

UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC CENTRO DE EDUCAÇÃO SUPERIOR DO OESTE - CEO PROGRAMA DE PÓS-GRADUAÇÃO EM ZOOTECNIA

DISSERTAÇÃO DE MESTRADO

COMPARAÇÃO DOS TRANSCRIPTOMAS DE SUÍNOS AFETADOS COM HÉRNIA ESCROTAL E HÉRNIA UMBILICAL

ARIENE FERNANDA GRANDO RODRIGUES

CHAPECÓ, 2020.

ARIENE FERNANDA GRANDO RODRIGUES

COMPARAÇÃO DOS TRANSCRIPTOMAS DE SUÍNOS AFETADOS COM HÉRNIA UMBILICAL E HÉRNIA ESCROTAL

Dissertação apresentada ao Curso de Mestrado do Programa de Pós-Graduação em Zootecnia, Área de Concentração Ciência e Produção Animal, da Universidade do Estado de Santa Catarina (UDESC), como requisito parcial para obtenção de grau de **Mestre em Zootecnia**

> **Orientadora: Mônica Corrêa Ledur** Coorientadora: Jane de Oliveira Peixoto Coorientador: Diego de Córdova Cucco

Ficha catalográfica elaborada pelo programa de geração automática da

Biblioteca Setorial do CEO/UDESC,

com os dados fornecidos pelo(a) autor(a)

Rodrigues, Ariene Fernanda Grando

Comparação dos transcriptomas de suínos afetados com hérnia umbilical e hérnia escrotal / Ariene Fernanda Grando Rodrigues. --2020.

100 p.

Orientadora: Mônica Corrêa Ledur Coorientadora: Jane de Oliveira Peixoto Coorientador: Diego de Córdova Cucco Dissertação (mestrado) -- Universidade do Estado de Santa Catarina, Centro de Educação Superior do Oeste, Programa de Pós-Graduação em Zootecnia, Chapecó, 2020.

 RNA-Seq. 2. Expressão gênica. 3. Melhoramento animal. 4.
 Sequenciamento. I. Ledur, Mônica Corrêa. II. Peixoto, Jane de Oliveira. Cucco, Diego de Córdova. III. Universidade do Estado de Santa Catarina, Centro de Educação Superior do Oeste, Programa de Pós-Graduação em Zootecnia. IV. Título.

Universidade do Estado de Santa Catarina **UDESC Oeste** Programa de Pós-Graduação em Zootecnia

A Comissão Examinadora, abaixo assinada, aprova a Dissertação de Mestrado

COMPARAÇÃO DOS TRANSCRIPTOMAS DE SUÍNOS AFETADOS COM HÉRNIA ESCROTAL E HÉRNIA UMBILICAL

Elaborada por **ARIENE FERNANDA GRANDO RODRIGUES**

como requisito parcial para obtenção do grau de Mestre em Zootecnia

Comissão Examinadora:

Dra. Mônica Corrêa/Ledur (UDESC/Embrapa Suínos e Aves)

Dra. Adriana Mércia Guaratini Ibelli (Embrapa Suínos e Aves)

Maur cio Egídio Cantão (Embrapa Suínos e Aves)

Chapecó, 27 de fevereiro de 2020.

AGRADECIMENTOS

Primeiramente agradeço a Deus, pela força, pela persistência, pelo amor e principalmente pela grande oportunidade de evoluir como profissional, realizando o mestrado.

Ao meu esposo Ricardo Rodrigues e meu filho Ricardo Rodrigues Filho, pela ajuda, pela compreensão pelos dias ausentes, pelo companheirismo diante a todos os obstáculos que enfrentamos. Amo vocês pra sempre!

À minha mãe, Dirlene T. Grando e ao meu irmão Ari F. Grando Junior, por, mesmo de longe, contribuírem de forma tão extraordinária para que tudo isso fosse possível. Obrigada pelo cuidado com o Ricardinho e com nossa família! Nem que eu viva dez vidas, seria tempo suficiente para agradecer tudo o que fazem por nós.

Ao meu pai, Ari F. Grando, que lá do céu tem direcionado tanta positividade e força. Obrigada por tudo o que me ensinou quando ainda estava conosco.

À toda a minha família de maneira geral, avôs(as), tios(as), primos(as), cunhados(as), que de alguma forma me auxiliaram a chegar até aqui. Alguns não estão mais entre nós, mas acredito que lá de cima eles rezam por mim sempre, e isso faz toda a diferença nos momentos decisivos e difíceis da nossa vida.

À minha orientadora Dra. Mônica Corrêa Ledur e minha coorientadora Dra. Jane de Oliveira Peixoto, por proporcionarem uma das maiores oportunidades da minha vida. Pela compreensão, paciência, ajuda, e principalmente por todo o ensinamento, que levo pra vida! Vocês são minha inspiração!

A todos os professores que tive a oportunidade de conhecer durante o mestrado. Vocês me ensinaram muito mais que conteúdos, me ensinaram a ensinar, me mostraram que o amor pela profissão pode transformar uma sala de aula.

Aos meus colegas de turma do mestrado. Que gente especial! Sou grata por ter conhecido cada um. Agradeço principalmente pela ajuda, pelas caronas, pelas risadas e pela convivência tão maravilhosa.

Agradeço também a minha querida coach Claudia Dias. Sem dúvida ela foi uma das grandes responsáveis por eu ter chegado até aqui. Sem sua ajuda realmente não sei onde estaria agora, e nem quero imaginar, porque como ela me ensinou, o passado foi quem me trouxe até aqui, mas é o que eu faço hoje que define quem eu serei no futuro! Obrigada pelos conselhos, pela amizade, por me mostrar cada detalhe de uma vida maravilhosa que estava a minha volta aguardando que eu acordasse.

Gratidão também por uma amiga que Deus mandou no dia certo, na hora exata. Ariane

Alfredo. Obrigada por me ouvir sempre e principalmente por estar comigo em todos os momentos. Sua companhia foi extremamente importante e decisiva pra me trazer até aqui. Sem você faltaria coragem e alegria. Obrigada pelas caronas, bolachinhas, xerox, e pelas suas risadas, que me traziam ânimo sempre!

Aos amigos que conheci na EMBRAPA. Foram dois meses de muito aprendizado. Que pessoas incríveis! Parabéns pela forma como vocês ensinam. Isso não tem preço no mundo que pague. Em especial, agradeço a Dra. Adriana Ibelli, Dr. Maurício Cantão, Igor Ricardo Savoldi e Mayla Regina Souza. Me sinto especial e privilegiada por ter tido a oportunidade de aprender com vocês!

As minhas amigas Zenilde da Silva, Brunna Godoy, Aliny Kris de O. Nogueira, Hevelize dos Santos Queiroz e suas famílias. A amizade de vocês é uma das coisas mais importantes na minha vida. Vocês, durante esses dois anos, estiveram comigo sempre, me apoiando, rezando por mim, me mandando vibrações positivas e ajudando nos momentos de dificuldades. Obrigada por cada palavra de conforto, pelo carinho e por nunca desistirem de nossa amizade, mesmo nos momentos em que fiquei mais distante. Gratidão eterna a vocês.

Agradeço também à UDESC e à EMBRAPA, por todas as oportunidades que foram oferecidas a mim durante esses dois anos. Tenho muito orgulho de ter feito parte dessas duas instituições.

RESUMO

Dissertação de Mestrado Programa de Pós-Graduação em Zootecnia Universidade do Estado de Santa Catarina

COMPARAÇÃO DOS TRANSCRIPTOMAS DE SUÍNOS AFETADOS COM HÉRNIA ESCROTAL E HÉRNIA UMBILICAL

AUTOR: Ariene Fernanda Grando Rodrigues ORIENTADORA: Mônica Corrêa Ledur Chapecó, 27 de fevereiro de 2020

A hérnia é considerada um dos defeitos congênitos mais comuns encontrados em suínos. As mais observadas são escrotais (HE), inguinais (HI) e umbilicais (HU). As hérnias causam prejuízo para a suinocultura mundial devido a redução da eficiência produtiva, além de afetar negativamente o bem-estar do animal. Vários estudos genômicos já foram conduzidos, porém, ainda não foi possível identificar os genes responsáveis pela formação das hérnias em suínos, dificultando a seleção contra essas características. Dessa forma, buscou-se comparar o perfil de expressão dos transcriptomas relacionados às hérnias escrotal e umbilical e identificar genes candidatos aos dois tipos de hérnia, utilizando análises de RNA-Seq. Coletaram-se amostras biológicas de anel inguinal e umbilical de suínos com HE, HU e livres destes defeitos, as quais passaram pela extração do RNA. Após, foram preparadas bibliotecas de cDNA e estas sequenciadas na plataforma Illumina. As sequências passaram por análise de controle de qualidade e foram alinhadas e mapeadas contra o genoma de referência do suíno (Sus scrofa, v11.1). Posteriormente, foram identificados os genes expressos nos tecidos e os genes diferencialmente expressos (DE) quando comparados os grupos controle e afetados. O perfil de expressão dos transcriptomas relacionados à HE e HU foi comparado para identificar genes DE nos dois tipos de hérnia. Realizaram-se análises para a descoberta de polimorfismos nesses genes com posterior anotação daqueles encontrados para as duas hérnias estudadas. Em cada grupo, compararam-se os genes DE e foi verificado se estes estavam em regiões de QTL (Quantitative trait loci) já relatadas para suínos. Após comparação dos dois transcriptomas (HE e HU), observou-se que 94,91% dos genes encontrados estavam contidos em ambos os grupos. Quando comparadas amostras de animais afetados com aquelas de seus respectivos grupos controle, identificaram-se 627 genes DE para HE e 199 para HU, dos quais 35 genes estavam DE em ambos os grupos. Estes genes participam de 108 processos biológicos que envolvem desde o sistema imunológico até a organização celular. Dos genes DE em ambos os grupos, dois (ACAN e BCHE) estão em regiões de QTL já relatadas para hérnia escrotal. Considerou-se os genes MAP1LC3C, VIT, ACAN, ACER2, KCNMA1 e SYNPO2 candidatos ao surgimento dos dois tipos de defeito por apresentarem expressão equivalente em ambas as hérnias e participarem nos processos de adesão celular, organização do citoesqueleto, produção de colágeno, relaxamento muscular e autofagia. Identificaram-se 67 polimorfismos no tecido do anel inguinal e 76 no anel umbilical dos quais 11 e 14 são novos, respectivamente. Além disso, foi observada uma variante com função deletéria localizada no gene ITGAM, que participa do processo biológico de diferenciação celular ectodérmica. Considera-se que o perfil da expressão desses genes possa interferir no desenvolvimento normal do tecido, causar enfraquecimento e diminuir a resistência do local, podendo levar a formação de ambas as hérnias em suínos. Assim, avançou-se no conhecimento dos genes relacionados ao surgimento da HE e HU, contribuindo para a compreensão do mecanismo genético relacionado aos dois tipos de hérnia em suínos.

Palavras-chave: RNA-Seq, expressão gênica, melhoramento animal, sequenciamento.

ABSTRACT Master's Dissertation Programa de Pós-Graduação em Zootecnia Universidade do Estado de Santa Catarina

TRANSCRIPTOME COMPARISON OF PIGS AFFECTED WITH SCROTAL HERNIA AND UMBILICAL HERNIA

AUTHOR: Ariene Fernanda Grando Rodrigues ADVISER: Mônica Corrêa Ledur Chapecó, February 27, 2020

Hernia is considered one of the main birth defects found in pigs. The most common are scrotal (SH), inguinal (IH) and umbilical (UH). Hernias cause losses in pig production worldwide due to reduced production efficiency, also negatively affecting the animal's welfare. Several genomic studies have already been conducted; however, it has not yet been possible to identify the genes responsible for the formation of hernias in pigs, hindering the selection against these characteristics. Thus, we aimed to compare the expression profile of transcriptomes related to scrotal and umbilical hernias and to identify candidate genes for both types of hernia, using RNA-Seq analyses. Biological samples of inguinal and umbilical rings from pigs with HE, HU and without any of the defects were collected and submitted to RNA extraction. The cDNA libraries were prepared and sequencing was performed using Illumina platform. After the reads quality control, they were aligned and mapped against the swine reference genome (Sus scrofa, v11.1). Subsequently, the genes expressed in each tissue were identified as well as the DE genes between the control and affected groups. The expression profile of SH and UH-related transcriptomes was then compared in order to identify genes that were DE in both types of hernia. Analyses were carried out to discover polymorphisms in these genes with further annotation of those found in both hernias studied. The DE genes of each group were compared and verified if they were located in QTL regions (Quantitative trait loci) already reported for pigs. After comparing the two transcriptomes (HE and HU), 94.91% of the genes found were contained in both groups. When samples of affected animals were compared with those of their respective control groups, 627 DE genes were identified for SH and 199 for UH, of which 35 genes were DE in both groups. These genes participate in 108 biological processes (BP) that involve since the immune system to cellular organization. From the DE genes in both groups, two genes (ACAN and BCHE) were in QTL regions already reported for scrotal hernia. Furthermore, the MAP1LC3C, VIT, ACAN, ACER2, KCNMA1 and SYNPO2 genes were considered candidates to the appearance of both types of defect for having equivalent expression in the two types of hernia and participating in cell adhesion, cytoskeleton organization, collagen production, muscle relaxation and autophagy BP. A total of 67 polymorphisms were identified in the inguinal ring and 76 in the umbilical ring tissues, of which 11 and 14 were new, respectively. Also, a variant with deleterious function was found in the ITGAM gene, which participates in the BP of ectodermal cell differentiation. The expression profile of these genes possibly interferes with the normal development of the tissue, causing weakness and decreasing the resistance of the site, which can lead to the formation of both hernias in pigs. Therefore, progress has been made in the knowledge of genes related to the emergence of SH and UH contributing to a better understanding of the genetic mechanism related to both types of hernia in pigs. Keywords: RNA-Seq, gene expression, animal breeding, sequencing.

SUMÁRIO

1 REVISÃO DE LITERATURA	
1.1 SUINOCULTURA	9
1.2 HÉRNIAS	
1.2.1 Hérnia escrotal	
1.2.2 Hérnia umbilical	14
1.3 GENÉTICA ENVOLVIDA COM AS HÉRNIAS	16
1.4 ANÁLISE DE EXPRESSÃO GÊNICA E TRANSCRIPTOMA	
1.5 OBJETIVOS	
1.5.1 Objetivo geral	
1.5.2 Objetivos específicos	
2 MANUSCRITO	22
2.1 MANUSCRITO I	
3 CONSIDERAÇÕES FINAIS	
REFERÊNCIAS	
ANEXOS	100

1 REVISÃO DE LITERATURA

1.1 SUINOCULTURA

A carne suína é a mais consumida no mundo, representando 42,1% do consumo global de carnes, de acordo com o Departamento de Agricultura dos Estados Unidos (USDA, 2019). Segundo o USDA, de 2017 para 2018 houve um crescimento de 1,8% no consumo mundial de carne suína. No Brasil, o consumo desta proteína vem crescendo nos últimos anos, passando de 13 kg/hab no ano de 2007 para 15,90 kg/hab em 2018, conforme dados apresentados pela Associação Brasileira de Proteína Animal (ABPA, 2019). Para tanto, no ano de 2019, o Brasil produziu 42,5 milhões de cabeças de suínos, o que resultou em 3,975 milhões de toneladas de carne (USDA, 2019).

De acordo com o USDA, em 2019 o Brasil consumiu 3,1 milhões de toneladas de carne suína e exportou 875.000 de toneladas do produto. Segundo o Ministério da Economia, Indústria, Comércio Exterior e Serviços (MDIC, 2019), os principais destinos de exportação no período de janeiro a novembro de 2019 foram China, Hong Kong, Rússia, Chile, Uruguai, Singapura e Argentina. Essa grande produção só é possível graças a criação em larga escala destes animais e, para um maior ganho, se faz necessário eliminar ou minimizar características que influenciam negativamente na vida dos suínos ou que resultem em perdas produtivas (FERREIRA et al., 2014).

A evolução produtiva na cadeia suinícola acontece em virtude das tecnologias e pesquisas implantadas em nutrição, manejo, genética, ambiência, sanidade, bem-estar, dentre outras (HECK, 2009). O conjunto de ações positivas ligadas à genética e ambiente resultam em melhores níveis de produção e produtividade, mas se faz necessário lembrar que as mudanças realizadas em caráter ambiental são transitórias e as de âmbito genético são permanentes e estáveis, ou seja, transferidas de geração em geração (PEREIRA, 2008).

Em setembro de 2003, o sequenciamento de genoma suíno foi iniciado (SCHOOK et al., 2005) e ao longo dos anos foi sendo complementado. Em 2012, foi publicada a sequência genômica de referência do *Sus scrofa* (GROENEN et al., 2012). A partir desses avanços, por volta de 350 genomas completos de suínos estão disponíveis (GROENEN, 2016). A montagem do genoma facilitou a identificação de genes e polimorfismos relacionados a características de interesse, principalmente comercial (ERNST; STEIBEL, 2013). Grande parte destas características é influenciada por múltiplos genes ou *loci* que controlam características quantitativas (QTL; do inglês, *Quantitative trait loci*) (ERNST; STEIBEL,

2013) e a busca por essas regiões tem sido realizada deste a década de 90 (ANDERSSON et al., 1994).

Com o auxílio da genética molecular, novos genes vêm sendo revelados como candidatos associados a características importantes para a produção, como a qualidade da carcaça e da carne (DUARTE et al., 2018), permitindo também uma melhor compreensão da expressão de genes como, por exemplo, em tecido adiposo (MIAO et al., 2018). A evolução dessas tecnologias traz para a suinocultura a possibilidade de melhorar índices produtivos e reprodutivos, além de diminuir o aparecimento de anomalias anatômicas, como os diversos tipos de hérnia, que resultam em prejuízos para toda a cadeia.

1.2 HÉRNIAS

Dentre os defeitos congênitos mais comuns em suínos, pode-se citar a hérnia escrotal (HE), a inguinal (HI) e a hérnia umbilical (HU) (MATTSSON, 2011). Essas anomalias prejudicam o bem-estar animal, causam problemas de saúde secundários, além de comprometer o crescimento normal dos animais (GRINDFLEK et al., 2006; MILLER et al., 1995) e aumentar a mortalidade na granja (STRAW; BATES; MAY, 2009). A morte dos animais, nesses casos, acontece em consequência ao estrangulamento das alças intestinais ou por fatores secundários ao aparecimento desses defeitos (PERROTT, 2004).

De maneira geral, hérnias são saliências formadas pela passagem anormal de algum conteúdo através de músculos ou tecidos (CLARNETTE; HUTSON, 1997). Na suinocultura, as hérnias causam prejuízos aos produtores, aos frigoríficos, além de prejudicar o bem-estar dos animais em função de dor e estresse. Por isso, a recomendação é que animais herniados sejam abatidos precocemente ou que seja realizado reparo cirúrgico no local afetado (SOBESTIANSKY; CARVALHO; BARCELLOS, 2012).

O abate de animais herniados requer um cuidado especial, pois ao manejar o suíno, o intestino pode ser perfurado, o que contamina a carcaça e gera condenação. Como a variação de velocidade de abate é constante e adaptada para animais sem quaisquer defeitos, ao se deparar com a hérnia, a contaminação é quase inevitável (STRAW; BATES; MAY, 2009). Em alguns casos, animais que apresentam hérnias em idade de abate são comercializados por um preço abaixo do mercado (SEARCY-BERNAL; GARDNER; HIRD, 1994; PERROTT, 2004), o que gera perdas econômicas (YUN et al., 2017), além de apresentarem menores taxas de crescimento e maiores taxas de mortalidade quando comparados aos suínos saudáveis (STRAW; BATES; MAY, 2009). É importante destacar que esses animais que morrem antes

do abate ocupam espaço, consomem alimento e, muitas vezes, sofrem com dores abdominais, então a eutanásia é uma opção sensata ao identificar um animal com hérnia (STRAW; BATES; MAY, 2009).

A incidência da HE/HI em criações suinícolas varia de 0,34% a 0,42% (SEVILLANO et al., 2015) e da HU de 0,55% e 1,5% (SEARCY-BERNAL; GARDNER; HIRD, 1994) e pode variar dependendo da raça dos animais e do manejo utilizados (SOBESTIANSKY; CARVALHO, 2007). Esta variação se altera também dependendo do sexo e da linhagem genética dos animais (VOGT; ELLERSIECK,1990 e RUTTEN-RAMOS; DEEN, 2006). Normalmente, a HE pode surgir já nos primeiros dias de vida e a HU um pouco mais tardiamente (MANALAYSAY et al., 2017; SEARCY-BERNAL; GARDNER; HIRD, 1994).

Straw, Bates e May (2009) realizaram um experimento em uma granja comercial de terminação na Carolina do Norte, EUA, no qual as anormalidades anatômicas (HE e HU) foram avaliadas em um grupo de suínos para verificar taxas de crescimento e mortalidade. De acordo com suas conclusões, a prevalência e as taxas de mortalidade não diferiram por gênero quando avaliada HU. A mortalidade foi maior no grupo dos afetados para os dois tipos de hérnia em comparação aos animais saudáveis, mas esse aumento não foi significativo quando avaliada entre os diferentes tamanhos de HU. As lesões comuns encontradas na necropsia dos suínos foram caracterizadas por peritonite com intestino estrangulado. Nas fêmeas não foi encontrada HI (STRAW; BATES; MAY, 2009). Pommerehn et al. (2014) evidenciam que o sexo dos animais pode ser um fator predisponente ao surgimento de HI e HU.

Relatos têm sido descritos que a idade em que a hérnia dos suínos comumente aparece é de 9 a 14 semanas (SEARCY-BERNAL; GARDNER; HIRD, 1994). Possivelmente, um distúrbio do tecido conjuntivo resulta em hérnias primárias, e as secundárias, como as incisionais por exemplo, são ocasionadas por falhas técnicas, que induzem uma ferida crônica (FRANZ, 2008). A função da matriz extracelular é apresentada pela medicina como um importante fator na formação de hérnia. As evidências demonstram que vários distúrbios relacionados ao colágeno predispõem à esta formação em humanos (CONNER; PEACOCK, 1973; FRANZ, 2008). Zheng et al. (2002) observaram que a quantidade de colágeno tipo III imaturo estava aumentada em duas vezes nos fibroblastos da pele de pacientes com HI, quando comparada à de pessoas sem o defeito. Contudo, para a síntese e reticulação de colágeno, as vitaminas C, A e B6 são de fundamental importância (BENATI; BERTONE, 2013).

A persistência da doença nos rebanhos, as perdas geradas por estes defeitos e a falta de clareza quanto aos genes que estão envolvidos no desenvolvimento da anomalia evidenciam a

importância da realização de estudos relacionados à hérnia, que contribuam para o entendimento de suas causas principais e para o melhor conhecimento de sua etiologia (SOUZA et al., 2020).

Como alternativa para minimizar os prejuízos que estes defeitos trazem ao plantel, os produtores e empresas realizam um processo de seleção que visa descartar reprodutores que possam estar transmitindo genes associados às anomalias (SOBESTIANSKY; CARVALHO; BARCELLOS, 2012; TAYLOR, 1995). Porém, como os estudos relacionados à genética envolvida com estes defeitos ainda são escassos, os resultados dessa seleção nem sempre são satisfatórios.

