{dt} = \mu_{\text{max}}$$
sujeita à condição $Q(0) = -\ln[\exp(h_0) - 1]$
(2)

onde y(t) corresponde ao logaritmo natural da população bacteriana no instante t, μ_{max} é a taxa máxima de crescimento específico, y_{max} representa o logaritmo natural da população bacteriana máxima, y_0 é o logaritmo natural da população bacteriana inicial, h_0 é um parâmetro adimensional que quantifica o estado fisiológico das células bacterianas, Q(t) corresponde à concentração de uma substância crítica para o crescimento bacteriano.

Quando a bactéria está presente em um ambiente estacionário, no qual os parâmetros ambientais como temperatura e pH permanecem constantes ao longo do tempo, pode ser demonstrado após algumas hipóteses simplificadoras e manipulações matemáticas que a solução do conjunto de Equações 1 e 2 é dada pelas Equações 3 e 4 (BARANYI; ROBERTS, 1995):

$$y(t) = y_0 + \mu_{\max} F(t) - \ln\left\{\frac{\exp[\mu_{\max} F(t)] - 1}{\exp(y_{\max} - y_0)} + 1\right\}$$
(3)

$$F(t) = t + \left(\frac{1}{\mu_{\max}}\right) \ln[\exp(-\mu_{\max}t) + \exp(-\mu_{\max}\lambda) - \exp(-\mu_{\max}t - \mu_{\max}\lambda)]$$
(4)

Portanto, o processo do ajuste do modelo de Baranyi-Roberts para um regime isotérmico de temperaturas (regime estacionário) consiste no ajuste das Equações 3 e 4 a um conjunto de dados experimentais e, neste processo, são obtidos os parâmetros y_0 , y_{max} , μ_{max} e λ . Desde sua concepção no início da década de 1990, o modelo de Baranyi-Roberts tem sido empregado para modelar o crescimento de diversos micro-organismos em muitas matrizes alimentícias. Ele já foi empregado para modelar o crescimento de *Salmonella* em carne de frango em diferentes temperaturas (JUNEJA et al., 2007), para modelar a influência de óleo de tomilho sobre o crescimento de *Salmonella* em carne de peru (POSSAS et al., 2017) e também para estudar seu crescimento em ovos (GRIJSPEERDT, 2001; GRIJSPEERDT, VANROLLEGHEM, 1999).

3.4.1.2 Modelo Primário de Huang

O modelo matemático de Huang foi elaborado com o intuito de fornecer uma descrição mais simples do crescimento bacteriano. Isto porque o modelo de Baranyi-Roberts inclui parâmetros de difícil mensuração como, por exemplo, o valor do estado fisiológico das células bacterianas (h_0). Neste caso, se torna difícil validar os resultados obtidos para h_0 e, na prática, trata-se de um parâmetro empírico (HUANG, 2011). A Equação 5 é a equação diferencial correspondente ao modelo de Huang.

$$\frac{dy(t)}{dt} = \frac{\mu_{\text{max}}}{1 + e^{-4(t-\lambda)}} (1 - e^{y - y_{\text{max}}})$$
sujeita à condição $y(0) = y_0$
(5)

onde os parâmetros têm os mesmos significados das equações anteriores.

A solução analítica da Equação 5 resulta nas Equações 6 e 7:

$$y(t) = y_0 + y_{\max} - \ln\left[e^{y_0} + (e^{y_{\max}} - e^{y_0})e^{-\mu_{\max}\beta(t)}\right]$$
(6)

$$\beta(t) = t + \frac{1}{4} \ln \left[\frac{1 + e^{-4(t-\lambda)}}{1 + e^{4\lambda}} \right]$$
(7)

De forma análoga ao modelo de Baranyi-Roberts, as Equações 6 e 7 são válidas para um ambiente com regime estacionário. O modelo isotérmico de Huang foi empregado para descrever o crescimento de *Salmonella* em carne de frango (LI et al., 2017) e o crescimento de bactérias ácido-lácticas em carne bovina (LI et al., 2013).

3.4.1.3 Modelo Primário de Robazza et al.

Este modelo tem duas características principais que são diferentes dos demais modelos primários utilizados neste estudo. A primeira consiste no uso de um parâmetro diferente dos demais (é empregado um parâmetro para a abscissa do ponto de inflexão da curva de crescimento bacteriano, t^* , e não é utilizado nenhum parâmetro para descrever o logaritmo da população máxima). A justificativa para este procedimento é que a população máxima depende da duração da fase de adaptação (*lag*), da população inicial e da taxa máxima de crescimento específico. Portanto, ela não deveria ser descrita por um parâmetro independente dos demais (ROBAZZA et al., 2017).

A segunda característica que diferencia este modelo é a definição da duração da fase de adaptação (*lag*). Segundo a definição clássica, que é utilizada nos modelos de Baranyi-Roberts e Huang, o valor de λ consiste no ponto de intersecção da reta horizontal que passa pelo logaritmo da população inicial e a reta correspondente à fase de crescimento exponencial (Figura 2). De acordo com o modelo de Robazza et al., a fase *lag* se encerra, conforme a Figura 3, quando a taxa de crescimento específico atinge uma fração pré-estabelecida (α) do seu valor máximo (ROBAZZA et al., 2017). O modelo foi utilizado e validado para avaliar o crescimento de *Pseudomonas* spp. em peixe (ROBAZZA et al., 2017).

Figura 2 – Definição clássica da duração da fase *lag*.

Fonte: Adaptado de SWINNEN al., 2004.

Figura 3 – Definição da duração da fase *lag* de acordo com o modelo de Robazza et al.

Fonte: ROBAZZA et al., 2017.

Do ponto de vista matemático, o modelo é definido pela Equação 8:

$$\frac{dy(t)}{dt} = \mu_{\max} \exp\left[-2\left(\frac{t-t^*}{\lambda-t^*}\right)^2\right]$$
(8)
sujeita à condição $y(0) = y_0$

A solução da Equação 8 para um regime estacionário é dada pela Equação 9.

$$y(t) = y_0 + \mu_{\max} \sqrt{\frac{\pi}{8}} \left(\lambda - t^*\right) \left\{ \operatorname{erf}\left[\sqrt{2} \left(\frac{t^* - t}{t^* - \lambda}\right)\right] - \operatorname{erf}\left[\sqrt{2} \frac{t^*}{t^* - \lambda}\right] \right\}$$
(9)

onde erf(x) é a função erro gaussiana.

3.4.2 Modelos Secundários

Os modelos secundários relacionam os parâmetros cinéticos dos modelos primários, principalmente λ e μ_{max} , com fatores ambientais como o pH e a temperatura. No presente estudo foram usados três modelos secundários da literatura que relacionam a taxa máxima de crescimento específico com a temperatura: o modelo da raiz quadrada de Ratkowsky et al. (RATKOWSKY et al., 1982, 1983), o modelo secundário de Huang (HUANG et al., 2011) e o modelo cardinal de Rosso et al (ROSSO et al., 1995). Estes três modelos secundários são dados pelas Equações 10, 11 e 12, respectivamente.

$$\sqrt{\mu_{\max}} = b(T(t) - T_{\min}) \left(1 - e^{c(T(t) - T_{\max})} \right)$$
(10)

$$\sqrt{\mu_{\max}} = b(T(t) - T_{\min})^{0.75} \left(1 - e^{c(T(t) - T_{\max})}\right)$$
(11)

$$\mu_{\max} = \mu_{\text{oti}} \frac{(T - T_{\max})(T - T_{\min})^2}{(T_{\text{oti}} - T_{\min})[(T_{\text{oti}} - T_{\min})(T - T_{\text{oti}}) - (T_{\text{oti}} - T_{\max})(T_{\text{oti}} + T_{\min} - 2T)]}$$
(12)

onde T_{\min} e T_{\max} correspondem às temperaturas mínima e máxima nas quais ocorre crescimento bacteriano, *b* e *c* são parâmetros empíricos sem significado biológico, T_{oti} é a temperatura na qual a taxa de crescimento específico máxima é otimizada (assume seu maior valor, μ_{oti}).

Dentre estes modelos secundários, o mais utilizado na área da microbiologia preditiva é o modelo da raiz-quadrada de Ratkowsky et al. Este modelo já foi empregado para descrever a dependência de μ_{max} com a temperatura para o crescimento de *Salmonella* em carne de frango e em carne suína (JUNEJA; HUANG; THIPPAREDDI, 2007, JUNEJA et al., 2007, KRISHNAN et al., 2015, OSCAR, 2002). O modelo secundário de Huang é mais recente e teve o intuito de corrigir uma deficiência no modelo de Ratkowsky et al., já que este prediz valores inferiores ao observado experimentalmente para os parâmetros T_{min} e T_{max} (HUANG, 2011). Por essa razão, foi introduzido um novo expoente (1,5) ao termo que inclui o parâmetro T_{min} conforme pode ser visualizado ao se comparar as Equações 10 e 11. Posteriormente, este modelo foi validado para modelar o crescimento de *Salmonella* em claras de ovos (HUANG; HWANG, 2017).

O modelo cardinal de Rosso et al. também é utilizado com frequência para descrever a dependência da taxa máxima de crescimento específico com a temperatura. Em particular, ele é bastante empregado para estimar as fronteiras da região de crescimento/não crescimento de bactérias em diferentes alimentos (PANAGOU et al., 2010; VAN DERLINDEN; VAN IMPE, 2012).

No que diz respeito à modelagem da dependência da duração da fase *lag* com a temperatura, os modelos existentes consistem na adaptação das expressões usadas para a dependência da taxa máxima de crescimento específico com a temperatura. No presente estudo, será empregada a Equação 13 que consiste numa adaptação da Equação 10 (HUANG et al., 2011).

$$\sqrt{\frac{1}{\lambda}} = b(T(t) - T_{\min}) \left(1 - e^{c(T(t) - T_{\max})} \right)$$
(13)

3.4.3 Modelagem em Regime Dinâmico de Temperaturas

Conforme já mencionado, as Equações 3 e 4 (modelo de Baranyi-Roberts), 6 e 7 (modelo de Huang) e 9 (modelo de Robazza et al.) somente são válidas em um regime estacionário. Entretanto, para a simulação de um processo industrial real ou mesmo no processo de armazenamento no varejo, o alimento está sujeito a variações da temperatura, o que invalida o emprego dessas Equações para descrever estas situações. Neste caso, o perfil de temperatura desejado deve ser levantado e inserido nos modelos secundários correspondentes (Equações 10 a 13).

Em seguida, as expressões obtidas para a taxa máxima de crescimento específico e duração da fase *lag* devem ser inseridas nas equações diferenciais correspondentes ao modelo primário utilizado (Equações 1 e 2 para o modelo de Baranyi-Roberts, Equação 5 para o modelo de Huang e Equação 8 para o modelo de Huang). A nova equação diferencial obtida deve ser então numericamente integrada para se obter o logaritmo da população bacteriana em função do tempo.

Neste contexto, o método numérico de Runge-Kutta de quarta ordem (RK4) é bastante útil para a resolução numérica de equações diferenciais (BOYCE; DIPRIMA, 2005). Na maior parte dos modelos dinâmicos, este método é empregado para a solução numérica das equações diferenciais que resultam da junção entre os modelos primários e secundários (ZHU; CHEN, 2015; SILVA et al., 2017).

4 MATERIAIS E MÉTODOS

Segue uma breve descrição dos procedimentos utilizados para o levantamento dos dados experimentais e das equações utilizadas para ajuste e simulação dos modelos selecionados no estudo. Finalmente, está incluída uma seção com os índices estatísticos empregados para validar os resultados.

4.1 DADOS EXPERIMENTAIS

Foram selecionados da ComBase 250 conjuntos de dados de crescimento isotérmico de *Salmonella* spp. em carne de frango. A ComBase é a base de dados mais utilizada na área da microbiologia preditiva (BARANYI; TAMPLIN, 2004). As temperaturas de crescimento da bactéria variaram entre 8 °C e 40 °C.

4.2 MODELOS PRIMÁRIOS

Foram utilizados três modelos primários para ajustar as 250 curvas de crescimento: o modelo de Baranyi-Roberts (Equações 3 e 4), o modelo de Huang (Equações 6 e 7) e o modelo de Robazza et al. (Equação 9).

Modelo de Baranyi-Roberts

$$y(t) = y_0 + \mu_{\max}F(t) - \ln\left\{\frac{\exp[\mu_{\max}F(t)] - 1}{\exp(y_{\max} - y_0)} + 1\right\}$$
(3)

$$F(t) = t + \left(\frac{1}{\mu_{\max}}\right) \ln[\exp(-\mu_{\max}t) + \exp(-\mu_{\max}\lambda) - \exp(-\mu_{\max}t - \mu_{\max}\lambda)]$$
(4)

Modelo de Huang

$$y(t) = y_0 + y_{\max} - \ln[e^{y_0} + (e^{y_{\max}} - e^{y_0})e^{-\mu_{\max}\beta(t)}]$$
(6)

$$\beta(t) = t + \frac{1}{4} \ln \left[\frac{1 + e^{-4(t-\lambda)}}{1 + e^{4\lambda}} \right]$$
(7)

Modelo de Robazza et al

$$y(t) = y_0 + \mu_{\max} \sqrt{\frac{\pi}{8}} (\lambda - t^*) \left\{ \operatorname{erf} \left[\sqrt{2} \left(\frac{t^* - t}{t^* - \lambda} \right) \right] - \operatorname{erf} \left[\sqrt{2} \frac{t^*}{t^* - \lambda} \right] \right\}$$
(9)

4.3 MODELOS SECUNDÁRIOS

Foram utilizados três modelos secundários para descrever a dependência da taxa máxima de crescimento específico, μ_{max} , com a temperatura. Para esse fim, as funções dadas

pelas expressões 10, 11 e 12 foram ajustadas aos dados compostos pelos 250 valores de μ_{max} obtidos para cada um dos três modelos primários e as respectivas temperaturas. Portanto, foram obtidas 9 expressões diferentes para a dependência de μ_{max} com a temperatura.

Modelo secundário da raiz-quadrada de Ratkowsky et al.

$$\sqrt{\mu_{\max}} = b(T(t) - T_{\min})(1 - e^{c(T(t) - T_{\max})})$$
(10)

Modelo secundário de Huang

$$\sqrt{\mu_{\max}} = b(T(t) - T_{\min})^{0.75} \left(1 - e^{c(T(t) - T_{\max})}\right)$$
(11)

Modelo secundário cardinal de Rosso et al.

$$\mu_{\max} = \mu_{\text{oti}} \frac{(T - T_{\max})(T - T_{\min})^2}{(T_{\text{oti}} - T_{\min})[(T_{\text{oti}} - T_{\min})(T - T_{\text{oti}}) - (T_{\text{oti}} - T_{\max})(T_{\text{oti}} + T_{\min} - 2T)]}$$
(12)

Para modelar a dependência da duração da fase *lag*, λ , com a temperatura foi usada a Equação 13, a qual foi encarada como empírica (ou seja, não se preocupou com a fidelidade dos valores dos parâmetros T_{\min} e T_{\max} com relação aos valores reais). De forma análoga ao parâmetro μ_{\max} , a Equação 13 foi ajustada aos 250 valores obtidos de λ para cada um dos três modelos primários considerados neste estudo.

$$\sqrt{\frac{1}{\lambda}} = b \left(T(t) - T_{\min} \right) \left(1 - e^{c(T(t) - T_{\max})} \right)$$
(13)

4.4 ANÁLISE ESTATÍSTICA

Para comparação do desempenho dos modelos primários e secundários foram utilizados seis índices estatísticos: o critério de informação de Akaike (AIC), o critério de informação Bayesiano (BIC), o fator accuracy (AF), o fator bias (FB), o erro absoluto médio (MAE) e o erro raiz-quadrático médio (RMSE) (BARANYI et al., 1999). As Equações de 14 a 19 apresentam as expressões para cada um destes índices:

$$AIC = nln\left(\frac{RSS}{n}\right) + 2(p+1)$$
(14)

$$BIC = n \ln\left(\frac{RSS}{n}\right) + p \ln(n)$$
(15)

$$AF = 10^{\frac{1}{n}\sum_{i=1}^{n} \left| \log\left(\frac{y_{\text{pred},i}}{y_{\text{obs},i}}\right) \right|$$
(16)

$$BF = 10^{\frac{1}{n}\sum_{i=1}^{n}\log\left(\frac{y_{\text{pred},i}}{y_{\text{obs},i}}\right)}$$
(17)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| y_{\text{pred},i} - y_{\text{obs},i} \right|$$
(18)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_{\text{pred},i} - y_{\text{obs},i})^2}{n-p}}$$
(19)

onde *n* é o número de pontos experimentais, *p* é o número de parâmetros do modelo, *RSS* é o erro quadrático residual obtido após o ajuste do modelo, $y_{pred,i}$ corresponde a i-ésima resposta predita pelo modelo e $y_{obs,i}$ é o valor da i-ésima observação.

Para os ajustes dos modelos primários foram empregados como critério de comparação do desempenho dos modelos os seguintes índices: AIC, BIC, AF, BF, MAE e RMSE. Por sua vez, para os ajustes dos modelos secundários, foram utilizados como critério de comparação dos modelos, o AIC, o BIC, o MAE e o RMSE.

Os procedimentos de regressão não-linear foram realizados através da função nlsLM, a qual emprega o algoritmo de otimização de Levenberg-Marquardt do pacote minpack.lm do software livre R v. 3.3.2 (R CORE TEAM, 2013). Os índices estatísticos de desempenho dos modelos também foram avaliados com o mesmo software.

4.5 MODELOS DINÂMICOS

Foram selecionados da literatura quatro perfis de crescimento de *Salmonella* em carne de frango em regimes de temperatura variável (LI et al., 2017). Os dados experimentais foram extraídos com o auxílio do software GetData Graph Digitizer. As expressões que correspondentes aos modelos secundários que apresentaram melhor desempenho foram

inseridos na equação diferencial correspondente do modelo primário que gerou melhor ajuste (Equações 1 e 2 para o modelo de Baranyi-Roberts, Equação 5 para o modelo de Huang e Equação 8 para o modelo de Robazza et al.). Em seguida, a equação diferencial resultante foi numericamente integrada usando o método numérico de Runge-Kutta de quarta ordem (RK4) para gerar a curva de crescimento. O modelo preditivo resultante foi avaliado através dos fatores accuracy and bias (AF e BF, respectivamente) e através do erro relativo médio dado pela Equação 20.

$$\text{ERM} = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_{\text{pred},i} - y_{\text{obs},i}}{y_{\text{obs},i}} \right|$$
(20)

A partir dos resultados obtidos foram realizadas algumas simulações para avaliar o efeito de um pequeno aumento da temperatura sobre o crescimento de *Salmonella* em carne de frango. O intuito destes cálculos foi simular situações típicas que ocorrem desde o processamento até o consumidor final.

5 RESULTADOS E DISCUSSÃO

Nesta seção, são apresentados os resultados obtidos após ajuste dos modelos primários, modelos secundários, modelos dinâmicos e, no final, são descritas algumas simulações realizadas a partir dos demais resultados obtidos.

5.1 MODELOS PRIMÁRIOS

A Tabela 10 do Apêndice A contém um sumário com os resultados obtidos para os parâmetros cinéticos μ_{max} e λ para os 250 ajustes realizados empregando os três modelos primários estudados. Por sua vez, as Tabelas 11 e 12 (Apêndice A) apresentam os valores dos índices estatísticos obtidos para os 250 ajustes e a Figura 13 (Apêndice B) mostra os gráficos obtidos para os ajustes realizados com os três modelos.

No que diz respeito aos valores de μ_{max} , uma análise detalhada dos dados da Tabela 1 permite concluir que o modelo de Baranyi-Roberts estimou valores maiores para a taxa máxima de crescimento específico (aproximadamente 56 % dos conjuntos de dados) em relação aos demais e que o modelo de Huang estimou valores menores para μ_{max} (cerca de 95 % dos conjuntos de dados) em relação aos demais. Portanto, o modelo de Huang subestima o valor de μ_{max} e a curva de crescimento obtida após o ajuste com este modelo é um pouco menos inclinada em relação aos demais. A Tabela 1 apresenta o número de ajustes para os quais o valor de μ_{max} foi maior e menor por modelo, respectivamente.

Maior μ_{max} Menor μ_{max} Baranyi-Roberts (BR)140 (56,0 %)3 (1,2 %)Huang (HU)6 (2,4 %)237 (94,8 %)Robazza et al. (RO)104 (41,6 %)10 (4,0 %)

Tabela 1 – Número de ajustes em que cada modelo prevê o maior e o menor valor de μ_{max} .

Fonte: Elaborada pela autora, 2018.

A Tabela 2 mostra o número de ajustes para os quais o valor de λ foi maior e menor por modelo, respectivamente. No que diz respeito à duração da fase *lag*, observa-se que o modelo de Baranyi-Roberts estima, em média, um maior valor para este parâmetro em relação aos demais, enquanto que o modelo de Robazza et al. prediz um valor menor. Esta discrepância pode ter ocorrido devido à diferença na definição deste parâmetro entre os diferentes modelos (Figuras 2 e 3). O valor pré-fixado para o parâmetro α (Figura 3) nos ajustes realizados foi de 0,135 (13,5 %) (ROBAZZA et al., 2017). Entretanto, para os conjuntos de dados utilizados neste estudo, é provável que o uso de um valor maior fornecesse valores de λ mais próximos dos resultados obtidos com os outros modelos.

Maior λ	Menor λ

Tabela 2 – Número de ajustes em que cada modelo prevê o maior e o menor valor de λ .

	Ivialor λ	
Baranyi-Roberts	133 (53,2 %)	63 (25,2 %)
Huang	54 (21,6 %)	35 (14,0 %)
Robazza et al.	63 (25,2 %)	152 (60,8 %)
Fonte: Elaborada pela autora, 2018.		

Uma análise dos gráficos da Figura 12 mostra que a transição da fase *lag* para a fase exponencial é mais abrupta no modelo de Huang em relação aos demais, cuja transição é bem mais suave, conforme já verificado em outros estudos (HUANG, 2010; HUANG et al., 2011). Esta transição abrupta pode explicar o valor mais baixo de μ_{max} obtido através do ajuste de

modelo de Huang para a grande maioria dos conjuntos de dados experimentais, uma vez que ela pode levar a uma menor inclinação da curva na fase exponencial gerando um menor valor para a taxa máxima de crescimento específico. As Figuras 4a e 4b apresentam gráficos com os valores da taxa máxima de crescimento específico e da duração da fase *lag* em função da temperatura obtidos através do ajuste dos três diferentes modelos primários. Devido à sobreposição das diferentes cores, é difícil observar diretamente o comportamento dos modelos nestas Figuras, mas é possível verificar na Figura 4b que os pontos verdes, os quais correspondem ao modelo de Robazza et al., geralmente correspondem a menores valores de λ em relação às outras cores (outros modelos).

Figura 4 – Valores de μ_{max} (a) e λ (b) em função da temperatura obtidos para cada modelo primário.

Fonte: Elaborada pela autora, 2018.

A Tabela 3 contém um sumário dos resultados obtidos para os índices estatísticos usados para comparar os diferentes modelos neste estudo. Verifica-se que o modelo de Huang apresentou um melhor desempenho para ajustar os dados experimentais em relação aos demais.

Tabela 3 – Índices estatísticos de melhor desempenho obtidos para cada modelo primário.

	AIC	BIC	AF	BF	RMSE	MAE
BR	61 (24,4 %)	60 (24,0 %)	136 (54,4 %)	41 (16,4 %)	58 (23,2 %)	61 (24,4 %)
HU	125 (50,0 %)	127 (50,8 %)	91 (36,4 %)	163 (65,2 %)	128 (51,2 %)	134 (52,6 %)
RO	64 (25,6 %)	63 (25,2 %)	23 (9,2 %)	46 (18,4 %)	64 (25,6 %)	55 (22,0 %)

Fonte: Elaborada pela autora, 2018.

É possível observar-se a partir dos dados da Tabela 3 que, em geral, o modelo de Huang gerou melhores ajustes para 5 dos 6 índices de desempenho considerados. A única discrepância foi para o fator accuracy (AF), para o qual o modelo de Baranyi-Roberts apresentou melhor desempenho. Uma possível explicação para esse fato é que o modelo de Huang previu de forma mais uniforme valores acima e abaixo dos dados experimentais enquanto que no caso do modelo de Baranyi-Roberts, a maior parte dos valores preditos foram superiores que os valores observados.

