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ABSTRACT
MEDEIROS, José Carlos. Inverse Identification of Heat Flux in Dry Drilling Pro-
cess Using Particle Swarm Optimization. 101 pages. Master Thesis (Post Graduation
Program in Mechanical Engineering) - Santa Catarina State University, Joinville, 2018.

Due to economic, environmental and health issues the use of cutting fluid has been
restricted in the industry in recent years. As the cutting fluid has a cooling function, the
absence of this type of product makes the thermal deformations a critical factor in dry
machining. Within the drilling, this is even more problematic, as the enclosure of the tool
makes the heat dissipation generated more difficult. Identification of process heat flux and
temperature distributions on the workpiece allows a better understanding of the process
and opens the possibility for improvements. In this context, the objective of this work is to
determine the best distribution of heat flux that flows to the workpiece. For this, an inverse
procedure based on the Particle Swarm Optimization was used to minimize the error
between the experimental and simulated results. A hole was made in a cylindrical 1020
steel workpiece and the temperature was measured with thermocouples. Later, this piece
was modeled using the ABAQUS commercial software. Using the finite element method,
the workpiece was modeled considering the hole as preexisting, this simplifies the model
and decreases the computational cost. Four different models of heat flux distribution for
the workpiece were studied. All the approach used was satisfactory, simplifications in the
simulation did not affect the results. Among the distributions proposed in the work, the
hybrid was the one that obtained the smallest errors. It was also shown the importance of
considering the heat flux along the machined wall, different from the classical approach
which considers heat only at the tip of the drill.

Key-words: Dry Drilling. Temperature. Heat Flux. Heat Inverse Problem. PSO.





RESUMO
MEDEIROS, José Carlos. Identificação Inversa do Fluxo de Calor no Processo
de Furação a Seco utilizando Otimização por Enxame de Partículas. 99 páginas
.Dissertação (Programa de Pós Graduação em Engenharia Mecânica) - Universidade do
Estado de Santa Catarina, Joinville, 2018.

Devido a questões econômicas, ambientais e de saúde o uso de fluido de corte tem sido
restringido na indústria nos últimos anos. Como o fluido de corte tem função refrigerante,
a ausência desse tipo de produto transforma as deformações térmicas num fator crítico
dentro da usinagem a seco. Dentro da furação isto é ainda mais problemático, pois
o enclausuramento da ferramenta torna a dissipação do calor gerado mais difícil. A
identificação do fluxo de calor do processo e das distribuições de temperatura na peça
de trabalho permitem o melhor entendimento do processo e abrem a possibilidade para
melhorias. Neste contexto, o objetivo deste trabalho é o de determinar a melhor distribuição
de fluxo de calor que flui para a peça. Para isto foi utilizado um procedimento inverso
que utiliza a Otimização por Enxame de Partículas para minimizar o erro entre os dados
experimentais e simulados. Um furo foi realizado em uma peça cilindrica de aço 1020 e a
temperatura da peça foi medida com auxílio de termopares. Posteriormente, esta peça foi
modelada utilizando o software comercial ABAQUS. Utilizando o método dos elementos
finitos, a peça foi modelada considerando o furo como pré-existente, isto simplifica o modelo
e diminui o custo computacional. Quatro diferentes modelos de distribuição do fluxo de
calor para a peça foram estudados. Toda a abordagem utilizada mostrou-se satisfatória,
as simplificações na simulação não prejudicaram os resultados. Entre as distribuições
propostas no trabalho, a hibrida é a que obteve os menores erros. Foi mostrado também
a importância de considerar o fluxo de calor ao longo da parede usinada, diferente da
abordagem clássica que considera o calor somente na ponta da broca.

Palavras-chave: Furação a Seco. Temperatura. Fluxo de Calor. Problema Inverso de
Calor. PSO.
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Ėgen Energy generated
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Ėstor Energy storated

U̇ Internal Energy

a Length of the uniform portion of the linear distribution

c0, c11, c12, c21, c22, c31, c32 Coefficients of polynomial distribution of heat flux



Cp Specific heat capacity

D Number of dimensions of the inverse problem

d1 Drill diameter

Dh Hole diameter

Dw Workpiece diameter

E1, E2, E3, E4 Element sizes

errabs Absolute error

errav Average error

errmax Maximum error

f Feed rate

Fc Cutting force

g The best particle among all the particles in the population

h Convective heat transfer coefficient

I Number of input points

k Thermal conductivity

l1 Drill length

l2 Thread length

Lh Hole length

Lw Workpiece length

M Measured drilling torque

N Number of temperature points at each input point

n Rotation speed of the drill

Pi Vector of the best previous positions

piD The best previous position of a particle

Q1, Q2, Q3, Q4 Control points of polynomial distribution of the heat flux

Qr Heat flux in the direction r



Qz Heat flux in the direction z

Qconv Convective heat flux

Qmax Maximum heat flux in the linear distribution

Qtotal Total heat generated on machining

Qwp1 Heat flux in the primary heat zone

Qwp2 Heat flux in the secondary heat zone

Qwp Heat flux to workpiece

rg Social random factor

rp Cognitive random factor

S Swarm size

t2 Time to activate the control points Q1 ad Q2

t3 Time to activate the control point Q3

Tin_exp Experimental temperature at input point i and temperature entry point n

Tin_num Numerical temperature at input point i and temperature entry point n

tsim Simulation time

tT 1_exp Time of variation of one degree at thermocouple T1

vc Cutting velocity

Vi Vector of the particles’ velocity

viD Particle’s velocity at one dimension

Xi Vector of the particles’ position

xiD Particle’s position at one dimension

y Distance from the drill cutting edge to the top surface of workpiece

y1 Position of control point Q1

y2 Position of control point Q2

y3 Position of control point Q3

y4 Position of control point Q4





Contents

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 LITERATURE SURVEY . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Drilling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Temperature influence on wet and dry machining . . . . . . . . . . . 6
2.3 Identification of temperature distribution on machining process . . . 8
2.3.1 Moving heat source method . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Finite difference method . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Semianalytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Finite Element Methods in Drilling Process . . . . . . . . . . . . . . 12
2.4.1 Advection Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Surface Heat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Heat Carrier Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.4 Ring Heat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Inverse Heat Transfer Problem . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . 17

3 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . . 21
3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Inverse Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Analyzed parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 NUMERICAL MODELING . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 Finite Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Heat transfer analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.1 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Heat Flux Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.1 Concentrated heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Linear distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.3 Polynomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



4.3.4 Hybrid distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Concentrated Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Linear Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 Polynomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5 Hybrid Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.6 Comparision between the distributions . . . . . . . . . . . . . . . . . 53
5.6.1 Thermocouple T1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.6.2 Thermocouple T3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6.3 Thermocouple T5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.1 Suggestions for Future Works . . . . . . . . . . . . . . . . . . . . . . 66

A MESH REFINIMENT . . . . . . . . . . . . . . . . . . . . . . . . . . 69

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



1 Introduction

Drilling is one of the most applied processes in the industry, despite being one
of the most complex processes. Much of this complexity is due to the geometry of the
tool. The enclosure of the tool tip during machining is one of the main factors generating
thermal problems. The thermal exchange capacity of the cutting region of the tool is
limited considerably by this enclosure because of the larger the hole depth the greater
the difficulty in dissipating heat. This generates increasingly higher temperatures in the
tool-chip interface and in the workpiece. This consequently reduces tool life, generates
geometric distortions in the workpiece and process errors.

In the primary and secondary shear zones, there is heat generation due to the
plastic deformation of the workpiece material. This is one of the temperature sources that
is transferred to the workpiece, tool, and chip. Heat is also generated along the tool-chip
interface due to friction (TAY, 1993). The cutting fluid is commonly employed to try to
lower the temperature in the process. The main purpose of the fluid is to lubricate, remove
the chip and cool the cutting tool.

One of the problems of using cutting fluid is the high cost involved. According to
Weinert et al. (2004) at around 17 % of the cost of machining is due to the use of cutting
fluid. The total cost is due to both the cost of the use itself and the cost of disposal of the
fluid used (BARADIE, 1996). The cutting fluid is very harmful to the environment, so the
disposal of the products is critical in the industry (SOKOVIĆ; MIJANOVIĆ, 2001). This
environmental concern and also with sustainability has increased considerably in recent
years. For these reasons, the reduction and even the complete elimination of the cutting
fluids are desired sometimes.

The elimination of cutting fluid in the drilling process makes the temperature
critical and can cause problems in the production. The prediction of heat flux into chip,
workpiece, and tool is difficult. This is calculated through the measurement of temperature
in different locations of the workpiece.

The measurement of the temperature in the workpiece has been developed, although
it is still very difficult to use only the information available in the literature because
small differences in the process parameters are capable of generating great uncertainties
(DAVIES et al., 2007). Due to the difficulty of obtaining conclusive results with purely
experimental methods, several numerical methods have been used to determine the
temperature distribution during the process. Among the various methods used one of the
approaches is the finite element method.
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The combination of the experimental temperature measurement with the finite
element method allows the application of an inverse method of minimizing the error
between experimental and numerical results to identify the heat flow that is transferred to
the workpiece during drilling.

Different approaches can be used to determine the heat flux. Among these ap-
proaches, the Particle Swarm Optimization (PSO) is becoming popular due to the easy
application and good efficiency in inverse problems.

The drilling parameters from machining tests are used as input to the thermal
simulations. Almost all energy in machining is converted into heat. The heat flows into
the workpiece is usually considered as constant along the process. The problem in the
simulation of the drilling process is to determine the heat flow distribution on the wall of
the hole, which can significantly influence the temperature distribution in the workpiece.

Regarding the temperature distribution estimation in the drilling of a complex
workpiece, the simulation is carried out considering a heat flux distribution moving along
the elementary hole’s wall.

This work deals with the calibration of three different heat flux distributions. Based
on experimental results of embedded thermocouples in a sample, an inverse heat conduction
method is applied in order to determine the best parameter values for each model. Finite
element analysis of a simple workpiece with already preexisting boreholes is conducted in
order to estimate the temperatures. An error function based on the difference between
predicted and measured temperatures is minimized through Particle Swarm Optimization
(PSO).

1.1 Objectives

The main objective of this work is to identify best heat flux distribution transferred
to the workpiece using a finite element model that considers a preexisting hole.

Furthermore, as secondary objectives:

• Implementation of four different heat flux models during the drilling process using a
finite element model developed in Abaqus.

• Development of an experimental setup to measure the temperature of a workpiece
during the drilling.

• Implementation of an inverse procedure using PSO to optimize the parameters
of heat flux models through the minimization of the error between measured and
simulated temperatures.

2



1.2 Dissertation Structure
This work is divided into four chapters. The first chapter is the state of the art.

The objective of this chapter is to present the current state of research related to the
influence of temperature on drilling. We present different numerical methods that are used
to calculate the temperature distribution and the heat flux associated with the process.
In a more detailed way, some thermal models are presented within the finite element
method that is used to simulate the drilling process. We also review some methods used
in temperature measurement and the inverse heat problem that combines experimental
measurement with the numerical method. Finally, it is reviewed the use of PSO as a tool
for solving inverse problems.

In the second chapter, we present all the materials used to obtain the experimental
data. The experimental procedure is also described. These experimental results are used
in an inverse procedure that is presented at the end of this chapter.

The third chapter refers to the numerical model used in the work to identify the
heat flux. It is presented the thermal model used, the finite element model that was
developed in Abaqus and the heat distributions that were analyzed.