1.2.1 Hérnia escrotal / inguinal

A HE (Figura 1) é caracterizada pela passagem do conteúdo abdominal através do canal inguinal malformado, chegando até o escroto (GRINDFLEK et al., 2006). Existem alguns processos associados ao surgimento desse defeito em diferentes espécies como, por exemplo, uma falha na obliteração do processo vaginal (CLARNETTE; LAM; HUTSON, 1998) ou por uma involução falha do anel inguinal interno (CLARNETTE; HUTSON, 1997).

Figura 1 – Hérnia escrotal em leitão de creche

Fonte: Renato Irineu Pangoni (2019)

Conforme citado por Pommerehn et al. (2014), a HE é um defeito que atinge apenas machos. Já a HI ocorre principalmente em machos, mas seu aparecimento não é restrito a este sexo (TIRANTI et al., 2002). Gong et al. (1994) indicaram que a frequente transmissão

vertical e alta taxa de segregação sugere herança autossômica dominante com penetrância incompleta e influência sexual para HI indireta congênita. Foi observada a transmissão paterna preferencial da anomalia, o que pode sugerir o papel do *imprinting* genômico na etiologia dessa condição (GONG et al., 1994). Entre as raças *Duroc, Landrace* e *Yorkshire*, a prevalência de HE foi de 0,6%, 1,0% e 1,5%, respectivamente (VOGT; ELLERSIECK, 1990). Já em estudo realizado com as raças *Landrace* e *Large White*, a incidência de HE/HI em suínos foi de 0,34% e 0,42%, respectivamente (SEVILLANO et al., 2015).

Como em humanos o fechamento do anel inguinal ocorre primeiro no lado esquerdo, a presença da hérnia pode ser unilateral (BRANDT, 2008). Segundo o mesmo autor, parede abdominal e região inguinal com estruturas enfraquecidas, em conjunto com a descida testicular e uma obliteração incompleta do processo vaginal, podem provocar HI. De acordo com Beuermann et al. (2009), a HE pode surgir como consequência de uma baixa resistência na região inguinal. Essa falha está atrelada a ocorrência de distúrbios no metabolismo e hidrólise de componentes da matriz extracelular como o colágeno e as estruturas das fibras musculares (BENDAVID, 2004), que por sua vez comprometem a reparação do tecido conjuntivo realizada pelos fibroblastos (FRANZ, 2008).

É provável que a manifestação da hérnia seja determinada por uma falha na involução do processo vaginal, já que os defeitos relacionados à estrutura da parede abdominal não explicam a ocorrência de HE na totalidade (LORENZETTI, 2018). O comprometimento de inervações que agem no processo vaginal, como consequência de uma atrofia muscular que gera danos musculares progressivos da região, auxilia no entendimento relacionado à protrusão da hérnia, pois a atrofia muscular leva à redução da espessura da parede por perda da força contrátil e perda de massa muscular, enfraquecendo a região inguinal. (AMATO et al., 2012).

Em estudo realizado com tecidos de leitões criptorquidas ou herniados, foi observado que os processos de sinalização celular, apoptose e o encerramento da invaginação podem sofrer interferência quando observados níveis baixos de cálcio (BEUERMANN et al., 2009).

A protrusão do conteúdo herniário no escroto ou no canal inguinal é o que define a HI e HE. Se, na formação da hérnia, o intestino entrar em contato com a pele, esta é classificada como direta. Caso não haja esse contato, ou seja, se o intestino estiver revestido pelo peritônio ou pela túnica vaginal, é chamada indireta (GRINDFLEK et al., 2006). Esta classificação está diretamente relacionada com o nível de gravidade do defeito, sendo que as diretas desenvolvem um estímulo à formação de aderências e, consequentemente, podem causar obstrução intestinal, baixo desempenho, além de afetar o bem-estar (KEENLISIDE, 2006).

1.2.2 Hérnia umbilical

A HU (Figura 2) é definida como um deslocamento de conteúdo abdominal para a região umbilical (MILLER et al., 1995) e pode estar associada a uma falha do processo natural de fechamento do anel umbilical (SEARCY-BERNAL; GARDNER; HIRD, 1994). Essa falha pode estar relacionada a fatores genéticos e não genéticos, como infecções de umbigo, lesões no local, obesidade, corte do cordão realizado incorretamente, entre outras (PETERSEN et al., 2008; WARREN; ATKESON, 1931). Além disso, existem estudos que propõem que o aparecimento de hérnia pode ser induzido por um defeito muscular (MILLER et al., 1995) ou por uma anormalidade na síntese metabólica do colágeno (BENDAVID, 2004).

Fonte: Alyne Evangelista Barbosa (2019)

Conforme o manejo, a linhagem e o lote de produção, a incidência de HU pode atingir valores diferentes (SOBESTIANSKY; CARVALHO, 2007). Grindflek et al. (2018) realizaram pesquisa a partir de suínos da raça *Landrace* da Noruega e obtiveram como resultado uma incidência de 0,55%. Já em suínos dos Estados Unidos, em período anterior,

Searcy-Bernal, Gardner e Hird (1994) observaram uma incidência de 1,5% do mesmo defeito em um rebanho comercial, obtido a partir de fêmeas da raça Yorshire e machos de diversas raças. A HU pode causar desconforto e dor, que se agravam quando fatores secundários se associam ao defeito, e o bem-estar dos suínos fica comprometido (MILLER et al., 1995).

Em sua grande maioria, o saco herniário que se forma é composto de partes do intestino delgado, omento e gordura (SUTRADHAR et al., 2009). Seu aparecimento nem sempre pode ser observado ao nascimento, pois em alguns casos aparece quando os suínos já estão no período de crescimento (SUTRADHAR et al., 2009). Isso explica a dificuldade que a cadeia suinícola possui para eliminar tal defeito de seus rebanhos.

De acordo com Searcy-Bernal, Gardner e Hird (1994) e Young e Angus (1972), o surgimento de HU em suínos é causada pelo fechamento incompleto do cordão (coto) umbilical após o nascimento, e isto ocorre em função de uma variabilidade genética na musculatura do cordão umbilical (músculos de suporte ao redor do coto enfraquecidos), de uma infecção do coto umbilical, ou até mesmo pelo conjunto dos dois acontecimentos, permitindo assim a projeção dos intestinos através da parede abdominal. Ainda, os mesmos autores sugerem uma causa hereditária e descrevem que existe diferença entre as linhagens quando avaliada a chance do surgimento de HU.

A melhor forma para se diagnosticar corretamente uma HU é através da palpação local, pois esta anomalia, quando observada somente, pode ser confundida com outras patologias como abscessos (SOBESTIANSKY; CARVALHO; BARCELLOS, 2012). Ao realizar a avaliação clínica, normalmente é observado um conteúdo solto dentro do saco herniário, que corresponde principalmente às alças intestinais (SOBESTIANSKY; CARVALHO; BARCELLOS, 2012).

Em humanos, ainda no ciclo gestacional, a HU pode se desenvolver de duas maneiras diferentes: uma na fase embrionária (anteriormente a oitava semana de gestação) e uma na fase fetal (posteriormente a oitava semana de gestação) (MUSCHAWECK, 2003). Na fase embrionária, a hérnia é causada por uma falha no fechamento da parede abdominal que leva o cordão umbilical a unir-se ao abdômen e deslocar o intestino e até mesmo o fígado (MUSCHAWECK, 2003). Na fase fetal, caso o intestino não realize seu movimento normal de retorno à cavidade, ocorre um defeito na parede, que leva a herniação (MUSCHAWECK, 2003).

A principal causa do surgimento tardio de HU em humanos, justificada por Muschaweck (2003), é a cedência da cicatriz umbilical, que ocorre de forma gradual. Esse fato ocorre por consequência de uma pressão intra-abdominal elevada, que pode ser resultante de problemas como obesidade, ascite, tumores no local, entre outros (MUSCHAWECK, 2003), o que acontece de maneira bastante semelhante em suínos (PETERSEN et al., 2008; WARREN; ATKESON, 1931).

1.3 GENÉTICA ENVOLVIDA COM AS HÉRNIAS

Com o intuito de trazer melhorias para a produção de suínos, como resistência às doenças e defeitos congênitos, a atenção nessa cadeia tem se voltado para o melhoramento genético. Com essa ferramenta, é possível se obter melhorias na qualidade da carne e nas características de produção (ABCS, 2017). Entre os defeitos congênitos mais frequentes observados nas criações comerciais de suínos pode-se citar o criptorquidismo e hérnias escrotais e umbilicais (MATTSSON, 2011) os quais implicam negativamente no desempenho zootécnico dos animais, além de causar dor e estresse (GRINDFLEK et al., 2006). De acordo com Sobestiansky, Carvalho e Barcellos (2012) as hérnias são transmitidas de geração para geração, ou seja, são hereditárias. Segundo Magee (1951), Rutten-Ramos e Deen (2006), Ding et al. (2009) e Du et al. (2009), fatores hereditários influenciam na maioria dos casos de HI, porém Rutten-Ramos e Deen (2006) lembram que as HU não são resultado de herança simples. Além disso, Elansary et al. (2015), Vogt e Ellersieck (1990), Taylor (1995) e Thaller, Dempfle e Hoeschele (1996) expõem a possibilidade de que o modo de herança para a susceptibilidade a HE/HI seja poligênico, o que foi recentemente confirmado por Sevillano et al. (2015).

Estudos que estimaram a herdabilidade para HE/HI e HU demonstraram, respectivamente, os valores de 0,31 (SEVILLANO et al., 2015) e 0,25 (THALLER; DEMPFLE; HOESCHELE, 1996), o que evidencia a influência genética no surgimento destes defeitos. O conhecimento dos mecanismos genéticos associados à formação da HE/HI e da HU é de extrema importância para o auxílio da compreensão das causas fundamentais da anomalia.

A musculatura do umbigo de suínos pode ser afetada pela variabilidade genética, e esse fator somado a um ambiente desfavorável pode tornar os animais mais suscetíveis ao aparecimento da hérnia (STRAW; BATES; MAY, 2009). Vogt e Ellersieck (1990) realizaram um estudo durante 8 anos e identificaram diferenças raciais na prevalência de HE, e que a prevalência é maior entre irmãos completos do sexo masculino, quando comparada com a de irmãos do sexo masculino na população geral. Concluíram então, que a suscetibilidade a esse defeito é herdada por meio de múltiplos *loci*. Grindflek et al. (2006) identificaram regiões

genômicas associadas à suscetibilidade a HE e HI em suínos, usando uma varredura do genoma para marcadores associados a estas hérnias.

Quando estudados casos de hérnia da parede abdominal em pacientes que também apresentavam aneurismas da aorta abdominal, foi observado um defeito comum da matriz extracelular no metabolismo do colágeno em ambos os tecidos (parede vascular e parede abdominal), o que sugere uma predisposição genética à formação das hérnias na parede abdominal (FRIEDMAN et al., 1993; HALL et al., 1995).

Estudos já demonstraram que existem fatores genéticos envolvidos no desenvolvimento de hérnias (COOK; HASTHORPE; HUTSON, 2000; KOSKIMIES et al., 2003) e, a partir desse conhecimento, genes que participam do processo natural de descida do testículo, obliteração do processo vaginal e fechamento do anel inguinal, são estudados para que se possa avaliar se existe alguma associação relacionada ao surgimento das hérnias (KUBOTA et al., 2002; HUTSON et al., 2000).

Em suínos, Ding et al. (2009) relacionaram regiões nos cromossomos SSC 2, 4, 8 (lócus SW 933), 13 e 16 como suscetíveis à ocorrência de HE. Grindflek et al. (2006) detectaram regiões de loci que controlam características quantitativas (Quantitative trait loci -QTLs) sugestivos para HE e HI em sete cromossomos (SSC1, 2, 5, 6, 15, 17 e X) quando comparados animais saudáveis e com hérnia, além de identificarem genes (INLS3, MIS e CGRP) envolvidos significativamente com o surgimento de HE. Foram descobertos por Sevillano et al. (2015), em suínos Landrace, 22 polimorfismos de base única (SNPs) presentes nos cromossomos SSC 1, 2, 4, 10 e 13, assim como 10 SNPs em cromossomos de suínos Large White (SSC 3, 5, 7, 8 e 13), que estão localizados em regiões de QTLs, e que podem interferir na incidência da HE/HI destas populações. No momento existe o registro de 48 **QTLs** associados surgimento de HE de ao no banco dados QTLdb (https://www.animalgenome.org/cgi-bin/QTLdb/SS/traitmap?trait_ID=358 - 03/01/2020).

Como a HE tem se mostrado uma anomalia hereditária, é considerado que a ocorrência e sua regulação podem ser controladas por diversos genes (VOGT; ELLERSIECK, 1990; ELANSARY et al., 2015; TAYLOR, 1995). Alguns genes como *ELF5 (E74 like ETS transcription fator 5)*, *COL23A1 (Collagen type XXIII alpha 1 chain)* (DU et al., 2009), *MMP2 (Matrix metallopeptidase 2)*, *HOXA10 (Homeobox A10)*, *COL2a1 (Collagen type II a1)*, *ZFPM2 (Zinc finger protein multitype 2)* (ZHAO et al., 2009), *GUSB (β-glucuronidase)* (BECK et al., 2006) e *INSL3 (Leydin insulin-like hormone)* (KNORR et al., 2004) têm sido investigados, pois poderiam estar envolvidos na manifestação da HE. Já para HU, existem 54 QTLs relacionados à sua manifestação inseridos no banco de dados QTLdb (https://www.animalgenome.org/cgi-bin/QTLdb/SS/traitmap?trait_ID=596 – 19/01/2020), dos quais, alguns são constituídos de regiões menores e mais específicas do genoma, e outros de regiões mais amplas (SOUZA et al., 2020). Li et al. (2019) detectaram um SNP no gene *CAPN9 (Calpain 9)* do cromossomo 14 do suíno significativamente associado à HU, além de observarem a existência de uma mutação no exon 10 do mesmo gene em animais afetados com o defeito, a qual não se apresentava no gene dos animais saudáveis. Em suínos de linhagem comercial, quatro genes candidatos localizados em regiões de QTL associadas à HU foram identificados, sendo eles: *TBX15 (T-Box 15)* e *WARS2 (Tryptophanyl TRNA Synthetase 2, Mitochondrial*) no *SSC4*, e *LIP1 (Lipase 1)* e *RBM11 (RNA Binding Motif Protein 11)* no *SSC13* (FERNANDES et al., 2018). Um QTL no cromossomo 14 do suíno da raça *Landrace* foi altamente correlacionado com HU, e os genes *LIF (Leukemia inhibitory fator)* e *OSM (Oncostatin M)*, localizados nesta região de QTL, foram identificados como genes candidatos a este defeito (GRINDFLEK et al., 2018).

1.4 ANÁLISE DE EXPRESSÃO GÊNICA E TRANSCRIPTOMA

O objetivo principal de uma pesquisa de genômica funcional é estudar a função de genes através de seus níveis de expressão, possibilitando a indicação dos mecanismos envolvidos em processos biológicos (BUTTE, 2002). A expressão gênica é o processo pelo qual as informações codificadas em um gene são usadas para direcionar a montagem de uma molécula (ZAHA, 2014).

O transcriptoma é o conjunto completo de transcritos em uma linhagem celular ou tecido e sua quantidade, para uma condição fisiológica ou estágio de desenvolvimento específico. Sua compreensão é essencial para interpretar os elementos funcionais do genoma, revelar os constituintes moleculares das células e tecidos, e entender o desenvolvimento de uma anomalia ou doença (WANG; GERSTEIN; SNYDER, 2009; QIU et al., 2013).

Diferentes técnicas podem ser utilizadas para a obtenção de dados de expressão gênica. A PCR é uma técnica considerada simples, pela qual moléculas de DNA ou DNA complementar (cDNA) são amplificadas milhares ou milhões de vezes de uma forma bastante rápida, além de ser bastante sensível, o que possibilita a amplificação de DNA a partir de uma quantidade mínima de amostra (ZAHA, 2014b). No caso do cDNA, a amplificação é realizada por PCR com transcrição reversa (RT-PCR), em que o DNA complementar ao RNA é sintetizado, utilizando a transcriptase reversa, e depois amplificado por PCR, e pode ser

utilizada tanto para conseguir uma sonda específica, como para analisar a expressão do gene em um determinado tipo de célula ou tecido (ZAHA, 2014b). A PCR quantitativa em tempo real (qPCR) é um método de detecção e quantificação reprodutível dos produtos gerados durante cada ciclo de amplificação, os quais são proporcionais à quantidade de molde disponível no início do processo de PCR e no caso da PCR quantitativa com transcrição reversa em tempo real (qRT-PCR), deve ocorrer a transcrição reversa de moléculas de RNA em cDNA de uma amostra pela enzima transcriptase reversa e, posteriormente, a PCR em tempo real (ZAHA, 2014b). A qRT-PCR é aplicada para quantificar os níveis de expressão de mRNA, determinar o número de cópias de um fragmento de DNA, analisar o número de cópias e expressão de um transgene, entre outras aplicações (ZAHA, 2014b).

Existem técnicas que se baseiam em hibridização como *microarrays* (BUTTE, 2002; ALLISON et al., 2006), que envolvem a extração de RNA de amostras biológicas, o qual é copiado, incorporando nucleotídeos fluorescentes ou um marcador que é manchado com fluorescência (BUTTE, 2002). O RNA marcado é hibridizado com um *microarray* por um período, após o qual o excesso é lavado e o *microarray* é escaneado sob luz laser (BUTTE, 2002). Com os *microarrays* de cDNA, para os quais cada sonda tem sua própria característica de hibridização, cada *microarray* mede duas amostras e fornece um nível de medição relativo para cada molécula de RNA (BUTTE, 2002).

Além destas, pode-se citar as técnicas baseadas em sequenciamento, como o RNA-Seq (WANG; GERSTEIN; SNYDER, 2009; SENGUPTA et al., 2011), que foi utilizado no experimento deste trabalho. Nesta técnica, uma população de RNA é convertida em uma biblioteca de fragmentos de cDNA com adaptadores conectados a uma ou ambas as extremidades. Cada molécula é sequenciada, e as sequências resultantes são alinhadas a um genoma ou transcriptoma de referência ou montadas de novo (quando não são utilizadas referências) para produzir um mapa de transcrição em escala de genoma que consiste na estrutura transcricional e/ou nível de expressão de cada gene (WANG; GERSTEIN; SNYDER, 2009; MORTAZAVI et al., 2008). A partir disto, a expressão dos genes relacionados a condições específicas é quantificada (NAGALAKSHMI; WAERN; SNYDER, 2010; MARIONI et al., 2008). O RNA-Seq permite, então, detectar a expressão diferencial em diferentes tratamentos ou condições (QIAN et al., 2014). Ele apresenta vantagens quando comparado a outros métodos transcriptômicos, como não depender de conhecimento prévio dos genes em estudo (RAZ et al., 2011), ou seja, não se limitar à detecção de transcritos que correspondam à sequência genômica existente, além de utilizar menos amostra de RNA (WANG; GERNTEIN; SNYDER, 2009).

Com relação ao sequenciamento, informações importantes como o número de replicatas biológicas a serem usadas e a escolha da profundidade do sequenciamento são necessárias (ROBLES et al., 2012). Uma característica distinta das moléculas de RNA é que elas ocorrem em uma ampla gama de tamanhos, então RNAs muito pequenos (<100pb), como microRNAs (miRNA), devem ser capturados e sequenciados por uma estratégia independente, pois as estratégias de seleção de tamanho acabam os excluindo da análise geral (GRIFFITH et al., 2015).

Pesquisas recentes vêm confirmando a colaboração que análises de RNA-Seq fornecem em nível molecular (LIU et al., 2018; PAN et al., 2019; MIAO et al., 2018). Usando amostras de fígado suíno, Horodyska et al. (2019) identificaram 922 genes diferencialmente expressos (DE) entre os animais de alta e baixa eficiência alimentar, e com isso, buscou-se explanar sobre mudanças no metabolismo, crescimento hepático e resposta imune a partir de diferentes eficiências alimentares. Du et al. (2014) identificaram 5.516 novos transcritos na placenta e 9.061 nos testículos, dos quais 159 demonstraram-se específicos para placenta e 252 para testículos.

Estudos já identificaram, utilizando RNA-Seq, genes candidatos à ocorrência de hérnia escrotal (ROMANO et al., 2020) e de hérnia umbilical (SOUZA et al., 2020) em suínos, porém, ainda não existe estudo que, utilizando amostras do anel inguinal e umbilical, compare o perfil de expressão destes transcriptomas. O estudo desses dados, em conjunto, proporciona o progresso para a identificação de genes que estejam envolvidos na manifestação dos dois tipos de hérnia (escrotal e umbilical), além de contribuir para o entendimento dos mecanismos genéticos associados à ocorrência destes defeitos em suínos.

1.5 OBJETIVOS

1.5.1 Objetivo geral

Comparar o perfil de expressão dos transcriptomas relacionados às hérnias escrotal e umbilical e identificar genes diferencialmente expressos nos dois tipos de hérnia.

1.5.2 Objetivos específicos

- Verificar se os genes que influem sobre a formação de hérnia escrotal são os mesmos que controlam a formação de hérnia umbilical.
- Elucidar vias biológicas e redes de interação gênica relacionadas à manifestação das hérnias escrotais e umbilicais.
- Verificar a presença de polimorfismos entre sequências de mRNA nos transcriptomas relacionados às hérnias escrotal e umbilical.
- Gerar conhecimento sobre os mecanismos moleculares envolvidos com o processo herniário em suínos.

22

2 MANUSCRITO

Os resultados desta dissertação são apresentados na forma de um manuscrito, com sua formatação de acordo com as orientações da revista Journal of Animal Science and Biotechnology.

2.1 MANUSCRITO I

Common genes involved with scrotal and umbilical hernia in pigs

Autores: Ariene Fernanda Grando Rodrigues, Adriana Mércia Guaratini Ibelli, Jane de Oliveira Peixoto, Maurício Egídio Cantão, Haniel Cedraz de Oliveira, Igor Ricardo Savoldi, Mayla Regina Souza, Marcos Antônio Zanella Mores, Luis Orlando Duitama Carreno, Mônica Corrêa Ledur

> De acordo com normas para publicação em: Journal of Animal Science and Biotechnology

1	Common genes involved with scrotal and umbilical hernia in pigs				
2	Ariene Fernanda Grando Rodrigues ¹ , Adriana Mércia Guaratini Ibelli ^{2,3} , Jane de Oliveira				
3	Peixoto ^{2,3} , Maurício Egídio Cantão ² , Haniel Cedraz de Oliveira ⁴ , Igor Ricardo Savoldi ¹ ,				
4	Mayla Regina Souza ¹ , Marcos Antônio Zanella Mores ² , Luis Orlando Duitama Carreno				
5	Mônica Corrêa Ledur ^{1,2*}				
6					
7	¹ Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO),				
8	Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E -				
9	Bairro Santo Antônio, 89.815-630, Chapecó, Santa Catarina, Brazil;				
10	ariene.grando@gmail.com (A.F.G.R.), igorsaavoldii@gmail.com (I.R.S.),				
11	mayla.zootecnista@gmail.com (M.R.S.).				
12	² Embrapa Suínos e Aves, Rodovia BR-153, Km 110, Distrito de Tamanduá, Caixa Postal:				
13	321, 89700-991, Concórdia, Santa Catarina, Brazil; adriana.ibelli@embrapa.br (A.M.G.I.),				
14	jane.peixoto@embrapa.br (J.d.O.P.), mauricio.cantao@embrapa.br (M.E.C.),				
15	marcos.mores@embrapa.br (M.A.Z.M.).				
16	³ Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-				
17	Oeste, Guarapuava, Paraná, Brazil.				
18	⁴ Animal Science Department, Universidade Federal de Viçosa, Av. Peter Henry Rolfs, s/n,				
19	36570-900, Viçosa, Minas Gerais, Brazil; hanielcedraz@gmail.com (H.C.O.)				
20	⁵ BRF SA, Curitiba, Paraná, Brazil.				
21					

22 *Corresponding author

- 24 e-mail: monica.ledur@embrapa.br
- 25

26 Abstract

27 Background: Hernia is one of the most common defects in pigs. The most prevalent are the 28 scrotal (SH), inguinal (IH) and umbilical (UH) hernias, which cause pain, discomfort and 29 economic losses. Some genomic regions associated with SH and UH have already been 30 identified in pigs. However, no comparative study involving RNA-Seq has been performed 31 with umbilical and inguinal ring tissues. Therefore, we compared the inguinal ring 32 transcriptome of normal and SH-affected pigs with the umbilical ring transcriptome of normal 33 and UH-affected pigs to discover genes and pathways involved with the development of both 34 types of hernia.