5.2 MODELOS SECUNDÁRIOS

Esta seção contém os resultados obtidos para a dependência da taxa máxima de crescimento específico e a duração da fase *lag* com a temperatura.

5.2.1 Taxa Máxima de Crescimento Específico

As Figuras 5, 6 e 7 apresentam os ajustes obtidos para μ_{max} em função da temperatura empregando os valores deste parâmetro estimados pelos modelos primários de Baranyi-Roberts, Huang e Robazza et al., respectivamente. Nestas figuras, a região azul-escuro corresponde ao intervalo de confiança de 95% e a região azul-claro corresponde ao intervalo de predição de 95%.

Figura 5 – Ajustes obtidos para os três modelos secundários empregando os parâmetros estimados com o modelo primário de Baranyi-Roberts.

Fonte: Elaborada pela autora, 2018.

Figura 6 – Ajustes obtidos para os três modelos secundários empregando os parâmetros estimados com o modelo primário de Huang.

Fonte: Elaborada pela autora, 2018.

Figura 7 – Ajustes obtidos para os três modelos secundários empregando os parâmetros estimados com o modelo primário de Robazza et al.

Fonte: Elaborada pela autora, 2018.

Os valores obtidos para os parâmetros ajustáveis para os três modelos secundários estão apresentados nas Tabelas 4, 5 e 6, respectivamente. Uma observação importante é que enquanto que para os modelos secundários de Ratkowsky et al. e de Huang, a função é expressa em termos de $\sqrt{\mu_{\text{max}}}$, a expressão correspondente ao modelo de Rosso et al. está em termos de μ_{max} . Todos os parâmetros do modelo de Rosso et al. têm significado biológico, enquanto que os demais apresentam dois parâmetros empíricos sem significado biológico (*b* e *c*) e que podem assumir qualquer valor. Para melhor comparar os modelos, os valores de μ_{oti} e T_{oti} foram estimados para os modelos de Ratkowsky et al. e de Huang através do cálculo do valor máximo das funções expressas nas Equações 10 e 11, respectivamente. Estes valores estão indicados nas Tabelas 4, 5 e 6 com um asterisco para distingui-los dos demais valores que foram obtidos após o ajuste dos dados.

empregados os valores de μ_{max} obtidos com o modelo primário de Barany Roberts.				
	Ratkowsky et al.	Huang	Rosso et al.	
$b (^{\circ}C^{-1} h^{-0.5})$	0,0426	0,1081	nc	
$c (^{\circ}C^{-1})$	0,5648	1,2544	nc	
T_{\min} (°C)	2,9350	6,5991	3,1559	

42,0161

38,8230*

1,4354*

0,1325

0,1924

-104,6232

-87,0159

Tabela 4 - Parâmetros obtidos após o ajuste de cada modelo secundário onde foram

Fonte: Elaborada pela autora, 2018.

 T_{max} (°C)

 $T_{\rm oti}$ (°C)

 μ_{oti} (h⁻¹)

MAE

RMSE

AIC

BIC

nc: Este parâmetro não está contido no modelo. *: Parâmetro calculado a partir dos demais.

43,6671

38,2798*

1,4339*

0,1289

0,1903

-110,1732

-92,5659

Tabela 5 - Parâmetros obtidos após o ajuste de cada modelo secundário onde foram empregados os valores de μ_{max} obtidos com o modelo primário de Huang.

	Ratkowsky et al.	Huang	Rosso et al.
$b (^{\circ}C^{-1} h^{-0.5})$	0,0282	0,0712	nc
$c (^{\circ}\mathrm{C}^{-1})$	1,5601	5,6318	nc
T_{\min} (°C)	2,4398	6,0694	3,5218
T_{\max} (°C)	41,5159	40,5102	40,2083
$T_{\rm oti}$ (°C)	38,9143*	39,5689 [*]	39,2379
μ_{oti} (h ⁻¹)	2,5521*	$0,\!9827^{*}$	1,0378
MAE	0,0801	0,0853	0,1124
RMSE	0,1186	0,1221	0,1978
AIC	-346,6047	-332,0701	-90,6652
BIC	-328,9974	-314,4628	-73,0578

Fonte: Elaborada pela autora, 2018.

nc: Este parâmetro não está contido no modelo. *: Parâmetro calculado a partir dos demais.

40,9004

38,5880

2,1590

0,2784

0,4650

336,5985

354,2058

	Ratkowsky et al.	Huang	Rosso et al.
$b (^{\circ}C^{-1} h^{-0.5})$	0,0451	0,1069	nc
$c (^{\circ}C^{-1})$	0,1863	0,5377	nc
T_{\min} (°C)	4,0903	6,9688	3,4241
T_{\max} (°C)	49,5967	44,5687	43,2334
$T_{\rm oti}$ (°C)	38,8048*	38,6790 [*]	38,5783
μ_{oti} (h ⁻¹)	1,3560*	1,3683*	1,9093
MAE	0,1150	0,1177	0,2360
RMSE	0,1699	0,1706	0,3797
AIC	-166,9283	-164,7072	235,2914
BIC	-149,3210	-147,0999	252,8987

Tabela 6 – Parâmetros obtidos após o ajuste de cada modelo secundário onde foram empregados os valores de μ_{max} obtidos com o modelo primário de Robazza et al.

Fonte: Elaborada pela autora, 2018.

nc: Este parâmetro não está contido no modelo. *: Parâmetro calculado a partir dos demais.

A partir das Tabelas 4, 5 e 6 verifica-se que o modelo de Rosso et al. apresentou desempenho inferior aos demais modelos secundários para todos os índices de desempenho considerados independentemente do modelo primário usado. Portanto, este modelo não foi utilizado para a elaboração do modelo dinâmico. Já quanto aos demais modelos secundários, observa-se um desempenho ligeiramente melhor para o modelo de Ratkowsky et al. em relação ao de Huang. Entretanto, o valor previsto para a temperatura mínima de crescimento da *Salmonella* pelo modelo de Huang (entre 6,07 e 6,96 °C) é mais próximo do valor de 6,7 °C, o qual é relatado na literatura como sendo o valor real (NEW ZEALAND GOVERNMENT, 2011b) do que o valor previsto pelo modelo de Ratkowsky et al. (entre 2,44 °C e 4,09 °C). Em relação à temperatura máxima de crescimento, os valores preditos pelos dois modelos (entre 40,44 e 44,57 °C para o modelo de Huang e entre são 41,52 °C e 49,60 °C para o modelo de Ratkowsky et al.) razoavelmente próximos do valor de 45,2 °C, que é aceito como real (NEW ZEALAND GOVERNMENT, 2011a). O mesmo vale para a temperatura ótima, já que todos os modelos resultaram em valores próximos do reportado na literatura que é de cerca de 37,0 °C (SPERANZA; CORBO; SINIGAGLIA, 2011).

Portanto, os dois modelos secundários com melhor desempenho (Ratkowsly et al. e Huang) foram selecionados para a modelagem em um regime dinâmico de temperaturas.
5.2.2 Duração da Fase Lag

Para modelar a dependência da fase de adaptação (*lag*) com a temperatura, foi usada a Equação 13. A Figura 8 apresenta os resultados obtidos para o parâmetro λ quando foram utilizados os valores de λ estimados pelos três modelos primários adotados no presente estudo (Tabela 9).

Fonte: Elaborada pela autora, 2018.

A Tabela 7 apresenta os resultados dos parâmetros obtidos e respectivas estatísticas de desempenho do modelo para os três ajustes. Como não estão disponíveis muitos modelos secundários para λ em função da temperatura, este modelo utilizado para a duração da fase *lag* foi baseado no modelo secundário de Ratkowsky et al. para a dependência de μ_{max} com a temperatura. Por essa razão, os parâmetros T_{min} e T_{max} não devem ser interpretados da mesma forma que na Seção 5.2.1 e sim como parâmetros empíricos.

Uma análise dos resultados apresentados na Tabela 7 mostra que dependendo do critério de desempenho empregado diferentes modelos primários fornecem um melhor ajuste dos dados. Se forem considerados o AIC e o BIC, o uso dos valores de λ obtidos com o modelo de Huang resulta em um melhor ajuste. Caso sejam considerados o MAE e o RMSE, o modelo de Robazza et al. fornece melhores resultados. Comparando os resultados da Tabela 7 com os dados apresentados na Tabela 3, conclui-se que o modelo primário que apresentou melhor desempenho no presente estudo foi o de Huang. Portanto, para a modelagem em um regime dinâmico de temperaturas, será utilizado o modelo primário de Huang, para a dependência da taxa máxima de crescimento específico serão utilizados dois

modelos: o de Ratkowsky et al e o de Huang e para reproduzir a dependência da duração da fase *lag* com a temperatura será empregada a Equação 13.

	Baranyi-Roberts	Huang	Robazza et al.
$b (^{\circ}\mathrm{C}^{-1} \mathrm{h}^{-0.5})$	0,0293	0,0276	0,0394
$c (°C^{-1})$	0,1252	0,1572	0,0401
T_{\min} (°C)	3,3689	3,6488	4,2827
T_{\max} (°C)	50,6514	49,6591	66,6500
MAE	0,1287	0,1334	0,1231
RMSE	0,1789	0,1860	0,1656
AIC	-99,2833	-355,8260	-179,5340
BIC	-81,6760	-338,2187	-161,9267

Tabela 7 – Parâmetros obtidos após o ajuste da função dada pela Equação 13 onde foram empregados os valores de λ obtidos com os três modelos primários.

Fonte: Elaborada pela autora, 2018.

5.3 REGIME DINÂMICO DE TEMPERATURAS

Neste estágio do trabalho, os modelos secundários obtidos para a taxa máxima de crescimento específico e a duração da fase *lag* foram inseridos na equação diferencial correspondente ao modelo primário de Huang (Equação 5). Como a expressão resultante não possui solução analítica, a solução foi obtida através do método numérico de Runge-Kutta de quarta ordem. Após as primeiras tentativas de solução numérica, verificou-se que a introdução do modelo secundário para a duração da fase *lag* não forneceu melhores resultados. Portanto, optou-se por retirar este modelo secundário e utilizou-se apenas o modelo secundário que descreve a dependência da taxa máxima de crescimento específico com a temperatura.

As Figuras 9, 10, 11 e 12 apresentam os resultados obtidos para as quatro curvas de crescimento obtidas em regimes dinâmicos de temperaturas considerando o modelo secundário de Ratkowsky et al. (Equação 10) e o de Huang (Equação 11), respectivamente. Os valores dos índices estatísticos de desempenho, AF e BF estão expressos na Tabela 8. Nota-se que, em geral, o fator bias (BF) foi melhor (mais próximo de 1) quando foi empregado o modelo secundário de Ratkowsky et al. e o fator accuracy (AF) foi melhor quando foi empregado o modelo secundário de Huang. Este comportamento é um reflexo que os resultados obtidos com o modelo de Ratkowsky et al. são mais equilibrados do que os

obtidos com o modelo de Huang, à medida que há uma menor diferença entre o número de estimativas superiores e inferiores quando o fator Bias é próximo de 1.

Figura 9 – Resultados obtidos para o primeiro perfil dinâmico de temperaturas usando o modelo secundário de a) Ratkowsky et al. e b) Huang.

Fonte: Elaborada pela autora, 2018.

Figura 10 – Resultados obtidos para o segundo perfil dinâmico de temperaturas usando o modelo secundário de a) Ratkowsky et al. e b) Huang.

Fonte: Elaborada pela autora, 2018.

Figura 11 – Resultados obtidos para o terceiro perfil dinâmico de temperaturas usando o modelo secundário de a) Ratkowsky et al. e b) Huang.

Fonte: Elaborada pela autora, 2018.

Figura 12 – Resultados obtidos para o quarto perfil dinâmico de temperaturas usando o modelo secundário de a) Ratkowsky et al. e b) Huang.

Fonte: Elaborada pela autora, 2018.

Também é possível verificar tanto através da Tabela 8 quanto das Figuras 10 e 11 que os resultados obtidos com os dois modelos secundários são muito similares para o segundo e o terceiro perfis de temperatura. As maiores diferenças foram obtidas para o quarto perfil de temperatura, o que pode ser atribuído à maior complexidade desse perfil (veja Figura 12), o

qual consiste de variações mais abruptas da temperatura, sendo empregados em alguns momentos valores da temperatura inferiores ao mínimo necessário para o crescimento da bactéria. Os erros observados variaram entre 4,0 e 10,0%, o que indica um desempenho satisfatório dado a complexidade do sistema.

Portanto, observou-se globalmente um desempenho ligeiramente melhor quando foi empregado o modelo secundário de Ratkowsky et al. Entretanto, o valor predito para a temperatura mínima de crescimento da *Salmonella* em carne de frango gerado com o modelo de Huang foi mais próximo do valor experimental observado. Levando-se em conta essas duas considerações, no presente estudo o modelo secundário de Huang foi considerado como sendo mais adequado para descrever o crescimento da *Salmonella s*ob um regime dinâmico com temperaturas baixas. Logo, nessas condições, o modelo matemático a seguir pode ser considerado como adequado para reproduzir o comportamento da bactéria:

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = \frac{[0,071(T(t)-6,069)]^{1.5}}{1+e^{-4(t-\lambda)}} (1-e^{y-y_{\mathrm{max}}}) \operatorname{com} y(0) = y_0$$
(21)

Tabela 8 – Índices estatísticos obtidos quando foram utilizados o modelo secundário de Ratkowsky et al. e o de Huang para os quatro perfis não-isotérmicos de temperatura.

Modelo Secundário	R	atkowsky e	et al.	Huang			
	AF	BF	ERM	AF	BF	ERM	
Perfil 1	1,065	1,014	6,076	1,084	1,021	7,806	
Perfil 2	1,040	0,989	4,059	1,040	0,986	4,142	
Perfil 3	1,044	0,980	4,530	1,044	0,976	4,559	
Perfil 4	1,067	1,071	13,750	1,101	0,967	10,435	

Fonte: Elaborada pela autora, 2018.

5.4 ALGUMAS SIMULAÇÕES

Uma vez que a Equação 21 foi validada para regimes não-isotérmicos de temperatura, ela pode ser empregada em simulações correspondendo a episódios de ligeiro abuso da temperatura durante o processamento e/ou armazenamento de carne de frango. Foram consideradas cinco situações assumindo pequenos incrementos da temperatura acima de 6,0 °C (lembrando que de acordo com o modelo secundário de Huang esta é a temperatura mínima para crescimento da *Salmonella*).

No primeiro cenário, assumiu-se uma temperatura inicial para a carne de frango de 6,0 °C, a qual permaneceu constante por 2 horas. Em seguida, a temperatura foi elevada para 7,0 °C à taxa de 0,5 °C/h, e permaneceu constante à 7,0 °C. No segundo cenário, a temperatura foi elevada de 6,0 para 8,0 °C à mesma taxa. Nos dois cenários seguintes, a temperatura final foi igual a 9,0 °C e 10,0 °C, respectivamente. Finalmente, foi incluído um quinto cenário no qual a temperatura foi elevada de 6,0 °C para 6,5 °C de modo equivalente aos cenários anteriores. Em todas as simulações, foram considerados dois níveis diferentes para a carga bacteriana inicial: 1 log UFC/g e 2 log UFC/g.

A Tabela 9 apresenta os tempos necessários para o aumento de 1 log UFC/g e 2 log UFC/g da população bacteriana. Observa-se que, de acordo com o modelo, os valores obtidos são praticamente independentes da população inicial de *Salmonella*.

Tabela 9 – Tempos necessários para o aumento de 1 ou 2 logaritmos da população de Salmonella em cinco diferentes cenários correspondendo a pequenos incrementos na temperatura, ΔT .

	Carga Inicial	l: 1,0 log UFC/g	Carga Final: 2.0 log UFC/g		
Incremento	1 log	2 log	1 log	2 log	
Perfil 5 ($\Delta T = 0.5^{\circ}C$)	96,7	188,3	96,8	188,5	
Perfil 1 ($\Delta T = 1^{\circ}C$)	41,2	76,3	41,3	76,6	
Perfil 2 ($\Delta T = 2^{\circ}C$)	25,7	43,7	25,8	43,8	
Perfil 3 ($\Delta T = 3^{\circ}C$)	22,1	34,8	22,1	34,9	
Perfil 4 ($\Delta T = 4^{\circ}C$)	21,0	31,1	21,1	31,1	

Fonte: Elaborada pela autora, 2018.

A partir dos resultados apresentados na Tabela 9, foram obtidas as seguintes expressões empíricas para o tempo necessário para o aumento da população bacteriana de 1 ou 2 logaritmos UFC/g em função do incremento da temperatura (na faixa entre 0,5 °C e 4,0 °C). Tais equações podem ser empregadas com relativa precisão para se avaliar o risco de contaminação de carne de frango com *Salmonella* após pequenos abusos na temperatura.

$$t_1 = \left(1,295 + \frac{0,117}{\Delta T}\right)^{10,785} \tag{22}$$

$$t_2 = \left(2,610 + \frac{1,254}{\Delta T}\right)^{3,208} \tag{23}$$

onde t_1 corresponde ao tempo (h) necessário para a população bacteriana aumentar de 1 log UFC/g, t_1 corresponde ao tempo (h) necessário para a população bacteriana aumentar de 2 log UFC/g e ΔT representa o aumento da temperatura (°C).

6 CONCLUSÕES

Neste estudo um modelo matemático empírico geral que descreve o crescimento de *Salmonella* em carne de frango foi desenvolvido e validado tanto para ambientes isotérmicos quanto ambientes não isotérmicos. O modelo foi obtido a partir de 250 conjuntos de dados de crescimento da bactéria em uma ampla faixa de temperaturas e não levou em consideração o comportamento de cepas individuais com o intuito de ser o mais geral possível. A sua validação indicou um erro médio que variou entre 4,0 e 10,0 % para diferentes regimes de temperatura variável.

Após a validação, foram feitas simulações a partir do modelo de forma a estimar o tempo necessário para a população bacteriana aumentar em 1 e 2 logaritmos em relação à contagem inicial. Cálculos dessa natureza são importantes porque situações de pequenos abusos da temperatura são eventos frequentes durante os diferentes estágios que a carne de frango está submetida até chegar ao consumidor final. Os resultados obtidos podem ser empregados para uma avaliação quantitativa do risco de contaminação e auxiliar no desenvolvimento de ferramentas de APPCC que levem em conta pequenos abusos de temperatura no produto.

REFERÊNCIAS

AKBAR, A.; ANAL, A.K. Prevalence and antibiogram study of Salmonella and Staphylococcus aureus in poultry meat. **Asian Pacific Journal of Tropical Biomedicine**, [S.l], v. 3, n. 2, p. 163-168, 2013.

ANSARI, N. et al. Aptasensors for quantitative detection of Salmonella Typhimurium. **Analytical Biochemistry**, [S.l], v. 533, p. 18-25, 2017.

ANTUNES, P. et al. Salmonellosis: the role of poultry meat. **Clinical Microbiology and Infection**, [S.l], v. 22, n. 2, p. 110-121, 2016.

ASSOCIAÇÃO BRASILEIRA DE PROTEÍNA ANIMAL. Relatório Anual. 2017. Disponível em: http://abpa-br.com.br/storage/files/3678c_final_abpa_relatorio_anual_2016_portugues_web_reduzido.pdf >. Acesso em: 04 abr. 2018.

BARANYI, J.; PIN, C.; ROSS, T. Validating and comparing predictive models. **International Journal of Food Microbiology**, [S.1], v. 48, p. 159-166, 1999.

BARANYI, J.; ROBERTS, T.A. A dynamic approach to predicting bacterial growth in food. **International Journal of Food Microbiology**, [S.1], v. 23, p. 277-294, 1994.

BARANYI, J.; ROBERTS, T.A. Mathematics of predictive food microbiology. **International Journal of Food Microbiology**, [S.1], v. 26, p. 199-218, 1995.

BARANYI, J.; ROBERTS, T.A.; MCCLURE, P. A non-autonomous differential equation to model bacterial growth. **Food Microbiology**, [S.1], v. 10, n. 1, p. 43-59, 1993.

BARANYI, J.; TAMPLIN, M.L. ComBase: A common database on microbial responses to food environments. **Journal of Food Protection**, [S.l], v. 67, n. 9, p. 1967-1971, 2004.

BOVILL, R. et al. Predictions of growth for *Listeria monocytogenes* and *Salmonella* during fluctuating temperature. **International Journal of Food Microbiology**, [S.1], v. 59, p. 157-165, 2000.

BOYCE, W.E.; DIPRIMA, R.C. Elementary Differential Equations and Boundary Value Problems. 8th Edition, Hoboken: John Wiley and Sons, 808p., 2005.

BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Unidade de Vigilância das Doenças de Transmissão Hídrica e Alimentar. Doenças Transmitidas por Alimentos no Brasil, 2015.

BRIZIO, A.P.D.R.; PRENTICE, C. Use of smart photochromic indicator for dynamic monitoring of the shelf life of chilled chicken based products. **Meat Science**, [S.I], v. 96, n. 3, p. 1219-1226, 2014.

CARRASCO, E.; MORALES-RUEDA, A.; GARCÍA-GIMENO, R.M. Cross contamination and recontamination by *Salmonella* in foods: A review. **Food Research International**, [S.1], v. 45, p. 545-556, 2012.

CENTER FOR DISEASES CONTROL. FoodNet 2015: Surveillance Report (Final Data). Disponível em https://www.cdc.gov/foodnet/pdfs/FoodNet-Annual-Report-2015-508c.pdf. Acesso em: 12 jul. 2018.

CHEN, D.; ZHAO, T.; DOYLE, M.P. Transfer of foodborne pathogens during mechanical slicing and their inactivation by levulinic acid-base sanitizer on slices. **Food Microbiology**, [S.l], v. 38, p. 263-269, 2014.

CHEN, I.-H. et al. Bacterial assessment of phage magnetoelastic sensors for Salmonella enterica Typhimurium detection in chicken meat. **Food Control**, [S.l], v. 71, p. 273-278, 2017.

CHEN, Z. et al. Detection of Salmonella and several common Salmonella serotypes in food by loop-mediated isothermal amplification method. **Food Science and Human Wellness**, [S.1], v. 4, n. 2, p. 75-79, 2015.

CINTRA, A.P.R. et al. Influence of cutting room temperature on the microbiological quality of chicken breast meat. **Arquivo Brasileiro de Medicina Veterinária e Zootecnia**, [S.l], v. 68, n. 3, p. 814-820, 2016.

DE BOER, E.; HAHNÉ, M. Cross-contamination with *Campylobacter jejuni* and *Salmonella* spp. from raw chicken products during food preparation. **Journal of Food Protection**, [S.1], v. 53, n. 12, p. 1067-1068, 1990.

DE MELO, A.A.M. et al. Microbiological quality and other characteristics of refrigerated chicken meat in contact with cellulose acetate-based film incorporated with rosemary essential oil. **Brazilian Journal of Microbiology**, [S.1], v. 43, n. 4, p. 1419-1427, 2012.

ELMAJDOUB, A. et al. Evaluation of boldenone as a growth promoter in broilers: safety and meat quality aspects. **Journal of Food and Drug Analysis**, [S.l], v. 24, n. 2, p. 284-292, 2016.

EUROPEAN FOOD SAFETY AUTHORITY. Scientific Opinion on Dietary Reference Values for protein. **EFSA Journal**, [S.I], v. 10, n. 2, p. 2557, 2012.

ERIAN, I.; PHILLIPS, C.J.C. Public Understanding and Attitudes towards Meat Chicken Production and Relations to Consumption. **Animals: An Open Access Journal from MDPI**, [S.l], v. 7, n. 3, p. 20-47, 2017.

EROL, I. et al. Serotype Distribution of Salmonella Isolates from Turkey Ground Meat and Meat Parts. **BioMed Research International**, [S.l], v. 2013, p. 1-5, 2013.

FACHMANN, M.S.R. et al. Detection of Salmonella enterica in Meat in Less than 5 Hours by a Low-Cost and Noncomplex Sample Preparation Method. **Applied and Environmental Microbiology**, [S.1], v. 83, n. 5, p. 03151–03216, 2017.