Finally, the results obtained for each of the proposed heat distributions are presented.
These results are discussed in order to analyze the effectiveness of the proposed procedure
and which of the heat distributions best represents the drilling process.
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2 Literature Survey

2.1 Drilling Process
The drilling process is characterized by the rotational motion of the tool, while the

table feeds toward the tool rotary axis. Due to the resulting movement, chips are formed
at the drill edge and are transported out of the hole by the helical flutes of the drill.

Different drilling processes were developed in order to achieve different objectives,
such as material removal rate, hole depth, dimensional accuracy and surface quality
(KLOCKE, 2005). The spiral drill is one of the most important drilling tools for creating
cylindrical drill holes from solid material or to enlarge the diameter of an existing hole
(KLOCKE, 2005). The geometry of a spiral drill point is shown in the Figure 1.

Figure 1 – Geometry of a spiral drill point

Source: Klocke (2005)

The drill edge is formed by the main cutting edges and the chisel edge. The chisel
edge has a highly negative rake angle and hence deforms the workpiece material plastically,
forcing it to the main cutting edges (KLOCKE, 2005).

Other important drill parametersf are (SHAW; COOKSON, 2005):

• helix angle

• point angle

• web thickness

• clearance angle

• drill diameter
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Despite the importance of machining holes in a workpiece, the drilling process
presents some particular drawbacks (KÖNIG; FERTIGUNGSVERFAHREN, 1990 apud
ZEILMANN et al., 2003):

• the effective cutting speed reduces toward the center of the drill, reaching the value
of feed rate in the tool axis;

• difficult in the chip removal;

• inadequate heat distribution in cutting zone;

• high tool wear when sharp edges are present;

• friction between the guides and the wall of the hole.

2.2 Temperature influence on wet and dry machining
The cutting fluids play a fundamental role in the drilling process. The main

functions are to lubricate, cool and flush chip away from the cutting zone. Since the tool
is constrained in a hole, the tool temperature tends to be higher than in other processes
under similar conditions. The high temperatures at the tool tip have great influence on
the tool life and workpiece surface quality (SATO et al., 2013).

The most common method of cutting fluid application is the flooding by means
of a nozzle system. A great amount of cutting fluid is delivered directly on the tool
and workpiece. Usually, there is no control of flow rate and volume. Furthermore, the
counterflow of the chips inhibits the fluid to reach the drill tip, as Figure 2 exemplifies.

Figure 2 – Nozzle system

Nozzle

Tool

Chip

f
Cutting Fluid

vc

Workpiece

Source: Author’s Production, 2017

The main function of cutting fluids is to reduce heat generated due to friction
during cutting. This is performed in order to achieve better tool life, surface finish, and
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dimensional tolerances. There is also used to prevent the formation of built-up edge and
to facilitate the transportation of chips.

These problems associated with the wet machining, worsoned by higher costs,
health issues and contamination has contributed to the development of processes without
cutting fluids. According to Soković and Mijanović (2001), which presented some ecological
aspects of cutting fluids, the machine operators can be affected by contact with several
substances. After the use, the disposal of the cutting fluids can be performed inside the
company building or externally, usually at the wase disposal. If the cutting fluids are not
properly discarded, ground, water and/or air pollution may occur.

Different approaches have been investigated on the last year, aiming to minimize
or eliminate the cutting fluid application. The total elimination of cutting fluids would be
a great advancing. However, some benefits of cutting fluids are not included in the dry
machining and because of this tools. Without the cutting fluids, tools and workpieces are
subjected to higher thermal loads.

Lauro et al. (2013) investigated the heat flow and the convective coefficient applying
cooling systems at high-speed drilling of hardened steel. Flooded lubricant and the minimum
quantity of lubricant (MQL) were compared with dry tests. FEM was applied to determine
the heat flux and the convective coefficient for the cooling systems. In order to represent
the effect of the tool motion (heat source movement), changes were performed on the heat
generation and convective coefficients of the elements. They concluded that the heat flow
into the workpiece and the convective coefficient were close to the literature reference.

Hussain et al. (2008) investigated the use of MQL in the deep hole drilling process.
The studied the process in order to replace the usual method of drilling main oil gallery
holes in aluminum alloy cylinder blocks. Good workpiece quality characteristics were
obtained.

In drilling, when the cutting fluid is not supplied through the spindle, the tool
tip suffers from high temperature, leading to rapid wear. In this case, the cooling of the
drill tool body may contribute significantly, removing the heat generated at the tool-chip
interface (PONTES, 2017).

As pointed out by Fleischer et al. (2007), the heat input caused by the lack of coolant
may lead to workpiece thermal distortion. In dry machining, the heat generated is no
longer removed by the cutting fluid. Therefore, the workpiece can distort due temperature
changes on several regions of the workpiece. The workpiece distortion during the entire
machining process can affect its dimensional accuracy.

In this regard, Aurich et al. (2014) optimized the cutting conditions in order
to decrease the geometrical deviation. The machining accuracy was improved through
experiments and finite element simulations of the dry turning of aluminum workpieces.
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These analysis showed that higher cutting speeds decrease thermal loads of the workpiece.

Denkena et al. (2010) studied the surface errors generated by induced temperatures.
This study was performed on thin-walled workpieces. Within the experimental investigation,
the influences ofsthermal-induced deflections were separated from force-induced deviations.
The results emphasized the dominance of the thermal deviations for the machining of the
thin-walled workpiece.

2.3 Identification of temperature distribution on machining process
The heat generated on machining process was one of the first and most researched

topics in machining. Taylor (1907) was a pioneer on the studies related to tool wear, he
discovered that high temperatures of the tool were associated with reduced useful life.
Alaso, he developed an empirical relationship between the cutting speed an tool life. Ber
and Goldblatt (1989) also showed the influence of the temperature in tool’s life, a large
temperature gradient results in a smaller rate as well as low level of the crate wear.

Almost all the energy poured to the system is converted into heat. This energy
flows into the tool, workpiece, and chip. Fleischer et al. (2007) presented a literary research
of the cutting energy distribution comparing the drilling, turning and milling processes
and it is presented at Table 1.

Table 1 – Distribution of the cutting energy

Drilling Turning Milling
Tool 5 - 15 % 2,1 - 18 % 5,3 - 10 %
Workpiece 10 - 35 % 1,1 - 20 % 1,3 - 25 %
Chip 55 - 75 % 74,6 - 96,3 % 65 - 74,6 %

Source: Fleischer et al. (2007)

From Table 1, it can be seen that the heat flow into the workpiece fluctuates. In
drilling, the input energy flowing to the workpiece during the process is estimated from 10
to 35 % of the overall cutting energy. As a result of this heat balance, the temperature
fields formed in the workpiece and tool changes until the equilibrium between added and
removed heat is achieved (KLOCKE, 2005).

The energy put into the process (Fc · vc) goes into friction and especially in shear,
due to the deformation process. The plastic deformation occurs at the primary plane and
the friction happens at the tool–chip interface. The heat generation occurs in a very small
zone of the cutting tool. Thus, the cutting edge experiences high temperatures, strongly
influencing tool wear, workpiece surface integrity, and the chip formation mechanism.

The Figure 3 shows a model of three different heat generation regions in the
cutting zone. At the primary heat zone or shear zone, the heat is generated due to plastic
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deformation of the workpiece material. At the secondary heat zone or tool-chip interface
and tertiary heat zone or tool-workpiece interface, the heat is generated especially due
to the friction between the bodies in contact. However, it is hard to determine the share
percentage that is transferred to the tool, chip, and workpiece.

Figure 3 – Different heat-generation regions in the cutting zone

Source: Segurajauregui and Arrazola (2015)

The determination of the temperature distribution arising during cutting has long
been the subject of intensive research. In this regard, Tay (1993) classified some methods
used for calculating machining temperature as:

• the moving heat source method

• the finite difference method;

• semianalytical methods;

• the finite element method

2.3.1 Moving heat source method

Agapiou and DeVries (1990) presented a relatively simple method to determine the
temperature distribution at the drill edges. Their approach can be used on steady-state
and transient cases. They used the steady state temperature solution for a moving source
by Jaeger (1942 apud TAY, 1993) and the transient solution for a constant heat flux on a
surface.
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Agapiou and Stephenson (1994) developed an analytical model to predict the
transient and steady-state drill temperatures. Based on temperature solutions for a semi-
infinite body and using a transient analysis to distribute heat between the drill, chip, and
workpiece. Good agreement between calculated and measured values were found using this
approach. This model was able to predict the partition of the heat flux which flows into
the chip, the tool, and the workpiece.

Recently, models that use an analytical approach were proposed by Komanduri
and Hou (2000), Karpat and Özel (2006), Dogu et al. (2006), Ulutan et al. (2009) and
Islam et al. (2016).

2.3.2 Finite difference method

Rapier (1954) used the finite difference method (FDM) to calculate the temperature
distribution. He considered the workpiece, the tool and the chip as three different regions,
which were connected to each other by the shear plane and the chip-tool interface. He
calculated the temperature distributions in three steps: first using FDM, calculating the
temperature distribution in the part. Then, analytically, the temperature distribution was
calculated on the chip. Finally, he used the FDM again to determine the tool temperature.
With the results found for some cases, he concluded that the temperature at the chip-tool
interface was lower on the tool side than on the chip, confirming the tendency shown by
other authors that most of the process energy is directed to the chip.

Chip, tool, and workpiece were considered as a single system by Dutt and Brewer
(1965). They proposed an assumption that the amount of heat generated in the shear
plane and the chip-tool interface was known. However, the heat flux at each interface
was an incognita. Discretizing the energy equation for each region. A single system was
considered, this was proposed in order to decrease the number of variables. They were
able to calculate the temperature distribution and the amount of heat directed to each
side of the interface.

2.3.3 Semianalytical methods

On semianalytical methods, some parameters of the machining process, such as
the surface temperature of the chip and part, are obtained experimentally. Then these
values are used in analytical models to calculate the temperature distribution throughout
the process.

Boothroyd (1963) developed a model to determine the temperature distribution in
the workpiece, chip, and tool during orthogonal metal cutting. The author used infrared
photography to record the superficial temperature in the chip, tool, and workpiece. However,
his measurement system was only able to work properly on temperature above 600◦C.
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Though, this temperature may change the material mechanical properties. He estimated
the proportion of heat which flowed to the workpiece and comparing it to Weiner (1955
apud TAY, 1993) he found that his values were lower than experimental values. He further
compared with the method proposed by Rapier (1954) and found that the Rapier’s method
overestimated the interfaces temperatures.

2.3.4 Finite Element Methods

In order to predict the workpiece, chip and tool temperatures, Finite Element
Methods (FEM) have been successfully applied. Tay et al. (1974) was one of the first to
use the finite element method to compute the temperature distribution in the tool, chip,
and workpiece for orthogonal cutting process. Their approach consists on calculating the
heat source distribution using the strain-rate and flow stress distributions. Flow stress was
considered as a function of strain, strain-rate, and velocity. They were calculated from
deformed grid patterns obtained from quick-stop experiments.

The authors were able to obtain an acceptable complete two-dimensional tem-
perature distribution. Although the method was accurate to calculate the temperature
distribution, the requirement of several experiments made the method a laborious process.
The values obtained presented good agreement when compared to the experimental values
of Boothroyd (1963). However, the requirement of some experimental data input for each
machining condition, such as velocity and strain-rate, reduced the method viability.