35 **Results**: A total of 13,307 transcripts was expressed in the inguinal and 13,302 in the 36 umbilical ring tissues with 94.91% of them present in both tissues. From those, 627 genes 37 were differentially expressed (DE) between normal and SH-affected pigs and 199 between 38 normal and UH-affected pigs. From those, 35 genes were DE in both groups, which 39 participate in 108 biological processes (BP) ranging from the immune system to the cellular 40 organization. Two of the DE genes in both types of hernia, ACAN and BCHE, were mapped in 41 QTL regions already reported for SH. A total of 67 polymorphisms was identified in the DE 42 genes in the inguinal ring and 76 in the umbilical ring tissue, of which 11 and 14 were novel, 43 respectively. A SNP with deleterious function was identified in the ITGAM gene, which 44 participates of the ectodermic cellular differentiation BP. The MAP1LC3C, VIT, ACAN, 45 ACER2, KCNMA1 and SYNPO2 genes can be highlighted as candidates to trigger both types 46 of hernia, because they have similar expression profiles in both hernia groups and participate 47 in cell adhesion, cytoskeleton organization, production of collagen, muscle relaxation and48 autophagy BP.

49 **Conclusion**: We generated the first comparative study of the pig umbilical and inguinal ring 50 transcriptomes, which allowed improving our knowledge on the genes related to the onset of 51 SH and UH. These findings contribute to the understanding of the genetic mechanism 52 involved with these two types of hernia in pigs and probably in other mammals.

53 Keywords: gene expression, congenital defects, RNA-Seq, transcriptomics, swine.

54

55

56 Background

57 Swine production is one of the most important livestock activities in the world. Evolution and 58 growth of this activity are mainly due to the development of technologies that combine 59 genetics, management, nutrition and well-being [1], which increases productivity and brings 60 the final product closer to what the consumer idealizes. Meat quality and feed efficiency are 61 traits that have been prioritized by genetic breeding programs [2, 3, 4]. However, in recent 62 years, studies have also been carried out to improve our knowledge on diseases that persist in 63 production, which bring losses to the entire chain [5 - 9]. Among these, scrotal (SH) / 64 inguinal (IH) and umbilical hernias (UH) are birth defects often found in pigs [10], causing 65 pain and discomfort to the animals and, consequently, economic losses related to meat [11, 12] and increased risk of death [13]. 66

67 Scrotal hernia is mainly characterized by the displacement of intestinal loops to the 68 scrotal sac, resulting from an abnormality in the inguinal ring [11]. Failure to obliterate the 69 vaginal process [14], impairment of the innervations that act on the site [15] or the failed involution of the internal inguinal ring [16] are processes associated to the manifestation of this defect. Moreover, SH can arise as a result of low resistance of the inguinal region [17] caused by disturbances in the metabolism and hydrolysis of the extracellular matrix components, such as collagen and muscle fiber structures [18], compromising the repair of connective tissue [19]. The incidence of SH in pigs is influenced by genetics and environmental factors. Sevillano et al. [20] analyzed the incidence of SH/IH in Landrace and Large White pigs and the results were 0.34% and 0.42%, respectively.

77 Umbilical hernia is characterized by the passage of abdominal contents (mainly 78 intestine) to the hernial sac, in the umbilical region [12]. The discomfort and pain can be 79 aggravated when secondary factors are associated with the defect, and the pig welfare is 80 compromised [12]. UH can be related to genetic and non-genetic factors, such as navel 81 infections, lesions at the site, obesity and incorrect cord cutting [21, 22]. This defect has been 82 associated with a failure in the process of umbilical ring closure [23, 24]. The incidence of 83 UH varies according to the management, the breed line and the production lot [25], and values 84 between 0.55% [26] and 1.5% [23] have already been observed. Generally, the UH is not 85 observed at birth, and this defect appears when the pigs are already in the growing period 86 [27]. This demonstrates the difficulty that pig farmers have to eliminate such defect from their 87 herds.

The heritability for SH/IH and UH were estimated in 0.31 [20] and 0.25 [28], respectively, which shows moderate genetic influence in the appearance of these defects. The knowledge of the genetic mechanisms associated with the formation of these anomalies is important to understand their underlying causes, regardless of the type of hernia studied. In pigs, quantitative trait loci (QTL) were detected for the occurrence of SH in pig chromosomes (SSC) 2, 4, 8 (locus SW 933), 13 and 16 [29]. Also, suggestive QTL for IH and SH were found in seven chromosomes (SSC1, 2, 5, 6, 15, 17 and X) when comparing healthy and herniated pigs [11]. In addition, genes significantly involved with the manifestation of SH
(*INLS3*, *MIS* and *CGRP*) were identified [11]. Twenty-two single nucleotide polymorphisms
(SNPs) located on chromosomes 1, 2, 4, 10 and 13 in Landrace pigs, and 10 SNPs on SSC 3,
5, 7, 8 and 13 of Large White pigs, were mapped to QTL regions associated with the
incidence of SH/IH in these populations [20]. To date, there is a record of 48 QTL associated
with the appearance of HE/HI in pigs in the QTLdb database [30].

101 Regarding UH, there are 54 QTL related to their manifestation in pigs curated in the 102 QTLdb database [30]. A SNP in the CAPN9 gene (Calpain 9) on SSC14 significantly associated with UH (P = 1.97×10^{-10}) has already been detected [31]. In commercial pigs, 103 104 four candidate genes were identified in QTL regions associated with HU, namely TBX15 (T-105 Box 15) and WARS2 (Tryptophanyl TRNA Synthetase 2, Mitochondrial) in chromosome 4, 106 and LIPI (Lipase I) and RBM11 (RNA Binding Motif Protein 11) in chromosome 13 [32]. A 107 QTL on chromosome 14 of the Landrace breed was highly correlated with UH, where the LIF 108 (Leukemia inhibitory factor) and OSM (Oncostatin M) genes were identified as candidates for 109 this defect [26].

Although several genetic studies have been performed, no comparison between largescale gene expression profile of pigs affected with SH from those affected with UH was reported to date. Therefore, the objective of this study was to investigate the mechanisms and genes common to these two types of hernia by comparing the SH and UH transcriptomes.

114

115

116 Methods

This study was performed with the approval of the Embrapa Swine and Poultry National
Research Center Ethical Committee of Animal Use (CEUA) under the protocol number
011/2014.

120

121 Animals and sample collection

122 Eighteen pigs were selected from a Landrace female line from the same Nucleus farm, located 123 in Santa Catarina State, SC, Brazil. From those, five were females affected (case) with UH, 124 five normal (control) females for UH, four males with SH and four control males for SH. 125 Control animals were normal pigs, without any type of hernia, came from hernia-free litter 126 and were contemporary to the cases. The animals were selected at approximately 60 days of age for SH and 90 days of age for UH. At the Embrapa Swine and Poultry National Research 127 128 Center, located in Concórdia, SC, Brazil, the pigs were euthanized by electrocution stunning 129 for ten seconds, followed by bleeding, in accordance with the practices recommended by the 130 Ethics Committee. The necropsy was performed for general evaluation and to confirm the 131 phenotypes. In the pathological analysis, the two groups of animals were confirmed: hernia-132 affected or without hernias (Fig. 1). Tissue samples from the inguinal and umbilical rings 133 were collected for investigating the scrotal and umbilical hernias, respectively (Fig. 1). 134 Samples were immediately placed in liquid nitrogen and stored in ultra-freezer (-80 °C) for 135 RNA extraction. Samples from those tissues were also collected and placed in 4% 136 paraformaldehyde for histopathological analysis.

137

Figure 1 Pathological analysis. Legend: A) Swine affected with scrotal hernia. B) Region
affected with scrotal hernia (inguinal ring). C) Swine affected with umbilical hernia. D)
Region affected with umbilical hernia (umbilical ring).

142 Histopathological analysis of the inguinal and umbilical ring tissues

The samples previously collected were routinely processed for histopathology, dehydrated in a series of increasing concentrations of ethanol, diaphanized with xylol and embedded in paraffin. Tissue sections with 2 to 5 μm thickness were cut with an automatic microtome, stained using the hematoxylin and eosin (HE) method and analyzed by optical microscopy. The cell types were evaluated in a 10x eyepiece with 5x to 100x objectives.

148

149 **RNA Extraction**

150 Total RNA extraction was performed using the Trizol reagent (Invitrogen) according to the 151 manufacturer's instructions. The tissues were macerated in liquid nitrogen with a mortar and pistil, properly treated for use with RNA. For each 100 mg of tissue, 1 mL of the Trizol 152 153 reagent was added, which was mixed using the vortex, and then incubated for five minutes at 154 room temperature (RT, 25°C). Then, 200 µL of chloroform were added, shaking vigorously 155 with the hands for 15 seconds and incubating at RT for another five minutes. A 11,000 xg 156 refrigerated centrifugation for 15 minutes was performed, 600 µL of the aqueous phase was 157 transferred to a new tube and 600 µL of 70% ethanol were added and homogenized by 158 inversion. This volume was then added to a mini RNeasy silica column (Qiagen) and 159 centrifuged for 15 seconds at 8000 xg. Then, the eluate was discarded and 700 µL of the RW1 160 buffer was added, followed by centrifugation for 15 seconds at 8000 xg. Then, two washes 161 were performed with 500 µL of RPE buffer and, finally, the RNAs were eluted in 50 µL of 162 RNAse-free water. The quantity and quality of total RNA were assessed by quantification in a 163 Biodrop spectrophotometer (Biodrop, UK), in a 1% agarose gel and in the Bioanalyzer

30

Agilent 2100 (Agilent Technologies, Santa Clara, CA, USA). Samples with an RNA Integrity
Number (RIN) > 8.0 were used to prepare the RNA-Seq libraries.

166

167 **RNA-Seq libraries preparation and sequencing**

168 The RNA of four normal and four SH-inguinal ring and five normal and five UH-umbilical 169 ring tissues were submitted to library preparation with the TruSeq mRNA Stranded Sample 170 Preparation kit (Illumina, Inc., San Diego CA). For this, 2 µg of total RNA was purified using 171 magnetic microspheres for poly-A selection. The libraries were quantified by qPCR and 172 evaluated in Bioanalyzer (Agilent), prior to sequencing. Libraries passing the quality control 173 were sent for RNA sequencing in HiSeq 2500 equipment (Illumina) at the Functional 174 Genomics Center of ESALQ/USP, in a paired-end protocol (2 x 100 bp). All samples of each 175 hernia and their respective controls were placed in the same lane.

176

177 Quality control and differentially expressed genes

178 The quality control analysis and mapping were performed using BAQCOM pipeline available 179 in the Github repository [33]. BAQCOM pipeline uses Trimmomatic tool [34] to remove 180 short reads (<70 bp), reads with low quality (QPhred <24) and adapter reads. The sequences 181 were mapped against the swine reference genome (Sus scrofa, assembly 11.1) available on the 182 Ensembl version 95 [35] using the STAR 2.7.0 program [36]. To verify the consistency of the 183 expression pattern between the sample groups, a multidimensional scaling (MDS) plot was 184 performed in RStudio 1.1.463 [37] with the EdgeR package [38] from R 3.5.3 (R Core Team, 185 2019). After, differentially expressed (DE) genes in the analyzed tissues (case and control for 186 each hernia) were selected based on the level of False Discovery Rate (FDR < 0.05) after the 187 Benjamini-Hochberg (BH) method for multiple correction tests [40].

188

189 Transcriptomes characterization of scrotal and umbilical hernia

Initially, SH and UH-related transcriptomes were characterized as the total number of transcripts, number of protein-encoding genes, miRNAs, lncRNAs and non-characterized genes in the swine genome using the Biomart tool available in Ensembl 95 [35]. A manual annotation of non-characterized genes in the porcine genome was performed using DAVID 6.8 database [40]. The comparison between both transcriptomes was carried out to identify genes expressed in both types of hernia, SH and UH.

196

197 Comparison of differentially expressed genes and in silico functional analysis

198 The classification of DE genes was performed according to the database available in Ensembl 199 95 and further enrichment in DAVID 6.8 [40]. A comparison of DE genes between both 200 conditions was performed to verify if the genes were involved in the manifestation of the two 201 types of hernia, and whether there was agreement or not between gene expression profiles in 202 both conditions. To indicate possible similarity of the proteins not characterized in the DE 203 genes, the UniProt database [41] was used to collect the amino acid sequence from each 204 protein, and these sequences were then inserted in the BLASTp tool from the NCBI [42], in 205 which the result with the lowest e-value was considered [43]. A gene interaction network was 206 built with the DE genes common to both types of hernia using the STRING database [44, 45]. 207 The gene ontology (GO) was evaluated in the Panther [46] and DAVID 6.8 [40] databases, 208 followed by clusterization in the REVIGO tool [47]. Furthermore, it was verified if the DE 209 genes were located in QTL regions previously reported in the Pig QTL Database [30].

210

211 Identification of polymorphisms

212 For the polymorphisms discovery between the transcriptome of animals affected with each 213 type of hernia, the Genome Analysis Tool Kit (GATK) [48] was used with the Picard 2.5 214 toolkit [49]. The search for single nucleotide polymorphisms (SNPs) and InDels (insertions 215 and deletions) was carried out following the filtering parameters and sequence quality 216 suggested by the best practices protocol [50, 51]. The polymorphisms annotation for the two 217 hernias studied was performed using the VEP (Variant Effect Predictor) tool [52] with 218 standard parameters available in the Ensembl 95 database [35] and using the KEGG Pathway 219 Database [53]. Therefore, this annotation allowed the discovery of new polymorphisms, as 220 well as to verify their location and possible function in the genome. Using the Biomart data 221 mining tool [35], miRNAs were observed, and a manual comparison was made between them 222 to identify common miRNAs between SH and UH. Subsequently, a search in the miRBase 223 database version 22 [54, 55] was performed to obtain individual information for each miRNA.

224

225

226 **Results**

227 Histopathological analysis of the inguinal and umbilical ring tissues

In the microscopic evaluation, the group affected with SH (Fig. 2A and 2B) presented greater number of connective tissue fibers compared to the control group and, in the UH-affected group (Fig. 2C and 2D), the connective tissue was denser than in the control group.

231

Figure 2 Histopathological slide stained with hematoxylin and eosin (HE). Legend: A) Sample from the SH-control group and B) Sample from the SH-affected group. A larger number of connective fibers is observed in the sample of the SH-affected group than in the sample from the SH-control group. C) Sample from the UH-control group and D) Sample from the UH-affected group. Connective tissue interspersed with adipose tissue is observed in the sample of the UH-control group, while in the sample from the UH-affected group, only proliferated connective tissue is observed.

239

240 Sequencing and mapping

241 The RNA sequencing of all samples (n = 18) generated approximately 465 million paired-end 242 reads and, after the quality control analyses, 13.84% of these were removed, resulting in 243 approximately 400 million reads (86.16%) (Additional file 1: Table S1). The MDS plot shows 244 a clear separation between the samples from the two evaluated types of hernia (Additional file 245 2: Figure 1). Around 93.50% of reads were mapped against the swine reference genome (Sus 246 scrofa 11.1) [35], with individual samples ranging from 87.73% to 96.05%, distributed 247 between the groups of healthy and affected by SH or UH. From those, 78.77% of all reads 248 were mapped in genes. From the 31,907 annotated genes in the swine reference genome (Sus 249 scrofa 11.1) [35], 13,307 (41.71%) genes were expressed in the inguinal ring and 13,302 250 (41.69%) in the umbilical ring.

251

252 Characterization of the scrotal and umbilical hernia transcriptomes

In the global inguinal ring transcriptome, 13,307 genes were identified and 13,302 genes were expressed in the umbilical ring tissue, with the majority of the genes appearing in both types of hernia (Fig. 3). From these data, the transcripts were classified according to the Ensembl 95 database [35] (Table 1).

257

Figure 3 Distribution of transcripts identified in the pig inguinal and umbilical ring
tissue samples. Legend: SH – Scrotal hernia group; UH – Umbilical hernia group. For the

SH, the inguinal ring tissue was evaluated, and for the UH, the umbilical ring tissue was

analyzed.

262

260

263 Table 1. Characterization of the transcripts identified in samples of the inguinal and umbilical

264 ring.

Annotated transcripts	SH		UH	
LncRNA	68	0.53%	77	0.60%
MiRNA	5	0.04%	4	0.03%
Mt rRNA	2	0.02%	2	0.02%
Mt tRNA	1	0.01%	1	0.01%
Processed pseudogene	1	0.01%	0	0%
Protein-coding	12,601	98.55%	12,598	98.50%
Pseudogene	90	0.70%	91	0.71%
Ribozime	1	0.01%	1	0.01%
ScaRNA	1	0.01%	1	0.01%
SnoRNA	13	0.10%	14	0.11%
SnRNA	1	0.01%	0	0%
Y RNA	2	0.02%	1	0.01%
Total annotated transcripts	12,786		12,790	

265

After comparing the two transcriptomes (SH and UH), 94.91% of the genes were identified in both groups (Fig. 3). The Venn diagram also presents the number of transcripts expressed exclusively in each type of tissue.

269

270 **Differently expressed genes**

In the pig inguinal ring transcriptome, 627 genes were differentially expressed (FDR <0.05) between the control and the SH-affected group. Out of those, 435 genes (69.38%) were downregulated and 192 (30.62%) were upregulated in the SH-affected pigs compared to the normal animals. Regarding the genes expressed in the umbilical ring, 199 were DE between normal and UH-affected pigs. From those, 129 were downregulated (64.82%) and 70 (35.18%) upregulated in the UH-affected pigs when compared to the normal ones. In the samples from the SH group, 98.09% of the DE genes were characterized as protein coding
genes, 0.64% as lncRNA, 0.32% as pseudogenes, 0.32% as C immunoglobulins, 0.32% as
miscRNA, 0.16% as encoding immunoglobulins V and 0.16% as ribozyme. In the UH
transcriptome, 92.46% were protein coding genes, 3.52% immunoglobulin C coding genes,
1.51% pseudogenes, 1.01% miscRNAs, 1.01% mitochondrial ribosomal RNA and 0.50%
lncRNA.

283

284 Differentially expressed genes common to both SH and UH transcriptomes

After comparing the DE genes in the analysis of the samples referring to SH and UH, 35 DE

- 286 genes were present in both transcriptomes (Table 2).
- 287

288 Table 2. Differentially expressed genes identified in both scrotal (SH) and umbilical hernia

(UH) groups.

ENSEMBL ID	Gene symbol	Chromosome	Gene name	SH- logFC	SH- FDR	UH- logFC	UH- FDR
ENSSSCG0000001832	ACAN	7	Aggrecan	2.913	0.001	2.788	0.040
ENSSSCG0000034213	ACER2	1	Alkaline ceramidase 2	-3.066	0.001	-2.373	0.004
ENSSSCG00000036223	ACKR1	4	Atypical chemokine receptor 1 (Duffy blood group)	-1.119	0.030	-1.023	0.034
ENSSSCG00000010370	ANXA8	14	Annexin A8	2.026	0.000	1.744	0.004
ENSSSCG00000032709	ARL4A	9	ADP ribosylation factor like GTPase 4 ^a	-1.308	0.001	-1.199	0.031
ENSSSCG00000033350	BCHE	13	Butyrylcholinesteras e	1.011	0.028	1.557	0.009
ENSSSCG00000028567	BTNL9	2	Butyrophilin like 9	-1.356	0.010	-2.268	0.016
ENSSSCG0000002662	C16orf74	6	Chromosome 16 open reading frame 74	1.818	0.025	1.661	0.008
ENSSSCG0000006736	CD2	4	CD2 molecule	2.275	0.028	-1.990	0.002
ENSSSCG0000009138	CFI	8	Complement factor I	2.254	0.000	1.904	0.029
ENSSSCG00000011524	CHL1	13	Cell adhesion molecule L1 like	-1.776	0.004	-1.321	0.009
ENSSSCG00000021588	DAPK2	1	Death associated protein kinase 2	-1.347	0.026	-1.473	0.013
ENSSSCG00000012126	GPM6B	Х	Glycoprotein M6B	-1.047	0.009	-1.244	0.022
ENSSSCG0000002847	GPT2	6	Glutamicpyruvic transaminase 2	-3.752	0.002	1.571	0.029
ENSSSCG0000036438	GPX3	16	Glutathione peroxidase 3	-2.184	0.000	-2.762	0.006
ENSSSCG00000017010	INSYN2B	16	Inhibitory synaptic factor family	3.436	0.000	1.667	0.020

			member 2B				
ENSSSCG0000002245	KATNBLI	7	Katanin regulatory subunit B1 like 1	0.877	0.040	1.147	0.002
ENSSSCG00000010325	KCNMA1	14	Potassium calcium- activated channel subfamily M alpha 1	0.982	0.042	1.652	0.001
ENSSSCG00000034838	MAP1LC3C	10	Microtubule associated protein 1 light chain 3 gamma	6.715	0.000	3.819	0.002
ENSSSCG0000004191	MOXD1	1	Monooxygenase DBH like 1	-2.980	0.010	2.570	0.033
ENSSSCG00000011133	PFKFB3	10	6-phosphofructo-2- kinase/fructose-2,6- biphosphatase 3	-1.135	0.008	-1.450	0.010
ENSSSCG0000007528	PHACTR3	17	Phosphatase and actin regulator 3	1.727	0.012	1.986	0.028
ENSSSCG0000007470	RIPOR3	17	RIPOR family member 3	-1.119	0.049	-1.377	0.042
ENSSSCG0000009111	SYNPO2	8	Synaptopodin 2	-1.293	0.006	-1.194	0.045
ENSSSCG00000014834	UCP3	9	Uncoupling protein 3	-2.693	0.024	-3.262	0.016
ENSSSCG0000008501	VIT	3	Vitrin	-2.317	0.004	-3.709	0.029
ENSSSCG00000015766	WDR17	15	WD repeat domain 17	-1.761	0.000	-1.773	0.019
ENSSSCG00000013714		2		2.087	0.048	1.813	0.019
ENSSSC00000037142		AEMK0200045 2.1	Cysteine-rich protein 1	1.222	0.000	-4.322	0.010
ENSSSCG00000031037		14		3.813	0.000	-4.021	0.029
ENSSSCG00000032582		14		3.873	0.000	-3.822	0.012
ENSSSCG00000036224		3		3.369	0.001	-3.010	0.045
ENSSSCG00000036983		AEMK0200045 2.1		4.568	0.001	-5.951	0.001
ENSSSCG00000037009		AEMK0200045 2.1		3.679	0.024	-3.785	0.031
ENSSSCG00000039111		AEMK0200045 2.1		4.596	0.000	1.180	0.041

290

292 From the 35 DE genes found in both tissues (inguinal and umbilical ring), 34 were 293 protein coding and one was an immunoglobulin C coding gene. Moreover, eight transcripts 294 (22.86%) were uncharacterized proteins (Table 3), of which six were similar to the amino acid 295 sequences of the pig immunoglobulin and other was similar to another predicted protein in 296 pigs (Table 3). When the relative expression of the 35 common DE genes from each group 297 that represents a type of hernia was compared based on the log2 fold-change (logFC), 26 of 298 these genes had a similar expression profile in the two types of hernia (Fig. 4A), and nine had 299 opposite expression profiles considering both types of hernia (Fig. 4B).

