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All structures are subject to catastrophic failures 

associated with damages and its incremental 

nature. Therefore, the damage must be detected 

as early as possible, evaluating the structural 

integrity so that corrective actions are taken at the 

right time, reducing costs with downtime without 

losing reliability. In this work, the Multilayer 

Perceptron (MLP) network was used to recognize 

patterns from dynamic responses of healthy and 

damaged samples (rolling bearings and composite 

beams).  Statistical Parameters (SP), Principal 

Component Analysis (PCA) and Dislocated Series 

(DS) were used as data treatment techniques.  The 

results found show that the propose damage 

detection methodology is an efficient Structural 

Health Monitoring (SHM) tool.  
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ABSTRACT

ALMEIDA REIS, Pedro, ARTIFICIAL NEURAL NETWORKS APPLIED TO STRUC-
TURAL DAMAGE IDENTIFICATION USING DYNAMIC RESPONSE AND SIGNAL PRO-
CESSING. 2020. Master Thesis (Master in Mechanical Engineering - Area: Numerical Mod-
eling and Simulation) – Santa Catarina State University. Mechanical Engineering Graduate
Program Joinville 2020.

In general, all structures can be subject to damage leading to catastrophic failures, causing loss
of human life, environmental tragedies, and significant financial losses, due to incremental na-
ture, observed from its emergence. Aiming to ensure reliability and safety, Structural Health
Monitoring (SHM) has gained evidence, mainly through the use of tools such as the Vibration-
Based Model (VBM) and Artificial Neural Network (ANN). VBM uses the premise that some
properties are modified when damage is present, such that the dynamic response is modified,
making it possible to monitor these changes to identify damage. In this way, this work focuses
on the utilize of ANN to identify damage in rolling bearings and composite structures using
vibration data. However, it is not feasible to directly use these high dimensional data, since it
requires complex models, with a high computational cost. Therefore, it is necessary to use tools
capable of processing the data without losing fundamental information for detecting and clas-
sifying damages. Thus, strategies as Statistical Parameters (SP), Dislocated-Series (DS), and
Principal Component Analysis (PCA) were used to this end. Finally, it is evaluating each one
from some case studies considered as damage detection in balls and inner race for rolling bear-
ings of the data set provided by Case Western Reserve University (CWRU) and delamination
damage in composite beams. The results found in this work show that the proposed damage
detection methodology is an efficient SHM tool.

Key-words: Artificial Neural Networks, Structural Health Monitoring, Damage detection,
Composite Materials, Rolling Bearings fault diagnosis, Vibration Based Model, Statistical Pa-
rameters, Principal Component Analysis.



RESUMO

ALMEIDA REIS, Pedro, ARTIFICIAL NEURAL NETWORKS APPLIED TO STRUC-
TURAL DAMAGE IDENTIFICATION USING DYNAMIC RESPONSE AND SIGNAL PRO-
CESSING. 2020. Dissertação (Mestrado em Engenharia Mecânica - Área: Modelagem
e Simulação Numérica) – Universidade do Estado de Santa Catarina. Programa de Pós-
Graduação em Engenharia Mecânica Joinville 2020.

Em geral, todas as estruturas podem estar sujeitas a danos que levam a falhas catastróficas, cau-
sando perda de vidas humanas, tragédias ambientais e perdas financeiras significativas, devido
à natureza incremental, observadas desde o seu surgimento. Com o objetivo de garantir con-
fiabilidade e segurança, o Monitoramento de Integridade Estrutural (SHM) ganhou evidência,
principalmente por meio do uso de ferramentas como o Modelo Baseado em Vibração (VBM)
e Rede Neural Artificial (ANN). O VBM usa a premissa de que algumas propriedades são
modificadas quando o dano está presente, de modo que a resposta dinâmica é modificada, pos-
sibilitando o monitoramento dessas alterações para identificar danos. Dessa forma, o presente
trabalho enfoca o uso de RNA para identificar danos em rolamentos e estruturas compostas
usando dados de vibração. No entanto, não é possı́vel usar diretamente esses dados que pos-
suem alta dimensão, pois requer modelos complexos, com alto custo computacional. Portanto,
é necessário usar ferramentas capazes de processar os dados sem perder informações fundamen-
tais para detectar e classificar os danos. Assim, estratégias como Parâmetros Estatı́sticos (SP),
Séries Deslocadas (DS) e Análise de Componentes Principais (PCA) foram utilizadas para esse
fim. Avaliando cada estudo de caso considerado como detecção de danos nas esferas e pista
interna de rolamentos do conjunto de dados fornecido pela Case Western Reserve University
(CWRU) e danos por delaminação em vigas compostas. Os resultados encontrados neste traba-
lho mostram que a metodologia de detecção de dano proposta é uma ferramenta eficiente para
o SHM.

Palavras-chave: Redes Neurais Artificiais, Monitoramento de Integridade das Estruturas,
Detecção de dano, Materiais Compósitos, Diagnóstico de falha em rolamentos, Modelo baseado
em vibrações, Parâmetros Estatı́sticos, Análise de Componente Principal.
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Chapter 1

Introduction

Developments in the last century provided several advances in mechanical systems, be-
coming transport, natural resources extraction, and industrial production faster, and more ef-
fective to supply a population with almost 7.7 billion inhabitants in the world, according to the
UN (2019). However, techniques used in the development of these systems have limitations
in terms of physical and mathematical modeling, leading to uncertainties in its respective ap-
plications. So, it can lead to unexpected failures that pose the risk humans to the environment
as well as economic losses. Thus, strategies aimed at inspection of the structures such as Non-
Destructive damage detection methods are required. However, they need prior knowledge about
the existence and location of damage, in addition to another limiting factor, which is accessibil-
ity. Therefore, as a way to cope with critical systems, Structural Health Monitoring (SHM) has
been widely studied by scientists and engineers as a strategy to carry out continuous monitoring
during the use of structure.