FARDSANEI, F. et al. Molecular characterization of Salmonella enterica serotype Enteritidis isolates from food and human samples by serotyping, antimicrobial resistance, plasmid profiling, (GTG) 5-PCR and ERIC-PCR. **New Microbes and New Infections**, [S.1], v. 14, p. 24-30, 2016.

GHOLLASI-MOOD, F. et al. Microbial and chemical spoilage of chicken meat during storage at isothermal and fluctuation temperature under aerobic conditions. **Iranian Journal of Veterinary Science and Technology**, [S.1], v. 8, n. 1, p. 38-46. 2017.

GRIJSPEERDT, K. Modelling the penetration and growth of bacteria in eggs. **Food Control**, [S.l], v. 12, n. 1, p. 7-11, 2001.

GRIJSPEERDT, K.; VANROLLEGHEM, P. Estimating the parameters of the Baranyi model for bacterial growth. **Food Microbiology**, [S.l], v. 16, n. 6, p. 593-605, 1999.

HUANG, L. Growth kinetics of Escherichia coli O157-H7 in mechanically-tenderized beef. **International Journal of Food Microbiology**, [S.l], v. 140, n. 1, p. 40-48, 2010.

HUANG, L. A new mechanistic growth model for simultaneous determination of lag phase duration and exponential growth rate and a new Belehdrádek-type model for evaluating the effect of temperature on growth rate. **Food Microbiology**, [S.1], v. 28, p. 770-776, 2011.

HUANG, L. Mathematical modeling and numerical analysis of the growth of non-O157 Shiga toxin-producing Escherichia coli in spinach leaves. **International Journal of Food Microbiology**, [S.1], v. 160, n. 1, p. 32-41, 2012.

HUANG, L.; HWANG, C.-A. Dynamic analysis of growth of *Salmonella* Enteritidis in liquid egg whites. **Food Control**, [S.1], v. 80, p. 125-130, 2017.

HUANG, L.; HWANG, C.-A.; PHILLIPS, J. Evaluating the effect of temperature on microbial growth rate – The Ratkowsky and Belehrádek type models. **Journal of Food Science**, [S.I], v. 76, n. 8, p. M547-M557, 2011.

HUSSAIN, J. et al. An overview of poultry industry in Pakistan. World's Poultry Science Journal, [S.l], v. 71, n. 4, p. 689–700, 2015.

JUNEJA, V. et al. Predictive model for growth of *Clostridium perfringens* during cooling of cooked uncured meat and poultry. **Food Microbiology**, [S.l], v. 28, n. 4, p. 791-795, 2011.

JUNEJA, V.; HUANG, L.; THIPPAREDDI, H. Predictive model for growth of *Clostridium perfringens* in cooked cured pork. **International Journal of Food Microbiology**, [S.1], v. 110, n. 1, p. 85-92, 2007.

JUNEJA, V. et al. Modeling the effect of temperature on growth of *Salmonella* in chicken. **Food Microbiology**, [S.1], v. 24, n. 4, p. 328-335, 2007.

KRISHNAN, K.R. et al. Evaluation and predictive modeling the effects of spice extracts on raw chicken meat stored at different temperatures. **Journal of Food Engineering**, [S.l], v. 166, p. 29-37, 2015.

KUSUMANINGRUM, H.D. et al. Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. **International Journal of Food Microbiology**, [S.I], v. 85, p. 227-236, 2003.

LANGSTON, S.W.; ALTMAN, N.S.; HOTCHKISS, J.H. Within and between sample comparisons of Gompertz parameters for *Salmonella enteritidis* and aerobic plate counts in chicken stored in air and modified atmosphere. **International Journal of Food Microbiology**, [S.1], v. 18, n. 1, p. 43-52, 1993.

LEE, M.-A. et al. Analysis of Consumers' Preferences and Price Sensitivity to Native Chickens. **Korean Journal for Food Science of Animal Resources**, [S.l], v. 37, n. 3, p. 469–476, 2017.

LI, M.; HUANG, L.; YUAN, Q. Growth and survival of Salmonella Paratyphi A in roasted marinated chicken during refrigerated storage: Effect of temperature abuse and computer simulation for cold chain management. **Food Control**, [S.l], v. 74, p. 17-24, 2017.

LI, M. et al. Evaluating growth models of Pseudomonas spp. in seasoned prepared chicken stored at different temperatures by the principal component analysis (PCA). **Food Microbiology**, [S.1], v. 40, p. 41-47, 2014.

LI, M. Y. et al. Comparison of mathematical models of lactic acid bacteria growth in vacuumpackaged raw beef stored at different temperatures. **Journal of Food Science**, v. 78, n. 4, p. M600-M604, 2013.

LUBER, P. Cross-contamination versus undercooking of poultry meats or eggs – Which risks need to be managed first? **International Journal of Food Microbiology**, [S.1], v. 134, n. 1-2, p. 21-28, 2005.

LYTOU, A.; PANAGOU, E.Z.; NYCHAS, G.-J.E. Development of a predictive model for the growth kinetics of aerobic microbial population on pomegranate marinated chicken breast fillets under isothermal and dynamic temperature conditions. **Food Microbiology**, [S.I], v. 55, p. 25-31, 2016.

MADIGAN, M.T. et al. Brock Biology of Microorganisms. Glenview – IL: Pearson Education, 2015, 1041p.

MARANGONI, F. et al. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: an Italian consensus document. **Food & Nutrition Research**, [S.1], v. 59, p. 27606, 2015.

MARK, N.M. et al. Diagnostic utility of food terminology: Culinary clues for the astute diagnostician. **The American Journal of Medicine**, [S.1], v. 128, n. 9, p. 933-935, 2015.

MASOUMBEIGI, H. et al. The environmental influences on the bacteriological quality of red and chicken meat stored in fridges. **Asian Pacific Journal of Tropical Biomedicine**, [S.l], v. 7, n. 4, p. 367-372, 2017.

MCDONALD, K.; SUN, D.-W. Predictive microbiology for the meat industry: a review. **International Journal of Food Microbiology**, [S.1], v. 52, n. 1-2, p. 1-27. 1999.

MCDONALD, K.; SUN, D.-W; KENNY, T. Comparison of the quality of cooked beef products cooled by vacuum cooling and by conventional cooling. **LWT – Food Science and Technology**, [S.1], v. 33, n. 1, p. 21-29. 2000.

MCMEEKIN, T.A. et al. Predictive microbiology theory and application: Is it all about rates? **Food Control**, [S.I], v. 29, n. 2, p. 290-299, 2013.

MEAD, P.S. et al. Food-related illness and death in the United States. **Emerging Infectious Diseases**, [S.I], v. 5, p. 607-625, 1999.

MENEGAS, L.Z. et al. Dry-fermented chicken sausage produced with inulin and corn oil: Physicochemical, microbiological, and textural characteristics and acceptability during storage. **Meat Science**, [S.1], v. 93, n. 3, p. 501-506, 2013.

MEZAROBA, M.E.P.C. et al. Estimativa da Vida Útil e dos Parâmetros de Crescimento de Bactérias Ácido-Lácticas em Filés de Peito de Frango Resfriados Embalados a Vácuo e com Atmosfera Modificada. **Boletim do CEPPA**, [S.1], v. 34, n. 1, p. 1-14, 2016.

MUNTHER, D. et al. Modeling cross-contamination during poultry processing: Dynamics in the chiller tank. **Food Control**, [S.1], v. 59, p. 271-281, 2016.

MURPHY, R.Y. et al. Inactivation of *Salmonella* and *Listeria* in ground chicken breast meat during thermal processing. **Journal of Food Protection**, [S.I], v. 62, n. 9, p. 980-985, 1999.

MURPHY, R.Y. et al. Thermal inactivation kinetics of *Salmonella* and *Listeria* in ground chicken breast meat and liquid medium. **Journal of Food Science**, [S.1], v. 65, n. 4, p. 706-710, 2000.

NASTASIJEVIC, I. et al. Contamination Routes of S. Infantis in Food Chain of Broiler Meat Production and its Significance for Public Health. **Procedia Food Science**, [S.1], v. 5, p. 254-257, 2015a.

NASTASIJEVIC, I. et al. Epizootiology and Control Measures for Salmonella in Pigs. **Procedia Food Science**, [S.1], v. 5, p. 312-315, 2015b.

NEW ZEALAND GOVERNMENT. Maximum Growth Temperatures of Foodbourne Pathogens and appropriate Temperatures for Hot Holding. MPI Technical Paper No: 2016/06. [S.l.] Prepared for the Ministry for Primary Industries by Dr J. Andrew Hudson (ESR), Lisa Olsen (MPI) and Dr Roger Cook (MPI), 2011a.

NEW ZEALAND GOVERNMENT. Minimum Growth Temperatures of Foodbourne Pathogens and Recommended Chiller Temperatures. MPI Technical Paper No: 2016/04. [S.I.] Prepared for the Ministry for Primary Industries by Dr J. Andrew Hudson (ESR), Lisa Olsen (MPI) and Dr Roger Cook (MPI), 2011b.

NISSEN, H. et al. Survival and growth of Escherichia coli O157:H7, Y. enterocolitica and Salmonella enteritidis on decontaminated and untreated meat. **International of Food Microbiology**, [S.1], v. 57, p. 291-298, 2001.

NYCHAS, G.-J.E. et al. Meat spoilage during distribution. **Meat Science**, [S.I], v. 78, n. 1-2, p. 77-89. 2008.

OLNOOD, C.G. et al. Use of Lactobacillus johnsonii in broilers challenged with *Salmonella* sofia. **Animal Nutrition**, [S.l], v. 1, n. 3, p. 203-212, 2015.

OSCAR, T.P. Development and validation of a tertiary simulation model for predicting the potential growth of *Salmonella typhimurium* on cooked chicken. **International Journal of Food Microbiology**, [S.1], v. 76, p. 177-190, 2002.

OSCAR, T.P. Predictive models for growth of *Salmonella typhimurium* DT104 from low and high initial density on ground chicken with a natural microflora. **Food Microbiology**, [S.l], v. 24, p. 640-651, 2007.

OSCAR, T.P. Neural Network Model for Thermal Inactivation of Salmonella Typhimurium to Elimination in Ground Chicken: Acquisition of Data by Whole Sample Enrichment, Miniature Most-Probable-Number Method. **Journal of Food Protection**, [S.1], v. 80, n. 1, p. 104-112, 2017.

PANAGOU, E.Z. et al. Modelling the effect of temperature and water activity on growth rate and growth/no growth interface of Byssochlamys fulva and Byssochlamys nivea. **Food Microbiology**, [S.I], v. 27, n. 5, p. 618-627, 2010.

PERRY-GAL, L. et al. Earliest economic exploitation of chicken outside East Asia: Evidence from the Hellenistic Southern Levant. **Proceedings of the National Academy of Sciences of the United States of America**, [S.1], v. 112, n. 32, p. 9849–9854, 2015.

PETRACCI, M.; CAVANI, C. Muscle Growth and Poultry Meat Quality Issues. **Nutrients**, [S.l], v. 4, n. 1, p. 1–12, 2012.

PIELAAT, A. et al. Phenotypic Behavior of 35 Salmonella Enterica Serovars Compared to Epidemiological and Genomic Data. **Procedia Food Science**, [S.1], v. 7, p. 53-58, 2016.

POPA, A.; DRAGHICI, M.; POPA, M. Consumer choice and food policy: A literature review. **Journal of Environmental Protection and Ecology**, [S.1], v. 12, n. 2, p.708-717, 2011.

POSSAS, A. et al. Application of predictive models to assess the influence of thyme essential oil on *Salmonella* Enteritidis behaviour during shelf-life of ready-to-eat turkey products. **International Journal of Food Microbiology**, [S.1], v. 240, p. 40-46, 2017.

POULTRYWORLD, 2017. Brazilian meat giants facing rotten meat scandal. Disponível em: http://www.poultryworld.net/Meat/Articles/2017/3/Brazilian-meat-giants-facing-rotten-meat-scandal-109011E/. Acesso em: 06 jun. 2018.

POULTRYWORLD, 2018. Brazil: Cover-up allegations about salmonela in chicken. Disponível em: http://www.poultryworld.net/Meat/Articles/2018/3/Brazilian-meat-scandal-Salmonella-in-chicken-cover-up-allegations-258593E/. Acesso em: 06 jun. 2018.

QUIÑONES, N.R.; AGUILAR, O.C.; GUERRERO, M.L.O. Estimation of the Risk Associated to Marketing of Swine Meat Contaminated with Salmonella spp.: Employing the William T. Fine Method. **Procedia Food Science**, [S.1], v. 7, p. 137-140, 2016.

R CORE TEAM. R: A language and environment for statistical computing. Viena, Áustria: R Foundation for Statistical Computing. Disponível em http://www.r-project.org, 2013>. Acesso em: 13 jan. 2017.

RATKOWSKY, D.A. et al. Relationship between temperature and growth rate of bacterial cultures. **Journal of Bacteriology**, [S.l], v. 149, n. 1, p. 1–5, 1982.

RATKOWSKY, D.A. et al. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. **Journal of Bacteriology**, [S.1], v. 154, n. 3, p. 1222-1226, 1983.

REUTERS, 2017a. Operation weak flesh takes bite out of Brazil's meat exporters. Disponível em: http://www.tinyurl.com/14u63sj. Acesso em: 06 jun. 2018.

REUTERS, 2017b. China, others lift ban on meat imports in boost for Brazil. Disponível em: http://www.tinyurl.com/ychn6nrz8>. Acesso em: 06 jun. 2018.

ROBAZZA, W.S. et al. Application of a model based on the Central Limit Theorem to predict growth of *Pseudomonas* spp. in fish meat. **Food Bioprocess and Technology**, [S.I], v. 10, p. 1685-1694, 2017.

ROBAZZA, W.S.; TELEKEN, J.T.; GOMES, G.A. Modelagem matemática do crescimento de micro-organismos em alimentos. **Tendências em Matemática Aplicada e Computacional**, [S.1], v. 11, n. 1, p. 101-110, 2010.

ROSSO, L. et al. Convenient model to describe the combined effects of temperature and pH on microbial growth. **Applied and Environmental Microbiology**, [S.1], v. 61, p. 610-616, 1995.

RUBINELLI, P. et al. Growth Characterization of Single and Double Salmonella Methionine Auxotroph Strains for Potential Vaccine use in Poultry. **Frontiers in Veterinary Science**, [S.1], v. 4, p. 103-109, 2017.

SILVA, N.B. et al. Modelling the growth of *Lactobacillus viridescens* under non-isothermal conditions in vacuum-packed sliced ham. **International Journal of Food Microbiology**, [S.1], v. 240, p. 97-101, 2017.

SMADI, H. et al. Growth and inactivation of Salmonella at low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media: Mixed effect meta-analysis. **Journal of Epidemiology and Global Health**, [S.1], v. 2, n. 4, p. 165-179, 2012.

SONG, S. et al. Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats. **Scientific Reports**, [S.1], v. 6, p. 20036, 2016.

SOUSA, C.B.P. et al. Haloarchaeal Gas Vesicle Nanoparticles Displaying Salmonella Antigens as a Novel Approach to Vaccine Development. **Procedia in Vaccinology**, [S.l], v. 9, p. 16-23, 2015.

SPERANZA, B.; CORBO, M.R.; SINIGAGLIA, M. Effects of nutritional and environmental conditions on *Salmonella* sp. biofilm formation. **Journal of Food Science**, [S.1], v. 76, n. 1, p. M12-M16, 2011.

SRINIVASAN, A. et al. Low-dose *Salmonella* infection evades activation of Flagellin-Specific CD4 T Cells. **Journal of Immunology**, [S.l], v. 173, n. 6, p. 4091-4099, 2004.

SUI, Z. et al. Changes in Meat/Poultry/Fish Consumption in Australia: From 1995 to 2011–2012. **Nutrients**, [S.1], v. 8, n. 12, p. 753-763, 2016.

SWINNEN, I.A.M. et al. Predictive modeling of the microbial lag phase: A review. **International Journal of Food Microbiology**, [S.1], v. 94, p. 137-159, 2004.

URFER, E. et al. Outbreak of Salmonella braenderup gastroenteritis due to contaminated meat pies: clinical and molecular epidemiology. **Clinical Microbiology and Infection**, [S.1], v. 6, n. 10, p. 536-542, 2000.

VAN DERLIDEN, E.; VAN IMPE, J.F. Modeling microbial kinetics as a function of temperature: Evaluation of dynamic experiments to identify the growth/inactivation interface. **Journal of Food Engineering**, [S.1], v. 108, n. 1, p. 201-210, 2012.

WALES, A.D.; ALLEN, V.M.; DAVIES, R.H. Chemical treatment of animal feed and water for the control of *Salmonella*. **Foodborne Pathogens and Disease**, [S.l], v. 7, n. 1, p. 3-15, 2010.

WANG, H. et al. Biofilm formation of *Salmonella* serotypes in simulated meat processing environments and its relationship to cell characteristics. **Journal of Food Protection**, [S.1], v. 76, n. 10, p. 1784-1789, 2013.

WIGLEY, P. Immunity to bacterial infection in the chicken. **Developmental & Comparative Immunology**, [S.l], v. 41, n. 3, p. 413-417, 2013.

XIONG, D. et al. One-Step PCR Detection of Salmonella Pullorum/Gallinarum Using a Novel Target: The Flagellar Biosynthesis Gene flhB. **Frontiers in Microbiology**, [S.l], v. 7, p. 1863, 2016.

YANG, H.; LI, Y.; JOHNSON, M.G. Survival and death of *Salmonella* Typhimurium and *Campylobacter jejuni* in processing water and on chicken skin during poultry scalding and chilling. **Journal of Food Protection**, [S.1], v. 94, n. 6, p. 770-776, 2001.

YOUNG, A.M.; PALMER, A.E. Methods to Illuminate the Role of Salmonella Effector Proteins during Infection: A Review. **Frontiers in Cellular and Infection Microbiology**, [S.l], v. 7, p. 363-374, 2017. YOUNG, I. et al. The application of knowledge synthesis methods in agri-food public health: Recent advancements, challenges and opportunities. **Preventive Veterinary Medicine**, [S.1], v. 113, n. 4, p. 339-355, 2014.

ZHAO, J. et al. Modeling and predicting the effect of temperature on the growth of *Proteus mirabilis* in chicken. **Journal of Microbiological Methods**, [S.1], v. 99, p. 38-43, 2014.

ZHU, J. et al. A risk assessment of salmonellosis linked to chicken meals prepared in households of China. **Food Control**, [S.1], v. 79, p. 279-287, 2017.

ZHU, S.; CHEN, G. Numerical solution of a microbial growth model applied to dynamic environments. **Journal of Microbiological Methods**, [S.1], v. 112, p. 76-82, 2015.

APÊNDICES

APÊNDICE A - RESULTADOS OBTIDOS ATRAVÉS DO AJUSTE DOS MODELOS PRIMÁRIOS

					λ (h)			μ_{max} (h ⁻¹)	
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
1	OSCAR, 2002	8	SalCkn_A7_8C_1	57,0704	38,5816	9,7972	0,1035	0,0305	0,0509
2	OSCAR, 2002	8	SalCkn_A5_8C_4	78,2135	66,4684	53,4659	0,0959	0,0426	0,0500
3	OSCAR, 2002	8	SalCkn_A5_8C_3	75,0763	69,7389	35,1051	0,0606	0,0393	0,0276
4	OSCAR, 2002	8	SalCkn_A5_8C_1	125,9783	90,4880	77,9873	0,0581	0,0110	0,0156
5	JUNEJA et al., 2007	10	Schicken10-2	22,0483	22,4996	36,1712	0,0732	0,0331	0,0756
6	JUNEJA et al., 2007	10	Schicken10-1	6,5885	8,2096	7,9637	0,0721	0,0332	0,0747
7	NISSEN et al., 2001	10	GMW_0278	6,3822	35,1719	18,8128	0,0965	0,0851	0,1031
8	NISSEN et al., 2001	10	GMW_0279	6,8590	42,7479	13,4745	0,0795	0,0710	0,0891
9	OSCAR, 2007	10	GCBM_96	25,2412	7,5203	12,4847	0,2208	0,0707	0,0839
10	OSCAR, 2007	10	GCBM_76	17,9147	23,5133	8,9145	0,0943	0,0885	0,0460
11	OSCAR, 2007	10	GCBM_66	30,1754	29,8023	14,1485	0,1533	0,1578	0,0785
12	OSCAR, 2007	10	GCBM_56	29,4213	36,0726	24,6463	0,0990	0,1169	0,0552
13	OSCAR, 2007	10	GCBM_28	40,4408	35,4575	20,3896	0,1082	0,0489	0,0862
14	OSCAR, 2007	10	GCBM_01	41,9863	62,4063	53,0270	0,0607	0,0958	0,0816
15	OSCAR, 2007	10	GCBM_37	42,6891	35,8948	29,9095	0,0987	0,0540	0,0619
16	BOVILL et al., 2000	10	M110	5,7605	30,0360	30,2270	0,0723	0,0603	0,0721
17	OSCAR, 2007	11	GCBM_47	18,6812	17,7526	6,9917	0,0898	0,0537	0,0714
18	OSCAR, 2007	11	GCBM_57	2,3939	9,2787	9,3886	0,0544	0,0338	0,0530
19	OSCAR, 2007	11	GCBM_67	35,1544	36,1690	28,3402	0,3353	0,2694	0,2312
20	OSCAR, 2007	11	GCBM_95	14,6354	17,8802	6,9506	0,1338	0,0775	0,1183

Tabela 1	0 – Valores	de $\lambda e \mu_{max}$	obtidos	após	ajuste	dos	três	modelos	primários	para	cada
	conjunt	o de dados es	tudado (C	Conti	nua).						

					λ (h)			$\mu_{\rm max}$ (h ⁻¹)	
Nro	Autores	$T\left(^{o}C\right)$	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
21	OSCAR, 2007	11	GCBM_105	18,4726	14,7626	6,0491	0,2518	0,1414	0,1061
22	OSCAR, 2007	11	GCBM_115	33,8500	21,9154	13,5521	0,1101	0,0464	0,0855
23	OSCAR, 2007	12	GCBM_02	24,1882	20,7066	14,8120	0,0933	0,0760	0,0677
24	OSCAR, 2007	12	GCBM_11	33,0632	42,7436	36,4171	0,0909	0,2437	0,0456
25	OSCAR, 2007	12	GCBM_20	61,2500	58,7486	50,1880	0,2088	0,1027	0,1421
26	OSCAR 2007	12	GCBM_29	19,0198	19,0347	25,5848	0,1459	0,0677	0,1559
27	OSCAR, 2007	12	GCBM_38	26,3646	22,1039	13,5759	0,1650	0,0763	0,1260
28	OSCAR, 2007	12	GCBM_48	26,3119	27,6027	11,5126	0,1521	0,0815	0,1539
29	OSCAR, 2007	12	GCBM_58	12,4569	14,9663	12,9763	0,0948	0,0617	0,0795
30	OSCAR, 2007	12	GCBM_68	19,7714	17,8712	7,6116	0,1722	0,0863	0,1524
31	OSCAR, 2007	12	GCBM_78	36,9675	28,4756	25,7770	0,1714	0,0581	0,1623
32	OSCAR, 2007	12	GCBM_97	8,7523	18,8459	8,5731	0,1035	0,0718	0,1027
33	LANGSTON et al., 1993	13	M283_Ss	22,0305	20,6498	11,2278	0,1504	0,0615	0,1604
34	LANGSTON et al., 1993	13	M286_Ss	22,0756	21,4174	34,7519	0,1500	0,0611	0,1642
35	LANGSTON et al., 1993	13	M287_Ss	22,0852	21,6964	33,1457	0,1499	0,0619	0,1637
36	LANGSTON et al., 1993	13	M285_Ss	21,9441	24,3010	45,1774	0,1496	0,0717	0,1650
37	LANGSTON et al., 1993	13	M288_Ss	22,2189	17,4416	10,9700	0,1512	0,0589	0,1636
38	et al., 1993	13	M290_Ss	22,0508	17,2585	23,5789	0,1500	0,0576	0,1614
39	LANGSTON et al., 1993	13	M291_Ss	22,1120	17,6454	11,0853	0,1500	0,0585	0,1599
40	et al., 1993	13	M289_Ss	21,8926	23,3906	33,0518	0,1494	0,0651	0,1609
41	0SCAR, 2002	14	SalCkn_A8_14C_2	13,7027	10,3918	21,0683	0,2166	0,0830	0,2317
42	OSCAR, 2002	14	SalCkn_A8_14C_1	16,1937	13,0274	18,8821	0,2664	0,0890	0,2380
43	OSCAR, 2002	14	SalCkn_A5_14C_1	14,5949	13,8042	9,0111	0,3747	0,2015	0,3083
44	OSCAR, 2002	14	SalCkn_A7_14C_1	14,6299	12,9331	6,6122	0,3278	0,1160	0,2956
45	2002	14	SalCkn_A6_14C_1	17,2279	13,8856	10,0517	0,1457	0,2467	0,1236

Tabela 10 – Valores de λ e μ_{max} obtidos após ajuste dos três modelos primários para cada conjunto de dados estudado (Continuação).