Gene ID	Description	e-value	Query cover (%)	Identity (%)	Accession (RefSeq)
ENSSSCG0000013714	Mucin-16 [Sus scrofa]	8e-157	100	93.1	XP_020940777.1
ENSSSCG00000036224	Ig kappa chain V-C region (PLC18) [Sus scrofa domesticus]	5e-89	82	85	PT0219
ENSSSCG00000031037	Immunoglobulin lambda-like polypeptide 5 precursor [Sus scrofa]	3e-71	99	99.09	NP_001230248.1
ENSSSCG00000032582	Immunoglobulin lambda-like polypeptide 5 precursor [Sus scrofa]	7e-68	94	92.04	NP_001230248.1
ENSSSCG00000036983	IgG heavy chain precursor [Sus scrofa]	0.0	74	79.78	BAM75547.1
ENSSSCG00000037009	IgG heavy chain precursor [Sus scrofa]	0.0	100	100	BAM75542.1
ENSSSCG00000039111	IgG heavy chain constant region [Sus scrofa]	1e-74	100	100	BAM66306.1
ENSSSCG00000037142	Cysteine-rich protein 1 [<i>Camelus dromedarius</i>]	3e-41	36	94.37	KAB1277051.1

301 Table 3. Differentially expressed genes in the inguinal and umbilical ring annotated as302 uncharacterized protein.

304

Figure 4 Common differentially expressed genes for scrotal and umbilical hernias and
their respective control groups. Legend: A) Genes with similar expression profile and B)
with opposite expression profile in the two types of hernia based on the LogFC.

308

Of the 35 genes DE in both types of hernia, a network with 27 of them was built and the *MAP1LC3C* and *MUC16* genes grouped the two largest clusters of the network (Fig. 5). One cluster was related to macroautophagy including the *MAP1LC3C*, *ATG3*, *ATG5* and *ATG12* genes (Fig. 5) and the other cluster was composed by the mucin gene family (*MUC4*, *MUC6*, *MUC16* and *MUC20*) (Fig. 5), which plays an important role protecting against environmental stress. A third group was related to the complement and coagulation cascade composed of genes *C3*, *CFH* and *CFI* (Fig. 5).

Figure 5 Gene interaction network with differentially expressed genes common to both scrotal and umbilical hernias. Legend: Gene network built with 27 of the 35 differentially expressed genes common to both types of hernia obtained with the STRING database using information from *Sus scrofa* proteins.

321

322 The enrichment analysis in the PANTHER database [46] using the 35 genes DE for 323 the two hernias studied highlighted four metabolic pathways, namely: Huntington's disease 324 (P00029) (ARL4A); Muscarinic receptor signaling pathway 1 and 3 of acetylcholine (P00042) 325 (BCHE); Acetylcholine muscarinic receptor 2 and 4 signaling pathway (P00043) (BCHE) and 326 Acetylcholine receptor nicotinic signaling pathway (P00044) (BCHE). The enrichment of this 327 set of 35 DE genes using the DAVID 6.8 database [40] indicated that those genes participate 328 in 108 biological processes (BP) (Additional file 1: Table S2). The KCNMA1 gene (Potassium 329 calcium-activated channel subfamily M alpha 1) was the most enriched in BP, appearing in 18 330 of them (Additional file 1: Table S2). These BP were clustered in nine macro biological 331 processes (superclusters) using the REVIGO tool [47] (Table 4).

The 26 DE genes with similar expression profile enriched 99 BP (Additional file 1: Table S3). Considering the molecular function, the set of 35 genes was present in 57 different molecular functions mainly comprising binding, catalytic activity, molecular function regulator, structural molecule activity and transport activity. Using the QTL database [30], two DE genes in both groups of hernias studied here were located in QTL regions already identified as being associated to SH hernia in pigs: the *ACAN* and *BCHE* genes were mapped, respectively, in the QTLs 55892 (SSC7) and 8794 (SSC13).

339

		Genes	
Superclusters	Upregulated in both groups	Downregulated in both groups	Opposite expression profile
Cell adhesion (GO: 0022610)		CHL1	CD2
Biological regulation (GO: 0065007)	ANXA8	ACKR1, SYNPO2	<i>MOXD1</i> , ENSSSCG0000036224, ENSSSCG00000039111
Cellular process (GO: 0009987)	PHACTR3, ANXA8, MAP1LC3C	VIT, SYNPO2, BTNL9	<i>GPT2</i> , <i>MOXD1</i> , <i>CD2</i> , ENSSSCG00000039111, ENSSSCG00000036224
Development (GO: 0032502)	PHACTR3	VIT	
Immune system process (GO: 0002376)		ACER2, BTNL9	<i>CD2</i> , ENSSSCG00000032582, ENSSSCG00000039111, ENSSSCG00000031037, ENSSSCG00000036224
Location (GO: 0051179)	ANXA8, MAP1LC3C	ARL4A, UCP3	ENSSSCG00000036224, ENSSSCG00000039111
Metabolic process (GO: 0008152)		UCP3, PFKFB3	<i>GPT2</i> , <i>MOXD1</i> , ENSSSCG00000036224, ENSSSCG00000039111
Multicellular organismal process (GO: 0032501)	ACAN, PHACTR3	ACKR1, CHL1, GPM6B, VIT	
Response to stimulus (GO: 0050896)		ACKR1, GPX3, UCP3	ENSSSCG00000037009, ENSSSCG00000036983, ENSSSCG00000036224, ENSSSCG00000039111

341 Table 4. Macro biological processes (superclusters) enriched with the 35 differentially342 expressed genes common to both types of hernia.

344

345 Identification of polymorphisms

346 Using the GATK program, 67 polymorphisms were identified in the inguinal ring tissue 347 samples (Additional file 1: Table S4) and 76 in the umbilical ring tissue samples (Additional 348 file 1: Table S5). Comparing the transcriptomes of pigs affected with each type of hernia, the 349 polymorphisms were then classified (Table 5). From the 67 polymorphisms related to scrotal 350 hernia, 56 (83.58%) have already been described in VEP tool and 11 (16.42%) are considered 351 new (Additional file 1: Table S4). Of the 76 polymorphisms referring to umbilical hernia, 62 352 (81.58%) have been previously described in VEP tool and 14 (18.42%) are new (Additional 353 file 1: Table S5).

354

355 Table 5. Classification of polymorphisms found in samples from the inguinal and umbilical

	Scrotal hernia	Umbilical herni			
Polymorphism type	N°	(%)	\mathbf{N}°	(%)	
Insertion	10	14.93	6	7.90	
Deletion	4	5.97	3	5.26	
SNP	53	79.10	67	86.84	
Total	67	100	76	100	

ring tissues from normal, and scrotal and umbilical hernia-affected pigs, respectively.

357

358 Considering the whole transcriptome of the two tissues, the variants detected for SH 359 and UH were classified according to the functional region indicating their possible 360 consequences in gene regulation (Table 6). Most of the SNPs in the SH group (37.74%) were 361 classified as synonymous variants (Additional file 1: Table S4), and in the UH group, most 362 were of the UTR3' type (44.78%) (Additional file 1: Table S5). In the SH group, two 363 observed variants had calculated SIFT (Sorting Intolerant From Tolerant) score classified as 364 tolerant (SIFT score> 0.05) (Table 7). One of them has already been described in the dbSNP 365 database [35] and the other was classified as new. From the variants belonging to the UH 366 group, six had the calculated tolerance prediction score (SIFT) detected, one of them being 367 deleterious (SIFT ≤ 0.05) and five tolerant (SIFT> 0.05) (Table 7), all of which were already 368 present in the dbSNP database [35]. These six variants belong to six genes, two of which were 369 enriched for metabolic pathways in the KEGG Pathway Database [53] (Table 8). The 370 frameshift type variants were located in two genes (NCOA7 and SEC62), of which one was 371 enriched for a metabolic pathway in the same database [53] (Table 8). The SNPs of the SH 372 group were observed in 17 different genes, which enriched nine BP (Table 9) in the DAVID 373 6.8 database [40]. The SNPs found in the UH group were mapped in 24 genes, which 374 enriched six biological processes (Table 10).

- 375
- 376

Table 6. Variants annotated in different functional classes in samples from inguinal andumbilical ring tissues.

Variant type	Scrotal Hernia (%)	Umbilical Hernia (%)
Intronic	23.88	5.26
Synonym	29.85	23.68
Missense	2.99	7.89
Splicing	1.49	-
UTR5'	5.97	6.58
UTR3'	34.33	47.37
Downstream	1.49	6.58
Frameshift	-	2.63

³⁷⁹

381 Table 7. Missense variants observed in groups with SIFT score calculated in the dbSNP

database (Ensembl).

Group	Variant	Location	Impact	Gene	SIFT
Scrotal hernia	rs325370594	16:20418972- 20418972	Moderate	RAI14	Tolerant (1)
	-	7:64303141- 64303141	Moderate	RALGAPA1	Tolerant (0.63)
	rs325089032	6:81571496- 81571496	Moderate	ELOA	Tolerant (0.1)
- Umbilical hernia	rs327289001	3:17254444- 17254444	Moderate	ITGAM	Deleterious (0.01)
	rs789266896	3:17628688- 17628688	Moderate	RNF40	Tolerant (0.6)
	rs330957838	3:17468302- 17468302	Moderate	SETD1A	Tolerant low confidence (0.34)
	rs337670844	3:17399477- 17399477	Moderate	ZNF646	Tolerant (0.08)
	rs323115420	3:16964045- 16964045	Moderate	ZNF713	Tolerant (0.65)

383

- 385 Table 8. Genes with elevated impact variants enriched in metabolic pathways with the KEGG
- 386 Pathway Database.

Variant	Gene	Pathway (ssc ¹)
New	SEC62	Protein exports (ssc03060);
(Frameshift)		Protein processing in the endoplasmic reticulum (ssc04141).
rs327289001	ITGAM	Rap1 signaling path (ssc04015);
(Missense)		Phagosome (ssc04145);
		Cell adhesion molecules (CAMs) (ssc04514);
		Hematopoietic cell line (ssc04640);
		Transendothelial migration of leukocytes (ssc04670);

		Regulation of the actin cytoskeleton (ssc04810);
		Whooping cough (ssc05133);
		Legionellosis (ssc05134);
		Leishmaniasis (ssc05140);
		Amebiasis (ssc05146);
		Infection by Staphylococcus aureus (ssc05150);
		Tuberculosis (ssc05152);
		Incorrect regulation of transcription in cancer (ssc05202).
rs330957838 (Missense)	SETD1A	Lysine degradation (ssc00310).

¹Metabolic pathway identifying code described for *Sus scrofa* by the KEGG Pathway.

388

389 Table 9. Biological processes enriched with genes harboring SNPs in the scrotal hernia group.

David Term	Biological process	Enriched genes
GO:0010604	Positive regulation of the metabolic process of macromolecules	TBX3, MYRF, MYLIP, PARP3
GO:0055088	Lipid homeostasis	ACACA, MYYLIP
GO:0009893	Positive regulation of the metabolic process	TBX3, MYRF , MYLIP, PARP3
GO:0043170	Metabolic process of the macromolecule	TBX3, MYRF , MYLIP , PARP3 , ACACA, DDB2
GO:0065008	Regulation of biological quality	TBX3, ACACA, MYLIP, PARP3
GO:0045935	Positive regulation of the compound metabolic process containing nucleobase	TBX3, MYRF, PARP3
GO:0051173	Positive regulation of the metabolic process of nitrogen compounds	TBX3, MYRF, PARP3
GO:0042592	Homeostatic process	ACACA, MYLIP, PARP3
GO:0033554	Cellular stress response	TBX3, DDB2, PARP3
GO:0060249	Anatomical structure homeostasis	ACACA, PARP3

390 The genes in bold were upregulated in the scrotal hernia-affected group.

392 Table 10. Biological processes enriched with genes harboring SNPs in the umbilical hernia

393 group.

GO Term	Biological process	Enriched genes
GO:0010468	Regulation of gene expression.	RPRD1A, RNF40, ELOA, VIM , ZNF629, ZNF713
GO:0010977	Negative regulation of the development of neuron projection	EPHB2, VIM
GO:0060255	Regulation of the metabolic process of macromolecules	ITGB2, RPRD1A, RNF40, ELOA, VIM, ZNF629, ZNF713
GO:0031345	Negative regulation of cellular projection organization	EPHB2 e VIM
GO:0019222	Regulation of the metabolic process	ITGB2, RPRD1A, RNF40, ELOA, VIM, ZNF629, ZNF713
GO:0045665	Negative regulation of neuron differentiation	EPHB2, VIM

394 The genes in bold were upregulated in the umbilical hernia-affected group.

³⁹¹

396	In the SH group, the genes corresponding to exonic regions, in which the variants were
397	observed, were not enriched by the KEGG Pathway Database [53]. Considering the type of
398	impact caused by the variants, the results were distributed as shown in Figures 6A and 6B for
399	the scrotal and umbilical hernias, respectively. These figures show that more than 60% of the
400	variants represent variations of modifying impact for both types of hernia.
401	
402	Figure 6 Impact caused by variants and its frequency. Legend: A) Samples from the
403	scrotal hernia group. B) Samples from the umbilical hernia group.
404	
405	Among the transcripts present in the analyzed samples, five miRNAs were identified
406	in the SH transcriptome and four in the UH transcriptome (Table 11). Of these, three were
407	expressed in both types of hernia. No DE miRNAs belonging to the evaluated samples were
408	identified.
409	
410	Table 11. MiRNAs identified in the transcriptomes of the pig inguinal and umbilical ring

411 tissues.

ENSEMBL ID	Name/ Symbol	miRBase	Location	Group
ENSSSCG00000018513	ssc-mir-145 (MIR145)	MI0002417	2: 150.580.126 – 150.580.211	SH
ENSSSCG00000018758	ssc-mir-214 (MIR214)	MI0002441	9: 114.527.990 - 114.528.101	SH/UH
ENSSSCG00000019065	ssc-mir-186 (MIR186)	MI0002456	6: 141.943.328 - 141.943.409	SH
ENSSSCG00000034634	ssc-mir-6782	MI0031620	AEMK02000489.1: 40.305 - 40.379	UH
ENSSSCG00000035742	-	-	12: 14.578.144 - 14.578.210	SH/UH
ENSSSCG00000037094	ssc-mir-9810	MI0031577	4: 83.070.363 – 83.070.457	SH/UH

412 SH stands for scrotal hernia and UH for umbilical hernia.

415 **Discussion**

Some studies investigating genes involved with the occurrence of hernias have been performed using candidate genes and GWAS approaches [11, 26, 29, 31, 32, 56 – 59]. More recently, functional candidate genes were prospected for scrotal [6] and umbilical [7] hernias by our group using RNA-Seq approach. Nevertheless, since the molecular mechanisms involved with these traits are not yet completely understood, a comparison between the transcriptome of umbilical and scrotal hernias was performed here, allowing the identification of several common genes differentially expressed in both conditions.

423

424 Transcriptome characterization

Gene expression studies obtained from samples of the inguinal and the umbilical ring tissue are quite recent. Lorenzetti [5] and Romano et al. [6] performed gene expression analyses from the pig inguinal ring and Souza et al. [7] performed analyses with umbilical ring samples to investigate scrotal and umbilical hernias, respectively. Information of gene expression in those tissues are scarce and there are still many gaps to be elucidated in this field.

From the transcripts characterization of the two tissues (Table 1), a great similarity between the groups of both types of hernia was observed when comparing the number of each class of transcripts, implying that the appearance of both hernias may be related to the same set of genes or family of genes. This large number of transcripts that are expressed in both groups can also be seen in the Venn diagram (Fig. 3). With the exception of processed pseudogenes and snRNA, which were not identified in the UH group, the percentage of each type of transcript was similar. Thus, the expression profile of the genes in the inguinal ring tissue was very similar to the profile found in the umbilical ring, being compatible with thehistopathological composition of these two tissues (Fig. 2).

439

440 Common differentially expressed genes in scrotal and umbilical hernias

441 From the DE genes observed in each type of hernia, 35 were common to both groups. Among 442 these, nine genes (CD2, GPT2, MOXD1, ENSSSCG00000031037, ENSSSCG00000032582, 443 ENSSSCG00000036224, ENSSSCG00000036983, ENSSSCG00000037009 and 444 ENSSSCG00000039111) had different expression profiles when comparing both types of 445 hernia. This behavior may have occurred due to the expression be tissue specific (inguinal 446 ring and umbilical ring) for those genes. Other reasons could be the differences in sex and age 447 between the groups evaluated for the two types of hernia. The other 26 DE genes have shown 448 similar expression in both types of hernia, of which 14 genes were downregulated and 12 449 were upregulated in pigs affected by both types of hernia.

450 From the gene interaction network (Figure 5), three DE genes were enriched in both 451 types of hernia. The MAP1LC3C (Microtubule associated protein 1 light chain 3 gamma) 452 interacted in the group of the macroautophagy BP (GO: 0016236) [60]. Macroautophagy is 453 the main path involved in inducing general renewal of cytoplasmic constituents in eukaryotic 454 cells and is essential for cell survival, development, differentiation and homeostasis [62 - 65]. 455 The Gene Ontology (GO) annotations related to this gene include the assembly and 456 maturation of the autophagosome (Additional file 1: Table S4). Marcelino et al. [66] indicated 457 the MAP1LC3C gene as a candidate for the formation of UH in pigs since this gene was 458 upregulated in the affected compared to the normal pigs. In our research, the MAP1LC3C 459 gene exhibited the same behavior, being upregulated in affected animals of both types of 460 hernia when compared to the control groups (Fig. 4A). Moreover, this expression profile can

461 be one of the causes of the hernia onset, since the high expression of this gene can cause462 excessive autophagy and interfere with normal tissue development [67].

463 The CFI gene (Complement factor I) was grouped in the cluster of the coagulation 464 cascade metabolic pathway and complement system (Figure 5). The coagulation cascade is a 465 sequence of interconnected reactions in order to clot the local blood when a blood vessel 466 injury occurs [68]. The complement system is a proteolytic cascade in blood plasma and a 467 mediator of innate immunity [69]. The GO annotations related to this gene include 468 endocytosis (content absorption through membrane invagination process) and proteolysis 469 (protein degradation process) (Additional file 1: Table S2). The CFI gene, like the 470 MAP1LC3C, was upregulated in animals with hernia when compared to the control group 471 (Fig. 4A). The *CFI* encodes the trypsin-like protein Serine-protease [41], which plays an 472 essential role in regulating the immune response, controlling all the complement pathways 473 [70]. The participation of the CFI in these pathways and processes, taken together with its 474 expression profile, suggests that this gene could be involved with as a consequence of the 475 disorders.

476 The MUC16 (Mucin-16) gene encodes a protein of the mucin family, which are O-477 glycosylated proteins found in the apical surfaces of the epithelium and play an important role 478 in the formation of a protective mucous barrier [71]. This gene was enriched in the gene 479 network (Figure 5) as a participant in processing O-glycan BP (GO: 16266) [60]. This process 480 is related to the gradual addition of carbohydrate residues or carbohydrate derivatives to form 481 the O-glycan structure [72]. The MUC16 gene was also enriched as an integral cell membrane 482 component BP (GO: 16021) [60]. According to Blalock et al. [73], the MUC16 build a 483 protective barrier to the epithelial cell surface, where binding proteins are associated with its 484 tail, linking it to the actin cytoskeleton. This gene was upregulated in the affected group of both types of hernia compared to their respective control groups (Fig. 4A), thus configuring a
defense system that might have arisen as a consequence of the hernias formation.

487

488 Enriched biological processes

489 When the 99 BP enriched by the 26 DE genes with an equivalent profile in both types of 490 hernia (Additional file 1: Table S3) were evaluated, the BP of cell adhesion, apoptosis, 491 organization of the actin cytoskeleton and organization of collagen fibrils can be highlighted, 492 because they are generally linked to the formation of hernias. The enriched genes for cell 493 adhesion, VIT (Vitrin), ACER2 (Alkaline Ceramidase 2) and CHL1 (Cell Adhesion Molecule 494 L1 Like) were downregulated in the affected animals compared to the control groups and 495 ACAN (Aggrecan) was upregulated in the affected animals. The cell adhesion BP allows the 496 interaction among cells, and between cells and the extracellular matrix [74, 75]. This BP has 497 already been related to tissue maintenance and cell differentiation [76, 77]. The CHL1 gene 498 was enriched with the process of homophilic cell adhesion via plasma membrane adhesion 499 molecules. ACER2 participates in the specific BP of negative regulation of cell adhesion 500 mediated by integrin and negative regulation of cell matrix adhesion. The VIT gene enriched 501 the process of positive regulation of cell substrate adhesion. Thus, the reduced expression of 502 these genes that actively participate in cell adhesion interferes with the integrity of tissues, 503 which can be determinant for the appearance of both types of hernia.

The *KCNMA1* gene (Potassium Calcium-Activated Channel Subfamily M Alpha 1), which was upregulated in animals affected with hernia, and *ACER2* (downregulated) were enriched in the apoptosis BP. This process is related to the regulation of programmed cell death, which is extremely important for the maintenance of the development of living beings [78]. The overexpression of this gene can compromise the tissue as a result of an

509 accumulation of immature cells in the region, which can influence the appearance of hernias, 510 especially when associated with unfavorable environmental factors. ACER2 was enriched 511 with the specific process of activating cysteine-type endopeptidase activity, involved in the 512 apoptotic process, and the KCNMA1 was enriched for positive regulation of the apoptotic 513 process. This last gene was also enriched for the relaxation process of the vascular smooth 514 muscle that is related to the negative regulation of the contraction of this muscle. The 515 relaxation is mediated by a decrease in the phosphorylation state of the myosin light chain 516 [79]. As the expression of this gene was higher in herniated than in normal pigs, the KCNMA1 517 can be pointed out as a candidate gene for the formation of umbilical and scrotal hernia, since 518 the lack of local muscle contraction facilitates the passage of the abdominal content through 519 the rings.

520 Biological processes that regulate the activities of collagen and its structures have been 521 indicated in the enrichment of the ACAN and VIT genes. The first gene was related to the 522 condensation of mesenchymal cells that differentiate into chondrocytes, organization of 523 collagen fibrils and the development of chondrocytes [60]. The VIT gene, on the other hand, 524 was related to the morphogenesis of chondrocytes in the cartilage of the growth plate, in 525 which the structures of a chondrocyte are generated and organized [80]. The ACAN gene was 526 upregulated in animals affected with hernia, which is in accordance with the histopathological 527 analyses that evidenced a larger amount of collagen compared to normal pigs. Moreover, 528 ACAN upregulation in animals affected with hernia can generate an exaggerated collagen 529 production, which has already been related to hernia by Harrison, Sanniec and Janis [81].