In 2015 and 2019, two similar tragedies occurred in Brazil: the rupture of tailing dams
used by mining companies in Mariana and Brumadinho cities, as can be seen in Fig. 1.1(a)
and Fig. 1.1(b), respectively. The total death toll is around 200, with 108 missings. Besides,
there was a higher environmental impact with the deposition of mud in rivers, decimating fish,
and other living beings in the surroundings. After the first occurrence, the Agência Nacional

de Mineração (ANM) took action to increase the number of inspections for 220 dams located
in the same region to check its integrity by the current rules (ANM, 2019). Nevertheless, the
tragedy of equal nature ended up occurring in Brumadinho, resulting in a considerable number
of deaths and environmental impact. The aforementioned suggests the demand for more qual-
ified techniques to detect damages in structural effectively. Once the defect becomes critical,
depending on the structure mechanical properties, the deterioration process can happen in an
accelerated manner, decreasing the structural capacity to resist the design requirements.
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Figure 1.1 – Disasters caused by the rupture of the Mariana and Brumadinho dams.

(a) Mariana town devastated after dam
rupture.

(b) Trail of destruction left by the rupture
of the misty dam.

1.1 Background and motivation

Structures are subject to damage in several ways like improper use, natural degrada-
tion due the use time, errors in the design phase, as well as in manufacturing and assembly,
and factors related to the environment such as earthquakes, for example (PIAZZAROLI, 2019).
The damage is, therefore, intrinsic to the structures, associated with changes in their physical
properties, which can increase over time, reducing performance and increasing the chances of
sudden failures (MEDEIROS et al., 2018). Thus, it becomes essential to develop techniques to
allow the identification of defects at an early stage, evaluating the life of the structure, so that
necessary repairs can be carried out. One of the most used methods in the early stages of a
visual inspection. However, it is limited to some types of structures and damages, motivating
the development of more advanced techniques.

Non-destructive Techniques (NDT) as eddy current, radiography, and acoustic emission
gained attention and are commonly used. However, these techniques require prior knowledge
about the existence and location of the damage, and a trained professional to correctly handle
the equipment, impacting downtime and rising maintenance costs. To find an efficient solution,
researchers have concentrated efforts to develop a methodology able to detect and localize the
damage as early as possible, through continuum monitoring, evaluating its severity, and pre-
dicting the residual lifetime, called Structural Health Monitoring (SHM) (FERDINAND, 2014).
Fundamentally, the structure is observed along the time, using periodically spaced dynamic
response measurements, identifying damage-sensitive features, and statistical analysis of these
features to determine the current state of system health (FARRAR; WORDEN, 2012). Hence, SHM
can replace the traditional maintenance strategy, minimizing the numbers of inspections based
on conventional Non-Destructive Techniques (NDT), as Fig. 1.2 shows, reducing costs and op-
erational time required. In the case of composite structures, for example, SHM can be even part
of the structure, using piezoelectric sensors inserted between layers (MEDEIROS et al., 2015).

Composite materials were widely used in the industry, much faster than anticipated in
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Figure 1.2 – An overview of potential fields for SHM applications: a) Inspection of wind tur-
bines b) Inspection of aeronautical fuselages c) Bridge Monitoring.

a) b) c)

Source: Gomes et al. (2018)

the 1970s, especially in the field of experimental and military aviation. According to Zanatta
(2012), researches and engineers considered unlikely that any further progress will be made
in the area of materials for aeronautical structure. Thus, composite materials bring together
the main characteristics requested by the sector; low weight, high strength, corrosion resis-
tance, and the possibility of manufacturing elements with complicated shapes. However, these
materials can exhibit unconventional and complex damages types, like transverse crack and de-
lamination, usually not visible to human eyes. Therefore, it is essential to detect the damage as
early as possible to prevent sudden failures with catastrophic consequences. Considering fault-
tolerance on structural elements of aircraft practiced nowadays, NDTs are applied periodically
as a more conservative alternative to give the reliability required, resulting in high cost for air-
lines (KATUNIN et al., 2015). In 2017, it was reported that $ 70 billion was spent by airlines for
maintenance, repair, and overhaul, with the expectation that this figure will reach $ 115 billion
over the next ten years (MICHAELS, 2018). In this scenario, the SHM is a promising technique to
perform continuous monitoring in these structures, identifying the damage, evaluating its sever-
ity, as well as residual strength, and determining the lifetime of the structure. It minimizes the
number of inspections, reducing the maintenance cost, without compromising the reliability.

According to Güemes et al. (2020), SHM consists of three-element keys:

1. A network of a sensor attached to the structure: Through the use of a sensor network in
the structures, it is possible to carry out an automated inspection essential for continuous
data acquisition.

2. On-boarding data handling and computing facilities: It is necessary because high
computational efforts are required to store the amount of data extracted through the sen-
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sors. SHM was feasible when large-capacity of computers were available (in the mid-
1980s).