					λ (h)			μ_{max} (h ⁻¹)	
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
46	OSCAR, 2002	14	SalCkn_A5_14C_2	14,0634	13,8197	8,8557	0,3851	0,2207	0,3584
47	OSCAR, 2002	14	SalCkn_A4_14C_1	38,4368	33,5613	21,0961	0,1014	0,0354	0,0619
48	OSCAR, 2002	14	SalCkn_A4_14C_2	33,8330	23,8151	24,6380	0,1929	0,0509	0,0687
49	OSCAR, 2002	14	SalCkn_A3_14C_2	16,1065	10,8747	9,6814	0,1383	0,0445	0,1251
50	OSCAR, 2002	14	SalCkn_A3_14C_1	24,9065	21,4269	14,5982	0,2105	0,0870	0,1543
51	OSCAR, 2007	14	GCBM_03	7,5497	9,3918	8,9381	0,1595	0,0800	0,1796
52	OSCAR, 2007	14	GCBM_12	18,6875	16,4603	12,2267	0,3246	0,1519	0,2649
53	OSCAR, 2007	14	GCBM_21	14,3270	14,8127	20,5812	0,1910	0,0890	0,2027
54	OSCAR, 2007	14	GCBM_30	49,7043	39,4222	24,3523	0,1389	0,0486	0,1168
55	OSCAR, 2007	14	GCBM_39	52,4408	39,8142	31,9219	0,0937	0,0264	0,0897
56	OSCAR, 2007	14	GCBM_49	11,5001	13,7075	15,5374	0,1882	0,0889	0,2079
57	OSCAR, 2007	14	GCBM_59	2,2981	1,5478	4,2370	0,1139	0,0523	0,1219
58	OSCAR, 2007	14	GCBM_69	4,9002	10,0535	3,5685	0,1327	0,0643	0,1411
59	OSCAR, 2007	14	GCBM_108	0,8691	5,6886	4,1440	0,1174	0,0612	0,1308
60	JUNEJA et al., 2007	15	Schicken15-2	6,9164	6,5638	10,4972	0,2366	0,0998	0,2425
61	JUNEJA et al., 2007	15	Schicken15-1	8,6764	8,7126	4,8976	0,2624	0,1159	0,2713
62	OSCAR, 2002	16	SalCkn_A3_16C_1	15,8369	14,2450	5,4164	0,2163	0,0957	0,2094
63	OSCAR, 2002	16	SalCkn_A3_16C_2	14,2237	13,7219	13,6415	0,2206	0,1032	0,2170
64	OSCAR, 2002	16	SalCkn_A4_16C_2	7,1923	7,6713	5,3379	0,1496	0,0668	0,1405
65	OSCAR, 2002	16	SalCkn_A5_16C_1	10,9078	9,0336	18,9921	0,3863	0,1343	0,2453
66	OSCAR, 2002	16	SalCkn_A6_16C_1	10,7103	9,7448	8,9934	0,2316	0,0910	0,2453
67	OSCAR, 2002	16	SalCkn_A6_16C_2	16,3360	11,3243	13,6325	0,7115	0,1209	0,7395
68	OSCAR, 2002	16	SalCkn_A7_16C_1	12,2443	11,1541	9,5358	0,7965	0,3571	0,6170
69	OSCAR, 2002	16	SalCkn_A8_16C_2	9,6673	8,3815	4,6802	0,4152	0,1789	0,3572
70	OSCAR, 2002	16	SalCkn_A4_16C_1	13,6284	13,9813	10,7083	0,1831	0,0964	0,1659

Tabela 10 – Valores de λ e μ_{max} obtidos após ajuste dos três modelos primários para cada conjunto de dados estudado (Continuação).

					λ(h)			$\mu_{\rm max}$ (h ⁻¹)	
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
71	OSCAR, 2002	16	SalCkn_A5_16C_2	12,6809	10,6937	10,6333	0,4440	0,2565	1,1016
72	OSCAR, 2002	18	SalCkn_A3_18C_1	9,2600	7,7855	4,6177	0,4488	0,1814	0,3972
73	OSCAR, 2002	18	SalCkn_A3_18C_2	7,4500	6,7712	1,4550	0,3781	0,1628	0,3448
74	OSCAR, 2002	18	SalCkn_A4_18C_1	5,9300	6,0072	7,1290	0,2282	0,0987	0,2173
75	OSCAR, 2002	18	SalCkn_A4_18C_2	6,8970	5,7155	2,7623	0,2610	0,1068	0,2426
76	OSCAR, 2002	18	SalCkn_A5_18C_1	7,9757	7,6315	4,2468	0,9763	0,2092	0,5788
77	OSCAR, 2002	18	SalCkn_A6_18C_1	1,2285	11,1743	9,7579	0,9411	0,3241	0,5744
78	OSCAR, 2002	18	SalCkn_A7_18C_2	3,9722	4,1276	3,1213	3,0000	1,1808	2,7023
79	OSCAR, 2002	18	SalCkn_A8_18C_1	9,0805	7,1441	6,3864	0,7076	0,1807	0,5892
80	OSCAR, 2002	18	SalCkn_A8_18C_2	9,3823	7,9783	5,9735	0,6464	0,1946	0,5150
81	OSCAR, 2007	18	GCBM_109	1,0036	3,5439	1,4787	0,2402	0,1034	0,3509
82	OSCAR, 2007	18	GCBM_04	9,2293	9,1803	2,4992	0,3802	0,1742	0,4248
83	OSCAR, 2007	18	GCBM_13	1,9800	4,7074	3,2854	0,1290	0,0752	0,1254
84	OSCAR, 2007	18	GCBM_22	5,4909	7,1840	15,6501	0,2852	0,1356	0,3167
85	OSCAR, 2007	18	GCBM_31	13,7335	13,8718	19,8538	0,2577	0,1159	0,2884
86	OSCAR, 2007	18	GCBM_40	23,6978	20,6869	18,9917	0,1472	0,0677	0,1591
87	OSCAR, 2007	18	GCBM_50	4,1267	5,8812	9,3014	0,2098	0,1069	0,2380
88	OSCAR, 2007	18	GCBM_89	2,6288	4,2631	2,2853	0,2611	0,1230	0,2935
89	OSCAR, 2007	18	GCBM_99	8,2900	7,4845	2,0531	0,3764	0,1650	0,3925
90	JUNEJA et al., 2007	20	Schicken20-2	3,8706	3,2281	2,2449	0,5923	0,2262	0,6156
91	JUNEJA et al., 2007	20	Schicken20-1	3,4553	2,9585	2,4870	0,6037	0,2512	0,6349
92	OSCAR, 2002	20	SalCkn_A4_20C_1	1,8861	3,6667	5,3508	0,2445	0,1119	0,2371
93	OSCAR, 2002	20	SalCkn_A3_20C_1	7,7777	6,4558	7,8076	0,4047	0,1446	0,6921
94	OSCAR, 2002	20	SalCkn_A3_20C_2	8,6653	6,9861	7,7356	0,5191	0,1708	0,6899
95	OSCAR, 2002	20	SalCkn_A4_20C_2	4,6081	4,9095	5,3204	0,2856	0,1280	0,2736

Tabela 10 – Valores de λ e μ_{max} obtidos após ajuste dos três modelos primários para cada conjunto de dados estudado (Continuação).

					λ (h)			μ_{\max} (h ⁻¹)	
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
96	OSCAR, 2002	20	SalCkn_A5_20C_1	5,3624	3,8786	6,6774	0,6036	0,1809	0,5281
97	OSCAR, 2002	20	SalCkn_A5_20C_2	5,0878	4,4378	5,4483	0,5987	0,2264	0,1582
98	OSCAR, 2002	20	SalCkn_A6_20C_1	7,3225	7,3227	2,6949	0,5020	0,2350	0,5184
99	OSCAR, 2002	20	SalCkn_A7_20C_1	7,0731	5,9825	3,9491	0,6694	0,2650	0,6331
100	OSCAR, 2002	20	SalCkn_A7_20C_2	6,5196	4,8839	3,5918	0,7294	0,1925	0,5489
101	OSCAR, 2002	20	SalCkn_A8_20C_1	5,9958	5,8663	4,4575	0,4306	0,1976	0,4160
102	OSCAR, 2007	22	GCBM_05	4,2919	3,5700	1,2767	0,7676	0,3031	0,7836
103	OSCAR, 2002	22	SalCkn_A5_22C_1	4,9200	4,0941	2,7398	0,9516	0,3551	0,7635
104	OSCAR, 2007	22	GCBM_23	6,2209	5,5823	2,8281	0,4928	0,2070	0,5226
105	OSCAR, 2007	22	GCBM_32	3,5256	4,1851	5,2890	0,5523	0,2565	0,6115
106	OSCAR, 2007	22	GCBM_51	2,8774	3,6295	6,9321	0,5638	0,2645	0,6230
107	OSCAR, 2007	22	GCBM_61	6,3249	6,4389	2,5677	0,6449	0,2926	0,7877
108	OSCAR, 2007	22	GCBM_71	3,8602	4,5564	2,8539	0,5903	0,2808	0,6584
109	OSCAR, 2007	22	GCBM_81	4,7825	5,4632	1,3864	0,5379	0,2575	0,5996
110	OSCAR, 2007	22	GCBM_100	2,1713	2,9005	1,7195	0,4977	0,2370	0,5531
111	OSCAR, 2002	22	SalCkn_A7_22C_2	4,3220	3,6892	2,2003	0,9559	0,3508	0,9053
112	OSCAR, 2002	22	SalCkn_A7_22C_1	4,1656	3,7408	1,6940	0,8411	0,3201	0,8326
113	OSCAR, 2007	22	GCBM_41	2,8511	3,4436	4,2890	0,5967	0,2817	0,6422
114	OSCAR, 2002	24	SalCkn_A3_24C_2	4,0290	3,6404	1,0433	0,7621	0,3185	0,7129
115	OSCAR, 2002	24	SalCkn_A4_24C_1	4,6282	4,3382	2,4266	0,9960	0,5424	0,7059
116	OSCAR, 2002	24	SalCkn_A4_24C_2	4,6775	4,1564	1,8469	0,7532	0,3217	0,6101
117	OSCAR, 2002	24	SalCkn_A5_24C_1	3,1208	2,5419	1,7277	0,9286	0,3307	0,8919
118	OSCAR, 2002	24	SalCkn_A6_24C_2	5,1132	4,2470	9,3674	1,4330	0,3199	0,8584
119	OSCAR, 2002	24	SalCkn_A7_24C_1	3,9387	3,3051	1,7890	0,9979	0,3834	0,9695
120	OSCAR, 2002	24	SalCkn_A8_24C_1	2,3469	3,0972	3,5388	0,4720	0,2366	0,4443

Tabela 10 – Valores de λ e μ_{max} obtidos após ajuste dos três modelos primários para cada conjunto de dados estudado (Continuação).

					λ (h)			$\mu_{\rm max}$ (h ⁻¹)	
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
121	OSCAR, 2002	24	SalCkn_A3_24C_1	4,3778	3,7171	1,2881	0,6972	0,2616	0,7296
122	JUNEJA et al., 2007	25	Schicken25-1	2,7518	1,9569	2,3878	1,0000	0,3777	0,9286
123	JUNEJA et al., 2007	25	Schicken25-2	2,0034	2,0786	1,9396	0,9653	0,4280	1,0189
124	OSCAR, 2007	26	GCBM_15	1,6204	2,1330	1,4938	0,8865	0,4190	0,9828
125	OSCAR, 2007	26	GCBM_24	1,5482	2,3698	3,9779	0,7275	0,3396	0,7690
126	OSCAR, 2007	26	GCBM_33	1,0501	1,8603	1,8489	0,7187	0,3305	0,7681
127	OSCAR, 2007	26	GCBM_42	3,0380	3,0443	3,3761	1,0009	0,4386	1,0818
128	OSCAR, 2007	26	GCBM_52	2,6490	3,0050	3,3099	0,8614	0,3963	0,9319
129	OSCAR, 2007	26	GCBM_62	4,9353	5,5215	1,5401	1,0837	0,5168	1,2474
130	OSCAR, 2007	26	GCBM_72	2,3946	9,2785	7,8679	0,0544	0,0338	0,0530
131	OSCAR, 2007	26	GCBM_82	0,7918	1,3732	1,5284	0,7726	0,3596	0,8452
132	OSCAR, 2007	26	GCBM_91	3,6501	3,4718	8,3837	0,8845	0,3931	0,9898
133	OSCAR, 2007	26	GCBM_101	2,2519	2,6912	3,0838	0,8620	0,3927	0,9636
134	OSCAR, 2007	26	GCBM_111	3,5092	3,4524	1,7678	0,9435	0,4144	1,0598
135	OSCAR, 2007	26	GCBM_06	1,8082	2,3970	4,8404	0,7259	0,3521	0,7770
136	OSCAR, 2002	28	SalCkn_A4_28C_2	2,6726	2,4729	1,3022	0,8393	0,4016	0,7357
137	OSCAR, 2002	28	SalCkn_A5_28C_1	2,8231	2,3085	1,3585	1,4664	0,5204	1,2540
138	OSCAR, 2002	28	SalCkn_A2_28C_2	3,0004	2,8658	1,5290	1,4409	0,6835	1,3793
139	OSCAR, 2002	28	SalCkn_A5_28C_2	2,5473	2,2120	1,3837	1,8079	0,6912	1,5273
140	OSCAR, 2002	28	SalCkn_A6_28C_1	3,9881	3,5857	2,1685	1,1843	0,4559	1,2195
141	OSCAR, 2002	28	SalCkn_A7_28C_1	2,0233	1,9645	1,7013	0,9916	0,4002	1,0051
142	OSCAR, 2002	28	SalCkn_A2_28C_1	3,2018	2,9052	1,6618	1,3898	0,6079	1,3239
143	OSCAR, 2002	28	SalCkn_A7_28C_2	3,0498	2,6824	1,5162	1,4029	0,5052	1,3467
144	OSCAR, 2002	28	SalCkn_A1_28C_2	2,3700	2,1331	1,8170	1,1303	0,4440	1,1080
145	OSCAR, 2002	28	SalCkn_A8_28C_1	3,7209	3,0894	2,5839	1,9845	0,6871	1,4817

Tabela 10 – Valores de λ e μ_{max} obtidos após ajuste dos três modelos primários para cada conjunto de dados estudado (Continuação).

					λ (h)			μ_{\max} (h ⁻¹)	
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
146	OSCAR, 2002	28	SalCkn_A8_28C_2	3,1975	2,9198	1,7972	1,3525	0,4541	1,2624
147	OSCAR, 2002	28	SalCkn_A1_28C_1	2,7388	2,4070	1,0326	1,3037	0,5273	1,2046
148	OSCAR, 2002	28	SalCkn_A4_28C_1	2,2033	2,4789	1,9485	0,6960	0,3683	0,6130
149	JUNEJA et al., 2007	28	Schicken28-2	1,2965	1,4312	1,9173	1,1701	0,5392	1,2106
150	JUNEJA et al., 2007	28	Schicken28-1	1,0642	1,0752	3,7292	1,0771	0,4675	1,0926
151	OSCAR, 2007	30	GCBM_102	2,7442	2,4265	0,5579	1,4085	0,6201	1,7142
152	OSCAR, 2007	30	GCBM_92	3,4284	3,4296	1,2436	1,3046	0,5840	1,5774
153	OSCAR, 2007	30	GCBM_83	2,5149	2,8367	1,1977	1,3223	0,6247	1,5834
154	OSCAR, 2007	30	GCBM_73	2,7048	2,3268	2,5521	1,4651	0,5982	1,6900
155	OSCAR, 2007	30	GCBM_63	2,7025	2,7548	2,2174	1,2980	0,5880	1,5938
156	OSCAR, 2007	30	GCBM_53	0,4277	0,9697	1,3384	0,9647	0,4460	1,0938
157	OSCAR, 2007	30	GCBM_43	1,1832	1,6684	1,4310	1,0566	0,4936	1,1623
158	OSCAR, 2007	30	GCBM_34	1,1648	1,5561	1,5524	1,1147	0,5135	1,1749
159	OSCAR, 2007	30	GCBM_25	1,0301	1,4854	2,2635	1,0114	0,4771	1,1124
160	OSCAR, 2007	30	GCBM_16	1,4653	1,9356	2,2851	1,0656	0,5087	1,1131
161	OSCAR, 2007	30	GCBM_07	2,2988	2,6398	0,5998	1,4218	0,7140	1,6171
162	OSCAR, 2007	30	GCBM_112	1,5790	1,8493	1,9475	1,2190	0,5614	1,4242
163	JUNEJA et al., 2007	32	Schicken32-2	1,1954	1,1461	1,5643	1,5185	0,6549	1,5675
164	JUNEJA et al., 2007	32	Schicken32-1	1,6065	1,7526	1,2229	1,9360	0,9238	2,1267
165	OSCAR, 2002	32	SalCkn_A4_32C_1	2,3701	2,3643	2,3205	1,2265	0,6891	1,0661
166	OSCAR, 2002	32	SalCkn_A4_32C_2	2,5935	2,8249	2,3102	1,4920	0,9719	1,3505
167	OSCAR, 2002	32	SalCkn_A5_32C_1	2,5494	2,2320	1,5663	2,1377	0,8672	1,7114
168	OSCAR, 2002	32	SalCkn_A5_32C_2	2,3385	2,1802	1,4274	2,3209	1,0101	2,0314
169	OSCAR, 2002	32	SalCkn_A6_32C_1	2,2088	1,7426	0,4900	1,5122	0,5168	1,2198
170	OSCAR, 2002	32	SalCkn_A6_32C_2	2,2912	2,0963	1,0623	1,7660	0,8018	1,4727

Tabela 10 – Valores de λ e μ_{max} obtidos após ajuste dos três modelos primários para cada conjunto de dados estudado (Continuação).

					λ (h)			$\mu_{\rm max}$ (h ⁻¹)	
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
171	OSCAR, 2002	32	SalCkn_A7_32C_1	2,7046	2,4606	1,8433	2,3734	1,0019	1,9535
172	OSCAR, 2002	32	SalCkn_A3_32C_1	2,4701	2,1439	1,9128	1,3222	0,4638	1,6620
173	OSCAR, 2002	32	SalCkn_A3_32C_2	2,1749	1,9422	0,5027	1,2181	0,4707	1,2655
174	OSCAR, 2002	32	SalCkn_A7_32C_2	2,2159	2,0244	1,0460	1,7385	0,6907	1,5843
175	OSCAR, 2002	32	SalCkn_A8_32C_2	2,4572	2,2031	1,1240	1,5744	0,6948	1,2447
176	OSCAR, 2002	32	SalCkn_A8_32C_1	2,4746	2,0283	1,1133	1,5117	0,5327	1,2547
177	OSCAR, 2007	34	GCBM_54	1,6847	1,4160	1,3994	1,6492	0,6906	1,6649
178	OSCAR, 2007	34	GCBM_64	1,7236	1,2623	1,3400	1,7160	0,6976	1,9160
179	OSCAR, 2007	34	GCBM_74	1,8497	1,7707	1,8618	1,7182	0,7392	0,7627
180	OSCAR, 2007	34	GCBM_84	1,8133	2,0955	1,4096	1,5721	0,7123	1,8070
181	OSCAR, 2007	34	SalCkn_A4_34C_1	1,5684	1,6648	2,9692	1,0553	0,5645	0,9034
182	OSCAR, 2007	34	SalCkn_A4_34C_2	1,7816	1,8506	2,7070	1,2054	0,6709	1,0325
183	OSCAR, 2007	34	SalCkn_A5_34C_2	2,1541	2,0052	1,4889	3,0197	1,3199	1,6950
184	OSCAR, 2007	34	SalCkn_A5_34C_1	2,3450	2,1309	1,5527	2,6007	1,1365	2,1261
185	OSCAR, 2007	34	SalCkn_A6_34C_1	2,4706	2,4580	2,5894	2,3722	1,2961	2,0980
186	OSCAR, 2007	34	SalCkn_A7_34C_2	2,3389	2,1159	1,6340	2,8360	1,0616	2,5473
187	OSCAR, 2007	34	GCBM_103	3,0628	3,5715	3,4331	1,7070	0,8107	1,9502
188	OSCAR, 2007	34	GCBM_93	0,4401	0,5828	0,9167	1,3971	0,6282	1,1267
189	OSCAR, 2007	34	GCBM_44	0,8532	1,2298	1,9167	1,4096	0,6569	1,5132
190	OSCAR, 2007	34	GCBM_35	0,2804	0,9777	0,8940	1,1372	0,5522	1,2890
191	OSCAR, 2007	34	GCBM_26	1,6821	1,9382	1,9226	1,2804	0,5919	1,3751
192	OSCAR, 2007	34	GCBM_17	0,3123	1,2929	1,4842	1,3118	0,6485	1,5092
193	OSCAR, 2007	34	GCBM_08	1,3505	1,5989	1,9402	1,5015	0,7502	1,6990
194	OSCAR, 2007	34	GCBM_113	0,7881	0,9312	0,9836	1,4035	0,6213	1,5646
195	JUNEJA et al., 2007	35	Schicken35-2	3,8706	1,5909	1,4060	0,5923	0,8517	0,8822

Tabela 10 – Valores de λ e μ_{max} obtidos após ajuste dos três modelos primários para cada conjunto de dados estudado (Continuação).

					λ (h)			$\mu_{\rm max}$ (h ⁻¹)	
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
196	JUNEJA et al., 2007	35	Schicken35-2	1,2064	0,7035	1,5472	2,0664	0,7059	1,9264
197	JUNEJA et al., 2007	36	SalCkn_A7_36C_2	2,0244	1,8061	1,2336	3,0000	0,9739	2,2767
198	OSCAR, 2002	36	SalCkn_A4_36C_1	1,8541	1,8029	1,8266	1,1530	0,6276	0,9127
199	OSCAR, 2002	36	SalCkn_A7_36C_1	1,9657	1,8828	1,1853	3,0000	1,2137	2,3633
200	OSCAR, 2002	36	SalCkn_A6_36C_3	2,2481	2,0065	2,2916	2,6274	0,9613	2,5276
201	OSCAR, 2002	36	SalCkn_A5_36C_2	2,2561	1,9984	1,9499	3,9837	0,8175	2,0942
202	OSCAR, 2002	36	SalCkn_A4_36C_2	2,1833	1,9431	2,3298	1,1860	0,5922	0,9305
203	OSCAR, 2002	36	SalCkn_A3_36C_1	2,4822	2,1472	2,1408	1,6589	0,6043	1,5269
204	OSCAR, 2002	36	SalCkn_A8_36C_2	2,5645	2,5134	4,1388	3,9298	2,1119	2,8234
205	OSCAR, 2002	36	SalCkn_A3_36C_2	2,0157	1,7014	1,6755	1,6226	0,6416	1,5374
206	OSCAR, 2002	36	SalCkn_A8_36C_1	2,2578	2,0037	1,2176	2,0000	0,8664	1,6646
207	OSCAR, 2002	36	SalCkn_A6_36C_4	2,3044	2,1849	1,1813	2,4245	0,9614	1,7191
208	OSCAR, 2002	37	SalCkn_A4_37C_2	1,5233	1,6822	2,4463	0,9479	0,5160	0,7955
209	OSCAR, 2002	37	SalCkn_A4_37C_1	2,2929	2,1678	2,7130	1,3773	0,8127	1,0253
210	OSCAR, 2002	37	SalCkn_A5_37C_1	2,7442	1,8431	1,0279	1,0000	1,0545	1,8415
211	OSCAR, 2002	37	SalCkn_A5_37C_2	2,0205	2,0484	1,5216	4,0000	2,0797	3,6844
212	OSCAR, 2002	37	SalCkn_A3_37C_2	2,8030	2,5797	1,9196	2,2188	0,9576	2,0048
213	OSCAR, 2002	37	SalCkn_A3_37C_1	2,4181	2,2143	1,2724	1,7905	0,7683	1,6424
214	JUNEJA et al., 2007	37	Schicken37-2	0,4267	0,3837	0,9347	2,0357	0,9053	2,0735
215	JUNEJA et al., 2007	37	Schicken37-1	0,9535	0,9825	0,9844	2,1518	0,9572	2,2742
216	OSCAR, 2007	38	SalCkn_A6_38C_2	0,9388	0,9774	0,9648	1,0000	0,6569	1,2380
217	OSCAR, 2007	38	SalCkn_A7_38C_3	1,8837	1,8419	1,9447	3,0000	1,2755	2,5339
218	OSCAR, 2007	38	SalCkn_A7_38C_4	2,1077	2,0246	2,0736	3,0000	1,3217	2,8146
219	OSCAR, 2007	38	SalCkn_A8_38C_1	2,2079	1,9648	1,2646	2,0000	1,0669	1,5726
220	OSCAR, 2007	38	SalCkn_A7_38C_2	1,9649	1,8811	1,2880	3,0000	1,2906	2,8900

Tabela 10 – Valores de λ e μ_{max} obtidos após ajuste dos três modelos primários para cada conjunto de dados estudado (Continuação).