Regarding the organization of the cytoskeleton, especially those processes related to actin, two genes were enriched, *SYNPO2* (Synaptopodin 2) and *ENSSSCG00000037142*. *SYNPO2* has been enriched specifically for the process of positive regulation of the actin filament bundles set. The organization of the actin cytoskeleton is carried out at the cellular

level and results in the assembly, disposition of the constituent parts or disassembly of the structures, including the filaments and their associated proteins [60]. In our study, this gene was downregulated in animals with hernia. This negative regulation can be a predisposing factor to hernia, since the non-assembly and organization of the structures that make up the tissue can make it less resistant.

539

540 DE genes located in QTL regions for hernias and polymorphisms characterization

541 Several studies have been carried out to identify QTL regions related to umbilical and scrotal 542 hernia [11, 20, 29, 82, 83]. Among the DE genes in the two types of hernia, ACAN and BCHE 543 (Butyrylcholinesterase) are highlight since they have already been located in QTL regions 544 associated to scrotal/inguinal hernia [20, 29]. Even with scientific reports relating these two 545 genes only with QTL regions for scrotal hernia, in our study, the expression profile of these 546 two genes was equivalent in both types of hernia, being upregulated in the affected animals. 547 Souza [7] indicated some genes as strong candidates to trigger umbilical hernias in pigs, and 548 ACAN is among them.

According to the results, variations in the transcripts may be related to the 549 550 manifestation of the different types of hernia. In both groups, most of the polymorphisms 551 detected were SNPs, followed by insertions and deletions (Additional file 1: Table S4 and 552 S5). In the SH group, a new SNP was identified on chromosome 13 (13: 34083960-553 34083960), which is located within a QTL region (QTL ID 55898) associated with scrotal 554 hernia [11, 20, 29]. This SNP was mapped in the PARP3 gene (Member of the poly ADP-555 ribose 3 polymerase family), which acts in the repair pathways by base excision, apoptosis 556 and necroptosis, participating in biological processes of DNA repair [42]. Moreover, Piórkowska et al. [84] carried out research with Polish Landrace and Pulawska pigs and 557

pointed out the participation of the *PARP3* gene in the regulation of the actin cytoskeleton BP.
The muscle tissues belonging to the regions where the hernias occur are classified as skeletal
striatum, which are formed by myofibrils composed by actin and myosin [85]. As mentioned
by Bendavid [18], disturbances in the structures of muscle fibers cause low resistance in the
inguinal region, which can lead to scrotal hernia.

563 The 53 SNPs observed in the SH group were located in 17 genes (Additional file 1: 564 Table S4), which have been enriched in nine biological processes (Table 9). Most of these BP 565 were related to homeostasis, which are processes that maintain the stability of the structure of 566 the analyzed tissue (GO:0042592) [60]. The ACACA gene, enriched in these BP, participates 567 in processes that maintain the stability of anatomical structures of the site [42]. ACACA was 568 downregulated in the SH-affected animals (Table 9) indicating the development of an 569 unstable structure of the inguinal ring, which can influence the development of hernia. In humans, this gene participates in the fatty acid synthesis BP [42], which reinforces the 570 571 histopathological findings that showed greater amount of adipose tissue in normal than in SH-572 affected pigs (Fig. 2 A and B). From the SNPs found in the SH group, all variants were 573 tolerated (Table 7). According to the SIFT score, two had a moderate impact classification, so 574 they can alter the effectiveness of the encoded protein. This means that the function of the 575 proteins resulting from these sites has not been altered, since the SIFT score is a tool that 576 predicts whether the variant affects the function of the protein or not [35]. These SNPs were 577 located in two genes, RAI14 and RALGAPA1; the first has already been annotated and the 578 second has no identification in the VEP tool. No high impact polymorphisms were identified 579 in the SH group.

The 67 SNPs found in the UH group were mapped in 24 genes (Additional file 1: Table S5). These genes were enriched in six biological processes (Table 10) [40], all of which were related to some type of regulation, mainly metabolic. The *EPHB2* and *VIM* genes were 583 enriched in BP that interrupts the processes of cellular projections formation (GO: 0031345) 584 [60]. These two genes were upregulated in animals affected with HU when compared to the 585 control group (Table 10). The VIM gene encodes an intermediate filament protein that is part 586 of the cytoskeleton [42]. Lazarides [86] reported that high amount of this filament is observed 587 in the early stages of myogenesis in humans, and is hardly identified in adult muscles. Thus, 588 the levels of this protein indicate functionality feature. The upregulation of VIM in the 589 umbilical ring tissue of the UH-affected animals suggests that this gene may be involved with 590 a consequence of UH since Miller et al. [12] reported that the appearance of hernia can be a 591 consequence of a muscular defect.

592 Polymorphisms that had a high impact rating in the UH group (Additional file 1: Table 593 S5) were identified in two genes (NCOA7 and SEC62). These variants still do not have 594 identification in the tool used, but they were classified as insertions of the Frameshift type. 595 Therefore, they can cause an interruption in the translation reading frame, because the number 596 of inserted nucleotides is not multiple of three [35]. The NCOA7 (Nuclear receptor coactivator 597 7) is involved in the biological process of RNA polymerase II transcription and negative 598 regulation of the cellular response to oxidative stress. The SEC62 (Preprotein translocation 599 factor) is related to the regulation of post-translational protein transport to the membrane BP 600 and was mapped in a QTL region for stillborn pigs [87]. The detection of these 601 polymorphisms is important because they can alter not only processes related to hernias, but 602 all important processes for biological maintenance, possibly resulting in transcription failures 603 or disruption in the transport of translated proteins by lack of regulation.

The SNPs classified as having moderate impact for the UH group were found in six genes (Additional file 1: Table S5), with the SNP rs327289001 being highlighted due to its deleterious SIFT score. This SNP is located in the *ITGAM* gene that participates in the biological process of ectodermal cell differentiation [35]. This process is related to the 608 specialization of previously non-specialized cells, which acquire structure and functioning of 609 ectodermic cells. This differentiation integrates the processes involved in the commitment of a 610 cell to its specific purpose (GO: 0010668) [60]. In the embryonic gastrulation phase, the 611 formation of germ layers (ectoderm, mesoderm and endoderm) occurs, which will give rise to 612 specific tissues and organs [88]. The ectoderm is the external layer of a developing embryo 613 and gives rise to epidermis, hair, nails, cutaneous and mammary glands, tooth enamel, inner 614 ear, lens, and the anterior part of the pituitary gland, besides others related to the neural tube 615 and neural crest [88]. A SNP with deleterious SIFT score indicates that the function of the 616 protein can be altered due to the polymorphism, which in this case can result in non-617 differentiated cells, compromising the formation of resistant tissues, which, when associated 618 with environmental factors such as obesity, can lead to hernia. SNPs located in QTL regions 619 associated with UH were not found in the current study.

The SNP rs339972872 from the SH group and the SNPs rs324236192 and rs340781986 from the UH group were located in the same gene (*ACACA*) (Additional file 1: Tables S4 and S5). These are synonym SNPs and were classified as low impact. According to Stachowiak et al. [89], the *ACACA* gene is involved with performance traits in pigs.

From the expressed miRNAs, three were identified in the groups of both hernias. One of them, *ssc-mir-214*, plays an important role in the regulation of ovarian function and in the induction of granular ovarian cells to induce follicular development [90]. The *ssc-mir-145*, which was identified only in samples from the SH group, is involved in the development of adipose tissue [91].

We conducted the first comparative study of the pig inguinal and umbilical ring tissue transcriptomes. The results demonstrated similarities related to the expression profile of the whole transcriptome and DE genes in both types of hernia. The *ACAN* gene, which had already been associated to the appearance of scrotal hernia, showed similar behavior in the

633 data obtained from the umbilical hernia group. Moreover, the MAP1LC3C, VIT, ACER2, 634 KCNMA1 and SYNPO2 genes were highlighted as candidates for the formation of the two 635 types of hernias evaluated in our studied for presenting equivalent expression in both hernias 636 and for being involved in biological processes such as cell adhesion, cytoskeleton 637 organization, collagen production, muscle relaxation and autophagy. However, further studies 638 are needed to identify the expression profile of these same genes in younger animals to 639 improve our interpretation of the gene regulation mechanisms triggering the formation of 640 hernias. The knowledge of the genetic factors that control the manifestation of both scrotal 641 and umbilical hernia brings possibilities to the pig production chain to develop actions to 642 reduce the appearance of these defects in their herds, aiming to reduce economical losses and 643 favoring the animal welfare.

644

645

646 Conclusion

647 The expression profile of the inguinal and umbilical ring transcriptomes showed great 648 similarity. Thirty-five differentially expressed genes between normal and affected samples 649 were common to both types of hernia. The MAP1LC3C, ACAN, VIT, ACER2, KCNMA1 and 650 SYNPO2 genes are indicated as strong candidates for the appearance of both defects. A total 651 of 11 and 14 new SNPs were identified in the samples related to the scrotal hernia and 652 umbilical hernia, respectively. Moreover, a SNP with predicted deleterious function was 653 identified in the ITGAM gene, which might be related to the appearance of umbilical hernia in 654 pigs. Finally, the expression profile of these genes possibly interferes with the normal 655 development of the tissues, causing weakness and decreasing the resistance of the site, which 656 can lead to the formation of both types hernia in pigs.

65	7

658	List of abbreviations
659	BP : Biological process.
660	DE : Differentially expressed.
661	GATK: Genome Analysis Tool Kit.
662	GO: Gene ontology.
663	HE : Hematoxylin and eosin.
664	IH: Inguinal hernia.
665	MDS : Multidimensional scaling.
666	QTL: Quantitative trait loci.
667	SH: Scrotal hernia.
668	SIFT: Sorting intolerant from tolerant.
669	SNP : Single nucleotide polymorphism.
670	UH : Umbilical hernia.

- 671 **VEP**: Variant Effect Predictor.
- 672

673 **Declarations**

674 **Ethics approval**: All animal procedures were performed in accordance with the Ethics

675 Committee on Animal Utilization of the Embrapa Swine and Poultry National Research

676 Center, under protocol number 011/2014.

677 **Consent for publication**: Not applicable.

678 **Availability of data and material**: The datasets used and/or analyzed during the current 679 study are available from the corresponding author on reasonable request.

- 680 **Competing interests**: The authors declare that they have no competing interests.
- Funding: This study was financed by project #476146/2013 from the National Council of
 Scientific and Technological Development (CNPq), from the Brazilian Government.

683 Authors' contributions: JOP, MCL and AMGI conceived and designed the experiment.

584 JOP, AMGI, LODC, MAZM, IRS and MCL were responsible for the data collection. AFGR,

AMGI, JOP, MAZM and MCL performed the experiment. AFGR, AMGI, HCO and MEC performed the data analysis. AFGR, AMGI, JOP, IRS, MRS, MEC and MCL interpreted the results and wrote the manuscript. All authors reviewed, edited and approved the final

688 manuscript.

Acknowledgements: The authors are grateful to Alexandre L. Tessmann for technical assistance. I.R. Savoldi was sponsored by a PROMOP/Udesc scholarship and M.R. Souza by a CAPES/FAPESC scholarship. MCL is recipient of a productivity fellowship from the National Council for Scientific and Technological Development (CNPq).

693

694 **References**

695	1.	Heck	А.	Fatores	que	influenciam	0	desenvolvimento	dos	leitões	na	recria	e
696		termir	nação	o. Acta S	ci Ve	t 2009; 37 Suj	ppl	1: 211-8.					

697 2. Duarte DAS, Fortes MRS, Duarte MdS, Guimarães SE, Verardo LL, Veroneze R, et
698 al. Genome-wide association studies, meta-analyses and derived gene network for
699 meat quality and carcass traits in pigs. Anim Prod Sci. 2018; doi:10.1071/AN16018.

- González-Prendes R, Quintanilla R, Cánovas A, Manunza A, Cardoso TF, Jordana J,
 et al. Joint QTL mapping and gene expression analysis identify positional candidate
 genes influencing pork quality traits. Sci Rep. 2017; doi:10.1038/srep39830.
- 4. Ding R, Quan J, Yang M, Wang X, Zheng E, Yang H, et al. Genome-wide association
 analysis reveals genetic loci and candidate genes for feeding behavior and eating
 efficiency in Duroc boars. PLoS One. 2017; doi:10.1371/journal.pone.0183244.
- 5. Lorenzetti WR: Análise da expressão gênica em suínos normais e afetados com hérnia
 escrotal. http://sistemabu.udesc.br/pergamumweb/vinculos/000047/00004770.pdf
 (2018). Accessed 29 Jan 2020.
- Romano GDS, Ibelli AMG, Lorenzetti WR, Weber T, Peixoto JDO, Cantão ME, et al.
 Inguinal ring RNA sequencing reveals downregulation of muscular genes related to
 scrotal hernia in pigs. Genes. 2020; doi:10.3390/genes11020117.
- 7. Souza MR, Ibelli AMG, Savoldi IR, Cantão ME, Peixoto JO, Mores MAZ, Lopes JS,
 Coutinho LL, Ledur MC. Transcriptome analysis identifies genes involved with the
 development of umbilical hernias in pigs. Plos One. 2020 (accepted).
- 8. Nietfeld F, Höltig D, Willems H, Valentin-Weigand P, Wurmser C, Waldmann K, et
 al. Candidate genes and gene markers for the resistance to porcine pleuropneumonia.
 Mammal Gen. 2020; doi:10.1007/s00335-019-09825-0.
- 9. Yang T, Zhang F, Zhai L, He W, Tan Z, Sun Y, et al. Transcriptome of porcine
 PBMCs over two generations reveals key genes and pathways associated with variable
 antibody responses post PRRSV vaccination. Sci Rep. 2018; doi:10.1038/s41598-01820701-w.
- 10. Mattsson P: Prevalence of congenital defects in Swedish Hampshire, Landrace and
 Yorkshire pig breeds and opinions on their prevalence in Swedish commercial herds.

- https://stud.epsilon.slu.se/2390/1/mattsson_p_110330.pdf (2011). Accessed 29 Jan
 2020.
- 11. Grindflek E, Moe M, Taubert H, Simianer H, Lien S, Moen T. Genome-wide linkage
 analysis of inguinal hernia in pigs using affected sib pairs. BMC Gen, 2006;
 doi:10.1186/1471-2156-7-25.
- 12. Miller PA, Mezwa DG, Feczko PJ, Jafri ZH, Madrazo BL. Imaging of abdominal
 hernias. RadioGraphics, 1995; doi:10.1148/radiographics.15.2.7761639.
- 13. Straw B, Bates R, May G. Anatomical abnormalities in a group of finishing pigs:
 prevalence and pig performance. J Swine Health and Prod. 2009;17(1):28–31.
- 14. Clarnette TD, Lam SKL, Hutson JM. Ventriculo-peritoneal shunts in children reveal
 the natural history of closure of the processus vaginalis. J Pediatr Surg. 1998;
 doi:10.1016/S0022-3468(98)90080-X.
- 15. Amato G, Agrusa A, Romano G, Salamone G, Gulotta G, Silvestri F, et al. Muscle
 degeneration in inguinal hernia specimens. Hernia. 2012; doi:10.1007/s10029-0110890-1.
- 16. Clarnette TD, Hutson JM. Is the ascending testis actually 'stationary'? Normal
 elongation of the spermatic cord is prevented by a fibrous remnant of the processus
 vaginalis. Pediatr Surg Int. 1997; doi:10.1007/BF01349987.
- 742 17. Beuermann C, Beck J, Schmelz U, Dunkelberg H, Schütz E, Brenig B, et al. Tissue
 743 calcium content in piglets with inguinal or scrotal hernias or cryptorchidism. J Comp
 744 Pathol. 2009; doi:10.1016/j.jcpa.2008.11.006.
- 745 18. Bendavid R. The unified theory of hernia formation. Hernia. 2004;
 746 doi:10.1007/s10029-004-0217-6.
- 747 19. Franz MG. The biology of hernia formation. Surg Clin North Amer. 2008;
 748 doi:10.1016/j.suc.2007.10.007.

- 20. Sevillano CA, Lopes MS, Harlizius B, Hanenberg EH, Knol EF, Bastiaansen JW.
 Genome-wide association study using deregressed breeding values for cryptorchidism
 and scrotal/inguinal hernia in two pig lines. Genet Selec Evol. 2015;
 doi:10.1186/s12711-015-0096-6.
- Petersen HH, Nielsen EO, Hassing AG, Ersbøll AK, Nielsen JP. Prevalence of clinical
 signs of disease in Danish finisher pigs. Vet Rec. 2008; doi:10.1136/vr.162.12.377.
- 755 22. Warren TR, Atkeson FW. Inheritance of hernia in a family of Holstein-Friesian cattle.
 756 J. Hered. 1931; doi:10.1093/oxfordjournals.jhered.a103402.
- 23. Searcy-Bernal R, Gardner IA, Hird DW. Effects of and factors associated with
 umbilical hernias in a swine herd. J Amer Vet Med Assoc. 1994;204(10):1660-4.
- 759 24. Young GB, Angus K. A note on the genetics of umbilical hernia. Vet Rec. 1972;
 760 doi:10.1136/vr.90.9.245.
- 25. Sobestiansky J, Carvalho LFOS. Malformações. In: Sobestiansky, J. e Barcellos, D.
 Doenças dos Suínos. Goiânia: Cânone Editorial. 2007. p. 527-538.
- 763 26. Grindflek E, Hansen MH, Lien S, van Son M. Genome-wide association study reveals
 764 a QTL and strong candidate genes for umbilical hernia in pigs on SSC14. BMC Gen.
 765 2018; doi:10.1186/s12864-018-4812-9.
- 27. Sutradhar BC, Hossain MF, Das BC, Kim G, Hossain MA. Comparison between open
 and closed methods of herniorrhaphy in calves affected with umbilical hernia. J Vet
 Sci. 2009; doi:10.4142/jvs.2009.10.4.343.
- 769 28. Thaller G, Dempfle L, Hoeschele I. Maximum likelihood analysis of rare binary traits
 770 under different modes of inheritance. Genetics. 1996;143:1819-29.
- 29. Ding NS, Mao HR, Guo YM, Ren J, Xiao SJ, Wu GZ, et al. A genome-wide scan
 reveals candidate susceptibility loci for pig hernias in an intercross between White
 Duroc and Erhualian. J Anim Sci. 2009; doi:10.2527/jas.2008-1601.

774	30. Pig QTL Database. https://www.animalgenome.org/cgi-bin/QTLdb/SS/index.
775	Accessed 04 Fev 2020.
776	31. Li X, Xu P, Zhang C, Sun C, Li X, Han X, et al. Genome-wide association study
777	identifies variants in the CAPN9 gene associated with umbilical hernia in pigs. Anim
778	Genet. 2019; doi:10.1111/age.12760.
779	32. Fernandes LT, Ono RK, Ibelli, AMG, Lagos EB, Morés MAZ, Cantão ME, et al.
780	Novel putative candidate genes associated with umbilical hernia in pigs. In: World
781	Congress on Genetics Applied to Livestock Production. Auckland, New Zealand.
782	2018.
783	https://www.alice.cnptia.embrapa.br/alice/bitstream/doc/1093239/1/final8696.pdf.
784	Accessed 29 Jan 2020.
785	33. Github repository. https://github.com/hanielcedraz/BAQCOM. Accessed 06 Nov
786	2019.
787	34. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
788	sequence data. Bioinformatics. 2014; doi:10.1093/bioinformatics/btu170.
789	35. Ensembl. http://www.ensembl.org/index.html. Accessed 04 Feb 2020.
790	36. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
791	universal RNA-Seq aligner. Bioinformatics. 2013; doi:10.1093/bioinformatics/bts635.
792	37. Team, RStudio. RStudio: integrated development for R. RStudio, Inc., Boston, MA
793	http://www.rstudio.com. Accessed 16 Mar 2020.
794	38. Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package for
795	differential expression analysis of digital gene expression data. Bioinformatics. 2010;
796	doi:10.1093/bioinformatics/btp616.

39. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J Royal Stat Soc B. 1995; doi:10.1111/j.2517
799 6161.1995.tb02031.x.
40. DAVID Bioinformatics Resources 6.8. https://david.ncifcrf.gov/tools.jsp. Acessed 04
801 Feb 2020.
41. UniProt. https://www.uniprot.org/. Accessed 04 Feb 2020.
42. NCBI https://www.ncbi.nlm.nih.gov/. Accessed 04 Feb 2020.
43. NCBI (BLAST Glossary) https://www.ncbi.nlm.nih.gov/books/NBK62051/. Accessed
805 23 Mar 2020.
80644. String.https://string
807 db.org/cgi/input.pl?sessionId=3nHd3fJD9mAv&input_page_active_form=multiple_id
808 entifiers. Accessed 04 Feb 2020.
45. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING
810 v11: protein-protein association networks with increased coverage, supporting
811 functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018
812 doi:10.1093/nar/gky1131.
46. Panther. https://www.pantherdb.org/. Accessed 04 Sep 2019.
47. REVIGO. http://revigo.irb.hr/. Accessed 04 Sep 2019.
48. Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. Th
816 genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA
817 sequencing data. Gen Res. 2010; doi:10.1101/gr.107524.110.
818 49. Wysoker A, Tibbetts K, Fennel T. Picard tools version 2.5. 2013
819 http://broadinstitute.github.io/picard/. Accessed 06 Jan. 2020.

- 50. Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A
 framework for variation discovery and genotyping using next-generation DNA
 sequencing data. Nat Genet. 2011; doi:10.1038/ng.806.
- 51. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine
 A, et al. From FastQ data to high-confidence variant calls: the genome analysis toolkit
 best practices pipeline. Current protocols in Bioinformatics. 2013;
 doi:10.1002/0471250953.bi1110s43.
- 52. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P,
 Cunningham F. The Ensembl Variant Effect Predictor. Genom Biol. 2016;
 doi:10.1186/s13059-016-0974-4.
- 830 53. KEGG Pathway Database. https://www.genome.jp/kegg/pathway.html. Accessed 04
 831 Feb 2020.
- 832 54. miRbase. http://www.mirbase.org/. Accessed 04 Fev. 2020.
- 55. Griffiths-Jones S, Grocock RJ, Van Dongen S, Bateman A, Enright AJ. miRBase:
 microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;
 doi:10.1093/nar/gkj112.
- 56. Lago LV, da Silva AN, Zanella EL, Marques MG, Peixoto JO, da Silva MVGB, et al.
 Identification of genetic regions associated with scrotal hernias in a commercial swine
 herd. Vet Sci. 2018; doi:10.3390/vetsci5010015.
- 57. Joaquim LB, Chud TCS, Marchesi JAP, Savegnago RP, Buzanskas ME, Zanella R, et
 al. Genomic structure of a crossbred Landrace pig population. PloS One. 2019;
 doi:10.1371/journal.pone.0212266.
- 58. Liao XJ, Li L, Zhang ZY, Long Y, Yang B, Ruan GR, et al. Susceptibility loci for
 umbilical hernia in swine detected by genome-wide association. Rus J Genet. 2015;
 doi:10.1134/S1022795415100105.