Based on this method, there were developed simple models consisted on discretizing
the cutting and chisel edges as fundamental elements, each element is then considered as
a particular case of orthogonal cutting (Figure 4). Usually, to determine the amount of
heat flowing into the tool, the heat flux loads consider both the heat generated on the
shear plane and the heat generated on the tool rake face on each segment of the cutting
edges (BONO; NI, 2006).

Figure 4 – The drill point and the orthogonal element model

Source: Bono and Ni (2006)

The temperature profile was analyzed along the cutting edges and the chisel edge
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of a drill. Based on analytical equations, the heat flux loads were applied to the finite
element model to simulate the temperature distribution in the drill. It was concluded that
the maximum temperature can occur near the chisel edge and pointed out that the results
predicted by the model were consistent with experimental observations.

Lazoglu et al. (2017) combines the analytical and FEM modeling to estimate the
temperature of carbide tools in drilling of Ti-6Al-4V workpieces. They developed a special
device to acquire the signal of a thermocouple attached to the rotating drill. There was a
good agreement between the simulated and predicted temperatures.

2.4 Finite Element Methods in Drilling Process
To predict the temperature in the workpiece, few different thermal load strategies

can be used. Chen et al. (2017) presented four different approaches to the heat flux
distribution which are classified as:

• advection model;

• surface heat model;

• heat carrier model and

• ring heat model.

These thermal load strategies have been applied to simulate the temperature in
drilling by several authors. These strategies focus on the workpiece temperature simulation
which is one of the main subjects of this dissertation.

2.4.1 Advection Model

The advection model simulates heat transfer and material removal in two consecutive
steps. The surface heat flux is loaded on the shear plane and the temperature distribution
is calculated. After that, the element is removed at the end of each time step to simulate
the chip removal.

In drilling process, the workpiece is usually discretized as shown in Figure 5, where
the elements at the bottom of the hole are deleted as the tool feeds. This is performed in
order to better represent the heat flux in the simulations.

Bono and Ni (2002) developed a model to predict the heat flow to the workpiece
in dry drilling. The study used a two-dimensional, axisymmetric finite element model of
the workpiece, created on Abaqus. As the drill moves into the workpiece, the heat flux is
applied to the elements located directly beneath the cutting edge. The drill geometry and
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Figure 5 – Workpiece finite element mesh

Source: Tai et al. (2012)

the measured drilling thrust and torque are used as inputs to calculate the heat flux loads.
This model only considers the heat flux generated on the chip formation zone.

Biermann et al. (2012) simulated the heat loading into the tool and the workpiece
in the deep hole drilling process, applying minimum quantity lubrication (MQL). They
pointed out that the combination of the long machining time, internal working zone, and
reduced cooling performance induces to high thermal load into the workpiece which may
worsen the hole quality. A two-dimensional model of the workpiece was developed to
simulate the temperature during the deep hole drilling process. Using a Finite Element
Analysis (FEA), the temperature field within the workpiece was predicted. The simulated
temperature showed good agreement with the measured data for the thermocouple position
near the borehole wall.

Kuzu et al. (2017) applied minimum q uantity lubrication (MQL) in deep-hole
drilling. They used Finite Element Method to simulate the temperature distribution in
the workpiece and the influence of the MQL. The heat flux loads on the chisel, cutting lip
and on the margin were determined using a linear and exponential models. The mode was
calibrated at measured temperature throughout an inverse procedure. Good results were
obtained.
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Biermann and Iovkov (2013) applied a relatively constant and uniform distributed
heat flow at the borehole ground. Actually, the drilling process was discretized by the
segmentation of the borehole. As the tool feeded into the hole, the thermal conductivity
of the corresponding FE-elements was set to a near-zero value. Considering the thermal
conduction solution, the segment is eliminated. The simulation was divided into two stages.
The first represented the drilling process with a heat source, while the second showed the
cooling phase, which is implemented by convective heat transfer. They concluded that the
precision of the model depends on the geometry, the discretization of the drilling process
and the time step.

2.4.2 Surface Heat Model

The surface heat model is a simple application of surface heat flux on the element
surface. In this case, no material removal is considered and, hence, no element is eliminated.
Therefore, heat partition needs to be taken into account in order to determine the right
amount of heat flowing into the workpiece or into the tool.

Chen et al. (2017) used a model that was modified from the single nodal heat model,
developed by Kakade and Chow (1993), applying the surface heat flux on the element
surface. The heat partition ratio was determined experimentally using the inverse heat
transfer method, minimizing the discrepancy between model prediction and experimental
measurement.

2.4.3 Heat Carrier Model

The heat carrier model consists on considering the moving tool as an isothermal
heat carrier, conducting a constant surface heat flux into the workpiece. No element need
to be eliminated.

Tai et al. (2012) investigated the workpiece thermal distortion in deep hole drilling
using twist drill tool. They used FEA to predict the temperature. The advection model was
used but they also proposed a heat carrier model to transfer heat from drill to workpiece.
The heat sources were applied on the drilling hole bottom and wall surfaces. An inverse
procedure were applied to determine the time-dependent heat fluxes. They distinctly
simulated the heat flux on both surfaces. The results showed that, as the drilling depth
increases, the heat power on the whole wall surface becomes more significant.

Although the good results, there was a requirement of measuring the temperature
very close to the machined wall, which can experimentally be hard. Furthermore, the
combination of simulations to predict two heat fluxes separately can lead to high compu-
tational cost. In addition, they pointed out that 2-D axisymmetric FEA model is suitable
for modeling the drilling of a single hole in an axisymmetric workpiece, while a 3-D model
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is required for workpieces with complex geometry and multiple holes.

2.4.4 Ring Heat Model

In the ring heat model, the heat flux is concentrated on a ring-shaped band, which
simulates the tool path of one revolution. The ring moves along the axial direction and
the heat flux is applied to one layer of elements.

Macedo (2015) simulated the thermal distortion of automobile workpieces by
applying a ring-type distribution model in already pre-existing boreholes. Using this
approach there is no need to eliminate elements as the tool feeds into the workpiece.

Faverjon et al. (2015) investigated the ring-shaped moving heat flux. A linear heat
flux density distribution model was proposed. It considered the friction influence caused
by the drill margins on the freshly generated surface, the radiation of the hot chips, the
conduction and friction between the chips and hole. They used the inversion method
to calibrate the heat flux models, measuring the temperature in a sample with several
embedded thermocouples. Therefore, although the shape of the curves of the measured
and predicted temperatures were similar, their values were quite discrepant, which can
lead to errors in simulations of a complex workpiece.

2.5 Temperature Measurement

The prediction of the heat that flows to the workpiece is a difficult task. This is
happens due to the need to measure the temperature in different regions of the workpiece.
The temperature measurement at the tool edge is also extremely difficult. These measure-
ments are used in heat distribution determination. This occurs because of some factors like
the narrow shear band, chip obstacles, and the nature of the contact phenomena where
the two bodies, tool and chip (ABUKHSHIM et al., 2006).

Generally, the techniques used to measure temperature in metal cutting are tool-
work thermocouples, embedded thermocouples, radiation pyrometers, metallographic
techniques and a method of using powders of constant melting point (ABUKHSHIM et
al., 2006).

The embedded thermocouple technique requires the drilling of several holes where
the thermocouples are inserted. These thermocouples must be attached close to the
surface to be measured. Kitagawa et al. (1997) used this technique to study the effect of
temperature on tool wear on high speed turning of Inconel 718 and milling of Ti-6Al-6V-
2Sn alloy. Tungsten micro-thermocouples were incorporated into the tool. Temperatures of
1200 and 1100◦C were reported for the ceramic tool-Inconel at 150m/min and carbide-Ti-
6Al-6V-2Sn tool at 500m/min, respectively. Chen et al. (1997 apud ABUKHSHIM et al.,
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2006) calculated the heat flowing to the rake face of the cutting tool by using an inverse
heat transfer method (IHTM) . The method used the interior temperature variations
measured from a thermocouple.

2.6 Inverse Heat Transfer Problem

Normally, the heat flux is determined through an IHTM based on the workpiece
temperature measured. The temperature can be recorded using thermocouples and analyzed
using finite element method. With the improvement of computer capability, inverse
techniques have become a popular means of resolving heat transfer problems in the last
decade.

Inverse problem consists in obtaining an optimal set of model parameters using ex-
perimental temperature measurements. Finite element is used to simulate the temperature
of the workpiece, adjusting the model parameters in order to minimize the error between
the simulated and measured temperatures. Basically, it becomes an optimization problem,
where different techniques have been applied. In the last years, some heuristic methods of
solution have been used for inverse problems, which were based on pure intuition than on
mathematical formality (OZISIK, 2000).

The estimation of a heat flux distribution or of a temperature gradient using a
measured temperature history inside a solid is called the inverse heat conduction problem
(IHCP). This is usually unstable because the solutions and parameters are determined from
indirect observable data which contain measurement errors. Several methods, including
analytical and numerical approaches, were developed to handle the IHCP in one, two and
three-dimensional domains.

The inverse problem is based on the minimization of the error between a measured
and a calculated temperature. An inverse analytical approach was used by Battaglia et
al. (2005) to estimate the temperature. They did stationary and linearity assumptions to
break down the 3D problem in a 2D problem. Some of the methods commonly used are the
least squares method (CUI et al., 2012), the conjugate gradient method (LU et al., 2012),
the function specification method (BLANC et al., 1998), genetic algorithms (GOSSELIN
et al., 2009) and neural networks (DENG; HWANG, 2006). Among the heuristic methods,
the Particle Swarm Optimization (PSO) has been widely applied. This occurs because the
global optimum can be obatined without a complex implementation.

The application of the PSO to solve the inverse heat conduction problem wasn’t
very much studied, maybe because it is a relatively new optimizer. The effectiveness and
efficiency of PSO in IHCP were studied by Vakili and Gadala (2009). Three variations of
PSO were used to solve boundary IHCP in one, two and three dimensions, in steady and
transient problems. The results showed that PSO can be successfully applied with a good
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efficiency, when compared to a genetic algorithm, especially in more complex test cases.

It was also presented that the stability problem of the classical inverse approaches
in dealing with smaller time steps, can be mitigated in PSO. Liu (2012) used PSO-
based algorithms in the inverse analysis of surface heat flux for a three-dimensional heat
conduction. He presented three different modifications in the PSO algorithm and some
modifications resulted in performance improvement.

2.7 Particle Swarm Optimization
Evolutionary computation techniques work on a population of potential solutions

on a search space. The PSO was designed and developed by Kennedy and Eberhart
(1995) based on the social behavior theory. It was proposed a method for optimization
of continuous nonlinear functions. A standard textbook that presents the social and
computational paradigms of this method was written by Kennedy et al. (2001).

The PSO algorithm is initializated with a random potential solutions. Each one
of these "solutions" is named as particle. Each particle is a point in a D-dimensional
space, where D is the number of dimensions of each particle. The dimensions are the
number of variables that are being optmizated. The ith particle is represented as Xi =
(x1D, x2D, ..., xiD) and these particles are manipulated according to the Equations 2.1 e
2.2.

viD = viD + φp ∗ rp ∗ (piD − xiD) + φg ∗ rg ∗ (g − xiD) (2.1)

xiD = xiD + viD (2.2)

where the best previous position is recorded and presented as Pi = (p1D, p2D, ..., piD). The
best particle among all the particles in the population is represented by the siymbol g .
The velocity (position change) rate for particle i is represented as Vi = (v1D, v2D, ..., viD).
φp and φg are two constants and rp and rg are two random functions in the range [0,1].