					λ (h)			$\mu_{\rm max}$ (h ⁻¹)	
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
221	OSCAR, 2007	38	SalCkn_A7_38C_1	1,8881	1,8119	1,2098	3,0000	1,3035	2,8977
222	OSCAR, 2007	38	SalCkn_A8_38C_2	2,3096	2,0594	1,3783	2,0000	1,0294	1,6647
223	OSCAR, 2007	38	SalCkn_A4_38C_2	2,1564	1,8804	1,3002	1,0000	0,5365	0,9570
224	OSCAR, 2007	38	SalCkn_A4_38C_1	2,5016	2,3974	0,7167	1,0000	0,6461	0,9884
225	OSCAR, 2002	38	SalCkn_A5_38C_2	1,6059	1,5860	0,6042	2,2505	1,1042	2,0498
226	OSCAR, 2002	38	SalCkn_A5_38C_1	2,0690	1,9483	1,1639	2,4126	1,0721	2,2634
227	OSCAR, 2002	38	SalCkn_A3_38C_2	2,2715	1,9910	0,9827	1,6394	0,6200	1,6231
228	OSCAR, 2002	38	SalCkn_A3_38C_1	2,3746	2,0688	1,1591	1,6934	0,6411	1,5556
229	OSCAR, 2002	38	SalCkn_A6_38C_1	1,5778	1,3604	0,5666	2,0468	0,9149	1,6619
230	OSCAR, 2002	40	SalCkn_A7_40C_1	1,6372	1,5331	1,5847	2,0000	1,0026	2,1918
231	OSCAR, 2002	40	SalCkn_A7_40C_2	1,6444	1,6158	1,5319	3,0000	1,2595	2,6169
232	OSCAR, 2002	40	SalCkn_A8_40C_1	1,9324	1,7365	0,7377	2,0000	0,8810	1,3369
233	OSCAR, 2002	40	SalCkn_A6_40C_1	1,6774	1,6079	0,9749	3,0000	1,7942	2,1483
234	OSCAR, 2002	40	SalCkn_A4_40C_1	2,4548	2,2085	0,4403	1,1124	0,5790	0,8303
235	OSCAR, 2002	40	SalCkn_A4_40C_2	2,6099	2,1121	1,0745	1,3808	0,5276	1,0326
236	OSCAR, 2002	40	SalCkn_A8_40C_2	2,1077	1,9255	1,1425	2,0000	1,1675	1,5613
237	OSCAR, 2002	40	SalCkn_A5_40C_1	1,6137	1,6185	1,6756	2,4173	1,1544	2,3792
238	OSCAR, 2002	40	SalCkn_A3_40C_1	2,7002	2,5350	1,8256	2,4549	1,1627	2,0792
239	OSCAR, 2007	40	GCBM_18	0,4193	1,1974	0,4214	2,0000	0,8110	1,7984
240	OSCAR, 2007	40	GCBM_104	1,3414	1,0190	1,3707	1,9628	0,8200	1,9192
241	OSCAR, 2007	40	GCBM_75	1,4965	1,6042	1,3073	1,9880	0,8819	2,2283
242	OSCAR, 2007	40	GCBM_65	1,4346	1,7190	1,8206	1,9282	0,8710	2,1396
243	OSCAR, 2007	40	GCBM_55	1,5677	1,7504	0,7755	2,0713	0,9517	2,1477
244	OSCAR, 2007	40	GCBM_45	2,5801	2,2686	1,8329	1,1492	0,4633	1,1377
245	OSCAR, 2007	40	GCBM_36	1,5878	1,8592	1,5235	1,3467	0,6348	1,4031

Tabela 10 – Valores de λ e μ_{max} obtidos após ajuste dos três modelos primários para cada conjunto de dados estudado (Continuação).

					λ (h)			$\mu_{\max}(h^{-1})$	
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
246	OSCAR, 2007	40	GCBM_27	1,1408	1,2448	1,3807	1,7332	0,7754	1,7601
247	OSCAR, 2007	40	GCBM_09	1,0225	1,2034	1,5455	1,7352	0,8317	2,0028
248	OSCAR, 2007	40	GCBM_114	1,2721	1,1836	0,9660	1,9010	0,8373	2,2536
249	OSCAR, 2007	40	GCBM_85	0,9924	1,2314	0,9474	1,8076	0,8272	2,0067
250	OSCAR, 2007	40	GCBM_94	1,4298	1,2370	1,5558	1,7663	0,7319	1,8364

Tabela 10 – Valores de λ e μ_{max} obtidos após ajuste dos três modelos primários para cada conjunto de dados estudado (Conclusão).

Fonte: Elaborada pela autora, 2018.

					RMSE			MAE	
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
1	OSCAR, 2002	8	SalCkn_A7_8C_1	0,1114	0,0997	0,1121	0,0859	0,0914	0,0860
2	OSCAR, 2002	8	SalCkn_A5_8C_4	0,0085	0,0203	0,0070	0,0061	0,0154	0,0047
3	OSCAR, 2002	8	SalCkn_A5_8C_3	0,1007	0,0886	0,1006	0,0911	0,0687	0,0910
4	OSCAR, 2002	8	SalCkn_A5_8C_1	0,3190	0,0378	0,0426	0,2843	0,0262	0,0341
5	JUNEJA et al., 2007	10	Schicken10-2	1,7652	0,1083	0,1046	1,5662	0,0900	0,0894
6	JUNEJA et al., 2007	10	Schicken10-1	0,1241	0,1713	0,1284	0,1127	0,1608	0,1134
7	NISSEN et al., 2001	10	GMW_0278	0,2033	0,3224	0,2231	0,1726	0,2645	0,1969
8	NISSEN et al., 2001	10	GMW_0279	0,2692	4,5982	0,2688	0,2145	4,4317	0,2141
9	OSCAR, 2007	10	GCBM_96	0,2588	3,6229	0,2583	0,2145	3,4406	0,2135
10	OSCAR, 2007	10	GCBM_76	0,2692	4,5982	0,2688	0,2145	4,4317	0,2141
11	OSCAR, 2007	10	GCBM_66	0,0818	0,0950	0,0807	0,0623	0,0723	0,0605
12	OSCAR, 2007	10	GCBM_56	0,1478	0,1605	0,1462	0,1345	0,1335	0,1326
13	OSCAR, 2007	10	GCBM_28	0,1300	0,1096	0,1303	0,1077	0,0938	0,1084
14	OSCAR, 2007	10	GCBM_01	0,3719	0,3792	0,3706	0,3156	0,3200	0,3143
15	OSCAR, 2007	10	GCBM_37	0,1370	0,1119	0,1369	0,1177	0,0937	0,1175
16	BOVILL et al., 2000	10	M110	0,2634	0,3096	0,2649	0,2088	0,2740	0,2131
17	OSCAR, 2007	11	GCBM_47	0,1976	0,2022	0,1971	0,1776	0,1677	0,1764
18	OSCAR, 2007	11	GCBM_57	0,2339	0,2174	0,2326	0,1996	0,1893	0,1978
19	OSCAR, 2007	11	GCBM_67	0,1596	0,1585	0,1603	0,1201	0,1098	0,1209
20	OSCAR, 2007	11	GCBM_95	0,2470	0,2297	0,2444	0,2056	0,1974	0,2124
21	OSCAR, 2007	11	GCBM_105	0,3141	0,3146	0,3138	0,2278	0,2269	0,2270
22	OSCAR, 2007	11	GCBM_115	0,1954	0,2010	0,1953	0,1556	0,1705	0,1556
23	OSCAR, 2007	12	GCBM_02	0,0711	0,0918	0,0708	0,0622	0,0776	0,0621
24	OSCAR, 2007	12	GCBM_11	0,0999	0,1156	0,1000	0,0886	0,1012	0,0878
25	OSCAR, 2007	12	GCBM_20	0,0798	0,0757	0,0785	0,0571	0,0571	0,0561

Tabela 11 – Valores de RMSE e MAE obtidos após o ajuste de cada modelo primário. (Continua).

				RMSE	MAE				
Nro	Autores	$T\left(^{o}C\right)$	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
26	OSCAR, 2007	12	GCBM_29	0,0876	0,0948	0,1024	0,0720	0,0692	0,0813
27	OSCAR, 2007	12	GCBM_38	0,1983	0,1835	0,1993	0,1570	0,1356	0,1583
28	OSCAR, 2007	12	GCBM_48	0,1996	0,1818	0,2041	0,1635	0,1521	0,1685
29	OSCAR, 2007	12	GCBM_58	0,1950	0,1981	0,1953	0,1699	0,1697	0,1704
30	OSCAR, 2007	12	GCBM_68	0,2138	0,1996	0,2166	0,1720	0,1578	0,1753
31	OSCAR, 2007	12	GCBM_78	0,2521	0,2240	0,2538	0,2111	0,1845	0,2111
32	OSCAR, 2007	12	GCBM_97	0,3544	0,3151	0,3420	0,2816	0,2641	0,2765
33	LANGSTON et al., 1993	13	M283_Ss	0,0021	3,8400	0,0334	0,0018	3,8092	0,0296
34	LANGSTON et al., 1993	13	M286_Ss	0,0024	3,7485	0,0337	0,0017	3,7211	0,0287
35	LANGSTON et al., 1993	13	M287_Ss	0,0021	3,7610	0,0336	0,0015	3,7306	0,0298
36	LANGSTON et al., 1993	13	M285_Ss	0,0023	0,0788	0,0411	0,0018	0,0727	0,0378
37	LANGSTON et al., 1993	13	M288_Ss	0,0116	0,0857	0,0351	0,0085	0,0753	0,0300
38	LANGSTON et al., 1993	13	M290_Ss	0,0026	0,0897	0,0372	0,0019	0,0782	0,0318
39	LANGSTON et al., 1993	13	M291_Ss	0,0017	0,0724	0,0394	0,0013	0,0621	0,0359
40	LANGSTON et al., 1993	13	M289_Ss	0,0026	0,0754	0,0320	0,0024	0,0634	0,0294
41	OSCAR, 2002	14	SalCkn_A8_14C_2	0,0138	0,0338	0,0120	0,0091	0,0224	0,0077
42	OSCAR, 2002	14	SalCkn_A8_14C_1	0,1216	0,0915	0,1243	0,0986	0,0779	0,1021
43	OSCAR, 2002	14	SalCkn_A5_14C_1	0,0358	0,0485	0,0364	0,0318	0,0359	0,0320
44	OSCAR, 2002	14	SalCkn_A7_14C_1	0,0659	0,0994	0,0339	0,0499	0,0759	0,0270
45	OSCAR, 2002	14	SalCkn_A6_14C_1	0,8467	1,0093	0,0189	0,7379	0,8256	0,0136
46	OSCAR, 2002	14	SalCkn_A5_14C_2	0,0199	0,0164	0,0189	0,0145	0,0100	0,0136
47	OSCAR, 2002	14	SalCkn_A4_14C_1	0,0711	0,0516	0,0726	0,0562	0,0434	0,0583
48	OSCAR, 2002	14	SalCkn_A4_14C_2	0,0296	0,0285	0,0290	0,0204	0,0189	0,0197
49	OSCAR, 2002	14	SalCkn_A3_14C_2	0,0829	0,0824	0,0829	0,0694	0,0602	0,0704
50	OSCAR, 2002	14	SalCkn_A3_14C_1	0,0369	0,0487	0,0361	0,0337	0,0422	0,0330

Tabela 11 – Valores de RMSE e MAE obtidos após o ajuste de cada modelo primário. (Continuação).

				RMSE	MAE				
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
51	OSCAR, 2007	14	GCBM_03	0,2247	0,2162	0,2341	0,1945	0,1612	0,2036
52	OSCAR, 2007	14	GCBM_12	0,1200	0,1118	0,1206	0,1005	0,0884	0,1005
53	OSCAR, 2007	14	GCBM_21	0,1315	0,0866	0,1331	0,1125	0,0718	0,1116
54	OSCAR, 2007	14	GCBM_30	0,1071	0,0829	0,1071	0,0931	0,0749	0,0923
55	OSCAR, 2007	14	GCBM_39	0,1071	0,8118	0,1071	0,0931	0,6132	0,0923
56	OSCAR, 2007	14	GCBM_49	0,3232	0,2870	0,3110	0,2738	0,2294	0,2502
57	OSCAR, 2007	14	GCBM_59	0,1611	0,1764	0,1705	0,1328	0,1417	0,1454
58	OSCAR, 2007	14	GCBM_69	0,2714	0,2843	0,2855	0,2334	0,2573	0,2547
59	OSCAR, 2007	14	GCBM_108	0,3377	0,3363	0,3380	0,2637	0,2457	0,2490
60	JUNEJA et al., 2007	15	Schicken15-2	0,1720	0,1815	0,1745	0,1337	0,1399	0,1450
61	JUNEJA et al., 2007	15	Schicken15-1	0,1281	0,1328	0,1412	0,0956	0,1157	0,1134
62	OSCAR, 2002	16	SalCkn_A3_16C_1	0,0525	0,0715	0,0604	0,0454	0,0549	0,0517
63	OSCAR, 2002	16	SalCkn_A3_16C_2	0,0127	0,0466	0,0211	0,0102	0,0410	0,0162
64	OSCAR, 2002	16	SalCkn_A4_16C_2	0,0449	0,0296	0,0460	0,0369	0,0248	0,0381
65	OSCAR, 2002	16	SalCkn_A5_16C_1	0,0394	0,0449	0,0390	0,0322	0,0369	0,0320
66	OSCAR, 2002	16	SalCkn_A6_16C_1	0,0636	0,0407	0,0727	0,0500	0,0315	0,0594
67	OSCAR, 2002	16	SalCkn_A6_16C_2	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
68	OSCAR, 2002	16	SalCkn_A7_16C_1	0,0764	0,0618	0,0783	0,0619	0,0504	0,0634
69	OSCAR, 2002	16	SalCkn_A8_16C_2	0,0117	0,0415	0,0127	0,0090	0,0375	0,0098
70	OSCAR, 2002	16	SalCkn_A4_16C_1	0,0927	0,0853	0,0946	0,0708	0,0712	0,0714
71	OSCAR, 2002	16	SalCkn_A5_16C_2	0,0927	0,0853	0,0946	0,0708	0,0712	0,0714
72	OSCAR, 2002	18	SalCkn_A3_18C_1	0,0626	0,0468	0,0649	0,0486	0,0332	0,0517
73	OSCAR, 2002	18	SalCkn_A3_18C_2	0,0700	0,0153	0,0374	0,0578	0,0135	0,0324
74	OSCAR, 2002	18	SalCkn_A4_18C_1	0,0853	0,0593	0,0876	0,0705	0,0419	0,0740
75	OSCAR, 2002	18	SalCkn_A4_18C_2	0,0037	0,0038	0,0911	0,0027	0,0028	0,0820

Tabela 11 – Valores de RMSE e MAE obtidos após o ajuste de cada modelo primário. (Continuação).

				RMSE	MAE				
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
76	OSCAR, 2002	18	SalCkn_A5_18C_1	0,0323	0,0320	0,0322	0,0198	0,0195	0,0194
77	OSCAR, 2002	18	SalCkn_A6_18C_1	0,0424	0,0448	0,0425	0,0277	0,0315	0,0296
78	OSCAR, 2002	18	SalCkn_A7_18C_2	0,0659	0,0603	0,0711	0,0478	0,0448	0,0520
79	OSCAR, 2002	18	SalCkn_A8_18C_1	0,1444	0,1304	0,1492	0,0961	0,0836	0,0985
80	OSCAR, 2002	18	SalCkn_A8_18C_2	0,0392	0,0690	0,0405	0,0246	0,0561	0,0254
81	OSCAR, 2007	18	GCBM_109	0,0752	3,6130	0,0840	0,0645	3,6062	0,0750
82	OSCAR, 2007	18	GCBM_04	0,1998	0,2044	0,1918	0,1389	0,1443	0,1398
83	OSCAR, 2007	18	GCBM_13	0,1387	0,1397	0,1406	0,1212	0,1153	0,1209
84	OSCAR, 2007	18	GCBM_22	0,1682	0,1174	0,1460	0,1300	0,0918	0,1135
85	OSCAR, 2007	18	GCBM_31	0,1778	0,1245	0,2094	0,1522	0,0911	0,1723
86	OSCAR, 2007	18	GCBM_40	0,0982	0,0900	0,1054	0,0783	0,0707	0,0833
87	OSCAR, 2007	18	GCBM_50	0,4590	0,4374	0,4624	0,3847	0,3801	0,4147
88	OSCAR, 2007	18	GCBM_89	0,3216	0,3105	0,3144	0,2906	0,2541	0,2657
89	OSCAR, 2007	18	GCBM_99	0,2857	0,3056	0,2825	0,2346	0,2542	0,2383
90	JUNEJA et al., 2007	20	Schicken20-2	0,2274	0,1773	0,1699	0,1631	0,1121	0,1084
91	JUNEJA et al., 2007	20	Schicken20-1	0,0935	0,0796	0,0656	0,0832	0,0562	0,0616
92	OSCAR, 2002	20	SalCkn_A4_20C_1	0,0813	0,0593	0,0829	0,0621	0,0422	0,0643
93	OSCAR, 2002	20	SalCkn_A3_20C_1	0,2249	0,2262	0,2266	0,1370	0,1301	0,1382
94	OSCAR, 2002	20	SalCkn_A3_20C_2	0,2097	0,2112	0,2115	0,1239	0,1190	0,1253
95	OSCAR, 2002	20	SalCkn_A4_20C_2	0,0938	0,0586	0,0983	0,0686	0,0482	0,0727
96	OSCAR, 2002	20	SalCkn_A5_20C_1	0,0696	0,0377	0,0716	0,0587	0,0315	0,0606
97	OSCAR, 2002	20	SalCkn_A5_20C_2	0,1653	0,1938	0,1170	0,1171	0,1417	0,0838
98	OSCAR, 2002	20	SalCkn_A6_20C_1	0,1333	0,1093	0,1411	0,1088	0,0924	0,1222
99	OSCAR, 2002	20	SalCkn_A7_20C_1	0,0314	0,0802	0,0293	0,0254	0,0660	0,0246

Tabela 11 – Valores de RMSE e MAE obtidos após o ajuste de cada modelo primário. (Continuação).

				RMSE	MAE				
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
100	OSCAR, 2002	20	SalCkn_A7_20C_2	0,0660	0,0461	0,0249	0,0529	0,0369	0,0199
101	OSCAR, 2002	20	SalCkn_A8_20C_1	0,1266	0,1312	0,1306	0,0938	0,1159	0,0985
102	OSCAR, 2007	22	GCBM_05	0,1971	0,1858	0,1917	0,1355	0,1457	0,1346
103	OSCAR, 2002	22	SalCkn_A5_22C_1	0,0666	0,0850	0,0665	0,0534	0,0596	0,0539
104	OSCAR, 2007	22	GCBM_23	0,1876	0,1718	0,1558	0,1523	0,1371	0,1310
105	OSCAR, 2007	22	GCBM_32	0,1291	0,0710	0,1173	0,1106	0,0618	0,0904
106	OSCAR, 2007	22	GCBM_51	0,2255	0,1507	0,1754	0,1904	0,1306	0,1477
107	OSCAR, 2007	22	GCBM_61	0,1957	0,2137	0,1497	0,1614	0,1699	0,1214
108	OSCAR, 2007	22	GCBM_71	0,2175	0,1894	0,2312	0,1686	0,1502	0,1783
109	OSCAR, 2007	22	GCBM_81	0,1791	0,1830	0,1812	0,1513	0,1509	0,1502
110	OSCAR, 2007	22	GCBM_100	0,2319	0,2133	0,2113	0,1814	0,1516	0,1572
111	OSCAR, 2002	22	SalCkn_A7_22C_2	3,9200	0,0285	0,0660	3,9114	0,0220	0,0603
112	OSCAR, 2002	22	SalCkn_A7_22C_1	0,0781	0,0606	0,0862	0,0612	0,0409	0,0698
113	OSCAR, 2007	22	GCBM_41	0,1716	0,1460	0,1734	0,1354	0,1137	0,1394
114	OSCAR, 2002	24	SalCkn_A3_24C_2	0,0683	0,0558	0,0735	0,0565	0,0442	0,0606
115	OSCAR, 2002	24	SalCkn_A4_24C_1	0,0179	0,0215	0,0184	0,0158	0,0167	0,0165
116	OSCAR, 2002	24	SalCkn_A4_24C_2	0,0539	0,0440	0,0549	0,0437	0,0366	0,0448
117	OSCAR, 2002	24	SalCkn_A5_24C_1	0,0360	0,0184	0,0432	0,0313	0,0162	0,0391
118	OSCAR, 2002	24	SalCkn_A6_24C_2	0,0225	0,0239	0,0220	0,0158	0,0159	0,0156
119	OSCAR, 2002	24	SalCkn_A7_24C_1	0,0429	0,0489	0,0493	0,0320	0,0450	0,0381
120	OSCAR, 2002	24	SalCkn_A8_24C_1	0,1741	0,1661	0,1726	0,1347	0,1324	0,1369
121	OSCAR, 2002	24	SalCkn_A3_24C_1	0,0446	0,0377	0,0424	0,0376	0,0294	0,0355
122	JUNEJA et al., 2007	25	Schicken25-1	0,0790	0,0835	0,0823	0,0663	0,0673	0,0705
123	JUNEJA et al., 2007	25	Schicken25-2	0,1042	0,0862	0,1143	0,0843	0,0618	0,0991
124	OSCAR, 2007	26	GCBM_15	0,2001	0,1371	0,1928	0,1652	0,1104	0,1463

Tabela 11 – Valores de RMSE e MAE obtidos após o ajuste de cada modelo primário. (Continuação).