3. Algorithms: Necessary to compare the initial state of the structure (healthy), evaluating
changes associated with damage, i.e, an appropriate analogy with the human nervous
system can be made, according to Fig. 1.3, where changes in the performance appear as
disease symptoms in humans.

Figure 1.3 – The analogy between the operation of the human nervous system and a structure
SHM (photo from OWI application lab http://www.owi-lab.be)

Since the 1970’s several studies had been developed to evaluate the dynamic sensitives
related to damage, aiming to obtain a more efficient strategy for detection, considering that
properties as damping, stiffness, and mass are modified by damage (HUMAR et al., 2006). Re-
cently, machine learning has proven to be a powerful technique for pattern recognition prob-
lems. Besides, it is a useful tool in new SHM applications, acting as a bridge connecting a
large amount of data from the structure/machinery and systems devices able to make failure
predictions (ZHAO et al., 2019). Cawley and Adams (1979) were the pioneers using variations
in natural frequency as indicative of damage using a Finite Element (FE) computational model.
In the sequence, several advances were implemented, such as the use of Modal Assurance Cri-
terion (MAC) by Allemang and Brown (1982), correlating intact and damaged modes. As an
advance, the Damage Location Assurance Criterion (DLAC) was proposed, locating the dam-
age by frequency changes for specific modes (MESSINA et al., 1998). However, according to
studies carried out by Doebling et al. (1996), only considerable damage is capable of causing
sensitive variations in natural frequencies, making these methods not feasible for more conser-
vative applications. Another factor that hinders the application of these methods is the presence
of noises or other external factors. Alternatively, as a solution to these problems, the applica-
tion of statistical pattern recognition has gained notable attention in the past decade. One of the
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main advantages of this type of methodology is that it only requires data from the damaged and
undamaged structure to perform the machine learning process (CATBAS; AKTAN, 2002).

The robustness of damage detection is extremely sensitive to the treatment of collected
data, which can remove information. Therefore, several studies are being carried out for its
consolidation, as illustrated by Fig. 1.4 that exposes growth in the publication of works in
the damage detection area using pattern recognition (TANG et al., 2019). Recently, the use of
techniques based on Artificial Intelligence (AI) such as machine learning and deep learning

has redefined the state of the art of several kinds of researches, through object identification,
image segmentation modeling, and prediction of non-linear systems (ZHAO et al., 2019).

Figure 1.4 – Number of publications per year from 2000 to 2019.
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Auhtor’s production. Source: Web of Science

With machine learning popularization nowadays, one may think it is a technology re-
cently developed. However, studies in this area started in the 1940s, introduced by McCulloch
and Pitts (1943), presenting a logical calculation of the neural networks that unified the stud-
ies of neurophysiology and logic. This study assumes that neurons are connected one by one
through synaptic connections, following the all or nothing law, and have specific adjustable
values. Thus, a sufficient number of these units and adjusted synaptic connections set up, any
computable function could be represented. Later, Hebb (1949) made a higher contribution in
the area, presenting for the first time explicit formulation of a physiological learning rule for
synaptic modification. He introduced the famous learning postulated, stating that the efficiency
of a variable synapse between two neurons is increased by the repeated activation of one neu-
ron caused by others. Another significant contribution was implemented by Rosenblatt (1958),
the original methodology of supervised learning, though of Rosenblat’s Perceptron. Widrow
and Hoff (1960) introduced the least square mean algorithm and used it to formulate Adalaine
and Madalaine. Amari (1967) used a stochastic gradient method for adaptive pattern classifi-
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cation. After the development of the Hopfield and Kohonen networks in 1982, Ackley et al.
(1985) developed a stochastic machine known as the Boltzmann machine, the first successful
realization of a multilayered neural network. Another important step was taken by Rumel-
hart et al. (1986) through the development of the back-propagation algorithm. Broomhead and
Lowe (1988) developed a radial basis function. In the 90’s, a powerful computational technique
known as Support Vector Machine (SVM) was developed, gaining prominence in the pattern
recognition problems (BOSER et al., 1992; VAPNIK; CORTES, 1995; VAPNIK, 1999). Hinton et al.
(2006) coined the term deep learning to explain the new algorithms that allow for more in-depth
learning, with a higher power of abstraction; so that the machine can distinguish objects, texts,
and videos (MARR, 2016). The deep learning advances are more related to the called Convolu-
tional Neural Networks (CNNs) widely used, providing excellent accuracy in object-detection
as GoogLeNet proposed by Szegedy et al. (2015). Therefore, based on this high performance,
Artificial Neural Networks have gain attention in several fields of science, as (c.f Fig. 1.5).
From a survey carried out in the SCOPUS database, counting the works published from 2010
to 2020, the growth in the use of artificial neural networks doubled in most of the main research
lines studied in the world, with emphasis on the Energy area that presented a growth of 214%
in the period assumed. Figure. 1.6 shows a timeline, summarizing important advances in ANN
development.

According to Montalvao et al. (2006), Artificial Neural Networks gained space in the
detection of damage in structures of composite materials, due to the complexity of correctly
modeling all failure mechanisms in a composite. The networks proved to be useful, since they
can represent any dynamic system as a black box, via non-linear mapping.

Figure 1.5 – Increased use of neural networks in different areas of study.

Author’s produciton. Source: SCOPUS
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Figure 1.6 – A short timeline of Artificial Neural Network development.

Auhtor’s production.