- 59. Long Y, Su Y, Ai H, Zhang Z, Yang B, Ruan G, et al. A genome-wide association
 study of copy number variations with umbilical hernia in swine. Anim Genet. 2016;
 doi:10.1111/age.12402.
- 848 60. QuickGO. https://www.ebi.ac.uk/QuickGO/. Accessed 04 Fev 2020.
- 849 61. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation.
 850 Nature. 2011; doi:10.1038/nature09782.
- 62. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and
 biological functions of autophagy. Dev Cell. 2004; doi:10.1016/S15345807(04)00099-1.
- 854 63. Kroemer G. Autophagy: a druggable process that is deregulated in aging and human
 855 disease. J Clin Invest. 2015; doi:10.1172/JCI78652.
- 856 64. Zhang H, Baehrecke EH. Eaten alive: novel insights into autophagy from multicellular
 857 model systems. Trends Cell Biol. 2015; doi:10.1016/j.tcb.2015.03.001.
- 858 65. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;
 859 doi:10.1038/ncb0910-814.
- 66. Marcelino, DEP. et al. Expressão dos genes MAP1LC3C e EPYC em suínos normais e
 afetados com hérnia umbilical. In: Embrapa Suínos e Aves-Artigo em anais de
 congresso (ALICE). In: JORNADA DE INICIAÇÃO CIENTÍFICA, 13., 2019,
 Concórdia. Anais... Concórdia: Embrapa Suínos e Aves: UNC, 2019. p. 34-35. JINC
 2019., 2019.
- 865 67. Van Limbergen J, Stevens C, Nimmo ER, Wilson DC, Satsangi J. Autophagy: from
 866 basic science to clinical application. Muc Immunol. 2009; doi:10.1038/mi.2009.20.
- 867 68. Carlos MML, Freitas, PDFS. Estudo da cascata de coagulação sanguínea e seus
 868 valores de referência. Acta Vet Bras. 2007; doi:10.21708/avb.2007.1.2.393.

869	69. Iturry-Yaman	noto GR, Po	ortin	ho CP. Siste	ema co	mple	mento:	ativação	o, regul	ação e
870	deficiências	congênitas	e	adquiridas.	Rev	da	Assoc	Méd	Bras.	2001;
871	doi:10.1590/S	50104-423020	001	000100029.						

- 70. Xue X, Wu J, Ricklin D, Forneris F, Di Crescenzio P, Schmidt CQ, et al. Regulatordependent mechanisms of C3b processing by factor I allow differentiation of immune
 responses. Nat Struct Mol Biol. 2017; doi:10.1038/nsmb.3427.
- 875 71. Winterfeld GA, Khodair AI, Schmidt RR. O-glycosyl amino acids by 2-nitrogalactal
 876 concatenation synthesis of a mucin-type O-glycan. Eur J Org Chem. 2003;
 877 doi:10.1002/ejoc.200390142.
- 878 72. Brockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Bioch et Bioph
 879 Acta (BBA) Gen Subj. 1999; doi:10.1016/S0304-4165(99)00170-1.
- 73. BLALOCK TD. et al. Functions of MUC16 in corneal epithelial cells. Invest
 Ophthalmol & Vis Sci. 2007; doi: 10.1167/iovs.07-0430.
- 882 74. Rossi MC. Efeitos biológicos indiretos disparados por implantes dentários comerciais
- 883 em osteoblastos: estudo in vitro. 2014.
- https://repositorio.unesp.br/bitstream/handle/11449/145452/000870670.pdf?sequence
 =1&isAllowed=y/. Accessed 21 Abr. 2020.
- 75. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, et al. Molecular
 Biology of the Cell. 2014. 6th ed. Garland Science.
- 76. Huang S, Ingber DE. The structural and mechanical complexity of cell-growth control.
 Nat Cell Biol. 1999; doi:10.1038/13043.
- 890 77. Khalili AA, Ahmad MR. A review of cell adhesion studies for biomedical and
 891 biological applications. Int J Mol Sci. 2015; doi:10.3390/ijms160818149.
- 892 78. Grivicich I, Regner A, Rocha AB. Morte celular por apoptose. Revista brasileira de
 893 cancerologia, 2007. 53(3), 335-343.

- 894 79. Puetz S, Lubomirov LT, Pfitzer G. Regulation of smooth muscle contraction by small
 895 GTPases. Physiology. 2009; doi:10.1152/physiol.00023.2009.
- 896 80. Sato T, Konomi K, Yamasaki S, Aratani S, Tsuchimochi K, Yokouchi M, et al.
 897 Comparative analysis of gene expression profiles in intact and damaged regions of
 898 human osteoarthritic cartilage. Arthritis Rheum. 2006; doi:10.1002/art.21638.
- 899 81. Harrison B, Sanniec K, Janis J. Collagenopathies Implications for abdominal wall
 900 reconstruction: a systematic review. Plast Reconstr Surg Glob Open. 2016;
 901 doi:10.1097/GOX.00000000001036.
- 82. Zhao X, Du Z, Vukasinovic N, Rodriguez F, Clutter AC, Max F. Association of
 HOXA10, ZFPM2, and MMP2 genes with scrotal hernias evaluated via biological
 candidate gene analyses in pigs. Am J Vet Res. 2009; doi:10.2460/ajvr.70.8.1006.
- 83. Du Z-Q, Zhao X, Vukasinovic N, Rodriguez F, Clutter AC, Rothschild MF.
 Association and haplotype analyses of positional candidate genes in five genomic
 regions linked to scrotal hernia in commercial pig lines. PLoS One. 2009;
 doi:10.1371/journal.pone.0004837.
- 84. Piórkowska K, Żukowski K, Ropka-Molik K, Tyra M. Detection of genetic variants
 between different Polish Landrace and Puławska pigs by means of RNA-seq analysis.
 Anim Genet. 2018; doi:10.1111/age.12654.
- 85. Korn ED, Carlier MF, Pantaloni D. Actin polymerization and ATP hydrolysis.
 Science. 1987; doi:10.1126/science.3672117.
- 86. Lazarides E. Intermediate filaments: a chemically heterogeneous, developmentally
 regulated class of proteins. Annual Review Bioch. 1982;
 doi:10.1146/annurev.bi.51.070182.001251.

917	87	. Onteru SK, Fan B, Du ZQ, G	arrick DJ, Stalder KJ, Rot	hschild MF. A whole- genon	ne
918		association study for pig repr	roductive traits. Anim Ge	enet. 2012; doi:10.1111/j.136	5-
919		2052.2011.02213.x.			
920	88	. Moore KL, Persaud TVN, T	orchia MG. Embriologia	básica. 9. ed. Rio de Janeir	о:
921		Elsevier,	2016.	463	p.
922		https://ia801004.us.archive.or	g/30/items/Embriologia_t	osica_9ed	
923		_www.meulivro.biz/Embriolo	ogia_bsica_9edwww	.meulivro.biz.pdf. Acesso er	n:
924		16 dez. 2019.			
925	89	. Stachowiak M, Nowacka-Wo	oszuk J, Szydlowski M, S	witonski M. The ACACA an	nd
926		SREBF1 genes are promising	g markers for pig carcass	and performance traits, but n	ot
927		for fatty acid content in the	longissimus dorsi muscle	and adipose tissue. Meat So	ci.
928		2013; doi:10.1016/j.meatsci.2	013.04.021.		
929	90	. Tian M, Zhang X, Ye P, '	Tao Q, Zhang L, Ding	Y, et al. MicroRNA-21 an	nd
930		microRNA-214 play importan	nt role in reproduction reg	gulation during porcine estrou	IS.
931		Anim Sci J. 2018; doi:10.111	1/asj.13087.		
932	91	. Guo Y, Chen Y, Zhang Y, Zh	ang Y, Chen L, Mo D. U _I	p-regulated miR-145 expression	on
933		inhibits porcine preadipocytes	differentiation by targeti	ng IRS1. Inter J Biol Sci. 201	2;
934		doi:10.7150/ijbs.4597.			
935					
936					
937					
938					
939					
940					

Figure 1 Pathological analysis. Legend: A) Swine affected with scrotal hernia. B) Region
affected with scrotal hernia (inguinal ring). C) Swine affected with umbilical hernia. D)
Region affected with umbilical hernia (umbilical ring).

944

Figure 2 Histopathological slide stained with hematoxylin and eosin (HE). Legend: A) Sample from the SH-control group and B) Sample from the SH-affected group. A larger number of connective fibers is observed in the sample of the SH-affected group than in the sample from the SH-control group. C) Sample from the UH-control group and D) Sample from the UH-affected group. Connective tissue interspersed with adipose tissue is observed in the sample of the UH-control group, while in the sample from the UH-affected group, only proliferated connective tissue is observed.

952

Figure 3 Distribution of transcripts identified in the pig inguinal and umbilical ring
tissue samples. Legend: SH – Scrotal hernia group; UH – Umbilical hernia group. For the
SH, the inguinal ring tissue was evaluated, and for the UH, the umbilical ring tissue was
analyzed.

957

Figure 4 Common differentially expressed genes for scrotal and umbilical hernias and
their respective control groups. Legend: A) Genes with similar expression profile and B)
with opposite expression profile in the two types of hernia based on LogFC.

961

962 Figure 5 Gene interaction network with differentially expressed genes common to both 963 scrotal and umbilical hernias. Legend: Gene network built with 27 of the 35 differentially 964 expressed genes common to both types of hernia obtained with the STRING database using 965 information from *Sus scrofa* proteins.

966 967	Figure 6 Impact caused by variants and its frequency. Legend: A) Samples from the
968	scrotal hernia group. B) Samples from the umbilical hernia group.
969	
970	
971	
972	
973	
974	
975	
976	
977	
978	
979	
980	
981	
982	
983	
984	
985	
986	
987	
988	
989	
990	
991	

992	Additional	file	1:

993 .docx

Table S1 Average of reads sequenced, removed in the quality control analysis and
mapped in each group of samples. Legend: SH – N: Samples from the scrotal hernia group
– normal pigs. SH – A: Samples from the scrotal hernia group – affected pigs. UH – N:
Samples from the umbilical hernia group – normal pigs. UH– A: Samples from the umbilical
hernia group – affected pigs.

1000 Table S2 Biological processes of differentially expressed genes in the groups of the two

1001 types of hernia, comparing normal and affected pigs. Legend: Genes in bold were 1002 upregulated in the affected group for both types of hernia, and those underlined were 1003 downregulated for one type of hernia and e upregulated for the other type of hernia.

Table S3 Enrichment for biological process of the 26 DE genes with similar expression
 profile between both types of hernias.

Table S4 Polymorphisms identified in samples of the pig inguinal ring.

Table S5 Polymorphisms identified in samples of the pig umbilical ring.

1017	Additional file 2:
1018	.docx
1019	Figure S1 Multidimentional scaling (MDS) plot showing the samples used to generate
1020	the transcriptome of the inguinal ring for scrotal hernia (SH) in red and the
1021	transcriptome of the umbilical ring for umbilical hernia (UH) in blue.
1022 1023 1024	
1025	
1026	
1027	
1028	
1029	
1030	
1031	
1032	
1033	
1034	
1035	
1036	
1037	
1038	

Figure 1 Pathological analysis. Legend: A) Swine affected with scrotal hernia. B) Region
affected with scrotal hernia (inguinal ring). C) Swine affected with umbilical hernia. D)
Region affected with umbilical hernia (umbilical ring).

Figure 2 Histopathological slide stained with hematoxylin and eosin (HE). Legend: A) Sample from the SH-control group and B) Sample from the SH-affected group. A larger number of connective fibers is observed in the sample of the SH-affected group than in the sample from the SH-control group. C) Sample from the UH-control group and D) Sample from the UH-affected group. Connective tissue interspersed with adipose tissue is observed in the sample of the UH-control group, while in the sample from the UH-affected group, only proliferated connective tissue is observed.

- 1064
- 1065
- 1066
- 1067
- 1068

1070 Figure 3 Distribution of transcripts identified in the pig inguinal and umbilical ring
1071 tissue samples. Legend: SH – Scrotal hernia group; UH – Umbilical hernia group. For the

1072 SH, the inguinal ring tissue was evaluated, and for the UH, the umbilical ring tissue was 1073 analyzed.

Figure 5 Gene interaction network with differentially expressed genes common to both scrotal and umbilical hernias. Legend: Gene network built with 27 of the 35 differentially expressed genes common to both types of hernia obtained with the STRING database using information from *Sus scrofa* proteins.

- 1102 scrotal hernia group. B) Samples from the umbilical hernia group.

- 1118 Additional file 1
- 1119

1120 Table S1 Average of reads sequenced, removed in the quality control analysis and

- 1121 mapped in each group of samples.
- 1122

Samples	Sequenced reads	Removed reads	Pairs reads	Mapped reads	% of mapped reads	Reads mapped in genes	% of reads mapped in genes
SH – N	28362296	5693664	22668632	21337739	94.10	17756382	83.22
SH – A	27838413	4232821	23605592	21850701	92.60	18446649	84.42
UH – N	24356034	2727661	21628373	19902246	91.99	16584959	83.33
UH – A	23738367	2214464	21523903	20502663	95.24	17607460	85.88
Legend: SH SH UH UH	 N: Samples fron A: Samples fron N: Samples fron A: Samples fron 	n the scrotal he n the scrotal he n the umbilica n the umbilical	ernia group – r ernia group – a l hernia group hernia group	ormal pigs. Affected pigs. – normal pigs – affected pigs	5.		
	Samples SH – N SH – A UH – N UH – A Legend: SH UH UH	SamplesSequenced readsSH - N28362296SH - A27838413UH - N24356034UH - A23738367Legend: SH - N: Samples from SH - A: Samples from UH - N: Samples from UH - A: Samples from UH - A: Samples from	SamplesSequenced readsRemoved readsSH - N283622965693664SH - A278384134232821UH - N243560342727661UH - A237383672214464Legend: SH - N: Samples from the scrotal he SH - A: Samples from the scrotal he UH - N: Samples from the umbilical UH - A: Samples from the umbilical	SamplesSequenced readsRemoved readsPairs readsSH - N28362296569366422668632SH - A27838413423282123605592UH - N24356034272766121628373UH - A23738367221446421523903Legend: SH - N: Samples from the scrotal hernia group - r SH - A: Samples from the scrotal hernia group - r UH - N: Samples from the unbilical hernia group - a UH - N: Samples from the umbilical hernia group UH - A: Samples from the umbilical hernia group UH - A: Samples from the umbilical hernia group	SamplesSequenced readsRemoved readsPairs readsMapped readsSH - N2836229656936642266863221337739SH - A2783841342328212360559221850701UH - N2435603427276612162837319902246UH - A2373836722144642152390320502663Legend: SH - N: Samples from the scrotal hernia group - normal pigs. SH - A: Samples from the scrotal hernia group - affected pigs. UH - N: Samples from the umbilical hernia group - affected pigs. UH - A: Samples from the umbilical hernia group - affected pigs. UH - A: Samples from the umbilical hernia group - affected pigs.	SamplesSequenced readsRemoved readsPairs readsMapped reads% of mapped readsSH - N283622965693664226686322133773994.10SH - A278384134232821236055922185070192.60UH - N243560342727661216283731990224691.99UH - A237383672214464215239032050266395.24Legend: SH - N: Samples from the scrotal hernia group - normal pigs. SH - A: Samples from the umbilical hernia group - affected pigs.UH - N: Samples from the umbilical hernia group - affected pigs.UH - N: Samples from the umbilical hernia group - affected pigs.UH - A: Samples from the umbilical hernia group - affected pigs.	Samples Sequenced reads Removed reads Pairs reads Mapped reads Mapped mapped reads Reads mapped mapped reads SH - N 28362296 5693664 22668632 21337739 94.10 17756382 SH - A 27838413 4232821 23605592 21850701 92.60 18446649 UH - N 24356034 2727661 21628373 19902246 91.99 16584959 UH - A 23738367 2214464 21523903 20502663 95.24 17607460 Legend: SH - N: Samples from the scrotal hernia group - anormal pigs. SH - A: Samples from the unbilical hernia group - affected pigs. UH - N: Samples from the unbilical hernia group - affected pigs. UH - A: Samples from the unbilical hernia group - affected pigs.

1146 Table S2 Biological processes of the 35 differentially expressed genes common to both

1147 types of hernia, comparing normal and affected pigs.

Term_ID	David biological processes	Enriched genes
GO:0001502	Cartilage condensation	ACAN
GO:0007155	Cell adhesion	ACAN, <u>CD2</u>
GO:0007417	Central nervous system development	ACAN
GO:0002063	Chondrocyte development	ACAN
GO:0030199	Collagen fibril organization	ACAN
GO:0007507	Heart development	ACAN
GO:0030166	Proteoglycan biosynthetic process	ACAN
GO:0001501	Skeletal system development	ACAN
GO:0009058	Biosynthetic process	<u>GPT2</u>
GO:0042420	Dopamine catabolic process	<u>MOXD1</u>
GO:0042421	Norepinephrine biosynthetic process	<u>MOXD1</u>
GO:0006589	Octopamine biosynthetic process	<u>MOXD1</u>
GO:0055114	Oxidation-reduction process	<u>MOXD1</u> , GPX3
GO:0032515	Negative regulation of phosphoprotein phosphatase activity	PHACTR3
GO:0043666	Regulation of phosphoprotein phosphatase activity	PHACTR3
GO:0030198	Extracellular matrix organization	VIT
GO:0003429	Growth plate cartilage chondrocyte morphogenesis	VIT
GO:0010811	Positive regulation of cell-substrate adhesion	VIT
GO:0032233	Positive regulation of actin filament bundle assembly	SYNPO2
GO:0006897	Endocytosis	CFI
GO:0006508	Proteolysis	CFI
GO:0030007	Cellular potassium ion homeostasis	KCNMA1
GO:0034220	Ion transmembrane transport	KCNMA1
GO:0006811	Ion transport	KCNMA1
GO:0060073	Micturition	KCNMA1
GO:0045794	Negative regulation of cell volume	KCNMA1
GO:0043065	Positive regulation of apoptotic process	KCNMA1
GO:1902632	Positive regulation of membrane hyperpolarization	KCNMA1
GO:0071805	Potassium ion transmembrane transport	KCNMA1
GO:0006813	Potassium ion transport	KCNMA1
GO:0034765	Regulation of ion transmembrane transport	KCNMA1
GO:0042391	Regulation of membrane potential	KCNMA1
GO:0060087	Relaxation of vascular smooth muscle	KCNMA1
GO:0051592	Response to calcium ion	KCNMA1
GO:0034465	Response to carbon monoxide	KCNMA1
GO:0001666	Response to hypoxia	KCNMA1
GO:0006970	Response to osmotic stress	KCNMA1
GO:0060083	Smooth muscle contraction involved in micturition	KCNMA1
GO:0055085	Transmembrane transport	KCNMA1
GO:0016197	Endosomal transport	ANXA8

GO:0007032	Endosome organization	ANXA8
GO:1900138	Negative regulation of phospholipase A2 activity	ANXA8
GO:1900004	Negative regulation of serine-type endopeptidase activity	ANXA8
GO:0046835	Carbohydrate phosphorylation	PFKFB3
GO:0006003	Fructose 2,6-bisphosphate metabolic process	PFKFB3
GO:0006000	Fructose metabolic process	PFKFB3
GO:0016310	Phosphorylation	PFKFB3, DAPK2
GO:0008344	Adult locomotory behavior	CHL1
GO:0007411	Axon guidance	CHL1
GO:0050890	Cognition	CHL1
GO:0070593	Dendrite self-avoidance	CHL1
GO:0035640	Exploration behavior	CHL1
GO:0007156	Homophilic cell adhesion via plasma membrane adhesion molecules	CHL1
GO:0043524	Negative regulation of neuron apoptotic process	CHL1
GO:0001764	Neuron migration	CHL1
GO:0031175	Neuron projection development	CHL1, GPM6B
GO:0051612	Negative regulation of serotonin uptake	GPM6B
GO:1990845	Adaptive thermogenesis	UCP3
GO:1990542	Mitochondrial transmembrane transport	UCP3
GO:0006839	Mitochondrial transport	UCP3
GO:1902600	Proton transmembrane transport	UCP3
GO:0009409	Response to cold	UCP3
GO:0008150	Biological_process	WDR17
GO:0006468	Protein phosphorylation	DAPK2
GO:0050776	Regulation of immune response	BTNL9
GO:0050852	T cell receptor signaling pathway	BTNL9
GO:0006955	Immune response	<u>ENSSSCG00000031037,</u> <u>ENSSSCG00000036224</u>
GO:0002377	Immunoglobulin production	<u>ENSSSCG00000031037,</u> <u>ENSSSCG00000036224</u>
GO:0050873	Brown fat cell differentiation	ARL4A
GO:0006886	Intracellular protein transport	ARL4A
GO:0016192	Vesicle-mediated transport	ARL4A
GO:0006919	Activation of cysteine-type endopeptidase activity involved in apoptotic process	ACER2
GO:0006974	Cellular response to DNA damage stimulus	ACER2
GO:0035690	Cellular response to drug	ACER2
GO:0046514	Ceramide catabolic process	ACER2
GO:0006672	Ceramide metabolic process	ACER2
GO:0030330	DNA damage response, signal transduction by p53 class mediator	ACER2
GO:0006629	Lipid metabolic process	ACER2
GO:0033629	Negative regulation of cell adhesion mediated by integrin	ACER2
GO:0001953	Negative regulation of cell-matrix adhesion	ACER2
GO:0090285	Negative regulation of protein glycosylation in Golgi	ACER2

	GO:0010942	Positive regulation of cell death	ACER2
	GO:0008284	Positive regulation of cell population proliferation	ACER2
	GO:0042981	Regulation of apoptotic process	ACER2
	GO:0010506	Regulation of autophagy	ACER2
	GO:0032526	Response to retinoic acid	ACER2
	GO:0046512	Sphingosine biosynthetic process	ACER2
	GO:0035973	Aggrephagy	MAP1LC3C
	GO:0000045	Autophagosome assembly	MAP1LC3C
	GO:0097352	Autophagosome maturation	MAP1LC3C
	GO:0006914	Autophagy	MAP1LC3C
	GO:0000422	Autophagy of mitochondrion	MAP1LC3C
	GO:0006995	Cellular response to nitrogen starvation	MAP1LC3C
	GO:0009267	Cellular response to starvation	MAP1LC3C
	GO:0016236	Macroautophagy	MAP1LC3C
	GO:0070098	Chemokine-mediated signaling pathway	ACKR1
	GO:0006954	Inflammatory response	ACKR1
	GO:0032642	Regulation of chemokine production	ACKR1
	GO:0006958	Complement activation, classical pathway	ENSSSCG00000036224
	GO:0042742	Defense response to bacterium	ENSSSCG00000036224
	GO:0006911	Phagocytosis, engulfment	ENSSSCG00000036224
	GO:0006910	Phagocytosis, recognition	ENSSSCG00000036224
	GO:0050871	Positive regulation of B cell activation	ENSSSCG00000036224
	GO:0098869	Cellular oxidant detoxification	GPX3
	GO:0042744	Hydrogen peroxide catabolic process	GPX3
	GO:0051289	Protein homotetramerization	GPX3
	GO:0006979	Response to oxidative stress	GPX3
	GO:0030036	Actin cytoskeleton organization	ENSSSCG00000037142
1148 1149 1150	Legend: Genes in were downregula	n bold were upregulated in the affected group for both ted for one type of hernia and upregulated for the other t	h types of hernia, and those underlined type of hernia.
1151			
1132			
1153			
1154			
1155			
1156			
1157			
1158			
1159			
1160			
1100			
1161			

1162 Table S3 Enrichment for biological process of the 26 DE genes with similar expression

profile between both types of hernias.