				RMSE	MAE				
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
125	OSCAR, 2007	26	GCBM_24	0,2075	0,1566	0,1772	0,1704	0,1308	0,1487
126	OSCAR, 2007	26	GCBM_33	0,2297	0,6687	0,1601	0,1860	0,1425	0,1414
127	OSCAR, 2007	26	GCBM_42	0,2176	0,2210	0,2333	0,1809	0,1726	0,1987
128	OSCAR, 2007	26	GCBM_52	0,2455	0,1729	0,1882	0,1781	0,1216	0,1506
129	OSCAR, 2007	26	GCBM_62	0,1606	0,1585	0,1655	0,1342	0,1293	0,1398
130	OSCAR, 2007	26	GCBM_72	0,2339	0,2174	0,2326	0,1996	0,1893	0,1978
131	OSCAR, 2007	26	GCBM_82	0,3010	0,2825	0,2966	0,2379	0,2341	0,2402
132	OSCAR, 2007	26	GCBM_91	0,3131	0,2771	0,2627	0,2526	0,2166	0,2092
133	OSCAR, 2007	26	GCBM_101	0,3317	0,3112	0,2940	0,2624	0,2444	0,2171
134	OSCAR, 2007	26	GCBM_111	0,2944	0,2709	0,2554	0,2239	0,2129	0,1809
135	OSCAR, 2007	26	GCBM_06	0,2930	0,2701	0,2892	0,2145	0,1898	0,2257
136	OSCAR, 2002	28	SalCkn_A4_28C_2	0,0930	0,0429	0,0950	0,0874	0,0400	0,0879
137	OSCAR, 2002	28	SalCkn_A5_28C_1	0,0715	0,0877	0,0707	0,0522	0,0650	0,0522
138	OSCAR, 2002	28	SalCkn_A2_28C_2	0,0350	0,0559	0,0415	0,0326	0,0447	0,0377
139	OSCAR, 2002	28	SalCkn_A5_28C_2	0,0121	0,0228	0,0137	0,0089	0,0185	0,0110
140	OSCAR, 2002	28	SalCkn_A6_28C_1	0,0195	0,0386	0,0240	0,0137	0,0319	0,0209
141	OSCAR, 2002	28	SalCkn_A7_28C_1	0,0901	0,0676	0,0997	0,0803	0,0546	0,0902
142	OSCAR, 2002	28	SalCkn_A2_28C_1	0,0630	0,0887	0,0671	0,0564	0,0709	0,0588
143	OSCAR, 2002	28	SalCkn_A7_28C_2	0,0164	0,0313	0,0189	0,0114	0,0255	0,0136
144	OSCAR, 2002	28	SalCkn_A1_28C_2	0,0326	0,0264	0,0419	0,0248	0,0234	0,0346
145	OSCAR, 2002	28	SalCkn_A8_28C_1	0,0884	0,1142	0,0884	0,0771	0,1010	0,0783
146	OSCAR, 2002	28	SalCkn_A8_28C_2	0,0260	0,0471	0,0266	0,0195	0,0404	0,0219
147	OSCAR, 2002	28	SalCkn_A1_28C_1	0,0260	0,2001	0,0266	0,0195	0,1619	0,0219
148	OSCAR, 2002	28	SalCkn_A4_28C_1	0,1138	0,0677	0,1116	0,0966	0,0546	0,0920
149	JUNEJA et al., 2007	28	Schicken28-2	0,0923	0,1042	0,0780	0,0525	0,0574	0,0570

Tabela 11 – Valores de RMSE e MAE obtidos após o ajuste de cada modelo primário. (Continuação).

				RMSE	MAE				
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
150	JUNEJA et al., 2007	28	Schicken28-1	0,1055	0,0776	0,1083	0,0914	0,0541	0,0876
151	OSCAR, 2007	30	GCBM_102	0,0541	0,0508	0,0658	0,0456	0,0458	0,0571
152	OSCAR, 2007	30	GCBM_92	0,3261	0,3215	0,2593	0,2761	0,2540	0,2182
153	OSCAR, 2007	30	GCBM_83	0,4561	0,4941	0,4548	0,3524	0,3752	0,3625
154	OSCAR, 2007	30	GCBM_73	0,1763	0,1541	0,1645	0,1554	0,1250	0,1277
155	OSCAR, 2007	30	GCBM_63	0,2385	0,2552	0,2316	0,1527	0,1836	0,1669
156	OSCAR, 2007	30	GCBM_53	0,2336	0,1636	0,2269	0,1985	0,1345	0,2044
157	OSCAR, 2007	30	GCBM_43	0,3722	0,3254	0,2692	0,2772	0,2535	0,1835
158	OSCAR, 2007	30	GCBM_34	0,1872	0,1173	0,1375	0,1579	0,0945	0,1169
159	OSCAR, 2007	30	GCBM_25	0,2299	0,1617	0,1728	0,1831	0,1207	0,1374
160	OSCAR, 2007	30	GCBM_16	0,2363	0,1573	0,1846	0,1883	0,1290	0,1490
161	OSCAR, 2007	30	GCBM_07	0,2399	0,1753	0,1990	0,2005	0,1331	0,1547
162	OSCAR, 2007	30	GCBM_112	0,1194	0,1705	0,1345	0,0768	0,1300	0,0881
163	JUNEJA et al., 2007	32	Schicken32-2	0,3073	0,2940	0,2729	0,2484	0,2458	0,2225
164	JUNEJA et al., 2007	32	Schicken32-1	0,0794	0,0660	0,1011	0,0734	0,0557	0,0933
165	OSCAR, 2002	32	SalCkn_A4_32C_1	0,1981	0,1856	0,1791	0,1548	0,1480	0,1428
166	OSCAR, 2002	32	SalCkn_A4_32C_2	0,1174	0,1147	0,1196	0,1001	0,0808	0,1008
167	OSCAR, 2002	32	SalCkn_A5_32C_1	0,2600	0,2689	0,2611	0,1774	0,1733	0,1778
168	OSCAR, 2002	32	SalCkn_A5_32C_2	0,0443	0,0502	0,0438	0,0387	0,0441	0,0379
169	OSCAR, 2002	32	SalCkn_A6_32C_1	0,0167	0,0276	0,0158	0,0128	0,0224	0,0115
170	OSCAR, 2002	32	SalCkn_A6_32C_2	0,0970	0,1110	0,0936	0,0742	0,0715	0,0728
171	OSCAR, 2002	32	SalCkn_A7_32C_1	0,0438	0,0510	0,0439	0,0325	0,0354	0,0331
172	OSCAR, 2002	32	SalCkn_A3_32C_1	0,1318	0,1174	0,1312	0,1125	0,0964	0,1135
173	OSCAR, 2002	32	SalCkn_A3_32C_2	0,1052	0,0437	0,0453	0,0897	0,0336	0,0413
174	OSCAR, 2002	32	SalCkn_A7_32C_2	0,0519	0,0365	0,0596	0,0419	0,0294	0,0500

Tabela 11 – Valores de RMSE e MAE obtidos após o ajuste de cada modelo primário. (Continuação).
				RMSE	MAE				
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
175	OSCAR, 2002	32	SalCkn_A8_32C_2	0,0846	0,0666	0,0883	0,0702	0,0555	0,0740
176	OSCAR, 2002	32	SalCkn_A8_32C_1	0,0549	0,0459	0,0551	0,0474	0,0410	0,0478
177	OSCAR, 2007	34	GCBM_54	0,0424	0,0202	0,0437	0,0360	0,0163	0,0378
178	OSCAR, 2007	34	GCBM_64	0,3222	0,2930	0,2671	0,2550	0,2147	0,2081
179	OSCAR, 2007	34	GCBM_74	0,4447	0,4294	0,3731	0,3735	0,3391	0,3287
180	OSCAR, 2007	34	GCBM_84	0,2707	0,2630	0,2837	0,2130	0,2102	0,2303
181	OSCAR, 2007	34	SalCkn_A4_34C_1	0,5649	0,5544	0,5371	0,4038	0,4071	0,3772
182	OSCAR, 2007	34	SalCkn_A4_34C_2	0,0792	0,0463	0,0782	0,0702	0,0387	0,0678
183	OSCAR, 2007	34	SalCkn_A5_34C_2	0,1278	0,0921	0,1285	0,1078	0,0833	0,1097
184	OSCAR, 2007	34	SalCkn_A5_34C_1	0,0708	0,0622	0,0720	0,0497	0,0421	0,0507
185	OSCAR, 2007	34	SalCkn_A6_34C_1	0,0726	0,0644	0,0716	0,0549	0,0478	0,0550
186	OSCAR, 2007	34	SalCkn_A7_34C_2	0,0970	0,0899	0,0983	0,0699	0,0579	0,0719
187	OSCAR, 2007	34	GCBM_103	0,0444	0,0382	0,0446	0,0320	0,0265	0,0326
188	OSCAR, 2007	34	GCBM_93	0,2944	0,2803	0,2405	0,2449	0,2182	0,1826
189	OSCAR, 2007	34	GCBM_44	0,3537	0,3577	0,3785	0,2539	0,2319	0,2754
190	OSCAR, 2007	34	GCBM_35	0,1878	0,1355	0,1491	0,1622	0,1205	0,1252
191	OSCAR, 2007	34	GCBM_26	0,3085	0,2472	0,2267	0,2438	0,1907	0,1733
192	OSCAR, 2007	34	GCBM_17	0,2441	0,1922	0,2074	0,2087	0,1652	0,1819
193	OSCAR, 2007	34	GCBM_08	0,2759	0,2039	0,1945	0,2349	0,1640	0,1592
194	OSCAR, 2007	34	GCBM_113	0,2660	0,2751	0,2814	0,1929	0,1900	0,2149
195	JUNEJA et al., 2007	35	Schicken35-2	0,2655	0,1796	0,1185	0,2026	0,1197	0,0963
196	JUNEJA et al., 2007	35	Schicken35-2	0,2205	0,2067	0,2320	0,1639	0,1625	0,1823
197	JUNEJA et al., 2007	36	SalCkn_A7_36C_2	0,0092	0,0141	0,0093	0,0064	0,0099	0,0062
198	OSCAR, 2002	36	SalCkn_A4_36C_1	0,1120	0,0730	0,1125	0,0948	0,0617	0,0937
199	OSCAR, 2002	36	SalCkn_A7_36C_1	0,0826	0,0697	0,0853	0,0717	0,0619	0,0750

Tabela 11 – Valores de RMSE e MAE obtidos após o ajuste de cada modelo primário. (Continuação).

				RMSE	MAE				
Nro	Autores	$T(^{o}C)$	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
200	OSCAR, 2002	36	SalCkn_A6_36C_3	0,0438	0,0428	0,0441	0,0286	0,0301	0,0292
201	OSCAR, 2002	36	SalCkn_A5_36C_2	0,0211	0,0211	0,0208	0,0149	0,0148	0,0147
202	OSCAR, 2002	36	SalCkn_A4_36C_2	0,1017	0,0678	0,1024	0,0836	0,0568	0,0840
203	OSCAR, 2002	36	SalCkn_A3_36C_1	0,0686	0,0847	0,0657	0,0592	0,0680	0,0571
204	OSCAR, 2002	36	SalCkn_A8_36C_2	0,0798	0,0723	0,0801	0,0713	0,0625	0,0727
205	OSCAR, 2002	36	SalCkn_A3_36C_2	0,0558	0,0513	0,0582	0,0487	0,0442	0,0497
206	OSCAR, 2002	36	SalCkn_A8_36C_1	0,0226	0,0142	0,0232	0,0192	0,0119	0,0201
207	OSCAR, 2002	36	SalCkn_A6_36C_4	0,0560	0,0571	0,0557	0,0387	0,0419	0,0388
208	OSCAR, 2002	37	SalCkn_A4_37C_2	0,1132	0,0787	0,1112	0,1008	0,0711	0,0977
209	OSCAR, 2002	37	SalCkn_A4_37C_1	0,0767	0,0668	0,0764	0,0668	0,0594	0,0659
210	OSCAR, 2002	37	SalCkn_A5_37C_1	0,1069	0,1168	0,1089	0,0879	0,0882	0,0898
211	OSCAR, 2002	37	SalCkn_A5_37C_2	0,0147	0,0105	0,0156	0,0129	0,0069	0,0136
212	OSCAR, 2002	37	SalCkn_A3_37C_2	0,0573	0,0297	0,0587	0,0521	0,0283	0,0536
213	OSCAR, 2002	37	SalCkn_A3_37C_1	0,0573	0,0297	0,0587	0,0521	0,0283	0,0536
214	JUNEJA et al., 2007	37	Schicken37-2	0,0593	0,0594	0,0728	0,0479	0,0508	0,0620
215	JUNEJA et al., 2007	37	Schicken37-1	0,1332	0,1238	0,1504	0,0952	0,0954	0,1290
216	OSCAR, 2007	38	SalCkn_A6_38C_2	0,1604	0,1467	0,1627	0,1386	0,1289	0,1446
217	OSCAR, 2007	38	SalCkn_A7_38C_3	0,0503	0,0460	0,0516	0,0383	0,0391	0,0399
218	OSCAR, 2007	38	SalCkn_A7_38C_4	0,0503	0,0460	0,0516	0,0383	0,0391	0,0399
219	OSCAR, 2007	38	SalCkn_A8_38C_1	0,0295	0,0238	0,0288	0,0232	0,0206	0,0234
220	OSCAR, 2007	38	SalCkn_A7_38C_2	0,0944	0,0862	0,1004	0,0793	0,0760	0,0853
221	OSCAR, 2007	38	SalCkn_A7_38C_1	0,0789	0,0681	0,0865	0,0615	0,0527	0,0697
222	OSCAR, 2007	38	SalCkn_A8_38C_2	0,0284	0,0396	0,0289	0,0259	0,0353	0,0265
223	OSCAR, 2007	38	SalCkn_A4_38C_2	0,0536	0,0409	0,0537	0,0457	0,0321	0,0459
224	OSCAR, 2007	38	SalCkn_A4_38C_1	0,0159	0,0385	0,0162	0,0131	0,0361	0,0139

Tabela 11 – Valores de RMSE e MAE obtidos após o ajuste de cada modelo primário. (Continuação).

				RMSE	MAE				
Nro	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza
225	OSCAR, 2002	38	SalCkn_A5_38C_2	0,1175	0,0977	0,1171	0,1030	0,0830	0,1051
226	OSCAR, 2002	38	SalCkn_A5_38C_1	0,1413	0,1615	0,1412	0,1029	0,1251	0,1027
227	OSCAR, 2002	38	SalCkn_A3_38C_2	0,0365	0,0269	0,0439	0,0279	0,0233	0,0368
228	OSCAR, 2002	38	SalCkn_A3_38C_1	0,0459	0,0213	0,0508	0,0408	0,0176	0,0456
229	OSCAR, 2002	38	SalCkn_A6_38C_1	0,1143	0,0988	0,0155	0,0946	0,0841	0,0967
230	OSCAR, 2002	40	SalCkn_A7_40C_1	0,0488	0,0567	0,0548	0,0390	0,0470	0,0417
231	OSCAR, 2002	40	SalCkn_A7_40C_2	0,0470	0,0552	0,0501	0,0305	0,0471	0,0341
232	OSCAR, 2002	40	SalCkn_A8_40C_1	0,0706	0,0653	0,0709	0,0591	0,0499	0,0594
233	OSCAR, 2002	40	SalCkn_A6_40C_1	0,0840	0,0767	0,0821	0,0744	0,0699	0,0724
234	OSCAR, 2002	40	SalCkn_A4_40C_1	0,0448	0,0462	0,0452	0,0377	0,0386	0,0377
235	OSCAR, 2002	40	SalCkn_A4_40C_2	0,0465	0,0345	0,0464	0,0347	0,0230	0,0350
236	OSCAR, 2002	40	SalCkn_A8_40C_2	0,0521	0,0363	0,0519	0,0474	0,0340	0,0473
237	OSCAR, 2002	40	SalCkn_A5_40C_1	0,0510	0,0395	0,0568	0,0488	0,0280	0,0529
238	OSCAR, 2002	40	SalCkn_A3_40C_1	0,1606	0,1815	0,1618	0,1229	0,1370	0,1231
239	OSCAR, 2007	40	GCBM_18	0,5969	0,5702	0,5138	0,4838	0,4641	0,3999
240	OSCAR, 2007	40	GCBM_104	0,5969	0,5702	0,5138	0,4838	0,4641	0,3999
241	OSCAR, 2007	40	GCBM_75	0,1959	0,2031	1,0304	0,1698	0,1762	0,8501
242	OSCAR, 2007	40	GCBM_65	0,2467	0,2437	0,1889	0,2123	0,2045	0,1550
243	OSCAR, 2007	40	GCBM_55	0,3447	0,3078	0,2959	0,2872	0,2464	0,2484
244	OSCAR, 2007	40	GCBM_45	0,2093	0,1585	0,1773	0,1325	0,1192	0,1283
245	OSCAR, 2007	40	GCBM_36	0,2700	0,1994	0,2372	0,2400	0,1745	0,2084
246	OSCAR, 2007	40	GCBM_27	0,2415	0,1876	0,2064	0,2021	0,1480	0,1742
247	OSCAR, 2007	40	GCBM_09	0,1934	0,1622	0,1813	0,1580	0,1151	0,1517
248	OSCAR, 2007	40	GCBM_114	0,4936	0,4776	0,4191	0,3915	0,3814	0,3444

Tabela 11 – Valores de RMSE e MAE obtidos após o ajuste de cada modelo primário. (Continuação).

				RMSE	MAE						
)	Autores	T (°C)	ID ComBase	Baranyi	Huang	Robazza	Baranyi	Huang	Robazza		
)	OSCAR, 2007	40	GCBM_85	0,2837	0,2559	0,2403	0,2298	0,2046	0,1863		
)	OSCAR, 2007	40	GCBM_94	0,3744	0,3258	0,2850	0,2877	0,2371	0,2315		
250 05CAR, 40 GCBM_94 0,3744 0,3258 0,2850 0,2877 0,2371 0,2315											

Tabela 11 – Valores de RMSE e MAE obtidos após o ajuste de cada modelo primário. (Conclusão).

Fonte: Elaborada pela autora, 2018.

		AIC			BIC			AF			BF	
Nro	Bar	Hua	Rob	Bar	Hua	Rob	Bar	Hua	Rob	Bar	Hua	Rob
1	-2,4110	-4,1869	-2,3058	-2,0138	-3,7897	-1,9086	1,0007	1,0210	1,1094	1,0006	0,9997	1,0017
2	-23,4821	-14,7874	-25,4570	-25,4350	-16,7403	-27,4098	1,0000	1,0032	1,0052	1,0000	1,0000	1,0000
3	-0,5143	-2,0569	-0,5339	-1,5555	-3,0982	-1,5751	1,0006	1,0156	1,0119	1,0005	0,9998	1,0015
4	-18,7492	-15,9997	-14,3106	-19,7904	-16,2702	-14,5811	1,0002	1,0068	1,0477	1,0001	1,0000	1,0003
5	-19,9373	-23,4449	-18,6366	-20,2078	-23,7153	-18,9070	1,0002	1,0028	1,0314	1,0001	1,0000	1,0001
6	-3,1697	-1,2516	-1,7398	-3,4401	-1,5221	-2,0102	0,9999	1,0165	1,0951	1,0001	1,0001	1,0013
7	7,9075	13,4430	9,0277	6,8663	12,4018	7,9864	1,0004	1,0570	1,0212	1,0008	0,9974	1,0044
8	13,8709	15,0571	13,9143	12,8297	14,0159	12,8731	1,0038	1,0649	1,0376	1,0038	0,9966	1,0129
9	12,3420	13,2953	12,3167	14,3315	15,2847	14,3062	1,0922	1,2665	1,0691	1,0903	0,9661	1,0917
10	11,6102	12,3447	11,5693	14,0347	14,7692	13,9938	1,0258	1,1242	1,0326	1,0227	0,9878	1,0258
11	2,0767	0,6004	2,0462	4,5012	3,0249	4,4707	1,0463	1,1603	1,0434	1,0422	0,9813	1,0464
12	-1,2095	-1,6075	-3,1060	1,2151	1,2173	-0,2812	1,0224	1,1296	1,1310	1,0192	0,9880	1,0205
13	-19,8046	-28,0217	-19,7221	-13,9143	-22,1314	-13,8317	1,0011	1,0218	1,0580	1,0009	0,9996	1,0011
14	-13,3838	31,5616	30,4564	-8,9319	37,4518	36,3466	1,0010	1,0682	1,1612	1,0008	0,9972	1,0064
15	-8,1954	-14,6692	-8,2230	-4,3325	-10,8062	-4,3601	1,0012	1,0225	1,0674	1,0011	0,9996	1,0013
16	13,0542	18,8727	13,2536	17,5061	23,3245	17,7055	1,0022	1,0562	1,0927	1,0021	0,9981	1,0026
17	5,9467	6,4126	5,9010	7,4596	7,9255	7,4140	1,0129	1,0873	1,1226	1,0115	0,9944	1,0131
18	9,1866	7,4349	9,0534	11,6112	9,8594	11,4779	1,0415	1,1354	1,1370	1,0396	0,9838	1,0387
19	0,8248	1,1860	0,7963	2,8143	3,1755	2,7857	0,4458	1,12700	1,0305	0,7813	0,9848	1,0351
20	10,4938	8,7465	10,2422	12,9183	11,1710	12,6667	1,0276	1,1519	1,0404	1,0276	0,9795	1,0120
21	16,7703	16,2986	16,7292	19,1949	18,7231	19,1538	1,0886	1,2044	1,0724	1,0969	0,9339	1,0904
22	4,4412	9,3519	4,4249	7,2659	12,1766	7,2496	1,0518	1,1835	1,0922	1,0452	0,9873	1,0504
23	7,8732	10,4958	7,5728	12,5954	15,2180	12,2950	1,0021	1,0388	1,0760	1,0019	0,9989	1,0021
24	-8,0898	-5,9195	-8,2333	-3,6380	-1,4676	-3,7814	1,0014	1,0309	1,0702	1,0012	0,9993	1,0014
25	-43,2738	-41,4676	-44,0522	-37,3836	-35,5774	-38,1619	1,0005	1,0162	1,0332	1,0004	0,9997	1,0005
26	-34,7068	-31,2251	-27,8429	-29,2516	-25,7699	-22,3877	1,0003	1,0124	1,0359	1,0003	1,0001	1,0005
27	2,8386	0,0439	3,0231	7,2905	4,4958	7,4749	1,0023	1,0309	1,0854	1,0020	0,9991	1,0023
28	3,0631	-0,2883	3,8671	7,5150	4,16360	8,3190	1,0052	1,0454	1,1322	1,0044	0,9984	1,0054
29	4,8240	5,2011	4,8558	7,2485	7,6257	7,2803	1,0125	1,0966	1,0235	1,0108	0,9947	1,0128
30	7,0246	5,3803	7,3439	9,4492	7,8048	9,7684	1,0306	1,1119	1,1047	1,0274	0,9913	1,0336
31	10,9833	8,1460	11,1456	13,4079	10,5705	13,5702	1,0194	1,0959	1,0269	1,0173	0,9926	1,0208
32	17,6330	15,2822	16,9175	19,1459	16,7951	18,4305	1,0831	1,1792	1,0171	1,0869	0,9631	1,0264
33	-198,6122	-57,4461	-77,1438	-19,3157	-51,9909	-71,6886	1,0000	1,0085	1,0138	1,0000	1,0000	1,0001
34	-63,6545	-13,3181	-21,5508	-63,2572	-12,9209	-21,1536	1,0000	1,0094	1,0138	1,0000	0,9999	1,0001
35	-65,7352	-11,9327	-21,6083	-65,3380	-11,5355	-21,2111	1,0000	1,0100	1,0142	1,0000	0,9999	1,0001
36	-64,6283	-7,9561	-18,3561	-64,2311	-7,5589	-17,9589	1,0000	1,0132	1,0148	1,0000	1,0008	1,0008
37	-32,5553	-8,1190	-17,0303	-32,8257	-8,3894	-17,3007	1,0000	1,0087	1,0136	1,0000	1,0001	1,0001
38	-44,5952	-5,9016	-12,4754	-45,6364	-6,9428	-13,5166	1,0000	1,0089	1,0148	1,0000	1,0002	1,0001
39	-59,2302	-7,7948	-15,4206	-59,5007	-8,0652	-15,6910	1,0000	1,0103	1,0163	1,0000	1,0003	1,0001
40	-53,3685	-9,0812	-18,3224	-53,6390	-9,3517	-18,5928	1,0000	1,0089	1,0132	1,0000	0,9999	1,0001
41	-47,3515	-29,3725	-50,0531	-45,8385	-27,8596	-48,5402	1,0002	1,0048	1,0042	1,0002	1,0000	1,0000
42	-1,0029	-5,5677	-0,6631	-0,6057	-5,1705	-0,2659	1,0007	1,0169	1,0511	1,0007	0,9998	1,0009
43	-20,5516	-15,7315	-20,3094	-20,1544	-15,3343	-19,9122	1,0000	1,0068	1,0152	1,0000	1,0000	1,0001

Tabela 12 – Valores de AIC, BIC, AF e BF obtidos após o ajuste de cada modelo primário (Continua).