Using the Equation 2.1 is calculated a new velocity to the particles. In the calcu-
lation, the previous velocity and the distances of particle current position from its own
best position and the group’s best position. Then the particle is moved to a new position,
according to Equation 2.2. Each particle performance is measured using a predefined
fitness function, which is related to the problem to be solved.

The second and the third parts of the velocity Equation 2.1 have the objective to
change the velocity particle. Without these two parts, the particles would keep in the same
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direction at the current speed until hit the boundary. The second part is the cognitive
part, which represents the particle own history. The third part is the social part, which
represents the collective history of the swarm when searching the best location. If φp is
equal to φg, then the particle will search equally with cognitive and social parts. However,
when one of the constants is bigger than other, the particle will use more of the related
history (LI; QU, 2012).

A new version of particle swarm optimation was developed after the addition
of a new inertia weight. The inertia weight ω is brought into the Equation 2.1 that is
transformed in the Equation 2.3. This term plays the role of balancing the global search
and the local search. It can be a positive constant or even a positive linear or nonlinear
function of time (SHI; EBERHART, 1998). A large inertia weight facilitates the global
search, while a small inertia weight facilitates the local search.

viD = ω ∗ viD + φp ∗ rp ∗ (piD − xiD) + φg ∗ rg ∗ (g − xiD) (2.3)

One of the parameters of the PSO is the number of particles (S) , also called swarm
or population. The influence of this parameter was studied by some researchers. Shi and
Eberhart (1999) did an experimental study using the PSO and the results showed that
its performance wasn’t sensitive to the swarm size. The convergence analysis performed
by Trelea (2003) demonstrated that in most of the cases, increasing the swarm size
decreased the number of required algorithm iterations. The success rate was also increased
significantly.

The PSO main objective PSO is to minimize an objective function that was
predefined. Usually is an error function. The iterative process can be visualized in Figure
6. The iterative process is initialized with a swarm of S particles. The particle’s positions
are randomly generated and the value of xiD is a number between 0 and 1. Each particle
has a number D of dimensions, that is the number of variables that are being optimized.
Each one of these variables has lower and upper bounds. When the particle has a position
xiD = 0, each variable will have the lower bound value. If a particle has position xiD = 1,
the variable will have the upper bound value.

The objective function’s value to each particle is calculated and the particle position
with the best result is stored. The particle velocity is then randomly calculated and updated.
Then, a new swarm is randomly generated according to Equations 2.3 and 2.2. The objective
function’s value is calculated. If a better result is found, the respective particle position is
stored.

The search for the best particle position is ended when one of the defined constraints
are reached. The three constraints used are: the function’s value change is less then a
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Figure 6 – PSO diagram

Source: Author’s production, 2017

predefined value. The position change is less than a predefined value. The maximum
number of iterations without finding a better function’s value is reached.

19





3 Materials and Methods

The experimental procedure adopted in the present work consists of drilling a
cylinder and obtaining the temperature of the workpiece at some points during a determined
time. In addition, the torque generated during the machining process was also recorded.

The objective of this is to show how the workpiece temperature measurements
were carried out. These were then used in the inverse method to identify the heat flow.
The torque value was also measured during the drilling process and used in the results
discussion.

3.1 Materials
The material of the workpiece used in the present work was steel 1020 whose

properties are presented in the Table 2. The sample used was a cylindrical part with a
diameter of Dw = 43 mm and a length of Lw = 60 mm.

Table 2 – Material Properties

Properties Value
Density (kg/m3) 7900
Specific Heat (KJ/kgK) 490
Conductivity (W/mK) 52

Source: Bergman and Incropera (2011)

The machining process was carried out in a machining center ROMI D600 with a
maximum rotational speed of 10000 rpm which can be seen in Figure 7. The tool used to
drill the workpiece was a HSS drill with TiN coating which is represented in Figure 8. The
dimensions of the drill are d1 = 10.5 mm, l1 = 133 mm and l2 = 87 mm.

Using this tool a hole with depth of 50 mm was made in the center of the cylindrical
part. The cutting speed used was vc = 40 m/min and the feed rate was f = 0.2 mm/rot.
The drilling was performed without the use of cutting fluid due to the intention studyi the
heat flow in dry drilling as a characteristic that becomes critical because of the lack of a
refrigerant component.
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Figure 7 – Machine tool used in research

Source: Author’s production, 2017

Figure 8 – Tool used in research

Source: Dormer (2015)

The workpiece temperature measurement was performed using five K-type thermo-
couples that were allocated throughout the part as shown in Figure 9. A 3mm diameter
drill was used to drill five holes with 3mm depth and in each of these holes, a thermocouple
was attached to the workpiece. These holes were filled with a high thermal conductivity
paste to minimize the thermal resistance.

The thermocouples were connected to a National Instruments module which can be
seen in Figure 10 and the measured temperatures were recorded with the aid of a program
developed in Labview. The torque was measured during the machining process using a
drilling dynamometer (Kistler 9272). The experimental setup can be seen in the Figure 11,
the part was attached to the dynamometer and the thermocouples were fixed on it.
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Figure 9 – Thermocouples’ positions
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Figure 10 – National Instruments Module

Source: Author’s production, 2017
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Figure 11 – Experimental setup

Source: Author’s production, 2017

3.2 Methods

The experimental procedures in many machining surveys are extremely complex,
so in order to counteract the difficulties normally encountered in this area, a procedure
that is as simple as possible was chosen. Some preliminary tests were performed to avoid
electrical interference in measurements. The experimental apparatus was assembled in
such a way that heat loss by conduction did not have a great impact on the study. After
this initial care was taken, the experimental test that measured the desired parameters
was actually performed.

The temperature of the workpiece in the five thermocouples were recorded for
about 600 seconds. This time has been chosen so that the temperatures after the drilling
could be stabilized. Although this uniformity cannot be fully guaranteed, it is possible to
assume this because of the proximity of the measured temperatures.

After the results were obtained, it was decided to use the measured temperatures
until the time tsim = 312.4 s ( 12.4 s of drilling plus 300 s of cooling) which was enough
for the thermocouples to reach a stability. The temperatures were recorded at a 100 Hz
sampling rate.

The measured temperatures were then used in an inverse procedure to identify the
heat flow that is transmitted to the part during the machining process. This procedure is
described in the following section and seeks to determine the coefficients that define three
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different types of distribution that are described in the section 4.3.

The torque measured by the dynamometer was recorded at a sampling rate of
1000 Hz. These measurements were used to determine the fourth heat flux by means of
an analytical calculation whose result is presented to demonstrate the importance of the
proposed inverse procedure and the efficiency of the proposed heat distribution models.

3.3 Inverse Procedure
The inverse procedure used in this study consisted in minimizing the mean error

between the experimental and numerical results. The error function is defined by:

errproc =
I∑

i=1
erri/I (3.1)

erri =
N∑

n=1

√√√√[Tin_exp(t)− Tin_num(t)
Tin_exp(t)

]2

/N (3.2)

where I is the number of thermocouples, Tin_exp and Tin_num are the measured
and simulated temperatures at the point of entry and N is the number of temperature
points at each input used in the error calculation. The points used in this analysis are
presented in the Table 3. However, the number of temperature points varies according
to each thermocouple. The 21 points showed in the table are used in T1, T2 uses the
points 2 to 21, T3 uses 4 to 21, T4 uses 6 to 21 and T5 uses the points 8 to 21. There
are differences in the number of points because the points with temperature variation less
than 1 ◦C aren’t used.

Table 3 – Temperature points used in inverse procedure

Point (n) 1 2 3 4 5 6 7
Time (s) 5.4 6.4 7.4 8.4 9.4 10.4 11.4
Point (n) 8 9 10 11 12 13 14
Time (s) 12.4 15.4 20.4 50.4 75.4 100.4 125.4
Point (n) 15 16 17 18 19 20 21
Time (s) 150.4 175.4 200.4 225.4 250.4 275.4 300.4

Source: Author’s production, 2017

The inverse procedure in this study uses a PSO algorithm to determine the heat
flow parameters of each distribution. The PSO was revised in the 2.7 section where the
PSO parameters and their influence on the optimization process were presented. The
parameters chosen in this study can be seen in the Table 4. The only parameter that
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changes is the different analysis is the size of the swarm (S) related to the number of
dimensions of each different distribution analyzed.

Table 4 – PSO parameters used in the inverse procedure

PSO Parameters
Swarm size (S) 10 x D

Inertial weight (ω) 0.5
Cognitive factor (φg) 0.5
Social factor (φp) 0.5

Maximum number of iterations 10
The minimum position change 10−8

The minimum objective value change 10−4

Source: Author’s production, 2017

According to Storn (1996), a swarm size of 10 x D for many applications is a good
choice. The same author says that in the most of cases ω ε [0, 1], due to this it was chosen
an intermediary value. The social and cognitive factors have the same value as the inertial
weight so that the 3 factors have the same influence on the PSO. The maximum number
of iterations is related to the computational capacity and it could be higher if better
computers were used. The minimum objective value change is higher than the minimum
position change to favor that this should be the stop criterion.

In the elaboration of the routine of the inverse procedure, was used the python
language, all the PSO and the calculations of error were written in this language. The
FEM was prepared in abaqus and recorded in a macro in python language.

3.4 Analyzed parameters
Some parameters of the temperature curves were analyzed in the results. The

average error between measured and simulated temperatures. In the inverse procedure,
just a few points were used. In the results analysis, points along all the measured time
were used. The average error is calculated using point at each 1 s, the first point is like in
the Table 3. In total, are used 308 points to T1, 307 to T2, 305 to T3, 303 to T4 and 301
to T5. The formulas used to calculate the average error are the same used to calculate the
error in the inverse procedure (Equations 3.1 and 3.2).

Other important parameters of the temperature curves are the maximum tempera-
tures with its respective times. It was also analyzed the reaction time that is defined as
the necessary time to the temperature variation to reach one degree.
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4 Numerical Modeling

Since the workpiece used in this work is a cylinder, the problem can be treated
as a two-dimensional axisymmetric heat transfer model with coordinates in the radial(r)
and axial(z) directions. The heat flux is applied as a moving heat source on the machined
surface. The heat flux moves according to the feed.

4.1 Finite Element Model
The FEA of the workpiece temperature was performed using the commercial

software ABAQUS 6.12. The Figure 12 shows the two-dimensional axisymmetric mesh
used in this study. Workpiece and hole diameters are denoted as Dw and Dh. The workpiece
length and the hole drilled are denoted as Lw and Lh. Four-node linear axisymmetric
element (DCAX4) was selected in this study. The hole was considered already drilled and
the heat source was applied to the hole wall through the subroutine DFlux.

Figure 12 – 2-D axisymmetric finite element mesh

Source: Author’s production, 2017

This mesh type was chosen because of the geometrical conditions. The workpiece
is a cylinder that can be represented by a rectangular section because the initial and load
conditions are symmetric. The simulation was performed in two phases, the drilling phase,
and the cooling phase. A mesh refinement was done to chose the characteristics as element
size and step times to drilling and cooling phases. The values are element size E = 1 mm,
and step times ∆t,d = 62 ms and ∆t,c = 1.0 s. The analysis that determined these values
can be seen in the Appendix A.

4.2 Heat transfer analysis
The problem solution is done by the commercial software Abaqus and it is important

to understand how the thermal is solved. The assumptions that are done can be seen in
Systemes (2013). In the software, it is assumed that the thermal and mechanical problems
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are uncoupled in the sense that the rate of the internal energy depends only on the material
temperature.