1.2 State of the Art

Considering the power of Neural Networks to recognize patterns automatically from a
data set, through an input/output model. The use of modal parameters to detect damage such
as natural frequency, modal shapes and transfer function has proved to be a suitable approach.
Thus, Rhim and Lee (1995) verified the feasibility of the use of them as an alternative to detect
delamination damage with different sizes in a cantilever beam. In the first step, a computa-
tional model was developed, generating some samples which had Frequency Response Func-
tions (FRF) evaluated. After that, an auto-regressive model with exogenous input (ARX) was
used. Polynomial coefficients served as input, where good results were found, guiding others’
works. Okafor and Chandrashekhara (1996) performed modal testing for intact and damaged
composite beams through a built-in piezoelectric sensor, comparing experimental data with an-
alytical issues, where promising results were found. Natural frequencies up to the fourth mode
serve as the input of the Multilayer Perceptron (MLP) network to predict the size of damage in
delaminated beams. However, only damages with magnitudes as large as 15.24cm, presented
allowable prediction errors. A significant remark was that only the frequency of the fourth mode
had shown considerable sensibility for the damage.

Later, another important work was published by Chakraborty (2005), where the first ten
natural frequencies were used as input to train the ANN, detecting size, shape, and damage lo-
cation, through samples generated via the Finite Element (FE) model. In the results, frequencies
corresponding to the first two modes decreases. However, it was observed that when the damage
was moved away from the center, the other frequencies increase. It was possible to verify the
size of damage affects higher modes, and the shape modification causes minor changes. As an
alternative, Jiong Tang (2006) had studied a widely used statistical method known as Principal
Component Analysis (PCA). The method to extract features from FRFs signals and trains neu-
ral networks, towards determining a more robust and efficient damage detection technique for
aluminum beams samples at free-free boundary conditions.

During years, many works negligence modeling errors in the Finite Element (FE) model
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used to generate vibration data caused by uncertainties present in real models (inaccuracy of
physical parameters, non-ideal boundary conditions, finite element discretization, and non-
linear properties), which had shown discrepant results among them. Thus, Bakhary et al. (2007)
introduced an approach called Statistical Neural Networks (SNN), where uncertainties are ap-
plied as noisy in the frequencies and modal shapes. The maximum and minimum intervals used
to train four artificial neural networks, and all outputs related to the Stiffness Reduction Factor
(SF) are evaluated. In further, the mean and variance of them are determined by evaluating the
Probability Damage Existence (PDE) through normal distribution. The probabilistic approach
demand four networks, which make the application more computationally expensive. Padil et
al. (2017) improved this technique using a non-probabilistic approach with the interval bonds
of natural frequencies and modal shapes. He determines a failure surface and evaluates the
Possibility Damage Existence (PoDE), and it is not necessary to calculate the means and stan-
dard deviation to determine normal distribution. Recently, Padil et al. (2020) presented the best
results in this technique though PCA as feature extraction in FRFs.

In this scenario, Wavelet Transform coefficients have success in damage detection ap-
plications. Yam et al. (2003) studied and developed an automatic and non-destructive damage
detection method for the PVC sandwich plate through theoretical, numerical, and experimental
investigation. It was observed that the wavelet energy increases, providing the use of coeffi-
cients as a feature extraction technique, setting up a reliable strategy. Moreover, in 2-D analysis
plotting, Wang et al. (2017) used images generated from wavelet coefficients detecting dam-
age successfully in a gear-box via Deep Convolutional Neural Networks (DCNNs). Tang et al.
(2019) proposed the image processing technique to generate images from time and frequency
plots together were used to detect damage with Convolutional layers in the Multilayer Percep-
tron Model (MLP).

Therefore, several studies have been developed in the last years in the direction to im-
prove feasibility for different damages types and structures, under diverse engineering applica-
tions. Table 1.1 shows recent works publishers in this study area.

As it is possible seen, artificial neural networks with convolution layers have gained
much attention in SHM applications due to improvements in damage detection and classifica-
tion. However, more computational efforts are required.
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Table 1.1 – Recent works and respective contributions in the state of the art.

Author Main contribution

Abdeljaber et al. (2017) The called 1D-CNN is used as a pattern recognition model
to detect damage through a frame vibration response.

Liu et al. (2017) Dislocated Time Series Convolutional Neural Networks
(DTS-CNN) used to damage detection in rotating machines.

Khoshnoudian et al. (2017) Competitive learning using a 2-D PCA approach with com-
petitive learning, detecting damages of different sizes in a
truss computational structure.

Piazzaroli (2019) Use statistical parameters as feature extraction and data re-
duction to detect damage in civil engineering structures.

Hu et al. (2020) Locate and identify damage extent on a Finite Element
frame of Xi’an Bell tower using the total Wavelet energy
rate.

Teng et al. (2020) Convolutional Neural Networks used to damage detection
in a computational model of steel frame structure used by
the dynamic response and Modal Strain.

Guo et al. (2020) To use Convolutional Neural Networks (CNN) for damage
detection in beams.

Verstraete et al. (2020) Semi-supervised and Unsupervised learning approach to
detect a fault in rolling bearings through PCA and k-means
clustering and GANS-CNN.

Kumar et al. (2020) Different damage sizes in rolling bearings were detected us-
ing Deep Convolutional Neural Networks (DCNN) in image
processing by 2-D.