Tabela 12 – Valores de AIC, BIC, AF e BF obtidos após o ajuste de cada modelo primário (Continuação).

		AIC			BIC			AF			BF	
Nro	Bar	Hua	Rob	Bar	Hua	Rob	Bar	Hua	Rob	Bar	Hua	Rob
44	-20,5516	-26,5666	-24,9117	-20,1544	-24,5772	-22,4871	1,0000	1,0060	1,0213	1,0000	1,0000	1,0002
45	-24,9488	-27,7103	-25,7244	-25,2192	-27,9807	-25,9949	1,0002	1,0028	1,0086	1,0001	1,0000	1,0000
46	-17,2683	-30,4099	-16,5752	-17,5388	-30,6803	-16,8456	1,0001	1,0025	1,0150	1,0001	1,0000	1,0001
47	-13,8897	-8,1824	-14,0650	-14,1602	-7,7852	-12,5521	1,0002	1,0179	1,0311	1,0002	0,9999	1,0003
48	-15,2124	-15,6754	-14,6157	-16,2536	-16,7166	-14,8862	1,0001	1,0056	1,0259	1,0001	1,0000	1,0002
49	-7,1369	-7,2433	-3,5482	-6,7397	-6,8461	-4,5894	1,0003	1,0122	1,0312	1,0003	0,9999	1,0003
50	-20,1071	-15,6538	-20,4194	-19,7099	-15,2565	-20,0222	1,0001	1,0092	1,0173	1,0001	1,0000	1,0001
51	7,0390	5,4884	8,6806	12,0176	10,4670	13,6592	1,0018	1,0229	1,0780	1,0014	0,9996	1,0015
52	-12,9167	-10,7106	-12,8298	-9,0538	-6,8477	-8,9669	1,0007	1,0216	1,0509	1,0006	0,9998	1,0008
53	-13,1739	-29,0520	-12,7237	-8,4517	-24,3298	-8,0015	1,0011	1,0130	1,0526	1,0008	0,9998	1,0010
54	-23,9734	-22,8228	-10,5334	-18,7508	-20,8333	-7,7087	1,0007	1,0113	1,0491	1,0006	0,9999	1,0010
55	-19,3558	-28,5643	-19,3298	-14,9040	-24,1125	-14,8780	1,0006	1,0170	1,0478	1,0005	0,9998	1,0006
56	23,8886	18,1837	22,0489	29,7788	24,0740	27,9391	1,0168	1,0586	1,1073	1,0117	0,9945	1,0067
57	0,2301	2,4195	1,5936	2,6547	4,8440	4,0182	1,0037	1,0531	1,0148	1,0037	1,0026	1,0096
58	12,5212	13,5495	13,6382	14,5107	15,5390	15,6276	1,0274	1,1411	1,1331	1,0250	0,9842	1,0307
59	16,6690	16,5846	16,6873	18,1819	18,0975	18,2002	1,0143	1,0789	1,0207	1,0121	0,9934	1,0107
60	2,4899	3,6757	2,8138	4,4794	5,6652	4,8032	1,0007	1,0287	1,0713	1,0009	0,9996	1,0015
61	-3,9854	-3,2063	-1,8440	-1,9959	-1,2168	0,1455	1,0008	1,0237	1,0550	1,0006	0,9998	1,0009
62	-14,4425	-9,5020	-12,2096	-14,0453	-9,1048	-11,8124	1,0000	1,0098	1,0232	1,0018	1,0000	1,0002
63	-37,1666	-16,3583	-29,0093	-36,7694	-15,9611	-28,6121	1,0000	1,0079	1,0065	1,0002	1,0000	1,0000
64	-13,5724	-19,3990	-13,2542	-13,8429	-19,6694	-13,5246	1,0002	1,0067	1,0235	1,0002	1,0000	1,0002
65	-33,5564	-15,1860	-8,2920	-31,1319	-15,4564	-7,3059	1,0001	1,0079	1,0374	1,0001	1,0000	1,0005
66	-8,7137	-19,0308	-8,2920	-8,9842	-18,6336	-7,3059	1,0004	1,0072	1,0374	1,0004	0,9999	1,0005
67	-65,5357	-173,7062	-72,5185	-66,5769	-174,7474	-73,5597	1,0000	1,0000	1,0001	1,0000	1,0000	1,0000
68	-8,4352	-11,8473	-8,0565	-8,0380	-11,4501	-7,6593	1,0002	1,0091	1,0256	1,0002	0,9999	1,0002
69	-32,3981	-14,6916	-31,2681	-32,6686	-14,9621	-31,5385	1,0000	1,0075	1,0049	1,0000	1,0000	1,0000
70	-5,3504	-6,6876	-5,0262	-4,9532	-6,2904	-4,6290	1,0005	1,0164	1,0380	1,0004	0,9998	1,0005
71	-5,3504	-20,4391	-24,6681	-4,9532	-21,4803	-24,2709	1,0001	1,0033	1,0141	1,0001	1,0000	1,0001
72	-8,9226	-12,9920	-8,4261	-9,1930	-13,2625	-8,6966	1,0002	1,0079	1,0275	1,0002	1,0004	1,0003
73	-17,8564	-28,6496	-16,1218	-18,1269	-28,9201	-16,3922	1,0000	1,0030	1,0162	1,0000	1,0000	1,0001
74	-4,5896	-9,6838	-4,2300	-4,8600	-9,9542	-4,5005	1,0005	1,0086	1,0402	1,0004	0,9999	1,0005
75	-14,4558	-16,8398	-14,5193	-14,7263	-17,1103	-14,7898	1,0002	1,0059	1,0200	1,0001	1,0000	1,0001
76	-20,5516	9,1233	-30,3096	-20,1544	8,0821	-28,7967	1,0000	1,0331	1,0101	1,0000	0,9992	1,0001
77	-15,5984	-16,9798	-17,8257	-15,2012	-16,5826	-17,4285	1,0002	1,0086	1,0185	1,0001	0,9999	1,0002
78	-8,2182	-9,4438	-7,1378	-8,4887	-9,7142	-7,4082	1,0000	1,0101	1,0273	1,0000	0,9999	1,0003
79	-1,0029	-2,2274	-3,5356	-0,6057	-1,8301	-0,3403	1,0002	1,0162	1,0450	1,0001	0,9998	1,0010
80	-10,5363	-8,8952	-54,3763	-10,1391	-9,9364	-49,9244	1,0000	1,0098	1,0109	1,0000	1,0000	1,0001
81	10,5163	9,7078	-2,6975	10,2458	9,4373	-3,7387	1,0043	1,0725	1,0782	1,0029	0,9900	1,0056
82	2,7211	3,5896	1,1796	7,4433	8,3118	5,9017	1,0014	1,0269	1,0612	1,0012	0,9997	1,0014
83	2,7211	-13,0618	-12,7940	7,4433	-7,8392	-7,5714	1,0009	1,0235	1,0590	1,0008	0,9997	1,0010
84	-6,0088	-21,8333	-12,2182	-0,5536	-16,3781	-6,7630	1,0023	1,0167	1,0513	1,0015	0,9994	1,0009
85	-2,9501	-17,9261	3,9344	2,2726	-12,7035	9,1570	1,0027	1,0193	1,0911	1,0000	0,9993	1,0026
86	-22,4694	-25,6082	-19,9273	-18,0176	-21,1564	-15,4754	1,0007	1,0179	1,0488	1,0006	0,9997	1,0009

		AIC			BIC			AF			BF	
Nro	Bar	Hua	Rob	Bar	Hua	Rob	Bar	Hua	Rob	Bar	Hua	Rob
87	25,3661	24,2076	25,5430	27,7906	26,6322	27,9675	1,0296	1,1076	1,3164	1,0229	0,9900	1,0224
88	16,9990	16,5501	16,8722	20,1942	19,7454	20,0675	1,0683	1,1633	1,1491	1,0551	0,9761	1,0798
89	12,9930	14,2024	12,7890	13,9792	15,1885	13,7751	1,0244	1,1496	1,1314	1,0206	0,9935	1,0432
90	-11,8257	-13,0783	2,9284	-9,8362	-12,0922	4,4414	1,0001	1,0120	1,0462	1,0000	0,9999	1,0009
91	-13,6861	-10,0139	-13,4916	-12,6999	-9,0278	-12,5055	1,0004	1,0130	1,0315	1,0000	1,0001	1,0003
92	-7,4504	-12,5047	-7,1318	-7,0532	-12,1075	-6,7346	1,00076	1,0107	1,0418	1,0006	0,9998	1,0006
93	-12,6278	-19,2332	8,2886	-12,2306	-18,8360	11,1133	1,0002	1,0059	1,0600	1,0002	1,0000	1,0017
94	-20,4214	-14,6697	5,9353	-20,0242	-14,2725	9,4755	1,0001	1,0087	1,0549	1,0001	1,0000	1,0015
95	-5,1542	-12,6864	-4,4089	-4,7570	-12,2892	-4,0117	1,0008	1,0120	1,0457	1,0007	0,9998	1,0009
96	-7,4442	-16,0188	-7,0455	-7,7146	-16,2893	-7,3160	1,0003	1,0074	1,0331	1,0002	1,0000	1,0003
97	-11,5453	-14,3419	-6,0453	-11,8157	-14,6124	-5,5763	1,0001	1,0076	1,0003	1,0001	1,0000	1,0255
98	0,4643	-2,7132	1,3675	0,8615	-2,3160	1,7648	1,0012	1,0209	1,0646	1,0010	0,9996	1,0012
99	-22,6848	-7,6785	-23,7960	-22,2875	-7,2813	-23,3988	1,0001	1,0131	1,0126	1,0001	1,0000	1,0000
100	-12,4623	-6,6109	-12,7311	-14,4151	-8,5637	-14,6839	1,0000	1,0090	1,0111	1,0000	1,0000	1,0000
101	-12,4623	0,2078	0,1320	-14,4151	0,6050	0,5292	1,0005	1,0210	1,0404	1,0005	0,9998	1,0006
102	1,7959	-0,5750	0,6801	6,7745	4,4037	5,6588	1,0009	1,0233	1,0490	1,0008	0,9996	1,0009
103	-10,6353	-8,2736	-10,6627	-10,2380	-7,8764	-10,2655	0,9874	1,0110	1,0266	0,9947	0,9999	1,0002
104	-0,6820	-4,3837	-8,4967	4,5406	0,8389	-3,2741	1,0008	1,0238	1,0551	1,0008	0,9999	1,0008
105	-16,3855	-41,4727	-20,4171	-11,1629	-36,2501	-15,1945	1,0016	1,0106	1,0424	1,0010	0,9998	1,0007
106	7,3294	-8,0029	-2,2354	12,0516	-3,2807	2,4868	1,0103	1,0313	1,0107	1,0066	0,9972	1,0023
107	5,0424	7,7569	-0,4058	7,8671	10,5816	2,4190	1,0212	1,1273	1,1242	1,0211	0,9941	1,0271
108	7,2263	3,6359	8,8176	10,0511	6,4606	11,6424	1,0263	1,0921	1,0299	1,0223	0,9889	1,0173
109	0,3645	1,0591	0,7415	4,2275	4,9220	4,6044	1,0055	1,0509	1,1229	1,0048	0,9989	1,0057
110	8,9755	6,9702	6,7420	11,4000	9,3947	9,1665	1,0056	1,0375	1,1040	1,0043	0,9991	0,9982
111	-12,3211	-24,2486	-10,7929	-11,9239	-23,8514	-10,3957	1,0001	1,0049	1,0309	1,0002	1,0000	1,0003
112	-8,0936	-12,1591	-6,5178	-7,6964	-11,7619	-6,1206	1,0002	1,0077	1,0327	1,0002	0,9999	1,0004
113	-5,1287	-12,2394	-4,6657	0,3265	-6,7842	0,7895	1,0015	1,0176	1,0571	1,0010	0,9997	1,0011
114	-10,2470	-13,4842	-9,0699	-9,8498	-13,0870	-8,6727	1,0002	1,0087	1,0304	1,0002	0,9999	1,0003
115	-31,6334	-28,7222	-31,2561	-31,2362	-28,3250	-30,8589	1,0000	1,0045	1,0097	1,0000	1,0000	1,0000
116	-14,0186	-17,2603	-13,7326	-13,6214	-16,8631	-13,3354	1,0002	1,0093	1,0266	1,0002	0,9999	1,0002
117	-20,4894	-31,1926	-17,5498	-20,0922	-30,7954	-17,1526	1,0000	1,0035	1,0194	1,0001	1,0000	1,0001
118	-18,5243	-17,7785	-18,7620	-19,5656	-18,8197	-19,8032	1,0000	1,0045	1,0102	1,0000	1,0000	1,0000
119	-14,2294	-12,3797	-12,2716	-14,4998	-12,6501	-12,5420	1,0001	1,0096	1,0200	1,0001	1,0000	1,0002
120	4,7286	3,9820	4,5943	5,1258	4,3792	4,9915	1,0012	1,0247	1,0601	1,0010	0,9995	1,0011
121	-17,1459	-32,3130	-35,5544	-16,7486	-29,8884	-33,1299	1,0001	1,0057	1,0133	1,0001	1,0000	1,0001
122	-10,8777	0,3252	4,3502	-9,8916	2,3147	6,3397	1,0003	1,0201	1,0853	1,0003	0,9996	1,0019
123	-8,5373	-12,7027	-6,4964	-6,5478	-10,7132	-4,5069	1,0009	1,0117	1,0522	1,0006	0,9998	1,0008
124	0,8784	-17,2671	-0,9009	6,7687	-11,3768	4,9894	1,0037	1,0189	1,0655	1,0025	0,9992	1,0020
125	2,9208	-10,0202	-4,3364	8,5982	-4,3427	1,3411	1,0025	1,0199	1,0600	1,0017	0,9991	1,0011
126	7,6073	-7,0929	-8,9967	13,2848	-1,4154	-3,3193	1,0031	1,0212	1,0553	1,0019	0,9990	1,0007
127	5,5377	6,1891	8,4716	10,7603	11,4117	13,6942	1,0005	1,0214	1,0654	1,0006	0,9999	1,0012
128	10,4957	-1,4242	1,4545	14,6618	2,7419	5,6206	1,0069	1,0214	1,0933	1,0040	0,9981	1,0010
129	0,1637	-0,1487	0,8836	2,5882	2,2758	3,3082	1,0053	1,0442	1,0116	1,0045	0,9984	1,0079

Tabela 12 – Valores de AIC, BIC, AF e BF obtidos após o ajuste de cada modelo primário (Continuação).

Tabela 12 – Valores de AIC, BIC, AF e BF obtidos após o ajuste de cada modelo primário (Continuação).

		AIC			BIC			AF			BF	
Nro	Bar	Hua	Rob	Bar	Hua	Rob	Bar	Hua	Rob	Bar	Hua	Rob
130	9,1866	7,4349	9,0534	11,6112	9,8594	11,4779	1,0415	1,1354	1,1370	1,0396	0,9838	1,0387
131	-16,3855	18,3667	20,9874	-11,1629	24,8458	27,4666	1,0283	1,0837	1,0213	1,0218	0,9894	1,0150
132	18,2464	14,3420	12,6292	22,1093	18,2049	16,4921	1,0451	1,1329	1,0719	1,0344	0,9885	1,0209
133	17,5718	16,0374	14,6780	19,9963	18,4620	17,1026	1,0095	1,1060	1,1457	1,0075	0,9941	1,0055
134	14,3137	12,4879	11,1898	16,3031	14,4773	13,1793	1,0097	1,0783	1,1791	1,0064	1,0036	0,9773
135	18,4156	14,8358	17,8527	23,8708	20,2910	23,3079	1,0034	1,0291	1,0891	1,0025	0,9988	1,0023
136	-3,3815	-14,2328	-3,0876	-3,6520	-14,5033	-3,3581	1,0008	1,0104	1,0535	1,0006	0,9999	1,0008
137	-9,4949	-6,2323	-9,6784	-9,0977	-5,8351	-9,2812	1,0002	1,0130	1,0243	1,0002	0,9999	1,0002
138	-20,9299	-13,4446	-18,2044	-20,5327	-13,0474	-17,8072	1,0000	1,0083	1,0183	1,0000	1,0000	1,0001
139	-31,9135	-23,0583	-30,1892	-32,1839	-23,3288	-30,4597	1,0000	1,0041	1,0057	1,0000	1,0000	1,0000
140	-30,3001	-19,3890	-26,9853	-29,9029	-18,9918	-26,5881	1,0000	1,0075	1,0115	1,0000	1,0000	1,0000
141	-5,8077	-10,4008	-4,1807	-5,4105	-10,0036	-3,7835	1,0004	1,0108	1,0441	1,0003	0,9999	1,0005
142	-11,5409	-6,0646	-10,5305	-11,1437	-5,6674	-10,1333	1,0001	1,0129	1,0266	1,0001	1,0000	1,0002
143	-22,2665	-14,5338	-20,5776	-23,3077	-15,5750	-21,6188	1,0000	1,0058	1,0073	1,0000	1,0000	1,0000
144	-22,0505	-25,4608	-29,6600	-21,6533	-25,0636	-26,1198	1,0000	1,0053	1,0212	1,0001	1,0000	1,0002
145	-4,0958	-0,5164	-4,0985	-4,3663	-0,7868	-4,3690	1,0004	1,0208	1,0384	1,0004	0,9998	1,0004
146	-21,4685	3,0340	-18,4639	-22,5097	2,7635	-14,9236	1,0000	1,0207	1,0267	1,0000	0,9998	1,0003
147	-4,0958	-16,1785	-25,3417	-4,3663	-15,7812	-24,9446	1,0000	1,0080	1,0101	1,0000	1,0000	1,0000
148	-2,0766	-10,3782	-2,3865	-1,6794	-9,9810	-1,9893	1,0012	1,01291	1,05393	1,0009	0,9997	1,0010
149	-8,2579	-15,0241	-7,6954	-6,2685	-13,0346	-5,7059	1,0013	1,0114	1,0505	1,0009	0,9997	1,0008
150	-22,9725	-24,3222	-18,6361	-20,9830	-22,3327	-16,6467	1,0003	1,0105	1,0322	1,0002	0,9999	1,0003
151	16,5646	17,1767	11,5207	18,5541	19,1662	13,5101	1,0188	1,0805	1,1900	1,0174	1,0108	1,0263
152	27,7482	29,9877	27,6709	30,9435	33,1830	30,8661	1,0581	1,2016	1,1633	1,0617	0,9863	1,1463
153	-18,2577	-14,3688	-10,8357	-13,2790	-7,8896	-4,3565	1,0077	1,0386	1,0933	1,0055	0,9982	1,0047
154	9,6273	11,3874	8,8579	12,4520	14,2122	11,6827	1,0426	1,1261	1,1227	1,0380	0,9943	1,0402
155	9,1588	0,6055	8,4581	11,5833	3,0300	10,8826	1,0477	1,0913	1,4578	1,0393	0,9890	1,0290
156	27,2259	21,8492	14,2640	32,2045	26,8279	19,2427	1,0212	1,0621	1,1441	1,0139	0,9911	0,9990
157	0,2549	-17,5076	-11,4736	4,9771	-12,7854	-6,7514	1,0026	1,0124	1,0457	1,0015	0,9993	1,0006
158	8,9534	-9,3515	-6,1476	14,4087	-3,4612	-0,2573	1,0031	1,0172	1,0552	1,0019	0,9989	1,0009
159	8,9534	-8,9454	-1,9116	14,4087	-3,4902	3,5436	1,0044	1,0216	1,0684	1,0028	0,9987	1,0016
160	9,6139	-4,1720	1,3903	15,0691	1,2832	6,8455	1,0029	1,0206	1,0630	1,0019	0,9992	1,0013
161	-18,2577	-4,0078	-13,5044	-13,2790	0,9709	-8,5257	1,0002	1,0232	1,0321	1,0002	1,0001	1,0004
162	15,7389	14,6743	12,8888	18,1634	17,0988	15,3133	1,0041	1,0547	1,1704	1,0037	1,0039	1,0403
163	-10,0506	-13,3938	-5,7011	-9,0644	-12,4077	-4,7150	1,0004	1,0112	1,0531	1,0004	0,9999	1,0008
164	6,4010	5,2277	4,5812	7,3871	6,2139	5,5673	1,0023	1,0302	1,0619	1,0016	0,9994	1,0011
165	-1,5766	-1,9467	-1,2771	-1,1794	-1,5495	-0,8799	1,0006	1,0160	1,0516	1,0006	0,9998	1,0008
166	11,1485	11,6906	11,2162	11,5457	12,0878	11,6134	1,0021	1,0322	1,0795	1,0020	0,9990	1,0025
167	-17,1591	-15,1663	-17,3580	-16,7619	-14,7691	-16,9607	1,0001	1,0096	1,0202	1,0001	1,0000	1,0001
168	-27,4328	-20,4147	-28,2302	-27,7032	-20,6851	-28,5007	1,0000	1,0055	1,0064	1,0000	1,0000	1,0000
169	-16,2564	-2,4747	-38,4063	-13,8319	-2,0775	-36,4168	1,0006	1,0167	1,0116	1,0005	0,9998	1,0001
170	-13,9299	-11,7934	-13,8850	-14,2003	-12,0638	-14,1555	1,0002	1,0095	1,0205	1,0001	0,9999	1,0002
171	0,2831	-1,5668	0,2082	0,6803	-1,1696	0,6054	1,0006	1,0181	1,0489	1,0006	0,9997	1,0007
172	-16,8150	-17,3726	-17,1104	-14,3905	-16,9754	-14,6858	1,0000	1,0068	1,0291	1,0000	1,0000	1,0003