The heat balance of the workpiece comes from the first law of thermodynamics,
which can be summarized as conservation of energy in Equation 4.1.

Ėin − Ėout + Ėgen = Ėstor (4.1)

Figure 13 – Thermal problem

dr

dz

Qr+dr
Qr

Qz

Qz+dz

Source: Author’s production, 2017

The Figure 13 represents the control volume to each element in the simulation. The
heat balance is done for one element of the mesh. Considering the energy balance equation,
the heat conduction entering in control volume is definied as Qr and Qz in the directions
r and z. The control volume has dimensions of dr and dz. The heat entering is defined as:

Ėin = Q̇r + Q̇z = −krdz∂T
∂r
− kdr∂T

∂z
(4.2)

In this equation, k is the thermal conductivity of the workpiece material. The dz is
the surface that is exposed to this heat conduction from direction r and dr is the surface
relative to heat conduction in direction z. The heat conduction rates exiting the control
volume from r and z directions can be found from Taylor series expansion. Derivating the
heat conduction rates and ignoring higher order terms:

Ėout = Q̇r+dr + Q̇z+dz = Q̇r +
(
∂Q̇r

∂r

)
dr + Q̇z +

(
∂Q̇z

∂z

)
dz (4.3)

There isn’t heat generation in this problem, due this the therm Ėgen becomes zero.
The amount of heat stored within the control volume is related to the density ρ , the
specific heat capacity Cp and the rate of change in temperature, yielding:
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Ėstor = ρCp
∂T

∂t
drdz (4.4)

As the maximum temperature measured isn’t higher than 50 ◦C, then the thermal
properties, thermal conductivity and specific heat, are considered constant with values:
k = 60.5 W/mK and Cp = 434 J/KgK. The radiation heat transfer is desconsidered in
this analysis. The heat balance equation of the workpiece can be written as:

Q̇r + Q̇z − Q̇r+dr = ρCp
∂T

∂t
drdz (4.5)

The Equation 4.5 still can be simplified. The dimensional heat conduction rates
become second derivates of temperature with corresponding dimension. The heat balance
equation to the elements that are in the middle of the workpiece is:

1
r

∂

∂r

(
kr
∂T

∂r

)
drdz + ∂

∂z

(
k
∂T

∂z

)
drdz − ρCp

∂T

∂t
drdz = 0 (4.6)

Since the study is two-dimensional, and the system is considered to be stationary
with air flowing around, there is heat loss by natural convection from the workpiece. This
heat convection is included in the model as exiting the control volume to the surroundings,
if the control volume in consideration has contact with surroundings. The convection heat
is definied as:

Q̇conv = hdrdz(T − T∞) (4.7)

where h is the convective coefficient between the workpiece and the ambient air flowing
around. In the elements of the external surface that is in contact with the ambient air the
Equation 4.6 becomes:

1
r

∂

∂r

(
kr
∂T

∂r

)
drdz + ∂

∂z

(
k
∂T

∂z

)
drdz − ρCp

∂T

∂t
drdz = hdrdz(T − T∞) (4.8)

To the elements that are in the drilling surface, the heat transferred to workpiece
is entering the control volume. The Equation 4.6 becomes:

1
r

∂

∂r

(
kr
∂T

∂r

)
drdz + ∂

∂z

(
k
∂T

∂z

)
drdz − ρCp

∂T

∂t
drdz = Q̇wp(t)drdz (4.9)

where Q̇wp(t) is the heat transferred to workpiece during the drilling process.
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4.2.1 Spatial discretization

A variational statement of the energy balance 4.6 is obtained by the standard
Galerkin approach as:

∫ 1
r

∂δT

∂r

(
kr
∂T

∂r

)
drdz +

∫ ∂δT

∂z
k
∂T

∂z
drdz =

∫
ρδT U̇drdz (4.10)

where δT is an arbitrary variational field satisfying the essential boundary conditions.

The body is approximated geometrically with finite elements, then the temperature
is interpoled as:

T = NN(x)TN , N = 1, 2, ... (4.11)

where TN are the nodal temperatures. The Galerkin approach assumes that δT , the
variational field, is interpolated by the same functions:

δT = NNδTN (4.12)

First and second order polynomials in one, two and three dimensions are used for
the NN . With these interpolations the Equation 4.10 becomes:

δTN

[∫ 1
r

∂NN

∂r

(
kr
∂T

∂r

)
drdz +

∫ ∂NN

∂z
k
∂T

∂z
drdz

]
=
∫
NNρU̇drdz (4.13)

and like the δTN is arbitrally chosen, it is found the equation:

∫ 1
r

∂NN

∂r

(
kr
∂T

∂r

)
drdz +

∫ ∂NN

∂z
k
∂T

∂z
drdz =

∫
NNρU̇drdz (4.14)

this is the time description of the geometric approximation of the elements that are in
the middle of the workpiece. In the drilling surface and the external surface, we have
respectively the Equations 4.15 and 4.16.

∫ 1
r

∂NN

∂r

(
kr
∂T

∂r

)
drdz +

∫ ∂NN

∂z
k
∂T

∂z
drdz

−
∫
h(NN − T∞)drdz =

∫
NNρU̇drdz

(4.15)

∫ 1
r

∂NN

∂r

(
kr
∂T

∂r

)
drdz +

∫ ∂NN

∂z
k
∂T

∂z
drdz +

∫
NNQ̇drdz =

∫
NNρU̇drdz (4.16)
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4.2.2 Time integration

Time integration in transient analysis is done using the backward difference algo-
rithm:

U̇t+∆t = (Ut+∆t − Ut)
∆t (4.17)

Introducting this term in the Equation 4.14 gives:

1
∆t

∫
NNρ(Ut+∆t − Ut)drdz −

∫ δTN

r

∂NN

∂r

(
kr
∂T

∂r

)
drdz−

∫
δTN ∂N

N

∂z
k
∂T

∂z
drdz = 0

(4.18)

Like the Jacobian matrix to this system is not formed exactly, a modified Newton
method is used to solve. The terms formation in the Jacobian matrix is described. The
internal energy term gives a Jacobian contribution :

1
∆t

∫
V
NNρ

dU

dT
|t+∆t N

Mdrdz (4.19)

Where dU
dT
|t+∆t is the specifiec heat. The conductivity terms give a Jacobian

contribution:

∫ 1
r

∂NN

∂r

(
k |t+∆t r

∂NM

∂r

)
drdz +

∫ 1
r

∂NN

∂r

(
r
∂k

∂T
|t+∆t

∂T

∂r
|t+∆t

)
NMdrdz (4.20)

∫ ∂NN

∂z
k |t+∆t

∂NM

∂z
drdz +

∫ ∂NN

∂z

∂k

∂T
|t+∆t

∂T

∂z
|t+∆t N

Mdrdz (4.21)

Including this terms in the Jacobian, the modified Newton to the elements in the
middle of the mesh is:

[
1

∆t

∫
NNρ

dU
dT |t+∆t N

Mdrdz +
∫ 1
r

∂NN

∂r

(
k |t+∆t r

∂NM

∂r

)
drdz

+
∫ 1
r

∂NN

∂r

(
r
∂k

∂T
|t+∆t

∂T

∂r
|t+∆t

)
NMdrdz +

∫ ∂NN

∂z
k |t+∆t

∂NM

∂z
drdz

+
∫ ∂NN

∂z

∂k

∂T
|t+∆t

∂T

∂z
|t+∆t N

Mdrdz

]
c−M = − 1

∆t

∫
NNρ(Ut+∆t − Ut)drdz

−
∫ 1
r

∂NN

∂r

(
kr
∂T

∂r

)
drdz −

∫ ∂NN

∂z
k
∂T

∂z
drdz

with TN
t+∆t,i+1 = TN

t+∆t,i + c̄N , i = iteration number

(4.22)
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With the film condition, the convective flux term gives a Jacobian contribution:

∫
NNhNMdrdz (4.23)

adding this therm to the Equation 4.22, the modified Newton to the elements in the
convective surface is:

[
1

∆t

∫
NNρ

dU
dT |t+∆t N

Mdrdz +
∫ 1
r

∂NN

∂r

(
k |t+∆t r

∂NM

∂r

)
drdz

+
∫ 1
r

∂NN

∂r

(
r
∂k

∂T
|t+∆t

∂T

∂r
|t+∆t

)
NMdrdz +

∫ ∂NN

∂z
k |t+∆t

∂NM

∂z
drdz

+
∫ ∂NN

∂z

∂k

∂T
|t+∆t

∂T

∂z
|t+∆t N

Mdrdz +
∫
NNhNMdrdz

]
c−M

= − 1
∆t

∫
NNρ(Ut+∆t − Ut)drdz −

∫ 1
r

∂NN

∂r

(
kr
∂T

∂r

)
drdz

−
∫ ∂NN

∂z
k
∂T

∂z
drdz with TN

t+∆t,i+1 = TN
t+∆t,i + c̄N , i = iteration number

(4.24)

In the modified Newton to the elements in the drilling surface, it’s added the therm
relative to the heat flux transferred to the workpiece. The Equation 4.25 describes the
time integration to these elements.

[
1

∆t

∫
NNρ

dU
dT |t+∆t N

Mdrdz +
∫ 1
r

∂NN

∂r

(
k |t+∆t r

∂NM

∂r

)
drdz

+
∫ 1
r

∂NN

∂r

(
r
∂k

∂T
|t+∆t

∂T

∂r
|t+∆t

)
NMdrdz +

∫ ∂NN

∂z
k |t+∆t

∂NM

∂z
drdz

+
∫ ∂NN

∂z

∂k

∂T
|t+∆t

∂T

∂z
|t+∆t N

Mdrdz

]
c−M =

∫
NNQ̇drdz

− 1
∆t

∫
NNρ(Ut+∆t − Ut)drdz −

∫ 1
r

∂NN

∂r

(
kr
∂T

∂r

)
drdz −

∫ ∂NN

∂z
k
∂T

∂z
drdz

with TN
t+∆t,i+1 = TN

t+∆t,i + c̄N , i = iteration number

(4.25)

4.3 Heat Flux Models

The term Q̇wp in the Equation 4.9 is the fraction of heat generated in the process
that is transferred to the workpiece. The heat flux in this research is considered as a spatial
and time distribution along the hole wall. Four different heat flux models are used in this
study concentrated, linear, polynomial and hybrid.
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4.3.1 Concentrated heat flux

The concentrated distribution is calculated using an analytical approach. Assuming
that all the energy in the cutting process is transformed into heat, the total heat can be
calculated by the Equation 4.26:

Qtotal = 2πM n

60tc (4.26)

where M is the experimentally measured drilling torque, n is the rotation speed of the
drill and tc is the machining time. However, as previously presented, the heat input to
workpiece (Qwp) can occur in two of the three heat generation zones: the primary zone
that is the tool bottom surface (Qwp1) and the secondary zone that is the just-machined
hole wall (Qwp2) , then just a portion of the heat generated is conducted to workpiece and
it can be said that Qwp = Qwp1 +Qwp2.

As an input, simulation programs such as ABAQUS require a value independent of
the simulation time ∆t and the machined surface A , thus the heat quantity cannot be
used. The quantity of heat transferred to workpiece ∆Q is put into relation to the surface
machined within one second. The result thereof is referred to as the surface heat flux:

Qwp = 1
A

∆Q
∆t (4.27)

the calculated heat flux is put in the FEM of the workpiece, as can be seen in the Figure
14. The heat flux Qwp is applied as a surface heat flux with uniform distribution in a size
of 1 mm. This is the only flux that is not calculated through the inverse procedure.