1.3 Objectives and Scope

As the state of art shows, methods based on deep learning have been increasingly used
to detect damage to diverse structures. Thus, the present work aims to study methodologies
that testing different damage detection approaches to analyze bearings and beams of composite
materials. The data is extracted from a vibration-based model, where several tools for evaluating
characteristics will be used, such as Statistical Parameters (SP), Principal Component Analysis
(PCA), and Series-Dislocated (SD), taking into account the particular characteristics of each
one. Therefore, the objectives can be split by the items below:

• Proposes a damage detection methodology using the most appropriate feature extraction
tool to obtain the more effectively Neural Networks.

• Perform a preliminary study using a data set consolidated in scientific society to validate
the methodology, detecting damage on rolling bearings.

• To use data from time-domain and frequency-domain to detect damage on composite
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beams by different approaches.

• Identify uncertainties in the manufactured samples and insert this into a computational
model, to generalize a network with only computational model data, so, it can extend to
detect damage to the experimental beams.

1.4 Thesis Outline

This work is divided into the following chapters:

• Chapter 1: Introduction - It provides an overview of the work, showing the motivation
of the study and its objectives.

• Chapter 2: Structural Health Monitoring - Present the fundamental concepts of the
Structural Health Monitoring (SHM) in a general form, showing each step. The theoret-
ical basis for the Vibration-Based Model (VBM). Failure mechanism in the composite
beams, and damages on Rolling Bearings.

• Chapter 3: Composite Materials - An introduction to important concepts approached
in the work like composite materials, classification, types of damage, damage tolerance
and general aspects.

• Chapter 4: Rolling Bearings - Section provided to define Rolling Bearings and how
vibration responses are used in damage monitoring.

• Chapter 5: Pattern Recognition - Present a review of Artificial Neural Networks, serv-
ing as a basis for studies to be carried out later.

• Chapter 6: Materials and method - It presents the data, as well as the strategies estab-
lished to perform damage detection in bearings and composite beams.

• Chapter 7: Results and Discussion -Present and discuss results obtained to the relevant
cases studied.

• Chapter 8: Conclusions - Describe the potentialities and limitations of the methodology
and the recommendation of future works.

• Bibliography: Where the references used in the work are presented.

• Appendix: It assists in presenting the results and formulations necessary for a better
understanding of the text.



Chapter 2

Structural Health Monitoring

2.1 General Concepts

Structural Health Monitoring is defined as a set of activities; acquisition, validation, and
analysis of data generated by a system that allows assessing the residual strength of structures
during its work, providing essential information to detect damages, prevent failures and, there-
fore, increasing the reliability (KESSLER et al., 2002). It requires that a data acquisition system
be assembled to collect information, evaluating continuously the structural health, based on the
performance changes (XIAO, 2012). Thus, the SHM is established as a new maintenance phi-
losophy, in which a system can monitor a structure without having to access it, detecting the
damage automatically, allowing a significant reduction in the resources needed for the task.

SHM has been gained much attention in the last years about the Non-Destructive Tech-
nique (NDT). Commonly, used in systems where extreme safety is mandatory because it can
detect the damage at the initial phase, following its evolution, estimating the life of the structure.
Avoiding a higher number of stops inspections, such as airplane wing replacing after some flight
hours (FARRAR; WORDEN, 2012). The SHM process was introduced into the pattern recognition
field, such that the dynamic response of the structures has specific features that can be evaluated
and classified into healthy and damaged by the fundamental steps:

1. Operational evaluation: In this initial step, it is necessary to answer some meaningful
questions about the system to be monitored such that damage types that the system is
subjected to, and the most critical of it, environmental conditions to investigate limitations
about monitoring and data acquisition (FARRAR; WORDEN, 2006).

2. Acquisition data and treatment: It is associated with the data acquisition about the
type of sensors to be used, quantity, positions, specifications about bandwidth choice, and
hardware. After extracted, the data should be treated, cleaning up the undesirable pieces
of the signals and noises associated, which can make difficult the damage classification
after (MONTALVAO et al., 2006).

29
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3. Features extraction: This step in the structural health monitoring process receives the
most attention in the literature. Feature extraction is the process of identifying damage
sensitive parameters from measured data. These damage features are defined in the time,
frequency, or modal domain. Information reduction and condensation are also of concern
for a large quantity of data, particularly if comparisons of many measurements of the
structure are required (OOIJEVAAR, 2014).

4. Classification: Finally, through the extraction of features performed in the previous step,
an algorithm is implemented to classify samples of the signals collected for different
states of the structure, based on the damage sensitivity presented by the features, deter-
mining its integrity (FARRAR et al., 2001).

Figure 2.1 shows a simplified process, explaining the SHM, where the two main phases
are diagnostic the current state and failure prognostic. Once that the damage has previously
been identified, the lifetime is determined based on residual strength.

Figure 2.1 – The multidisciplinary Structural Health Monitoring (SHM) process.

Adapted from Ooijevaar (2014).

As a fundamental part of SHM, according to Doebling et al. (1996), damage identifica-
tion is divided into hierarchical four levels:

• Level 1: Answer a binary question about the existence of the damage.

• Level 2: Identify the location where the damage was found in the geometry of the struc-
ture.
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• Level 3: Quantify the severity of the damage.

• Level 4: Predict the life of the structure while it is subjected to those conditions.