Ensembl ID	GO Term	Biological process
ENSSSCG00000037142	GO:0030036	Actin cytoskeleton organization
ENSSSCC0000024212	CO:0006010	Activation of cysteine-type endopeptidase activity
EINSSSCG00000034215	00.0000919	involved in the apoptotic process
ENSSSCG00000014834	GO:1990845	Adaptive thermogenesis
ENSSSCG00000011524	GO:0008344	Adult locomotive behavior
ENSSSCG0000034838	GO:0035973	Aggrephagy
ENSSSCG0000034838	GO:0000045	Autophagosome assembly
ENSSSCG00000034838	GO:0097352	Autophagosome maturation
ENSSSCG00000034838	GO:0006914	Autophagy
ENSSSCG00000034838	GO:0000422	Mitochondria autophagy
ENSSSCG00000011524	GO:0007411	Axonal orientation
ENSSSCG00000015766	GO:0008150	Biological process
ENSSSCG00000032709	GO:0050873	Differentiation of brown fat cells
ENSSSCG00000011133	GO:0046835	Carbohydrate phosphorylation
ENSSSCG0000001832	GO:0001502	Condensation of cartilage
ENSSSCG0000001832	GO:0007155	Cell adhesion
ENSSSCG00000036438	GO:0098869	Cell oxidant detoxification
ENSSSCG00000010325	GO:0030007	Cell potassium ion homeostasis
ENSSSCG00000034213	GO:0006974	Cellular response to DNA damage stimulus
ENSSSCG00000034213	GO:0035690	Cellular response to the drug
ENSSSCG00000034838	GO:0006995	Cellular response to nitrogen starvation
ENSSSCG00000034838	GO:0009267	Cellular response to starvation
ENSSSCG0000001832	GO:0007417	Central nervous system development
ENSSSCG00000034213	GO:0046514	Catabolic ceramide process
ENSSSCG00000034213	GO:0006672	Metabolic process of ceramide
ENSSSCG00000036223	GO:0070098	Chemokine-mediated signaling pathway
ENSSSCG0000001832	GO:0002063	Chondrocyte development
ENSSSCG00000011524	GO:0050890	Cognition
ENSSSCG0000001832	GO:0030199	Organization of collagen fibrils
ENSSSCG00000011524	GO:0070593	Dendrite self-avoidance
EN68800000000000000000000000000000000000	CO.0020220	Response to DNA damage, signal transduction by the
ENSSSCG00000034213	GO:0030330	mediator of class p53
ENSSSCG0000009138	GO:0006897	Endocytosis
ENSSSCG00000010370	GO:0016197	Endosomal transport
ENSSSCG00000010370	GO:0007032	Endosomal organization

ENSSSCG00000011524	GO:0035640	Exploration behavior
ENSSSCG0000008501	GO:0030198	Organization of the extracellular matrix
ENSSSCG00000011133	GO:0006003	Metabolic process of fructose 2,6-bisphosphate
ENSSSCG00000011133	GO:0006000	Fructose metabolic process
ENSSSCG0000008501	GO:0003429	Morphogenesis of chondrocytes in the growth plate
EN353C0000008501	00.0003429	cartilage
ENSSSCG0000001832	GO:0007507	Heart development
ENSSSCG0000011524	GO:0007156	Homophilic cell adhesion via plasma membrane
LI\555C00000011524	00.0007150	adhesion molecules
ENSSSCG00000036438	GO:0042744	Hydrogen peroxide catabolic process
ENSSSCG00000036223	GO:0006954	Inflammatory response
ENSSSCG00000032709	GO:0006886	Intracellular protein transport
ENSSSCG00000010325	GO:0034220	Ion transmembrane transport
ENSSSCG00000010325	GO:0006811	Ion transport
ENSSSCG00000034213	GO:0006629	Lipid metabolic process
ENSSSCG00000034838	GO:0016236	Macroautophagy
ENSSSCG00000010325	GO:0060073	Urination
ENSSSCG00000014834	GO:1990542	Mitochondrial transmembrane transport
ENSSSCG00000014834	GO:0006839	Mitochondrial transport
FNSSSCG0000034213	GO:0033629	Negative regulation of cell adhesion mediated by
LI1555C00000034215		integrin
ENSSSCG00000010325	GO:0045794	Negative regulation of cell volume
ENSSSCG00000034213	GO:0001953	Negative regulation of cell matrix adhesion
ENSSSCG00000011524	GO:0043524	Negative regulation of the neuron apoptotic process
ENSSSCG00000010370	GO:1900138	Negative regulation of phospholipase A2 activity
FNSSSCG0000007528	GO:0032515	Negative regulation of phosphoprotein phosphatase
E10555C0000007520	00.0032313	activity
ENSSSCG00000034213	GO:0090285	Negative regulation of protein glycosylation in Golgi
ENSSSCG00000010370	GO:1900004	Negative regulation of serine endopeptidase activity
ENSSSCG00000012126	GO:0051612	Negative regulation of serotonin uptake
ENSSSCG00000011524	GO:0001764	Neuron migration
ENSSSCG00000011524	GO:0031175	Development of neuron projection
ENSSSCG00000012126	GO:0031175	Development of neuron projection
ENSSSCG00000036438	GO:0055114	Oxidation reduction process
ENSSSCG00000011133	GO:0016310	Phosphorylation
ENSSSCG00000021588	GO:0016310	Phosphorylation
ENSSSCG000000111	GO:0022222	Positive regulation of the actin filament bundle
EU999CC00000009111	00.0032233	assembly
ENSSSCG00000010325	GO:0043065	Positive regulation of the apoptotic process

ENSSSCG00000034213	GO:0010942	Positive regulation of cell death
ENSSSCG00000034213	GO:0008284	Positive regulation of cell population proliferation
ENSSSCG0000008501	GO:0010811	Positive regulation of cell substrate adhesion
ENSSSCG00000010325	GO:1902632	Positive regulation of membrane hyperpolarization
ENSSSCG00000010325	GO:0071805	Transmembrane transport of potassium ions
ENSSSCG00000010325	GO:0006813	Transport of potassium ions
ENSSSCG00000036438	GO:0051289	Protein homotetramerization
ENSSSCG00000021588	GO:0006468	Protein phosphorylation
ENSSSCG0000001832	GO:0030166	Proteoglycan biosynthetic process
ENSSSCG0000009138	GO:0006508	Proteolysis
ENSSSCG00000014834	GO:1902600	Transmembrane proton transport
ENSSSCG00000034213	GO:0042981	Regulation of the apoptotic process
ENSSSCG00000034213	GO:0010506	Autophagy regulation
ENSSSCG00000036223	GO:0032642	Regulation of chemokine production
ENSSSCG00000028567	GO:0050776	Regulation of the immune response
ENSSSCG00000010325	GO:0034765	Regulation of transmembrane ion transport
ENSSSCG00000010325	GO:0042391	Regulation of the membrane potential
ENSSSCG0000007528	GO:0043666	Regulation of phosphoprotein phosphatase activity
ENSSSCG00000010325	GO:0060087	Vascular smooth muscle relaxation
ENSSSCG00000010325	GO:0051592	Response to calcium ion
ENSSSCG00000010325	GO:0034465	Response to carbon monoxide
ENSSSCG00000014834	GO:0009409	Cold response
ENSSSCG00000010325	GO:0001666	Response to hypoxia
ENSSSCG00000010325	GO:0006970	Response to osmotic stress
ENSSSCG00000036438	GO:0006979	Response to oxidative stress
ENSSSCG00000034213	GO:0032526	Response to retinoic acid
ENSSSCG0000001832	GO:0001501	Development of the skeletal system
ENSSSCG00000010325	GO:0060083	Smooth muscle contraction involved in urination
ENSSSCG00000034213	GO:0046512	Sphingosine biosynthetic process
ENSSSCG00000028567	GO:0050852	T cell receptor signaling pathway
ENSSSCG00000010325	GO:0055085	Transmembrane transport
ENSSSCG00000032709	GO:0016192	Vesicle-mediated transport

Table S4 Polymorphisms identified in samples of the pig inguinal ring.

Variant	Polymorphism type	Location	Consequence	Impact	Symbol	Gene
New	Deletion	6:82851652- 82851653	Intronic	Modifier	RSRP1	ENSSSCG00000034449
New	Deletion	7:104221878- 104221879	UTR3'	Modifier	SELIL	ENSSSCG0000002414
rs1108216348	Deletion	2:134533476- 134533477	UTR5'	Modifier	P4HA2	ENSSSCG00000020915
rs1114124998	Deletion	5:9499095- 9499096	Intronic	Modifier	DDX17	ENSSSCG00000000104
New	Insertion	13:122703207 -122703207	UTR5'	Modifier	VPS8	ENSSSCG00000011788
New	Insertion	14:37596310- 37596310	UTR3'	Modifier	TBX3	ENSSSCG0000009865
New	Insertion	2:101385604- 101385604	UTR3'	Modifier	MCTP1	ENSSSCG00000025286
New	Insertion	7:104221039- 104221039	UTR3'	Modifier	SELIL	ENSSSCG0000002414
New	Insertion	7:104221369- 104221369	UTR3'	Modifier	SELIL	ENSSSCG00000002414
New	Insertion	7:104223100- 104223100	UTR3'	Modifier	SELIL	ENSSSCG00000002414
New	Insertion	8:99783036- 99783036	UTR5'	Modifier	ANKRD50	ENSSSCG00000022173
rs698169541	Insertion	7:64368649- 64368649	Intronic	Modifier	RALGAPAI	ENSSSCG00000032377
rs699814235	Insertion	1:45178864- 45178864	UTR3'	Modifier	PTP4A1	ENSSSCG00000025941
rs707857689	Insertion	7:64370059- 64370059	Intronic	Modifier	RALGAPAI	ENSSSCG00000032377
New	SNP	13:34083960- 34083960	UTR3'	Modifier	PARP3	ENSSSCG00000023033
New	SNP	7:64303141- 64303141	Missense	Modifier	RALGAPAI	ENSSSCG00000032377
rs318677442	SNP	2:134534068- 134534068	Intronic	Modifier	P4HA2	ENSSSCG00000020915
rs319937494	SNP	7:12137039- 12137039	UTR3'	Modifier	MYLIP	ENSSSCG00000001063
rs320772137	SNP	2:134568695- 134568695	Intronic	Modifier	PDLIM4	ENSSSCG00000014274
rs320812009	SNP	7:64369632- 64369632	Intronic	Modifier	RALGAPA1	ENSSSCG00000032377
rs321437076	SNP	2:15365561- 15365561	Intronic	Modifier	DDB2	ENSSSCG00000013243
rs321448108	SNP	7:104223338- 104223338	UTR3'	Modifier	SEL1L	ENSSSCG00000002414

rs321482827	SNP	16:20430280- 20430280	Synonym	Low	RAI14	ENSSSCG00000016824
rs322028481	SNP	7:64370049- 64370049	Downstream	Modifier	INSM2	ENSSSCG00000001949
rs323170636	SNP	2:134520258- 134520258	Synonym	Low	P4HA2	ENSSSCG00000020915
rs323684157	SNP	7:104256746- 104256746	Synonym	Low	SEL1L	ENSSSCG0000002414
rs324657636	SNP	2:134567763- 134567763	Intronic	Modifier	P4HA2	ENSSSCG00000020915
rs325370594	SNP	16:20418972- 20418972	Missense	Modifier	RAI14	ENSSSCG00000016824
rs326057680	SNP	4:88876043- 88876043	Intronic	Modifier	-	ENSSSCG0000006350
rs326292614	SNP	7:12136748- 12136748	UTR3'	Modifier	MYLIP	ENSSSCG00000001063
rs327405343	SNP	2:134570264- 134570264	UTR3'	Modifier	PDLIM4	ENSSSCG00000014274
rs328500299	SNP	2:134502458- 134502458	UTR3'	Modifier	P4HA2	ENSSSCG00000020915
rs328617030	SNP	14:37595933- 37595933	UTR3'	Modifier	TBX3	ENSSSCG00000009865
rs330964251	SNP	2:134569316- 134569316	Splicing region Synonym	Low	PDLIM4	ENSSSCG00000014274
rs330986417	SNP	4:88559715- 88559715	Synonym	Low	OLFML2B	ENSSSCG0000006345
rs331580151	SNP	2:134523104- 134523104	Synonym	Low	P4HA2	ENSSSCG00000020915
rs331672044	SNP	7:104234431- 104234431	Synonym	Low	SELIL	ENSSSCG0000002414
rs331683704	SNP	7:12136979- 12136979	UTR3'	Modifier	MYLIP	ENSSSCG00000001063
rs332730821	SNP	7:104239412- 104239412	Synonym	Low	SELIL	ENSSSCG0000002414
rs333120728	SNP	7:104256830- 104256830	Synonym	Low	SEL1L	ENSSSCG0000002414
rs333503612	SNP	7:64368656- 64368656	Intronic	Modifier	RALGAPAI	ENSSSCG00000032377
rs334410412	SNP	2:134520288- 134520288	Synonym	Low	P4HA2	ENSSSCG00000020915
rs334902692	SNP	7:104247760- 104247760	Synonym	Low	SELIL	ENSSSCG0000002414
rs336367802	SNP	7:12133527- 12133527	Synonym	Low	MYLIP	ENSSSCG00000001063
rs337177437	SNP	7:104254924- 104254924	Synonym	Low	SEL1L	ENSSSCG0000002414
rs337356541	SNP	2:134566986- 134566986	Intronic	Modifier	PDLIM4	ENSSSCG00000014274
rs337778431	SNP	2:134568657- 134568657	Intronic	Modifier	PDLIM4	ENSSSCG00000014274
rs338426616	SNP	2:134570329-	UTR3'	Modifier	PDLIM4	ENSSSCG00000014274

		134570329				
rs339297902	SNP	7:64369109- 64369109	Intronic	Modifier	RALGAPAI	ENSSSCG00000032377
rs339523164	SNP	7:104223402- 104223402	UTR3'	Modifier	SEL1L	ENSSSCG00000002414
rs339972872	SNP	12:38745989- 38745989	Synonym	Low	ACACA	ENSSSCG00000017694
rs341675974	SNP	7:12136596- 12136596	UTR3'	Modifier	MYLIP	ENSSSCG00000001063
rs341856430	SNP	7:64368731- 64368731	Intronic	Modifier	RALGAPAI	ENSSSCG00000032377
rs342773249	SNP	7:64369687- 64369687	Intronic	Modifier	RALGAPA1	ENSSSCG00000032377
rs343682724	SNP	4:88846962- 88846962	UTR3'	Modifier	FCRLA	ENSSSCG00000030246
rs343732012	SNP	7:64372117- 64372117	UTR3'	Modifier	RALGAPA1	ENSSSCG00000032377
rs344350584	SNP	2:134505397- 134505397	Synonym	Low	P4HA2	ENSSSCG00000020915
rs345069964	SNP	6:74482956- 74482956	UTR5'	Modifier	TMEM51	ENSSSCG00000021026
rs345905406	SNP	7:104247817- 104247817	Synonym	Low	SELIL	ENSSSCG00000002414
rs346022448	SNP	2:134502393- 134502393	UTR3'	Modifier	P4HA2	ENSSSCG00000020915
rs695824576	SNP	7:59713114- 59713114	Synonym	Low	CD276	ENSSSCG00000001917
rs700364715	SNP	7:104221886- 104221886	UTR3'	Modifier	SEL1L	ENSSSCG00000002414
rs712681004	SNP	2:9762085- 9762085	UTR3'	Modifier	-	ENSSSCG00000013078
rs80801180	SNP	4:88559748- 88559748	Synonym	Low	OLFML2B	ENSSSCG0000006345
rs81214013	SNP	2:134514074- 134514074	Synonym	Low	P4HA2	ENSSSCG00000020915
rs81218171	SNP	2:134570121- 134570121	Synonym	Low	PDLIM4	ENSSSCG00000014274
rs81365336	SNP	2:134516657- 134516657	Synonym	Low	P4HA2	ENSSSCG00000020915

1181 Table S5 Polymorphisms identified in samples of the pig umbilical ring.

Variant	Polymorphism type	Location	Consequence	Impact	Symbol	Gene
New	Deletion	3:16844063- 16844064	UTR3'	Modifier	-	ENSSSCG00000020808
New	Deletion	3:17617319- 17617323	UTR3'	Modifier	ZNF629	ENSSSCG0000007780
New	Deletion	6:80843072- 80843073	UTR3'	Modifier	EPHB2	ENSSSCG0000003527
New	Deletion	6:80843074- 80843081	UTR3'	Modifier	EPHB2	ENSSSCG0000003527
New	Insertion	1:37122230- 37122230	Frameshift	High	NCOA7	ENSSSCG0000004222
New	Insertion	1:77585583- 77585583	UTR3'	Modifier	FYN	ENSSSCG0000004421
New	Insertion	13:108676707- 108676707	Frameshift	High	SEC62	ENSSSCG0000029608
New	Insertion	4:128903094- 128903094	Intronic	Modifier	-	ENSSSCG00000047605
rs709055765	Insertion	6:82481037- 82481037	UTR3'	Modifier	CLIC4	ENSSSCG00000038994
rs710955781	Insertion	13:50397619- 50397619	UTR3'	Modifier	EOGT	ENSSSCG00000011504
New	SNP	12:3760896- 3760896	UTR3'	Modifier	AFMID	ENSSSCG00000033636
New	SNP	13:207513656- 207513656	UTR3'	Modifier	ITGB2	ENSSSCG00000025133
New	SNP	3:16078557- 16078557	Synonym	Low	-	ENSSSCG0000007733
New	SNP	3:17082026- 17082026	UTR3'	Modifier	C16orf58	ENSSSCG0000007753
New	SNP	3:17591144- 17591144	Downstream	Modifier	BCL7C	ENSSSCG0000007776
New	SNP	3:51803551- 51803551	UTR3'	Modifier	IL18R1	ENSSSCG0000008159
rs1107804156	SNP	3:17618533- 17618533	Intronic	Modifier	ZNF629	ENSSSCG0000007780
rs1108762720	SNP	3:16851119- 16851119	Synonym	Low	-	ENSSSCG00000020808
rs320729536	SNP	3:16382619- 16382619	UTR3'	Modifier	KCTD7	ENSSSCG00000040985
rs322669402	SNP	3:17459844- 17459844	UTR3'	Modifier	HSD3B7	ENSSSCG0000032369
rs323015047	SNP	6:119763116- 119763116	UTR3'	Modifier	RPRD1A	ENSSSCG00000027700
rs323115420	SNP	3:16964045- 16964045	Missense	Modifier	ZNF713	ENSSSCG0000029029
rs323662654	SNP	3:16384658- 16384658	UTR3'	Modifier	KCTD7	ENSSSCG00000040985
rs323726488	SNP	3:16383246- 16383246	UTR3'	Modifier	KCTD7	ENSSSCG00000040985
rs324198007	SNP	3:17491763- 17491763	Synonym	Low	ORAI3	ENSSSCG0000007770
rs324205762	SNP	3:16971143- 16971143	UTR5'	Modifier	ZNF713	ENSSSCG00000029029
rs324236192	SNP	12:38624714- 38624714	Synonym	Low	ACACA	ENSSSCG00000017694
rs324583382	SNP	3:16384043- 16384043	UTR3'	Modifier	KCTD7	ENSSSCG0000040985
rs325089032	SNP	6:81571496- 81571496	Missense	Modifier	ELOA	ENSSSCG0000025440

rs325937498	SNP	3:17466691- 17466691	Synonym	Low	SETD1A	ENSSSCG0000007782
rs326053487	SNP	3:16383454- 16383454	UTR3'	Modifier	KCTD7	ENSSSCG00000040985
rs326115442	SNP	6:80824416-	Synonym	Low	EPHB2	ENSSSCG0000003527
rs326942919	SNP	3:17246305-	Synonym	Low	ITGAM	ENSSSCG0000007754
rs327289001	SNP	3:17254444-	Missense	Modifier	ITGAM	ENSSSCG0000007754
rs327572607	SNP	6:80837841-	Synonym	Low	EPHB2	ENSSSCG0000003527
rs327947675	SNP	3:17399455-	Synonym	Low	ZNF646	ENSSSCG00000026817
rs329707669	SNP	3:16383919-	UTR3'	Modifier	KCTD7	ENSSSCG0000040985
rs330195537	SNP	16383919 10:43520964-	Intronic	Modifier	VIM	ENSSSCG0000011033
rs330731365	SNP	43520964 3:16844265-	LITR3'	Modifier	, 11,1	ENSSSCG00000020808
m220057929	SND	<u>16844265</u> 3:17468302-	Missonso	Modifian		ENSSSC00000020808
18330937838	SNP	17468302	wissense	Modifier	SEIDIA	EINSSSCG00000007782
rs331463738	SNP	38129509-	UTR3'	Modifier	DHRS11	ENSSSCG00000017690
rs332268785	SNP	3:16385727- 16385727	UTR3'	Modifier	KCTD7	ENSSSCG00000040985
rs333208968	SNP	3:16383250- 16383250	UTR3'	Modifier	KCTD7	ENSSSCG00000040985
rs333661817	SNP	3:16383284- 16383284	UTR3'	Modifier	KCTD7	ENSSSCG00000040985
rs333780109	SNP	3:16971156- 16971156	UTR5'	Modifier	ZNF713	ENSSSCG00000029029
rs334463568	SNP	18:11660822- 11660822	UTR3'	Modifier	CREB3L 2	ENSSSCG00000016520
rs335540465	SNP	3:17613531- 17613531	Synonym	Low	ZNF629	ENSSSCG00000007780
rs336364520	SNP	3:16383470- 16383470	UTR3'	Modifier	KCTD7	ENSSSCG00000040985
rs337670844	SNP	3:17399477- 17399477	Missense	Modifier	ZNF646	ENSSSCG00000026817
rs339276563	SNP	3:17468216- 17468216	Synonym	Low	SETD1A	ENSSSCG0000007782
rs339771716	SNP	3:17461694- 17461694	Synonym	Low	HSD3B7	ENSSSCG00000032369
rs339771716	SNP	3:17461694- 17461694	Downstream	Modifier	STX1B	ENSSSCG00000021238
rs340480028	SNP	3:17460060- 17460060	UTR3'	Modifier	HSD3B7	ENSSSCG00000032369
rs340781986	SNP	12:38624687- 38624687	Synonym	Low	ACACA	ENSSSCG00000017694
rs341960076	SNP	3:16855237- 16855237	Synonym	Low	-	ENSSSCG00000020808
rs342012840	SNP	3:16971089- 16971089	UTR5'	Modifier	ZNF713	ENSSSCG00000029029
rs342283188	SNP	6:80843098- 80843098	UTR3'	Modifier	EPHB2	ENSSSCG0000003527
rs343615406	SNP	3:16971169- 16971169	UTR5'	Modifier	ZNF713	ENSSSCG00000029029
rs343894209	SNP	3:17466745- 17466745	Synonym	Low	SETD1A	ENSSSCG0000007782
rs343913735	SNP	3:16844271- 16844271	UTR3'	Modifier	-	ENSSSCG00000020808
rs344858642	SNP	3:17244108- 17244108	Synonym	Low	ITGAM	ENSSSCG00000007754
rs344892486	SNP	3:17610468- 17610468	UTR5'	Modifier	ZNF629	ENSSSCG0000007780

rs345204099	SNP	3:16384270- 16384270	UTR3'	Modifier	KCTD7	ENSSSCG00000040985
rs345481021	SNP	6:80824380- 80824380	Synonym	Low	EPHB2	ENSSSCG0000003527
rs345676220	SNP	3:17491423- 17491423	UTR3'	Modifier	ORAI3	ENSSSCG0000007770
rs346223430	SNP	6:80843336- 80843336	UTR3'	Modifier	EPHB2	ENSSSCG0000003527
rs694561033	SNP	3:16385959- 16385959	UTR3'	Modifier	KCTD7	ENSSSCG00000040985
rs697381317	SNP	3:17591079- 17591079	Downstream	Modifier	BCL7C	ENSSSCG0000007776
rs699677308	SNP	3:17591133- 17591133	Downstream	Modifier	BCL7C	ENSSSCG0000007776
rs701844432	SNP	3:16383956- 16383956	UTR3'	Modifier	KCTD7	ENSSSCG00000040985
rs706065940	SNP	3:17591138- 17591138	Downstream	Modifier	BCL7C	ENSSSCG0000007776
rs713060696	SNP	3:16383936- 16383936	UTR3'	Modifier	KCTD7	ENSSSCG00000040985
rs713239492	SNP	3:17612980- 17612980	Synonym	Low	ZNF629	ENSSSCG00000007780
rs789266896	SNP	3:17628688- 17628688	Missense	Modifier	RNF40	ENSSSCG00000007786
rs793318116	SNP	3:17460656- 17460656	Synonym	Low	HSD3B7	ENSSSCG00000032369
rs81389091	SNP	6:80842615- 80842615	UTR3'	Modifier	EPHB2	ENSSSCG0000003527

- 1183

Figure S1 Multidimensional scaling (MDS) plot showing the samples used to generate
the transcriptome of the inguinal ring for scrotal hernia (SH) in red, and the
transcriptome of the umbilical ring for umbilical hernia (UH) in blue.