Figure 14 – Concentrated distribution of heat flux

Qwp

1 mm

Source: Author’s production, 2017
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4.3.2 Linear distribution

The linear distribution is represented in Figure 15. The first part is an uniform
distribution of length a and value Qmax . The second part is a linear distribution from
Qmax until zero with length from a until the workpiece top surface. These two parameters
a and Qmax are identified using the inverse procedure. This distribution was proposed by
the author as a simple distribution. It considers the high heat input close to the cutting
edge of the tool and the heat transfer along the machined surface.

Figure 15 – Linear distribution of heat flux

a

Qmax

Source: Author’s production, 2017

4.3.3 Polynomial distribution

The polynomial distribution is based in the approach presented by Tai et al. (2012).
The spatial distribution of Qwp at a specific time is defined as Qwp(y, t) where y is the
distance from the drill cutting edge, as can be seen in Figure 16. The four control points
used Q1, Q2, Q3 and Q4 and their positions y1, y2, y3 and y4 determine the spatial
distribution of Qwp(y, t).

Figure 16 – Polynomial distribution of heat flux
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Source: Tai et al. (2012)
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The heat generated in the primary heat zone usually is considered constant, but
the heat flux in the hole wall increases as the hole depth increases. Because of this, the
value of the control points varies in time and they are modeled as a quadratic function of
time.

Q1 = c0 + c11 ∗ (t− t2) + c12 ∗ (t− t2)2 for t > t2

Q2 = c0 + c21 ∗ (t− t2) + c22 ∗ (t− t2)2 for t > t2

Q3 = c0 + c31 ∗ (t− t3) + c32 ∗ (t− t2)2 for t > t3

Q4 = c0

(4.28)

where c0 is the initially uniform distributed Qwp. Time t2 and t3 are respectivaly the
times to the drill reaches the depths y2 and y3.The control point Q1 moves according to
cutting conditions (Vc and f) and the function of Qwp(y, t) is the polinomial interpolation
of the control points.

The position of Q4 is the only that varies in time, the other three points are fixed
as y1 = 0, y2 = 15mm and y3 = 30mm. These values were chosen as suggested by Tai et
al. (2013). The variation of the flux distribution has three stages. At the first stage, when
y4 ≥ y2 > 0, only Q4 is active and the flux has a uniform distribution. The second stage
starts at the moment that the drill reaches a hole depth greater than the value of y2, when
y3 ≤ y4 > y2 > 0, and the control points Q1 and Q2 are activated. In the last stage, when
y4 > y3, the control point Q3 is activated. The times t2 and t3 are the necessary times to
the tool reaches the depths y2 and y3. In this drilling process t2 = 3.7 s and t3 = 7.4 s. A
sequential activation of the control points can be seen in the Figure 17.

Figure 17 – Sequential activation of the control points: a) when y4 ≥ y2 and b) when
y3 ≤ y4 > y2 > 0

Q1
(inactive)

Q4

Q1

Q2

Q4

Source: Tai et al. (2012)

In the inverse procedure, the seven coefficients, c0, c11, c12, c21, c22, c31 and c32, that
define the control points are identified using the PSO to minimize the error between
measured and simulated temperatures.
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4.3.4 Hybrid distribution

The last distribution is similar to the polynomial distribution that was previously
presented and it is called hybrid distribution. The difference is the addition of a concentrated
heat flux of 1 mm length that moves together with control point Q1. This addition was
done to analyze the influence of the high heat input in the primary heat zone. The heat
flux distribution is presented in the Figure 18. The combination of these two heat fluxes is
the hybrid distribution.

Figure 18 – Hybrid distribution of heat flux
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Source: Author’s production, 2017

This is a distribution proposed in this work. The eight coefficients are identified
through the inverse procedure. The seven coefficients that define the polynomial flux more
the coefficient Q0.
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5 Results

At this chapter are presented the results found in the analysis. The chapter is
divided in six sections. In the first section are discussed the experimental results. In the
second section are presented the results to the concentrated flux. The third section presents
the linear distribution and the polynomial distribution is in the fourth section. The last
distribution, the hybrid distribution, is presented in the fifth section. In the sixth and last
section are presented some comparisons between the proposed distributions.

5.1 Experimental Results

Looking specifically at one of the curves it can be seen the behavior of the tem-
perature variation in the workpiece. The Figure 19 shows the temperature variation of
thermocouple T1. A characteristic that is analyzed is the reaction time. The time necessary
for the temperature variation to reach 1 ◦C.

Figure 19 – Experimental temperature in point T1
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The temperature curve can be divided in two phases. The first is the drilling,
where the machining process takes place and therefore a portion of the generated heat is
transferred to the workpiece. The second phase is the cooling, where there is only heat
transfer by convection and the homogenization of the workpiece temperature.
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However, after the drill comes out of the hole the temperature of the points analyzed
continue to increase. This occurs because the thermocouple localization is far from the
machining surface. This is valid for the experimental and numerical analysis. After reaching
the maximum temperature variation, (11.8◦C) the temperature decreases linearly. This
decrease in temperature happens due to the heat loss by convection, the heat trasnfer to
other regions of the workpiece and the heat transferred to the fixture.

The experimental temperature curves are obtained as described in section 3.2. The
results were plotted on time as can be seen in Figure 20. All curves have a similar behavior,
your maximum values are located after the end of the drilling process. Up to the end of
the analysis, the thermocouple temperatures have a temperature difference due to the
thermocouple error. However, it can be considered that after 80 seconds the temperature
in the five points of the workpiece is the same, since the difference is of 0.8◦C and remains
the same until the end.

Figure 20 – Temperatures experimentally measured
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Looking at the Figure 21, it can be seen that the behavior of the measured
temperatures at the process beginning. The variation appears according to the position of
the thermocouples attached to the workpiece. T1 is closest to the top of the workpiece
and T5 in the bottom position. The Figure 21 and the Table 5 present the reactions time.
It can be seen that they have the expected behavior.
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Figure 21 – Temperatures experimentally measured
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Table 5 – Reaction times for experimental temperatures

Thermocouple T1 T2 T3 T4 T5
Reaction time (s) 4.2 5.7 7.0 9.7 11.6

Source: Author’s production, 2017

The maximum temperature variations of each thermocouple are shown in Table
6. They are around 11.5◦C. The thermocouples from T1 until T4 have their maximum
values around the time of 20.4 and the thermocouple T5 has his maximum delayed in
comparison with the other thermocouples.

Table 6 – Maximum measured temperature variations

Thermocouple T1 T2 T3 T4 T5
Maximum temperature variation (◦C) 11.9 11.8 12.0 11.1 10.9
Instant of time (s) 20.4 18.4 20.4 24.4 34.4

Source: Author’s production, 2017

The torque was measured during the drilling process and its value was plotted on
time, result presented in the Figure 22. The medium value of the torque is M = 7.1 Nm,
it was calculated using the values in a period that is represented by the window in the
figure. The torque is used to calculate the total heat generated in the drilling process.
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Figure 22 – Torque experimentally measured
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5.2 Concentrated Distribution
In the first analysis, it was considered a heat flux with a concentrated distribution

as it was described in the section 4.3.1. The first step is to calculate the total heat generated
using the Equation 4.26 as is shown in sequence.

M = 7.1 Nm

n = 1212 rpm

tc = 12.4 s

Qtotal = 2πM n

60tc = 11174 J

However, only a portion of this generated heat is transferred to workpiece. The
heat flux that is applied in the finite element model is calculated using the Equation 4.27.
It was considered that 30 % of the generated flows into workpiece. The time of simulation
is dt = 12.4 s, then we have:

∆Q = 0.3Qtot = 3352.2 J

A = 8.66x10−5 m2

Qwp = 1
A

∆Q
∆t = 3.12 MW/m2
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With the heat flux calculated it’s possible to calculate the numerical temperatures
to all thermocouple positions. The comparison between the temperature variation obtained
from numerical simulation and experimental results is presented in the Figure 23. This
analysis has an average error of errav = 13.85 %. In the numerical curves, it can be observed
that after 100 s the temperature tends to the same value. The experimental values show a
bigger difference. This difference in the measured temperatures is a consequence of the
thermocouples errors.

Figure 23 – Experimental and numerical temperatures using the concentrated distribution
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The error to each temperature curve is different and this is presented in the Table
7. The best result found is to thermocouple T1 and the worst is T5. All results presented
errors that are higher than 10 %. In the Figure 24, the temperature curves are plotted
separately and it’s possible to observe the differences between numerical and measured
temperatures. In any of the temperatures, the maximum temperature variation of the
experimental result is reached by the numerical value.

Table 7 – Average error at each temperature using concentrated distribution

Temperature T1 T2 T3 T4 T5
Average error (%) 10.24 12.71 11.8 16.06 18.46

Source: Author’s production, 2017
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Figure 24 – Experimental and numerical temperatures using the concentrated distribution

(a) T1 (b) T2

(c) T3 (d) T4

(e) T5

Source: Author’s production, 2017

5.3 Linear Distribution

In the optimization process, the error between numerical and experimental tem-
peratures is used to identify the coefficients. However, due to the PSO characteristics,
the error isn’t improved linearly. This variation can be seen in the Figure 25. The results
convergence can be observed looking for a decrease of the peaks. The process was ended by
the criterion of the minimum objective value change at the 161st particle. The procedure
error found was errproc = 12.35 %.

In this distribution, a heat flux distribution with an uniform part and a linear part
was considered, as represented in the Figure 15. In this distribution, the model coefficients
of Qwp are a and Qmax, and they are determined trough the inverse approach that was
presented in the section 3.3. The best results found are Qmax = 585524.1 W/m2 and
a = 0.00289 m. After the heat flux identification, the average error between measured and
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Figure 25 – Error variation along the optimization process
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numerical temperatures was calculated. It was used the same equation that calculate the
procedure error (Equation 3.1), but it was used more points as described in section 3.4.
The average error is errav = 8.58 %.

The Figure 26 compares the workpiece temperature variation obtained for numerical
simulation with experimental results. In the numerical curves, it can be observed that
after 140 s the temperature tends to the same value in all curves, ∆T = 8.4 K, while at
the same instant in the experimentally measured there is a bigger difference.

The error is different for each thermocouple analyzed, these results are presented
in the Table 8. The smallest error is found in the input point T1 and the highest error is
in the point T5, this information shows the better accuracy at the temperature estimation
of the initial points.

Table 8 – Average error at each temperature using linear distribution

Temperature T1 T2 T3 T4 T5
Average error (%) 5.87 6.29 7.25 9.55 13.95

Source: Author’s production, 2017
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Figure 26 – Numerical and experimental temperature in all thermocouples using linear
distribution
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Looking to each temperature separately, (Figure 27) it can be seen some differences
between the temperatures behavior. The numerical temperature in T1, T2, and T3 have a
similar behavior to the experimental. In T4 and T5, the maximum temperature variations
of the experimental results aren’t reached by the numerical solution and the temperature
decay is different. The highest error in the inferior thermocouples (T4 and T5) are
associated with the heat loss by conduction to the machining fixing. This heat loss is
inconsiderate in the FEM.
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Figure 27 – Experimental and numerical temperatures using the linear distribution

(a) T1 (b) T2

(c) T3 (d) T4

(e) T5

Source: Author’s production, 2017

5.4 Polynomial Distribution
In this distribution, the heat flux Qwp is defined by Equation 4.28 with 7 coefficients,

c0, c11, c12, c21, c22, c31, c32. The value of the coefficient c0 defines the initially uniform
distributed Qwp. All the coefficients were solved using the inverse procedure that was
previously presented. The results are presented in the Table 9.