2.2 Vibration Based Model (VBM)

In an efficient application of the SHM, it is necessary to identify the damage earliest as
possible. So, that corrective actions can be made, minimizing risks associates with disasters,
avoiding financial and economic consequences. Methods traditionally used for damage detec-
tion involve visual inspection and instrumental assessment. However, it depends on the structure
to be accessible everywhere, which can be impractical in some cases when it is complex. Thus,
vibration-based models satisfy the accessibility requirements in most of the structures, enabling
continuous monitoring. Also, presents good sensitivity to damage because natural frequencies,
modal shapes, and damping are directly affected by changes in stiffness and mass that occur
due to the presence of damage (HUMAR et al., 2006). Hence, changes resulted from the dam-
age will causes changes in the modal parameters (natural frequencies, mode shapes, and modal
damping ratio). Usually, the damage will decrease the mass and stiffness of the structure and
increase the damping ratio locally. Among them, mass is less sensitive to the damage, while the
damping is most sensitive (ZOU et al., 2000). Thus, the model based on vibrations response, not
only serves as a fundamental instrument to evaluate the performance of the structures but also
make diagnoses regarding the existence of the damage and its severity concerning an initial or
healthy state.

Vibrations can be understood as the oscillatory movement of an object around the equi-
librium position, which can be; periodic, non-periodic, and transient. Two elements are funda-
mental for vibration occur; inertia and stiffness. Therefore, according to Rao (1995), when the
system is shifted out from equilibrium, the inertia generates kinetic energy T that is absorbed
by the stiffness as potential elastic energy V, establishing a time-dependent energy exchange

d

dt

(
∂T

∂ẋk

)
− ∂T

∂xk
+
∂V

∂xk
= Fk k = 1, 2, ..., n, (2.2.1)

such that xk are system coordinates and Fk the generalized non-conservative forces. Addi-
tionally, if damping is present, an additional term of energy dissipation is added to the energy
equilibrium

d

dt

(
∂T

∂ẋk

)
− ∂T

∂xk
+
∂V

∂xk
= − ∂Ω

∂ẋk
+ Fk, (2.2.2)

where the left side terms are the rate of variation of the kinetic and potential energies inside the
control volume, respectively. On the other hand, right side terms represent, respectively, the
rate of variation for the dissipation energy and the external force variation ratio.
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2.2.1 Vibration systems with multiple DOFs

The engineering systems are commonly complex to modeling as a continuum one be-
cause it requires the solution of a partial differential equations system, which can be quite
difficult. For many partial differential equations, analytical solutions do not exist. On the other
hand, when the system is analyzed in terms of multiple degrees of freedom, the only solution
of an ordinary differential equation is required, which is relatively simple. Hence, it is con-
ventional to simplify the continuum system analyses in terms of multiple degrees of freedom.
However, if more degrees of freedom are assumed in the system, the solution becomes more
complex, and more mathematical resources are needed. So, the use of numerical methods being
convenient in some cases (RAO, 1995).

Degrees of freedom are the number of the time-dependent coordinates used to describe
the motion. An example is showed in Fig. 2.2, where x1 and x2 are displacements of motion
for inertia m1 and m2, respectively, defining 2 DOFs. Identifying the number of degrees of
freedom is an essential task to analyze the system because it determines the number of ordinary
differential equations and, consequently, the number of natural frequencies and mode shapes
(KELLY, 2012).

Figure 2.2 – Example of a vibration system with 2 Degrees of Freedom (DOF).

m1 m2

k1 k2

c1 c2

f1(t)

x1

f2(t)

x2

Author’s production

After performing a kinematic analysis of the system, defining its respective degrees of
freedom, the general equation can be found both by the equilibrium of forces and moments from
Newton’s laws and by Lagrange’s equations due to the energies present in the system. However,
whichever method is used, the general equation is

[M ]{ẍ(t)}+ [C]{ẋ(t)}+ [K]{x(t)} = { f(t)}, (2.2.3)

where [M ]N×N represents the inertia of system, [C]N×N damping, [K]N×N equivalent stiff-
ness and {f}N×1 the excitation force (BALACHANDRAN; MAGRAB, 2011), corresponding to the
system of N partial differential equations.
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2.2.1.1 Undamped systems: natural frequencies and mode shapes

Modal shapes and natural frequencies represent, respectively, displacements between the
different degrees of freedom and the specific frequency in which each one occurs. According
to Inman and Singh (1994), these parameters are closely linked to mass and stiffness, such that
external forces and damping terms can be disregarded from Eq. (2.2.3), resulting in

[M ]{ẍ(t)}+ [K]{x(t)} = {0}, (2.2.4)

with general solution

{x(t)} = {φ}eλt. (2.2.5)

Differentiating Eq. (2.2.5), and substituting in Eq. (2.2.4) results in

([K] + λ2[M ]){φ}eλt = {0}, (2.2.6)

such that a non-trivial solution can be found by solving an eigenproblem. The eigenvalues are
the roots of the characteristic polynomial

det([K] + λ[M ]) = 0, (2.2.7)

where λ = −(ωi)2, and ω is the natural frequency. Therefore, for a system with multiple
degrees of freedom, each natural frequency corresponds to an eigenvalue λ, defined by

([K]− ωj2[M ]){φi} = {0}. (2.2.8)

2.2.1.2 Damped systems

Depending on the coordinates used to describe the motion, both the inertia and stiffness
matrices can present the coupling of inertial and elastic forces, respectively. It is worth men-
tioning that this is not a basic feature of the system, once that [M ] and [K] are constant matrices
and non-diagonal, solving the system of second-order ordinary differential equations from Eq.
(2.2.3), with constant coefficients may not be a simple task. Thus, one of the ways to solve it is
through a transformation of coordinates