3 CONSIDERAÇÕES FINAIS

O estudo dos transcriptomas do tecido do anel inguinal e umbilical de suínos afetados com hérnia escrotal (HE) e umbilical (HU) foi realizado para comparar o perfil de expressão destes transcriptomas e identificar genes diferencialmente expressos nos dois tipos de hérnia, proporcionando avanço no conhecimento dos genes relacionados ao surgimento da HE e HU. Esses resultados contribuem para a compreensão dos mecanismos genéticos que envolvem os dois tipos de hérnia em suínos.

Para HE, 627 genes DE foram identificados entre animais normais e afetados e para HU 199 genes DE, dos quais 35 pertenciam a ambos os tipos de hérnia. Destes, 26 genes apresentaram perfil de expressão semelhante em ambos os grupos de hérnia e foram submetidos a uma base de dados para enriquecimento e análise dos processos biológicos relacionados a estes genes. Adesão celular, apoptose, organização do citoesqueleto de actina e organização das fibrilas de colágeno foram os processos biológicos destacados, pois apresentam afinidade com os fatores fisiológicos envolvidos na manifestação de hérnias.

Os genes *ACAN* e *BCHE* foram os que apresentaram informações interligadas à manifestação da hérnia. Além de serem enriquecidos em processos biológicos característicos na formação da hérnia e estarem presentes em regiões de QTL relacionadas à hérnia escrotal, também apresentaram perfil de expressão semelhante nos dois tipos desta patologia. Além destes, os genes *MAP1LC3C*, *VIT*, *ACAN*, *ACER2*, *KCNMA1* e *SYNPO2* foram considerados genes candidatos para a formação dos dois tipos de defeitos.

Neste estudo também foram investigadas variantes alélicas nos genes DE, sendo que 67 polimorfismos foram identificados nos genes DE no tecido do anel inguinal e 76 nos genes DE no tecido do anel umbilical, dos quais 11 e 14 são novos, respectivamente.

A partir da obtenção de todos os dados deste estudo, confirmou-se que a manifestação desses defeitos é devido a atuação de vários genes. No entanto, são necessários mais estudos para identificar o perfil de expressão desses mesmos genes em diferentes idades como, por exemplo, em animais mais jovens, para aprimorar nossa interpretação dos mecanismos de regulação gênica.

O conhecimento dos fatores genéticos que envolvem tanto a manifestação da hérnia escrotal quanto da umbilical são de grande importância para a cadeia produtiva de suínos, pois favorece o desenvolvimento de estratégias efetivas para reduzir o surgimento destes defeitos nos rebanhos.

REFERÊNCIAS

ABCS (Brasil). Associação Brasileira De Criadores De Suínos. **Evolução genética**. Disponível em: http://www.abcs.org.br/producao/genetica/174-evolucao-genetica. Acesso em: 05 jan. 2020.

ABPA (Brasil). Associação Brasileira de Proteína Animal. Mercados – Gráfico dos setores: Suínos. 2019. Disponível em: http://abpa-br.org/mercados/>. Acesso em 16 mar 2020.

ALLISON, David B. et al. Microarray data analysis: from disarray to consolidation and consensus. **Nature reviews genetics**, v. 7, n. 1, p. 55, 2006.

AMATO, G. et al. Muscle degeneration in inguinal hernia specimens. **Hernia**, v. 16, n. 3, p. 327–331, 2012.

ANDERSSON, Leif et al. Genetic mapping of quantitative trait loci for growth and fatness in pigs. **Science**, v. 263, n. 5154, p. 1771-1774, 1994.

BECK, J. et al. Molecular characterization and exclusion of porcine GUSB as a candidate gene for congenital hernia inguinalis/scrotalis. **BMC Veterinary Research**, v. 2, p. 14, 2006.

BENATI, G.; BERTONE, M. S. Nutrition and wound healing. Measurements in Wound Healing: Science and Practice, v. 83, p. 63–71, 2013.

BENDAVID, R. The Unified Theory of hernia formation. **Hernia**, v. 8, n. 3, p. 171–176, 2004.

BEUERMANN, C. et al. Tissue Calcium Content in Piglets with Inguinal or Scrotal Hernias or Cryptorchidism. **Journal of Comparative Pathology**, v. 140, n. 2–3, p. 182–186, 2009.

BRANDT, M. L. Pediatric Hernias. **Surgical Clinics of North America**, v. 88, n. 1, p. 27–43, 2008.

BUTTE, A. The use and analysis of microarray data. **Nature reviews drug discovery**, v. 1, n. 12, p. 951, 2002.

CLARNETTE, T. D.; HUTSON, J. M. Is the ascending testis actually 'stationary'? Normal elongation of the spermatic cord is prevented by a fibrous remnant of the processus vaginalis. **Pediatric surgery international**, v. 12, n. 2-3, p. 155-157, 1997.

CLARNETTE, T. D.; LAM, S. KL; HUTSON, J. M. Ventriculo-peritoneal shunts in children reveal the natural history of closure of the processus vaginalis. **Journal of pediatric surgery**, v. 33, n. 3, p. 413-416, 1998.

CONNER, W. T.; PEACOCK JR, E. E. Some studies on the etiology of inguinal hernia. **The American Journal of Surgery**, v. 126, n. 6, p. 732-735, 1973.

COOK, B. J.; HASTHORPE, S.; HUTSON, J. M. Fusion of childhood inguinal hernia induced by HGF and CGRP via an epithelial transition. **Journal of pediatric surgery**, v. 35, n. 1, p. 77-81, 2000.

DING, N. S. et al. A genome-wide scan reveals candidate susceptibility loci for pig hernias in an intercross between White Duroc and Erhualian. **Journal of Animal Science**, v. 87, n. 8, p. 2469–2474, 2009.

DU, Z. Q. et al. Association and haplotype analyses of positional candidate genes in five genomic regions linked to scrotal hernia in commercial pig lines. **PLoS ONE**, v. 4, n. 3, 2009.

DU, Z. Q. et al. Identification of species-specific novel transcripts in pig reproductive tissues using RNA-seq. **Animal Genetics**, v. 45, n. 2, p. 198–204, 2014.

DUARTE, D. A. S. et al. Genome-wide association studies, meta-analyses and derived gene network for meat quality and carcass traits in pigs. **Animal Production Science**, v. 58, n. 6, p. 1100-1108, 2018.

ELANSARY, M. et al. On the use of the transmission disequilibrium test to detect pseudoautosomal variants affecting traits with sex-limited expression. **Animal Genetics**, v. 46, n. 4, p. 395–402, 2015.

ERNST, C. W.; STEIBEL, J. P. Molecular advances in QTL discovery and application in pig breeding. **Trends in Genetics**, v. 29, n. 4, p. 215–224, 2013.

FERNANDES, L. T. et al. Novel putative candidate genes associated with umbilical hernia in pigs. In: **Embrapa Suínos e Aves-Artigo em anais de congresso (ALICE)**. In: WORLD CONGRESS ON GENETICS APPLIED TO LIVESTOCK PRODUCTION, 11., 2018, Auckland, New Zealand. Proceedings... Massey University, 2018. Digital Archive., 2018.

FERREIRA, A. H. et al. Produção de suínos: teoria e prática. Brasília: ABCS, 2014.

FRANZ, M. G. The Biology of Hernia Formation. **The Surgical Clinics of North America**, v. 88, n. 1, p. 1–16, 2008.

FRIEDMAN, D. W. et al. Increases in type III collagen gene expression and protein synthesis in patients with inguinal hernias. **Annals of surgery**, v. 218, n. 6, p. 754, 1993.

GONG, Y., SHAO, C., SUN, Q., CHEN, B., JIANG, Y., GUO, C., et al. Genetic study of indirect inguinal hernia. J Med Genet, v. 31, p. 187-192, 1994.

GRIFFITH, M; WALKER, J. R.; SPIES, N. C.; AINSCOUGH, B. J.; GRIFFITH, O. L. Informatics for RNA Sequencing: A Web Resource for Analysis on the Cloud. **Plos Computational Biology**, v. 11, n. 8, 2015.

GRINDFLEK, E. et al. Genome-wide association study reveals a QTL and strong candidate genes for umbilical hernia in pigs on SSC14. **BMC Genomics**, v. 19, n. 1, p. 1–9, 2018.

GRINDFLEK, E. et al. Genome-wide linkage analysis of inguinal hernia in pigs using affected sib pairs. **BMC Genetics**, v. 7, n. 1, p. 25, 2006.

GROENEN, M. A. M. A decade of pig genome sequencing: a window on pig domestication and evolution. **Genetics Selection Evolution**, v. 48, n. 23, 2016.

GROENEN, M. A. M. et al. Analyses of pig genomes provide insight into porcine demography and evolution. **Nature**, v. 491, n. 7424, p. 393–398, 2012.

HALL, K. A. et al. Abdominal wall hernias in patients with abdominal aortic aneurysmal versus aortoiliac occlusive disease. **The American journal of surgery**, v. 170, n. 6, p. 572-576, 1995.

HECK, A. Fatores que influenciam o desenvolvimento dos leitões na recria e terminação. **Acta Scientiae Veterinariae**, v.37, p.s211-s218, 2009.

HORODYSKA, J. et al. RNA-Seq of Liver From Pigs Divergent in Feed Efficiency Highlights Shifts in Macronutrient Metabolism, Hepatic Growth and Immune Response. **Frontiers in Genetics**, v. 10, n. February, 2019. HUTSON, J. M. et al. In vitro fusion of human inguinal hernia with associated epithelial transformation. **Cells tissues organs**, v. 166, n. 3, p. 249-258, 2000.

KEENLISIDE, J. Belly and scrotal ruptures (umbilical and inguinal hernias). 8th **Ann Swine Technol Workshop**, Red Deer, Alberta, Canada. 2006.

KNORR, C. et al. Characterization of two SNPs (single nucleotide polymorphisms) in the porcine INSL3 gene and their exclusion as a common genetic basis of hernia inguinalis in pigs. **Biochemical Genetics**, v. 42, n. 1-2, p. 11-19, 2004.

KOSKIMIES, P. et al. Female mice carrying a ubiquitin promoter-Insl3 transgene have descended ovaries and inguinal hernias but normal fertility. **Molecular and cellular endocrinology**, v. 206, n. 1-2, p. 159-166, 2003.

KUBOTA, Y. et al. The role of insulin 3, testosterone, Müllerian inhibiting substance and relaxin in rat gubernacular growth. **Molecular human reproduction**, v. 8, n. 10, p. 900-905, 2002.

LI, X. et al. Genome-wide association study identifies variants in the CAPN9 gene associated with umbilical hernia in pigs. **Animal Genetics**, v. 50, n. 2, p.162-165, 2019.

LIU, H. et al. Comparative transcriptomic analysis of skeletal muscle tissue during prenatal stages in Tongcheng and Yorkshire pig using RNA-seq. **Functional & integrative genomics**, v. 18, n. 2, p. 195-209, 2018.

LORENZETTI, William Rafhael. **Análise da expressão gênica em suínos normais e afetados com hérnia escrotal.** 2018. 105 f. Dissertação (Mestrado)-Universidade do Estado de Santa Catarina, Mestrado em Zootecnia, 2018.

MAGEE, W. T. Inheritance of scrotal hernia in swine. **Journal of Animal Science**, v. 10, p. 516–522, 1951.

MANALAYSAY, J. G. et al. Screening of BCL-2 associated X protein gene polymorphism associated with scrotal hernia in domesticated swine using polymerase chain reaction-restriction fragment length polymorphism. **Asian-Australasian Journal of Animal Sciences**, v. 30, n. 2, p. 262–266, 2017.

MARIONI, J. C. et al. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. **Genome research**, v. 18, n. 9, p. 1509-1517, 2008.

MATTSSON, P. **Prevalence of congenital defects in Swedish Hampshire, Landrace and Yorkshire pig breeds and opinions on their prevalence in Swedish commercial herds**. Dissertação (Mestrado em zootecnia). Uppsala: Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences. p.1-31,2011. Disponível em: https://stud.epsilon.slu.se/2390/1/mattsson_p_110330.pdf>. Acesso em: 05 jan. 2020.

MDIC (Brasil). Ministério da Economia, Indústria, Comércio Exterior e Serviços. Comex Vis: Principais Produtos Exportados – **Carne de Suíno Congelada, Fresca ou Refrigerada**. 2019. Disponível em: http://www.mdic.gov.br/comercio-exterior/estatisticas-de-comercio-exterior/estatisticas-de-comercio-exterior/comex-vis/frame-ppe?ppe=1117>. Acesso em 05 jan 2020.

MIAO, Z. et al. Transcriptome analysis reveals differential gene expression in intramuscular adipose tissues of Jinhua and Landrace pigs. **Journal of Veterinary Medical Science**, p. 18-0074, 2018.

MILLER, P. et al. Imaging of abdominal hernias. Radiographics. v.15, n.2, p.333–347. 1995.

MORTAZAVI A. et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq. **Nature Methods**, v. 5, n. 7, p.621–628. 2008.

MUSCHAWECK, U. Umbilical and epigastric hernia repair. Surgical Clinics of North America, v. 83, n. 5, p. 1207–1221, 2003.

NAGALAKSHMI U.; WAERN K.; SNYDER M. RNA-Seq: a method for comprehensive transcriptome analysis. **Current Protocols in Molecular Biology**, v. 4, n. 11, p.1-13. 2010.

PAN, J. et al. Adipose lipidomics and RNA-Seq analysis revealed the enhanced mitochondrial function in UCP1 knock-in pigs. **Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids**, v. 1864, n. 10, p. 1375-1383, 2019.

PEREIRA, J. C. C. Melhoramento Genético Aplicado à Produção Animal: **Melhoramento genético dos suínos**. Belo Horizonte: Fepmvz, 617 p. 2008.

PERROTT, C. A. Inguinal Hernias: Room for a Better Understanding. **The American Journal Of Emergency Medicine**, v. 22, n. 1, p.48-50, 2004.

PETERSEN, H.H. et al. Prevalence of clinical signs of disease in Danish finisher pigs. **The Veterinary Record**, v.162, No. 12, p. 377–382. 2008.

POMMEREHN, L.; TAKEUTI, K.; NEIS, L. Z., BARCELLOS, D.E.S.N.B. Hérnias: patogenia e causas em leitões. **A Hora Veterinária**, v. 34, p. 62–65, 2014.

QIAN, X.; BA, Y.; ZHUANG, Q.; ZHONG, G. RNA-Seq Technology and Its Application in Fish Transcriptomics. OMI-CS A Journal of Integrative Biology, v.18, n. 2, 2014.

QIU, Z. et al. The regulation of cambial activity in Chinese fir (Cunninghamia lanceolata) involves extensive transcriptome remodeling. **New Phytologist**, v. 199, n. 3, p. 708-719, 2013.

RAZ T., et al. Protocol dependence of sequencing-based gene expression measurements. **Plos One**, v. 6, n. 5, p.e19287. 2011.

ROBLES, J. A.; QURESHI, S. E.; STEPHEN, S. J.; WILSON, S. R.; BURDEN, C. J.; TAYLOR, J. M. Eficient experimental de sign and analysis strategies for the detection of differential expression using RNA-Sequencing. **BMC Genomics**, v.13, n. 484, 2012.

ROMANO G.D.S., IBELLI A.M.G., LORENZETTI W.R., WEBER T., PEIXOTO J.D.O., CANTÃO M.E., et al. Inguinal ring RNA sequencing reveals downregulation of muscular genes related to scrotal hernia in pigs. **Genes**, v.11, n. 2, p. 117, 2020.

RUTTEN-RAMOS, S. C.; DEEN, J. Association between umbilical hernias and genetic line in a swine multiplication herd and methods to differentiate the role of sire in the incidence of umbilical hernias in offspring. **Journal of Swine Health and Production**, v. 14, n. 6, p. 317-322, 2006.

SCHOOK, L. B. et al. Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome. **International Journal of Genomics**, v. 6, n. 4, p. 251-255, 2005.

SEARCY-BERNAL, R.; GARDNER, I. A.; HIRD, D. W. Effects of and factors associated with umbilical hernias in a swine herd. Journal of the American **Veterinary Medical Association**, v. 204, p. 1660–1664, 1994.

SENGUPTA, S. et al. Single read and paired end mRNA-Seq Illumina libraries from 10 nanograms total RNA. **JoVE (Journal of Visualized Experiments)**, n. 56, p. e3340, 2011.

SEVILLANO, C.A., LOPES, M.S., HARLIZIUS, B., HANENBERG, E.H., KNOL, E.F., BASTIAANSEN, J.W. Genome-wide association study using deregressed breeding values for

cryptorchidism and scrotal/inguinal hernia in two pig lines. **Genetics Selection Evolution**, v. 47, n. 1, p. 18, 2015.

SOBESTIANSKY J, CARVALHO L. F. O. S. Malformações. In: Sobestiansky, J. e Barcellos, D. **Doenças dos Suínos**. Goiânia: Cânone Editorial. p. 527-538. 2007.

SOBESTIANSKY, J.; CARVALHO, L. F. O. S.; BARCELLOS, D. Hérnias. In: Sobestiansky, J. e Barcellos, D. **Doenças dos Suínos**. 2ªed. Goiânia: Cânone Editorial. p. 641-642. 2012.

SOUZA, M. R., IBELLI A. M. G., SAVOLDI I. R., CANTÃO M. E., PEIXOTO J.O., MORES M. A. Z., LOPES J. S., COUTINHO L. L., LEDUR M. C. Transcriptome analysis identifies genes involved with the development of umbilical hernias in pigs. Plos One. 2020 (accepted).

STRAW, B.; BATES, R.; MAY, G. Anatomical abnormalities in a group of finishing pigs: prevalence and pig performance. **J Swine Health Prod**, v. 17, n. 1, p.28–31, 2009.

SUTRADHAR, B. C. et al. Comparison between open and closed methods of herniorrhaphy in calves affected with umbilical hernia. **Journal of Veterinary Science**, v. 10, n. 4, p.343-347. 2009.

TAYLOR, D.J. Pig diseases. Glasgow University, England. 6.ed. 367p. 1995.

THALLER, G.; DEMPFLE, L.; HOESCHELE, I. Investigation of the inheritance of birth defects in swine by complex segregation analysis. **Journal of Animal Breeding and Genetics**, v. 113, n. 1–6, p. 77–92, 1996.

TIRANTI, N. et al. Morphological and karyotypic characterization of intersex pigs with hernia inguinalis. **Journal Agric Sci.**, v. 138, p.333–340. 2002.

USDA (Estados Unidos). United States Departament Of Agriculture. Foreign Agricultural Service: **Pork Production - Selected Countries Summary**. 2019. Disponível em: <https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads>. Acesso em: 05 jan 2020.

VOGT, D. W.; ELLERSIECK, M. R. Heritability of susceptibility to scrotal herniation in swine. **American Journal of Veterinary Research**, v. 51, n. 9, p. 1501–1503, 1990.

WANG, Z.; GERSTEIN, M.; SNYDER, M. RNA-Seq: a revolutionary tool for transcriptomics. **Nature Reviews Genetics**, v. 10, n.1, p.57-63, jan. 2009.

WARREN, T. R.; ATKESON, F. W. INHERITANCE OF HERNIA: In a Family of Holstein-Friesian Cattle. Journal of Heredity, v. 22, n. 11, p. 345-352, 1931.

YOUNG, G. B, ANGUS K. A note on the genetics of umbilical hernia. **The Veterinary Record**, v. 90, n. 9, p.245–247, 1972.

YUN, J. et al. The effects of amoxicillin treatment of newborn piglets on the prevalence of hernias and abscesses, growth and ampicillin resistance of intestinal coliform bacteria in weaned pigs. **PLoS ONE**, v. 12, n. 2, p. 1–16, 2017.

ZAHA, A. Controle da Expressão Gênica em Eucariotos. Zaha, A., Ferreira, H. B., Passaglia, L. M. P. In: **Biologia Molecular Básica**. 5ªed. Porto Alegre: Artmed. p. 301-318. 2014a.

ZAHA, A. Técnicas de Biologia Molecular. Passaglia, L. M. P., Zaha, A.In: **Biologia Molecular Básica**. 5^aed. Porto Alegre: Artmed. p. 331-362. 2014b.

ZHAO, X. et al. Association of HOXA10, ZFPM2, and MMP2 genes with scrotal hernias evaluated via biological candidate gene analyses in pigs. **American Journal of Veterinary Research**, v. 70, n. 8, p. 1006–1012, 2009.

ZHENG, H. et al. Recurrent inguinal hernia: disease of the collagen matrix? **World journal** of surgery, v. 26, n. 4, p. 401-408, 2002.

ANEXOS

Embra	Certificado de Conduta Ética	ETICA
		1/1

CERTIFICADO

Certificamos que o Protocolo n°(000/AAAA): 011/2014, sob título <u>"Identificação de genes</u> <u>e polimorfismos associados à formação de hérnias em suínos pela combinação do</u> <u>sequenciamento exômico total e do RNA"</u>, sob responsabilidade de Mônica Ledur está de acordo com os Princípios Éticos na Experimentação Animal, adotados pelo Colégio Brasileiro de Experimentação Animal (COBEA), TENDO SIDO CONSIDERADO APROVADO PELA Comissão de Ética no Uso de Animais (CEUA/CNPSA) em reunião realizada em 07/11/2014.

CERTIFICATE

We certify that the Protocol n° (000/YYYY): 011/2014, under the following title "Identification of genes and polymorphisms associated with formation of hernias in swines combining RNA and whole exons sequencing." is in agreement with the Ethical Principles in Animal Research adopted by Brazilian College of Animal Experimentation (COBEA) and was approved by the Embrapa Swines and Poultry Ethical Committee for Animals utilization in experimentation (CEUA/CNPSA) in <u>11/07/2014</u>.

Concórdia, 07/11/2014.

Presidente CEUA/CNPSA

FQ4-053-05 Rev(03)