Table 9 – Polynomial Coefficients

Coefficient c0 c11 c12 c21 c22 c31 c32
Result (kW/m) 100 302.28 -8.99 77.62 -10.0 78.77 4.06

Source: Author’s production, 2017

The Equations 3.1 and 3.2 were used as error function, the inverse procedure
found a value of errproc = 18.79 %. The error convergence along the simulation process is
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presented in the Figure 28. The coefficient values were found through the inverse approach
that stopped by the criterion of the minimum objective value change.

Figure 28 – Error variation along the optimization process
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The value of the control point Q1 is the peak and increases steadily as the drill
penetrates in the workpiece. The control points Q2 also have a similar behavior, but the
point Q3 is different. The third control point is located at the point y3 = 30 mm and it
is activated at the step 120, t = 7.44 s. The value of Q3 decreases in time. These points
were interpolated to find the heat flux distribution.

The Figure 29 shows the heat flux applied to the workpiece surface at different
steps. In this graph, the reference y = 0 is the top surface of the workpiece and y is the
hole in that step. The maximum value is in the tip of the drill whose position varies at
each step because it is simulating the drilling.

Figure 30 shows the calculated and measured temperature variation to the five
thermocouples using the polynomial distribution. This distribution also presented good
results, the error is different to each curve but follows a difference tendency then that
was found in the linear distribution. The numerical solution stabilizes at the temperature
variation ∆T = 8.3 ◦C.

The average error is different at each temperature. In the Table 10 are presented the
calculated errors between the numerical and experimental curves in the five thermocouples.
The curve with the best result is T2 that presented err = 7.57 % and the worst result is T1
with an error err = 10.73 %. It was different to what was found in the linear distribution.
This difference to the linear distribution happens because the heat input in the beginning
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Figure 29 – Heat flux in the polynomial distribution

(a) 2.48 s (b) 4.96 s

(c) 7.44 s (d) 9.92 s

(e) 12.4 s

Source: Author’s production, 2017

of the distribution isn’t high enough to properly describe the real heat flux. The average
error in this distribution is errav = 8.76 %.

Table 10 – Average error at each temperature using polynomial distribution

Temperature T1 T2 T3 T4 T5
Average error (%) 10.46 7.57 8.34 8.23 9.21

Source: Author’s production, 2017

In the Figure 31, the simulated and measured temperature variation to each
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Figure 30 – Numerical and experimental temperature in all thermocouples using polyno-
mial distribution
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thermocouple are presented separately. Like in the concentrated distribution, in any of
the simulated results the temperature variation reaches the maximum experimental value.
However, the behavior of the temperatures in four of the thermocouples (T1, T2,T3, and
T4) is similar to the experimental. As in the other distributions, the numerical result of
T5 diverges from the experimental.
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Figure 31 – Experimental and numerical temperatures using the polynomial distribution

(a) T1 (b) T2

(c) T3 (d) T4

(e) T5

Source: Author’s production, 2017

5.5 Hybrid Distribution

This distribution is a combination of two heat fluxes. In total, eight coefficients
are used to define the heat flux to workpiece. The seven coefficients that were used at the
polynomial distribution are combined with an additional coefficient, Q0. The additional
coefficient defines a concentrated heat flux at the beginning of distribution.

The inverse procedure of heat flux identification was used to discover the value
of all coefficients. At the end of the simulation, an error was determined using the error
equation, errproc = 8.29 %, when the process was ended the following coefficient’s values
were found.

The inverse procedure found that error in the 743rd particle. The error of the par-
ticles’ result was plotted in the Figure 32 and the peaks show the procedure’s convergence.
The stop criterion was the minimum variation of the objective function’s value.
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Table 11 – Hybrid coefficients

Coefficient Q0/m c0 c11 c12 c21 c22 c31 c32
Result (kW/m) 2616.88 97.40 50.00 6.76 27.27 −7.92x10−2 49.37 -9.93

Source: Author’s production, 2017

Figure 32 – Error variation along the optimization process
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The portion of the heat flux that is controlled by the polynomial coefficients was
interpolated and plotted in five different step times. The control point Q1 is the peak and
all the control points have your value increased with the time. The heat flux stages can be
seen in the Figure 33, where y = 0 is the top surface of the workpiece. Due to the flux
applied by the coefficient Q0, the flux defined by the polynomial coefficients is lower than
in the approach that uses only the polynomial distribution.

The temperature calculated all thermocouples using the hybrid heat flux was plotted
together with the experimental results. These temperature curves can be seen in the Figure
34. The average error of the simulation is errav = 7.34 %. The simulated temperatures
stabilize at the variation ∆T = 8.3 K at 320 s and like in the other simulations the curves
have different errors.

The average error was calculated using the Equations 3.1 and 3.2. The Table 12
shows the results to the distribution. The best result is in thermocouple T2, err = 5.79 %,
the result of thermocouple T1 is close to this and only T5 has an error above than 10 %.
The error increases according to the depth at which the thermocouple is located.
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Figure 33 – Polynomial fraction of heat flux in the hybrid distribution

(a) 2.48 s (b) 4.96 s

(c) 7.44 s (d) 9.92 s

(e) 12.4 s

Source: Author’s production, 2017

Table 12 – Average error at each temperature using hybrid distribution

Temperature T1 T2 T3 T4 T5
Average error (%) 5.93 5.79 6.78 8.08 10.11

Source: Author’s production, 2017

In the Figure 35, the simulated and measured temperature variation to each
thermocouple is presented separately. In three thermocouples, (T1,T2, and T3) the
maximum temperature variations calculated reach the measured temperature. In these
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Figure 34 – Numerical and experimental temperature in all input points using hybrid
distribution
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temperatures, the behavior is similar in numerical and experimental results. The behavior
is also similar in T4. As in the other distributions, the numerical result of T5 diverges
from the experimental.
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Figure 35 – Experimental and numerical temperatures using the polynomial distribution

(a) T1 (b) T2

(c) T3 (d) T4

(e) T5

Source: Author’s production, 2017

5.6 Comparision between the distributions
The first comparision between the results for each heat distribution, it is the

difference in the average error, which can be seen at the Table 13. The hybrid distribution
presented the best overall result among all proposed distributions. The three distributions
that consider the heat transfer along the wall presented a better result than the concentrated
heat flux.

Table 13 – Average error to each heat flux distributions

Distribution Concentrated Linear Polynomial Hybrid
Average error (%) 13.95 8.58 8.76 7.34

Source: Author’s production, 2017

Using the experimentally measured torque, it is possible to calculate the total
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heat generated in the machining process. This was already calculated in the section 5.2,
Qtotal = 111147 J . In the FEM, the heat loss happens only through natural convection. If
the convection is disregarded, all the applied heat remains in the workpiece. The workpiece
tends to thermal equilibrium, when the workpiece reaches the thermal equilibrium it is
possible to calculate the heat transferred to the workpiece using the Equation 5.1.

Qwp = mcp∆T (5.1)

where m = 0.656 kg is the workpiece mass, cp = 490KJ/KgK is the specific heat and ∆T
is the temperature variation .

Analyzing the distributions used in this research the heat transferred to the
workpiece is around 30 % as shown in the Table 14. This result proves that the magnitude
of the heat fluxes that were determined through the inverse procedure are according to
the literature.

Table 14 – Heat flux transferred to workpiece

Distribution Heat transferred
to workpiece (J)

Percentage of the
heat generated (%)

Concentrated 3352.8 30
Linear 3375 30.2

Polynomial 3311 29.6
Hybrid 3324 29.7

Source: Author’s production, 2017

The initial temperature variation has some differences between experimental and
numerical results. The Figure 36 shows the firsts 14 s of each result. Differently from
the experimental result, the numerical temperature variations in T2 and T3 surpass the
value of T1. This happens more sharply when the polynomial distribution is used. This
difference in the behavior of the curves is due to the fact that in the numerical model the
hole is considered as preexisting. Then a portion of the heat that should be conducted to
the material not yet removed, it is transferred to the region of the thermocouples causing
a higher temperature rise.

The differences in the distributions can be seen in the Figure 37. The figure shows
the workpiece temperature for each distribution. The way that the heat disperses through
the workpiece differs according to the distribution used. The highest temperatures are
found in the polynomial distribution. However, due to the distribution of the heat flux,
between the bottom of the workpiece, where the temperature peak is, and the top of the
workpiece, there is a region with low temperature.
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Figure 36 – Initial temperature variation in each distribution

(a) Experimental (b) Linear

(c) Polynomial (d) Hybrid

(e) Concentrated

Source: Author’s production, 2017

The temperature distribution for the hybrid flux is the most uniform. While in
linear distribution the temperature ends up having a parabola distribution with the
temperature change wave spreading faster in the central region in the hybrid heat flux
this change further follows the movement of the tool in the process with the temperature
wave reaching the outer face first in the upper part.

The lowest temperatures occur in the concentrated flow, comparing its results with
the result of the distributions that consider the heat flux along the machined surface, one
can perceive the influence that this consideration generates on the temperature distribution.
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From this information, it is possible to perceive the influence of the distribution of
the heat flow. Although all flows transfer almost the same amount of heat to the part,
there are significant differences due to the distribution. In the concentrated flow, one
notices how the temperature start is very anticipated. At the same time, in the curves of
the linear distribution, we notice a delay that is due to the lack of a peak of heat flow
at the beginning of the distribution. The linear and hybrid distributions show a good
accuracy in the rise of the temperature curves with their results being very close to the
experimental result.

A comparison between the distributions is done analyzing the results for ther-
mocouples T1,T3, and T5. These temperatures were chosen due to the thermocouples’
location.
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Figure 37 – Workpiece temperature distribution to different heat flux distributions

(a) Linear

(b) Polynomial

(c) Hybrid

(d) Concentrated

Source: Author’s production, 2017
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5.6.1 Thermocouple T1

Analysing all the results at the thermocouple T1, which are presented in Figure
38, it is possible to observe some differences. The curve of the linear distribution has a
maximum value that is higher than in others distributions. The temperatures for hybrid
and polynomial distributions have behaviors that are closer to experimental than others
distributions. The difference is also evidenced when we analyze the average error of the
thermocouple T1 for each heat distribution (Table 15). The linear and hybrid heat fluxes
have errors that are almost half the error found for the concentrated and polynomial
distributions.

Figure 38 – Experimental and numerical temperatures in T1
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Table 15 – Average error in T1 to each heat flux distributions

Distribution Concentrated Linear Polynomial Hybrid
Average error (%) 10.24 5.87 10.45 5.93

Source: Author’s production, 2017

In the Figure 39, it can be observed that the initial behavior of the linear and hybrid
fluxes are closer to the experimental results than other two approaches. The polynomial
presents the greatest delay due to the low value at the beginning of the flux. While the
result for the concentrated heat suffers from a faster temperature variation. The reaction
times to each distribution are presented in the Table 16. This reaction time is affected
by the magnitude of the heat flux in the region near drill tip. The concentrated has the
lowest value because all the heat flux is concentrated in a small region near the drill tip.
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Figure 39 – Experimental and numerical temperatures in T1
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Table 16 – Reaction times for temperatures in T1

Distribution Experimental Lienar Polynomial Hybrid Concentrated
Reaction time (s) 4.2 4.1 5.9 3.7 2.8

Source: Author’s production, 2017

Another characteristic that was compared, it is the maximum temperature variation
in T1. In the Table 17, it can be seen this value and the instant time, that is the time when
the temperature variation reaches his maximum. The maximum temperature in hybrid
approach has the closest result to the experimental and it presented the same instant time
of experimental results.