{x(t)} = [Φ]{η(t)}, (2.2.9)

so that any displacement xj(t)(1, 2, ..., n) is a linear combination of ηj(t)(1, 2, ..., n). The ma-
trix [Φ] is constant, non-singular and represents a linear transformation. Hence the relationship
can be extended to the velocity {ẋ(t)} as

{ẋ(t)} = [Φ]{η̇(t)}, (2.2.10)
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and acceleration

{ẍ(t)} = [Φ]{η̈(t)}. (2.2.11)

Substituting these terms in the Eq. (2.2.3) results in

[M ][Φ]{η̈}+ [C][Φ]{η̇}+ [K][Φ]{η} = {f}. (2.2.12)

Premultiplying both sides by [Φ]T

[Φ]T [M ][Φ]{η̈}+ [Φ]T [C][Φ]{η̇}+ [K][Φ]{η} = [Φ]T{f}, (2.2.13)

where

[MD] = [Φ]T [M ][Φ], [CD] = [Φ]T [C][Φ], [KD] = [Φ]T [K][Φ], [Q] = [Φ]T{f(t)}.
(2.2.14)

Therefore, the Eq. (2.2.3) can be rewritten

[MD]{η̈}+ [CD]{η̇}+ [KD]{η} = [Φ]T{f}. (2.2.15)

At this point is necessary observe that the transformation has as objective to produce di-
agonal matrices [MD], [CD] and [KD] simultaneously, since the system consists of independent
equations of motions in generalized coordinates. Hence, if such transforming matrix [Φ] can be
found, then the system of differential equations is decomposed in N independent equations

M̂jj η̈j(t) + Ĉjj η̇j(t) + K̂jjηj(t) = Qj(t) j = 1, 2..., n. (2.2.16)

The transformation matrix exists and is called modal matrix, where all modal vectors are stored.
Therefore, the coordinates {η(t)} are called modal coordinates. Once the orthogonality be-
tween modal vectors and matrices [K] and [M ] is shown in apendix A. Thus, an operation
commonly used in the context of linear algebra knows as diagonalization can be performed to
decouple the system as wished. Hence, each degree of freedom can be analyzed and solved
efficiently in terms of the independent differential equations. However, this operation is only
available for damping matrix in the cases of proportional damping which is a linear combination
between mass and elasticity (MEIROVITCH, 2010).

2.2.2 Modal Analysis

In the past decades, motivated by the demand for lighter, flexible, and yet strength struc-
tures, modal analysis has become a good alternative for determining, improving, and optimizing
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dynamic characteristics of engineering structures. The fundamental idea is to formulate a math-
ematical model, considering the stiffness, mass, and other properties as adjustable parameters,
aiming to make the model response as close as possible to the experiment. Nowadays, compu-
tational modeling based on the Finite Element Method (FEM) has shown as a good alternative
to perform the modal analysis once complex structures can be modeled and evaluated accu-
rately. Therefore, natural frequencies, mode shapes, and Frequency Response Functions (RFs)
are widely used as a measurement in these analyses because it has sensitive to the parameters
previously mentioned (FU; HE, 2001).

Understanding the dynamics of structures is essential to assess their performance un-
der loads that change over time, damping capacity, friction, and fatigue endurance. However,
besides a good mathematical model, it is fundamental to collect the data from structures accu-
rately. To this end, modal testing is the study of a structure, machine, or component subjected to
vibration with known excitation, often outside its normal service environment. So, the informa-
tion is collected in greater detail and precision. This type of test requires a good data acquisition
system and subsequent analysis. In summary, the experimental model analysis involves three
constituent phases: test preparation, frequency response measurements, and model parameter
identification. Test preparation involves the selection of a structural geometry model, which
could lead to inaccurate measurement. During the test, a set of Frequency Response Functions
(FRFs) data is measured and stored, which is then analyzed to identify modal parameters of the
structure (EWINS, 1984).

As an example, Fig. 2.3 shows a simple plate under a random input excitation, and,
consequently, the output time response follows the same characteristic. From the time-domain,
therefore, it is not easy to observe how each mode shape and natural frequency affect the dy-
namic response analysis. However, using a Fast Fourier Transform (FFT), transforming the
input signal to the frequency-domain, there is a much clearer picture of the input force exci-
tation. In the frequency-domain, the modes of the system (the natural frequencies, damping,
and mode shapes) act just like band-pass filters. Each mode ”knows” exactly how to amplify
and attenuate the input excitation on a frequency basis, and each mode has a separate effect on
the input. However, all the responses from each filter (each mode) are added together to deter-
mine the overall response. In this output response spectrum, all modes are not equally excited,
because the input force spectrum does not have equal energy at all frequencies (AVITABILE,
2017).

2.2.2.1 Frequency Response Function (FRF)

The Frequency Response Function (FRF) is a relevant measurement in the Modal Analy-
sis because it corresponds to the complete dynamic data of a system, evaluating the relationship
among the response for a system and respective excitation located in the structure (KHOSH-

NOUDIAN et al., 2017). This approach is based on reciprocity between the excitation point (j)

and the response (i), analyzed by the matrix Hij(ω), which has symmetric properties (FU; HE,
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Figure 2.3 – Signal flow diagram showing modal filtering of input resulting in an output.