		AIC			BIC			AF			BF	
Nro	Bar	Hua	Rob	Bar	Hua	Rob	Bar	Hua	Rob	Bar	Hua	Rob
173	-16,8150	-20,2700	-11,8444	-14,3905	-19,8728	-10,8583	1,0001	1,0058	1,0336	1,0001	1,0000	1,0003
174	-4,7202	-8,0708	-4,1144	-4,9907	-8,3413	-4,3848	1,0002	1,0096	1,0299	1,0002	0,9999	1,0003
175	-13,7391	-16,5945	-13,6886	-13,3419	-16,1973	-13,2914	1,0001	1,0085	1,0227	1,0001	0,9999	1,0001
176	-17,8544	-29,7213	-17,3681	-17,4572	-29,3241	-16,9709	1,0001	1,0035	1,0185	1,0001	1,0000	1,0001
177	21,4531	17,6528	13,9517	26,4317	22,6315	18,9304	1,0080	1,0424	1,1131	1,0061	0,9968	1,0017
178	24,6084	23,7641	20,3934	27,0329	26,1886	22,8179	1,0302	1,1250	1,3776	1,0305	0,9998	1,0447
179	12,6963	12,0041	22,2383	15,1208	14,4287	24,6628	1,0621	1,1742	1,6013	1,0609	0,9797	1,0977
180	48,9965	48,1331	46,6801	54,6739	53,8106	52,3575	1,0687	1,0880	1,1828	1,0362	0,9935	1,0100
181	-7,8787	-16,4684	-8,0721	-7,4815	-16,0711	-7,6749	1,0005	1,0081	1,0369	1,0004	0,9999	1,0004
182	-0,2093	-5,4489	-0,1276	0,1879	-5,0517	0,2697	1,0012	1,0188	1,0607	1,0010	0,9997	1,0012
183	-7,2035	-9,0253	-6,9769	-7,4739	-9,2958	-7,2474	1,0003	1,0103	1,0282	1,0003	0,9999	1,0004
184	-9,2573	-11,1720	-9,4801	-8,8601	-10,7748	-9,0829	1,0003	1,0114	1,0300	1,0003	0,9999	1,0004
185	-2,7935	-3,8614	-2,6085	-3,0639	-4,1319	-2,8789	1,0008	1,0160	1,0452	1,0007	0,9997	1,0009
186	-13,7236	-15,8604	-13,6863	-13,9941	-16,1308	-13,9568	1,0001	1,0052	1,0146	1,0001	1,0000	1,0001
187	15,0956	13,8259	9,8382	17,9203	16,6507	12,6630	1,0342	1,1254	1,1438	1,0287	0,9779	1,0060
188	17,5919	17,8172	18,9463	19,1048	19,3302	20,4592	1,0015	1,0399	1,2328	1,0023	1,0024	1,0624
189	-1,6489	-16,6674	-12,2675	4,0286	-10,9899	-6,5901	1,0026	1,0179	1,0499	1,0016	0,9991	1,0007
190	20,1969	10,8922	7,2632	25,4195	16,1148	12,4858	1,0059	1,0284	1,0705	1,0038	0,9978	1,0014
191	10,4203	-1,0599	2,5887	16,3106	4,8303	8,4790	1,0028	1,0235	1,0679	1,0018	0,9991	1,0011
192	15,5081	2,8068	0,8360	20,7307	8,0294	6,0586	1,0055	1,0236	1,0632	1,0034	0,9983	1,0010
193	14,3541	15,8985	16,9468	20,0316	21,5760	22,6243	1,0016	1,0265	1,0757	1,0013	0,9997	1,0017
194	12,0446	3,4417	-5,6976	14,0341	5,4312	-3,7082	1,0141	1,0235	1,1570	1,0095	0,9946	0,9658
195	12,0446	-22,8410	-25,2047	14,0341	-23,1115	-25,4751	0,5240	1,0055	1,0085	0,7753	1,0001	1,0000
196	8,1374	-1,6568	7,2902	9,6503	-1,9273	8,8031	1,0000	1,0217	1,0809	1,0000	1,0004	1,0020
197	-35,7813	-29,7686	-35,5578	-36,0517	-30,0391	-35,8282	1,0000	1,0019	1,0028	1,0000	1,0000	1,0000
198	-2,3281	-9,1701	-2,2554	-1,9309	-8,7729	-1,8581	1,0011	1,0153	1,0553	1,0009	0,9997	1,0010
199	-7,1929	-9,9250	-6,6823	-6,7957	-9,5278	-6,2851	1,0002	1,0114	1,0317	1,0002	0,9999	1,0003
200	-33,6037	-14,2651	-30,6412	-31,1791	-14,5355	-28,2166	1,0001	1,0074	1,0194	1,0001	0,9999	1,0001
201	-34,9278	-19,2887	-35,9975	-33,9417	-20,3299	-35,0114	1,0000	1,0037	1,0081	1,0000	1,0000	1,0000
202	-2,1321	-7,8096	-2,0453	-2,4025	-8,0801	-2,3158	1,0009	1,0152	1,0518	1,0008	0,9998	1,0009
203	-10,1792	-6,8044	-10,8546	-9,7820	-6,4072	-10,4574	1,0003	1,0153	1,0287	1,0002	0,9998	1,0002
204	-5,5227	-6,9114	-5,4827	-5,7932	-7,1818	-5,7532	1,0003	1,0140	1,0363	1,0003	0,9998	1,0004
205	-10,5265	-11,7252	-9,9482	-10,7969	-11,9956	-10,2186	1,0001	1,0091	1,0257	1,0001	1,0000	1,0002
206	-27,9542	-35,4169	-27,4905	-27,5570	-35,0196	-27,0933	1,0000	1,0027	1,0097	1,0000	1,0000	1,0000
207	-7,5682	-7,3269	5,3857	-8,6094	-8,3681	7,3751	1,0002	1,0104	1,0762	1,0002	0,9999	1,0020
208	-2,1552	-7,9750	-2,4379	-1,7580	-7,5778	-2,0407	1,0010	1,0161	1,0540	1,0008	0,9998	1,0009
209	-8,3814	-10,5902	-8,4516	-7,9842	-10,1930	-8,0544	1,0004	1,0140	1,0383	1,0004	0,9999	1,0005
210	-3,0692	-1,6597	-2,7745	-2,67200	-1,2625	-2,3772	1,0269	1,0169	1,0424	0,2188	0,9998	1,0005
211	-23,6346	-27,6895	-22,9068	-24,6758	-28,7307	-23,9480	1,0000	1,0017	1,0065	1,0000	1,0000	1,0000
212	-10,1673	-19,3821	-9,8290	-10,4378	-19,6525	-10,0994	1,0001	1,0061	1,0260	1,0001	1,0000	1,0002
213	3,2642	0,9824	3,6888	3,6614	1,3796	4,0860	1,0013	1,0210	1,0610	1,0012	0,9995	1,0015
214	-9,6828	-9,6703	-6,8114	-9,9532	-9,9407	-7,0818	1,0003	1,0098	1,0323	1,0002	0,9999	1,0003
215	1,6457	0,6235	3,3424	1,3753	0,3531	3,0719	1,0015	1,0206	1,0667	1,0011	0,9994	1,0012

Tabela 12 – Valores de AIC, BIC, AF e BF obtidos após o ajuste de cada modelo primário (Continuação).

Tabela 12 – Valores de AIC, BIC, AF e BF obtidos após o ajuste de cada modelo primário (Conclusão).

		AIC			BIC			AF			BF	
Nro	Bar	Hua	Rob	Bar	Hua	Rob	Bar	Hua	Rob	Bar	Hua	Rob
216	-2,9372	2,9916	-2,5941	-1,9511	2,7211	-1,6080	1,0019	1,0321	1,0579	1,0017	0,9993	1,0010
217	-15,1204	-16,5558	-14,7239	-14,7232	-16,1586	-14,3267	1,0001	1,0082	1,0182	1,0001	0,9999	1,0001
218	-19,3481	-23,9924	-17,6354	-18,9509	-23,5952	-17,2382	1,0001	1,0051	1,0184	1,0006	1,0000	1,0001
219	-23,6674	-27,1065	-24,0789	-23,2702	-26,7093	-23,6816	1,0000	1,0046	1,0121	1,0000	1,0000	1,0001
220	-5,0666	-6,5224	-4,0680	-4,6694	-6,1251	-3,6709	1,0004	1,0168	1,0434	1,0004	0,9998	1,0006
221	-7,9335	-10,2922	-6,4607	-7,5363	-9,8950	-6,0635	1,0002	1,0112	1,0342	1,0002	0,9999	1,0004
222	-24,2843	-18,9649	-24,0067	-23,8871	-18,5677	-23,6095	1,0000	1,0075	1,0133	1,0000	1,0000	1,0000
223	-11,1137	-14,8954	-11,0647	-11,3841	-15,1659	-11,3352	1,0003	1,0091	1,0285	1,0002	0,9999	1,0003
224	-33,5964	-19,4017	-33,2664	-33,1992	-19,0045	-32,8692	1,0000	1,0090	1,0083	1,0000	1,0000	1,0000
225	-1,5572	-4,5052	-1,6113	-1,1600	-4,1080	-1,2141	1,0006	1,0154	1,0475	1,0005	0,9998	1,0006
226	1,3976	3,5283	1,3800	1,7948	3,9255	1,7772	1,0007	1,0238	1,0455	1,0007	0,9997	1,0008
227	-20,2490	-25,1483	-17,3099	-19,8518	-24,7510	-16,9127	1,0001	1,0052	1,0195	1,0001	1,0000	1,0001
228	-16,6042	-28,8599	-14,9722	-16,2070	-28,4627	-14,5750	1,0001	1,0040	1,0233	1,0001	1,0000	1,0002
229	-1,9932	-4,3341	-1,8391	-1,5960	-3,9369	-1,4419	1,0009	1,0215	1,0585	1,0008	0,9997	1,0011
230	-17,9090	-13,2128	-17,4274	-14,7137	-12,8156	-14,2321	1,0001	1,0091	1,0354	1,0001	1,0000	1,0004
231	-12,9336	-10,7024	-12,0365	-13,2041	-10,9728	-12,3069	1,0001	1,0103	1,0185	1,0001	1,0000	1,0002
232	-9,7024	-10,9618	-9,6476	-9,3052	-10,5646	-9,2504	1,0003	1,0109	1,0299	1,0002	0,9999	1,0003
233	-6,9335	-8,3729	-7,3010	-6,5362	-7,9757	-6,9038	1,0005	1,0175	1,0429	1,0004	0,9998	1,0005
234	-16,9918	-16,4931	-16,8341	-16,5946	-16,0959	-16,4369	1,0002	1,0096	1,0216	1,0001	0,9999	1,0002
235	-9,7944	-13,3817	-9,8284	-10,8356	-14,4229	-10,8696	1,0002	1,0066	1,0226	1,0002	0,9999	1,0002
236	-14,5726	-20,3437	-14,6355	-14,1754	-19,9465	-14,2383	1,0001	1,0072	1,0227	1,0001	1,0000	1,0001
237	-14,8992	-18,9805	-13,1836	-14,5020	-18,5833	-12,7864	1,0001	1,0052	1,0253	1,0001	1,0000	1,0002
238	3,4434	5,3975	3,5635	3,8406	5,7947	3,9607	1,0009	1,0267	1,0558	1,0008	0,9995	1,0010
239	3,4434	10,9765	9,6574	3,8406	16,4317	15,1126	1,0069	1,0319	1,0879	1,0045	0,9980	1,0017
240	26,2532	25,4281	23,5544	27,2393	26,4143	24,5406	1,0181	1,0948	1,2570	1,0174	1,0014	0,9481
241	4,5030	5,4522	-1,230	7,3277	8,2769	1,5947	1,0090	1,0832	1,1207	1,0070	0,9980	0,9953
242	10,4253	10,1584	4,5557	12,4148	12,1478	6,5452	1,0166	1,0905	1,1161	1,0132	0,9900	0,9988
243	24,1560	19,6277	18,0521	29,1346	24,6063	23,0308	1,0150	1,0550	1,1566	1,0105	0,9959	1,0034
244	4,4875	-6,0667	-1,8205	9,2097	-1,3445	2,9017	1,0016	1,0219	1,0560	1,0011	0,9992	1,0010
245	14,8230	1,4808	9,1222	20,2782	6,9360	14,5774	1,0046	1,0307	1,0966	1,0031	0,9983	1,0024
246	9,9081	-1,1971	3,0019	15,3633	4,2582	8,4571	1,0026	1,0215	1,0307	1,0017	0,9989	1,0005
247	-0,2958	-8,4054	-3,2812	5,3817	-2,7279	2,3962	1,0018	1,0147	1,0542	1,0011	0,9997	1,0008
248	25,6841	24,9578	22,0839	27,6736	26,9473	24,0734	1,0212	1,0997	1,3274	1,0200	1,0080	1,0757
249	18,5892	13,0305	9,6287	25,0684	19,5097	16,1079	1,0123	1,0527	1,1154	1,0085	0,9958	1,0024
250	22,2187	18,3294	14,5869	25,4140	21,5247	17,7822	1,0597	1,1437	1,3927	1,0509	0,9726	1,0357

Fonte: Elaborada pela autora, 2018.

APÊNDICE B – GRÁFICOS DOS PRIMEIROS AJUSTES OBTIDOS COM OS TRÊS MODELOS PRIMÁRIOS

Figura 13 – Gráficos obtidos para os primeiros 48 ajustes dos modelos primários (Continua).

Figura 13 – Gráficos obtidos para os primeiros 48 ajustes dos modelos primários (Continuação).

Figura 13 – Gráficos obtidos para os primeiros 48 ajustes dos modelos primários (Continuação).

Figura 13 – Gráficos obtidos para os primeiros 48 ajustes dos modelos primários (Continuação).

Figura 13 – Gráficos obtidos para os primeiros 48 ajustes dos modelos primários (Conclusão).

Figura 13 - Gráficos obtidos para os primeiros 48 ajustes dos modelos primários (Continuação).

Fonte: Elaborada pela autora, 2018.

APÊNDICE C – CÓDIGOS DOS PROGRAMAS

C1. AJUSTES DOS MODELOS PRIMÁRIOS

Conjunto de dados SalCkn_A7_8C_1
t<-c(11,22,33,44,79.7,115.4,151.1,162.9)
LOG10N<-c(3.88,4.1,3.89,4.03,4.64,4.63,4.81,5)
data1=data.frame(t,LOG10N)
Pacotes requeridos
require("pracma")
require("minpack.lm")
require("mlsMicrobio")
require("modelr")</pre>

Definição dos modelos de Huang e Robazza et al. Huang<- LOG10N ~ $\log N0 + \log Nmax - \log(\exp(\log N0) + (\exp(\log Nmax) - \exp(\log N0))$ * $\exp(-mu * (t + 0.25 * \log((1 + \exp(-4 * (t - lag)))/(1 + \exp(4 * lag))))))$ Robazza<-LOG10N~ $\log N0 + (1/\log(10)) * mu * \operatorname{sqrt}(pi/8) * (lag - tstar) * (\operatorname{erf}(\operatorname{sqrt}(2) * ((tstar - t)/(tstar - lag))) - \operatorname{erf}(\operatorname{sqrt}(2) * tstar/(tstar - lag)))$

Ajuste dos três modelos FitBaranyi<- nls(baranyi,data1,list(lag=57, mumax = 0.10, LOG10N0 = 3.8, LOG10Nmax = 5)) coef(FitBaranyi) FitHuang<-nlsLM(Huang, data1, control = nls.lm.control(maxiter=100), start = c(logN0 = 3.95, logNmax=4.91, mu=0.03, lag=38.58)) coef(FitHuang) FitRobazza<-nlsLM(Robazza, data1, control = nls.lm.control(maxiter = 100), start = c(logN0 = 3.95,mu = 0.05,tstar = 67, lag = 97)) coef(FitRobazza)

Confecção dos Gráficos

```
plot(data1,col="black",pch=20,
                                   xlab="t
                                               (h)",
                                                        ylab="Log(N)
                                                                                   UFC/g)",
                                                                          (log
font.lab="1",lty="dotted", main="1) SalCkn_A7_8C_1",font.main="8")
xx < -seq(0,300)
lines(xx, predict(FitBaranyi, data.frame(t=xx)), col="red")
lines(xx, predict(FitHuang, data.frame(t=xx)), col="blue")
lines(xx, predict(FitRobazza, data.frame(t=xx)), col="dark green")
legend("topleft", legend=c("Baranyi", "Huang", "Robazza"),
    col=c("red",
                    "blue",
                                                   lty=c("solid","solid","solid"),
                              "dark
                                       green"),
                                                                                   cex=0.8,
pch=c(15,15,15),bg=c("light yellow", "blue", "dark green"))
```

Cálculo dos índices de desempenho dos modelos

data.frame(

R2 = rsquare(FitBaranyi, data = data1),

RMSE = rmse(FitBaranyi, data = data1),

MAE = mae(FitBaranyi, data = data1))

data.frame(

R2 = rsquare(FitHuang, data = data1),

RMSE = rmse(FitHuang, data = data1),

```
MAE = mae(FitHuang, data = data1))
```

data.frame(

R2 = rsquare(FitRobazza, data = data1), RMSE = rmse(FitRobazza, data = data1),

MAE = mae(FitRobazza, data = data1))

n<-length(t)
AIC(FitBaranyi,FitHuang,FitRobazza)
BIC(FitBaranyi,FitHuang,FitRobazza)
Aicc_Baranyi<-AIC(FitBaranyi)+40/(n-5)
Aicc_Huang<-AIC(FitHuang)+40/(n-5)
Aicc_Baranyi
Aicc_Baranyi
Aicc_Huang
Aicc_Robazza
YB<-predict(FitBaranyi)</pre>

YH<-predict(FitHuang) YR<-predict(FitRobazza)

Accuracy_Baranyi<-10^((1/n)*sum(abs(log10(YB/LOG10N)))) Bias_Baranyi<-10^((1/n)*sum(log10(YB/LOG10N)))) Accuracy_Huang<-10^((1/n)*sum(abs(log10(YH/LOG10N)))) Bias_Huang<-10^((1/n)*sum(log10(YH/LOG10N)))) Accuracy_Robazza<-10^((1/n)*sum(abs(log10(YR/LOG10N)))) Bias_Robazza<-10^((1/n)*sum(log10(YR/LOG10N))))

Ajuste_Baranyi<-c(Accuracy_Baranyi,Bias_Baranyi) Ajuste_Baranyi Ajuste_Huang<-c(Accuracy_Huang,Bias_Huang) Ajuste_Huang Ajuste_Robazza<-c(Accuracy_Robazza,Bias_Robazza) Ajuste_Robazza

C2. AJUSTES DOS MODELOS SECUNDÁRIOS

Pacote requerido: require("minpack.lm") require("investr") require("modelr")

Importação de dados do Excel mu<-scan() mu2<-sqrt(um)</pre> 92

Temperatura<-scan() dados1<-data.frame(Temperatura,mu) dados2<-data.frame(Temperatura,mu2)

Definição dos modelos secundários Rosso<-mu~(muotimo/(Totimo-Tmin))*(Temperatura-Tmax)*(Temperatura-Tmin)^2/((Totimo-Tmin)*(Temperatura-Totimo)-(Totimo-Tmax)*(Totimo+Tmin-2*Temperatura))

```
Ratkowsky<-mu2~a*(Temperatura-Tmin)*(1-exp(b*(Temperatura-Tmax)))
Huang<-mu2~a*(Temperatura-Tmin)^0.75*(1-exp(b*(Temperatura-Tmax)))
```

```
# Ajuste dos modelos secundários
fitRosso<nlsLM(Rosso,dados1,start=c(muotimo=2,Totimo=35,Tmax=42,Tmin=5)
coef(fitRosso)
fitRatkowsky<-nlsLM(Ratkowsky,dados2,start=c(a=2,b=1,Tmin=3,Tmax=42))
coef(fitRatkowsky)
fitHuang<-nlsLM(Huang,dados2,start=c(a=2,b=1,Tmin=3,Tmax=42))
coef(fitHuang)</pre>
```

Confecção dos Gráficos plotFit(fitRosso, pch=16, interval="both", shade=TRUE, xlab="T (°C)", ylab="", col.conf="skyblue4", col.pred="lightskyblue2") title(ylab= expression(mu[max] ~ ~ (h^-1)),mgp=c(2.5,1,0)) text(15,1.9,"Primário: Robazza et al.") text(15.5,1.75,"Secundário: Rosso et al.") plotFit(fitRatkowsky, pch=16, interval="both", shade=TRUE, xlab="T (°C)", ylab="", col.conf="skyblue4", col.pred="lightskyblue2") title(ylab= expression(mu[max] ^ 0.5~ ~ (h^-0.5)),mgp=c(2.5,1,0)) text(15,1.9,"Primário: Robazza et al.") text(15.5,1.75,"Secundário: Ratkowsky et al.") plotFit(fitHuang, pch=16, interval="both", shade=TRUE, xlab="T (°C)", ylab="", col.conf="skyblue4", col.pred="lightskyblue2") title(ylab= expression(mu[max] ^ 0.5~ ~ (h^-0.5)),mgp=c(2.5,1,0)) text(15,1.9,"Primário: Robazza et al.") plotFit(fitHuang, pch=16, interval="both", shade=TRUE, xlab="T (°C)", ylab="", col.conf="skyblue4", col.pred="lightskyblue2") title(ylab= expression(mu[max] ^ 0.5~ ~ (h^-0.5)),mgp=c(2.5,1,0)) text(15,1.9,"Primário: Robazza et al.") text(15.5,1.75,"Secundário: Huang")

```
# Cálculo dos índices de desempenho dos modelos
data.frame(
RMSE = rmse(FitRosso, data = data1),
MAE = mae(FitRosso, data = data1))
data.frame(
RMSE = rmse(FitRatkowsky, data = data2),
MAE = mae(FitRatkowsky, data = data2))
data.frame(
RMSE = rmse(FitHuang, data = data2),
MAE = mae(FitHuang, data = data2),
```

Cálculo dos valores de Tótimo e muótimo para os modelos de Ratkowsky et al. e Huang

Ratkowsky <- function(Temperatura) { 0.0426*(Temperatura-2.935)*(1exp(0.5648*(Temperatura-43.6671))) } optimize(Ratkowsky, interval=c(0, 50), maximum=TRUE) Huang <- function(Temperatura) { 0.1081*(Temperatura-6.5991)^0.75*(1exp(1.2544*(Temperatura-42.0161))) } optimize(Huang, interval=c(0, 50), maximum=TRUE)

C3. MODELO DINÂMICO Huang=function(t,Y,rate,lag,Ymax){ dY=rate*(1-exp(Y-Ymax))/(1+exp(-4*(t-lag))) return(dY)}

Runge-Kutta

Y=0 dHuangODERK4=function(t,Y0,rate,lag,Ymax){ len_t=length(t)-1 94

```
Y[1]=Y0
for(i in 1:len_t){
k1=Huang(t[i], Y[i], rate[i], lag[i], Ymax)
k2=Huang(t[i]+0.5*dt, Y[i]+0.5*dt*k1, rate[i], lag[i], Ymax)
k3=Huang(t[i]+0.5*dt, Y[i]+0.5*dt*k2, rate[i], lag[i], Ymax)
k4=Huang(t[i]+dt, Y[i]+dt*k3, rate[i], lag[i], Ymax)
Y[i+1]=Y[i]+dt*(k1+2*k2+2*k3+k4)/6
}
return(Y)
}
dt=0.01
b=0.0712
c=1.5601
Tmin=6.9688
Tmax=44.5687
b1=0.0276
c1=0.1572
Tmin1=3.6488
Tmax1=49.6591
Y0=2.41
Ymax=8.88
```

t_in=c(0.13,15.48,21.87,46.38,52.27,63.93,76.09,87.73,90.92,112.1,114.22,122.69,146.5,170. 31,195.18,210.52,213.16,221.64,239.63,258.15) Temp_in=c(8,9.6,25,25,25,12,12,12,34,34,34,20,6,6,6,18,30,20,10,10) vetor<-rep(2,length(t_in))

 $DataPoints=max(t_in/dt)+1$

Temp_history=approx(t_in, Temp_in, n=DataPoints) t=Temp_history\$x Temp=Temp_history\$y dataLength=length(t)

```
K=0
J=0
rate=function(Temp){
for(i in 1:dataLength){
if(Temp[i]<Tmin){K[i]=0}
K[i]=(b*((Temp[i]-Tmin)^0.75)*(1-exp(c*(Temp[i]-Tmax))))^2
}
```

```
return(K)
```

```
}
```

```
lag=function(Temp){
for(i in 1:dataLength){
J[i]=(b1*(Temp[i]-Tmin1)*(1-exp(c1*(Temp[i]-Tmax1))))^(-2)
}
return(J)
}
```

```
Mu=rate(Temp)
Lag=lag(Temp)
```

```
Salmonella=dHuangODERK4(t,Y0,Mu,Lag,Ymax)
```

```
Y<-c(2.41, 2.58, 3.33, 6.58, 7.78, 8.17, 7.99, 8.09, 8.37, 8.58, 8.68, 8.79, 8.78, 8.77, 8.83,
8.79, 8.61, 8.89, 8.96, 8.88)
bacteria<-rep(0,length(t_in))
for (i in 1:length(t_in))
{vetor[i]<-10*t_in[i]+1}
bacteria<-Salmonella[vetor]
matriz<-cbind(Y,bacteria)
matplot(t_in,matriz,xlab="t (h)",ylab="log (UFC/g)",pch=16)
legend(50,3.5,c("experimental","teórico"),pch=c(16,16),col=c(1,2))
Erro=mean(sum(abs((Y-bacteria))))
```

tempo<-c(0.13, 15.48, 21.87, 46.38, 52.27, 63.93, 76.09, 87.73, 90.92, 112.1, 114.22, 122.69, 146.5, 170.31, 195.18, 210.52, 213.16, 221.64, 239.63, 258.15) log<-c(2.41, 2.58, 3.33, 6.58, 7.78, 8.17, 7.99, 8.09, 8.37, 8.58, 8.68, 8.79, 8.78, 8.77, 8.83, 8.79, 8.61, 8.89, 8.96, 8.88) temperatura<-c(8,9.6,25,25,25,12,12,12,34,34,34,20,6,6,6,18,30,20,10,10)

par(new=T) plot(tempo,temperatura,type="l",axes=F,xlab=NA,ylab=NA,lty=2,lwd=2,col="blue") axis(side=4,ylab="T (°C)")

Accuracy<-10^((1/length(Y))*sum(abs(log10(Y/bacteria)))) Accuracy

 $Bias{<-10^{((1/length(Y))*sum(log10(Y/bacteria)))}}$

Bias