Table 17 – Maximum temperature variations in T1

Experimental Linear Polynomial Hybrid Concentrated
Maximum
temperature
variation (◦C)

11.9 13.3 11.1 11.6 10.6

Instant time (s) 22.4 20.4 21.4 22.4 21.4
Source: Author’s production, 2017

5.6.2 Thermocouple T3

Looking at the temperature variations in T3 that are presented in the Figure 40, it
can be observed similar results to linear, polynomial and concentrated distributions. The
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concentrated approach presented temperatures that are lower than in the other approaches.
The average error, which is presented in Table 18, shows that hybrid distribution also has
the best result in this thermocouple. However, it was only in the concentrated distribution
that the error was higher than 10 %, the linear an polynomial have errors that are close
to the hybrid result.

Figure 40 – Experimental and numerical temperatures in T3
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Table 18 – Average error in T3 to each heat flux distribution

Distribution Concentrated Linear Polynomial Hybrid
Average error (%) 11.80 7.25 8.34 6.78

Source: Author’s production, 2017

The beginning of the temperature variation measured in thermocouple T3 and the
simulated results follows the same trend that was observed in T1. The Figure 41 shows
these results. The reaction times can be seen at Table 19. They follow the same order that
in T1, when organized from the smallest to the longest: concentrated, hybrid, linear and
polynomial.

Table 19 – Reaction times for temperatures in T3

Distribution Experimental Lienar Polynomial Hybrid Concentrated
Reaction time (s) 7.0 7.8 8.2 7.4 6.5

Source: Author’s production, 2017

The maximum temperature variation in T3 can be seen at the Table 20. The
experimental and numerical results are similar in this case. The concentrated distribution
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Figure 41 – Experimental and numerical temperatures in T3
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has the highest difference, but the other distributions have results closer to the experimental.
The linear reaches the same maximum value to the temperature variation with a difference
in the instant time. This instant time, 18.4 s, is the same to polynomial and hybrid. This
shows that in the simulations the temperature variation is more pronounced than in the
experimentally measured result because, despite the delay in the beginning of the variation,
it reaches the maximum before.

Table 20 – Maximum temperature variations in T3

Distributions Experimental Linear Polynomial Hybrid Concentrated
Maximum
temperature
variation (◦C)

12.0 12.0 11.2 11.6 10.7

Instant time (s) 20.4 18.4 18.4 18.4 17.4
Source: Author’s production, 2017

5.6.3 Thermocouple T5

At the Figure 42 can be seen the measured and simulated temperature variations
in T5. The thermocouple T5 presents the worst error in comparison with the others ther-
mocouples. The exception is the polynomial distribution, in which T5 is the thermocouple
with the lowest error. The average error in T5 to each distribution can be seen at the
Table 21.
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Figure 42 – Experimental and numerical temperatures in T5
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Table 21 – Average error in T5 to each heat flux distribution

Distribution Concentrated Linear Polynomial Hybrid
Average error (%) 18.45 13.95 9.21 10.11

Source: Author’s production, 2017

The Figure 43 shows the initial temperature variation in T5. It presents a difference
in relation to T1 and T3. The polynomial distribution result is closer to the experimental
than was observed in the other thermocouples. For the other distributions, the results
follow the same trend. The values of the experimental reaction time and of each distribution
can be seen in the Table 22.

Table 22 – Reaction times for temperatures in T5

Distribution Experimental Lienar Polynomial Hybrid Concentrated
Reaction time (s) 11.6 12.3 11.9 11.8 11.3

Source: Author’s production, 2017
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Figure 43 – Experimental and numerical temperatures in T5
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In the maximum temperature variation, there is a difference higher than in other
thermocouples. As can be seen in the Table 23, all the numerical results are close to each
other, but it has more than 1-degree difference for the experimental. In addition, the
instant where the simulation reaches the maximum temperature variation occurs around
30 s after the maximum experimental value. These results demonstrate the difficulty in all
numerical models of representing the temperature at the bottom of the workpiece.

Table 23 – Maximum temperature variations in T5

Distributions Experimental Linear Polynomial Hybrid Concentrated
Maximum
temperature
variation (◦C)

10.9 9.6 9.7 9.6 9.7

Instant time (s) 34.4 80.4 62.4 60.4 69.4
Source: Author’s production, 2017
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6 Conclusions

During the machining process, there is heat generation at the tool tip due to the
plastic deformation of the material. The heat is also generated due to the friction between
the chip, the tool and the workpiece. This heat propagates to chip, tool, and workpiece
causing thermal deformations, which is a source that generates errors in the process. In dry
machining due to the lack of cutting fluid, this condition becomes critical. In the drilling
process, the thermal problem becomes critical because the drill bit is enclosed in the hole.
This complicates the dissipation of the generated heat. The identification of the heat flux
flowing to the workpiece allows the calculation of the workpiece temperature distribution.

There are several approaches in the literature to calculate heat flux and temperature
in the drilling, among them the FEM. Within this method, there are different approaches
for the heat flux distribution. As discussed in Chen et al. (2017) four different strategies
to thermal load can be used: advection model, surface heat model, heat carrier model and
ring heat model.

The models that use element deletion in spite of presenting good results have a very
high computational cost. This may do the use of this approach unfeasible in some cases. In
the case of models that use a preexisting hole, the heat distribution is usually considered
constant. Flux variations are usually not considered and there is no consideration of heat
flux along the hole wall. Tai et al. (2012) considered the distribution of the heat flux along
the wall and the variation of the flow over time. However, the author used the element
deletion and still identified the total flux in two separate procedures. This turns the overall
procedure very costly.

In this work, the methodology adopted considered a model with a preexisting
hole but also considered a variation in the heat flux over time. Using the experimentally
measured workpiece temperature, combining with the finite element model, the heat flux
flowing to the workpiece was identified. Using the PSO in the inverse procedure, the error
between the experimental and numerical values was minimized for three different heat flux
distributions. A fourth distribution, that treats the flux as concentrated in a small area,
was calculated analytically and used for comparison purposes with the proposed models.

To obtain the required experimental data, a cylindrical workpiece was drilled using
the dry drilling process. The temperature was recorded using thermocouples coupled to
the workpiece surface. This workpiece was modeled ABAQUS and the different heat flux
distributions were applied.

The results obtained for the three distributions, identified in the inverse procedure,
were satisfactory. The results are specially goods onsidering the simplifications of the

65



numerical model and the experimental measurement. All distributions presented a mean
square error less than 9 %. The distribution that presented the best result was the hybrid
, errav = 7.34 %.

The curve fitting for T5 had the biggest errors overall. Even in the polynomial
distribution that presented the best result for this curve, the error was close to 10 %. In
contrast, it is in the polynomial distribution that the worst result for T1 (errav = 10.11 %)
was found. While in the linear and hybrid distributions the errors were respectively 5.87 %
and 5.93 % .

The linear and hybrid distributions were those that were closer to experimental at
the beginning of the temperature variations. The concentrated heat flux is the one that
had the most advanced heating, while in the polynomial distribution the heating presented
a delay. This showed that the beginning of the temperature variatio is mainly influenced
by the value of the heat flux in the dril tip. In the concentrated flu, the heat in the drill
tip is the greater of all distributions and in the polynomial is the smaller value. They had
respectively the smallest and the biggest reactions times.

The amount of heat that was transferred to the workpiece was in agreement with
the values found in the literature. In the three distributions, the value was around 30 %
which is in agreement with the literature that places the amount of heat transferred to
the workpiece between 10 and 35 % for dry drilling (FLEISCHER et al., 2007).

At the end of the analyzes, it can be concluded that the hybrid distribution was
the one with the best results. Besides the smaller average error, the behavior of the
curves, especially in the initial temperature variation, was very close to the experimental.
Segurajauregui and Arrazola (2015) despite presenting a minor error, 3.65% used the
advection model which is more complex and also analyzed a shorter time without evaluating
the cooling phase. As seen in the results, there is an increase in the error in the end of
simulation due to the experimental limitation.

Finally, it can be concluded that the proposed approach is able to satisfactorily
identify the heat flux flowing to the workpiece during dry drilling, without the need for
large computational costs or complex experimental tests.

6.1 Suggestions for Future Works

Some suggestions for future works which can help in the improvement of the dry
machining process.

The experimental setup presented some limitations and contributed to the errors
of the analysis. A good isolation between workpiece and machine fixture would ally the
finite element model represent with more accuracy the system behavior.
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The use of the methodology applied in this work to be able to calculate the
temperature of the workpiece in wet and mql drilling would provide important data to
compare the effects of the application of cutting fluid.

Using the inverse procedure of this work for drilling with other machining parameters
would help to develop the method and discover possible limitations of its application. A
similar approach could also be used for other machining processes such as turning.

There is also the possibility of studying the efficiency of this model in the case of
workpieces that are submitted to several sequential holes, analyzing what considerations
would be necessary to fit the model.
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A Mesh refiniment

The influence of the finite element parameters as element size and time integration
were analised before the iterative analysis to identify the heat flux. The mesh refiniment
was done with a heat source defined by an uniform part and a linear part. The element sizes
used in the simulations were E1 = 2.5 mm, E2 = 1 mm, E3 = 0.5 mm and E4 = 0.25 mm.

This sizes were chosen because the temp points analised can be the same in the
experimental tests. In these analyisis were used the time steps ∆t,d = 0.1 s and ∆t,c = 2.0 s.
As can be seen in the figure 44, the element size has a small influence in the maximum
temperature, the maximum temperature variation has a difference smaller than 1 %. It
was chosen the element size S2 = 1 mm because this size generates a mesh with little
distortion and the time simulation isn’t so high.

Figure 44 – Influence of element size in the maximum temperature variation simulated
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The step time influence was analised separetely in drilling and cooling phase. In
drilling phase the time step was chosen based in the total drilling time, that is 12,4 s.
The first step time used was the time required for the tool to drill 2 mm. This step time
is ∆t,d_1 = 496ms, the other step times were defined as ∆t,d_1/2, ∆t,d_1/4, ∆t,d_1/8 and
∆t,d_1/16.

In these analyzes the other parameters were S = 1mm and ∆t,c = 2.0s. In the time
discretisation of the first step the maximum temperature variation decreases as step time
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decreases as can be seen in figure 45. The defined step time was ∆t,d = 62ms, because
reducing the time step to ∆t,d = 31ms resulted in a relative decrease of less than 1 % and
the processing time is the double.

Figure 45 – Influence of drilling step time in the maximum temperature variation simulated
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Figure 46 – Influence of cooling step time in the maximum temperature variation simulated
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In the cooling phase five different time steps were analised as can be seen in figure
46. The shorter the time step the higher the temperature variation in the workpiece. The
temperature increasement between the time steps ∆t,c = 1.0s and ∆t,c = 0.5s was only 1%,
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but the computer time required was increased in almost 100 % because of this ∆tc = 1.0s
was defined as an apropriated time step to this phase.
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