Source: (AVITABILE, 2017)

2001).

Figure 2.4 – Cantilever beam excited by external forces.

Source: (FU; HE, 2001)

Taking a cantilever beam from Fig. 2.4, excited in n different points by a harmonic force
defined by

{f(t)} = {F (ω)}eiωt, (2.2.17)

as the system will harmonically vibrate, the displacement corresponds

{x(t)} = {X(ω)}eiωt. (2.2.18)
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Differentiating and substituting in Eq. (2.2.3), resulting

−ω2[M ]{X(ω)}��eωit + ωi[C]{X(ω)}��eωit + [K]{X(ω)}��eωit = {F (ω)}��eωit. (2.2.19)

Considering small displacements and linear case, the terms eωit are canceled of the equations.
Grouping, the relation between input forces {F (ω)} and system response {X(ω)}

X(ω)

F (ω)
=
(
−ω2[M ] + iω[C] + [K]

)−1
, (2.2.20)

Thus, the frequency transfer function matrix [H(ω)] relates the input and output in the form
Hout,in

[H(ω)] = (−ω2[M ] + iω[C] + [K])−1. (2.2.21)

Figure 2.5 – Model for input-output frequency response function matrix.

Source: (AVITABILE, 2017)

Another important point observed is that matrix [H(ω)] is complex, allowing FRFs to be
evaluated according to real, imaginary, phase, and magnitude, each one with its corresponding
characteristics and properties. Figure 2.5 presents an example where three degrees of freedom
are used to model a beam and obtain FRFs measurements. Therefore, there is a mode shape
for each degree of freedom, resulting in a matrix [H]3×3 (RAO, 1995). Figure 2.6(a) shows
only the portion corresponding to the real part, where a peak is accompanied by a substantial
decrease for resonance frequencies. As an example, Fig. 2.6(b) consists only of the computed
imaginary part, showing that in the diagonal elements of the matrix there are not opposite peaks,
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indicating no phase changes for these subsequently modes (2.6(c)). Figure. 2.6(d) shows the
anti-resonance effect when the response is collected at an exciting point. Otherwise, unlike the
other positions, changes in the phase are observed, as well as opposite peaks for imaginary and
minimum between peaks for magnitude.

The phase is evaluated by

[φ(ω)] = Tg−1

(
Img([H(ω)])

Real([H(ω)])

)
, (2.2.22)

where there is 180 degrees lag between resonance frequencies corresponding to some modes
when the beam is excited and evaluated at different points. The total magnitude is measured
according

[Mag(ω)] =
√
Img([H(ω)])2 +Real([H(ω)])2, (2.2.23)

through the square root of the sum of the squares of the imaginary and real part (AVITABILE,
2017).

Figure 2.6 – Different measurements of Frequency Response Functions (FRFs).

(a) Real part FRF. (b) Img([H(ω)]).

(c) Phase part (d) Magnitude dB.

Source: (AVITABILE, 2017)



Chapter 3

Composite Materials

3.1 Introduction

Composite materials are a combination of at least two different materials on a macro-
scale, generating another one with improved properties than each one alone (JONES, 1999). In
the fiber-reinforced composites, for example, the fiber has the function of increasing strength
and stiffness of the resulting compound. On the other hand, the matrix serves to keep the
fibers together, promoting load transfer among them, and exercising protection against possible
environmental weathering (REDDY, 2004).

High-performance composites have been widely used in the aerospace industry with
epoxy and aluminum matrices, as well as Kevlar, graphite, and boron fibers, due to their high
strength and stiffness, combined with low specific density, enhancing the efficiency of these
applications. Above all, in some cases, the use of composite materials allows for significant
gains in financial terms. Taking into account the competitive aviation market, for example,
where one of the most prominent difficulties is to reduce weight without impairing the strength
and rigidity of the components (KAW, 2005).

3.2 Composite classification

In general, composites can be divided into natural and synthetic. Among the synthetics,
which are most commonly used in engineering, it is possible to enumerate a series of other
classifications resulting from the types of fiber and matrix, as well as their arrangement (NETO;

PARDINI, 2016). Figure 3.1 shows different configurations, in which the reinforcement and ma-
trix phases can be found in the composite materials. Usually found in the continuous phase,
the matrices are made of polymeric, metallic, and ceramic materials (VÖLTZ, 2019). For rein-
forcements, different architectures with continuous and discontinuous fibers can be used, which
significantly influences the mechanical behavior of the composite (IBRAHIM et al., 2015).

The particularities of each composite class and its consequences:
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Figure 3.1 – Different classifications of composites found in engineering applications.

Composites

Fiber-reinforcedParticle-reinforced Structural

Large-

Particle
Dispersion-

strengthened

Continuous

(aligned)
Descontinous

(short)

Laminates Sandwich

panels

Aligned Randomly

oriented

Adapted from (CALLISTER et al., 2007)

• Particulate-reinforced composites: This type of composite uses large particles and dis-

persion as reinforcement. In this context, the term large particles is associated with the
interaction reinforcement-matrix. It can not be deal in the atomic and molecular level,
such concrete, for example, where more rigid stones are distributed, locally restricting
the displacements caused by the stresses transferred by the matrix. Dispersion follows
the same principles of reinforcement than large particles, but the difference is the size
of the particles used. In this case, the particles shall have between (0.001,0.1) µm. As
an example, the metal alloys in which a volume of metallic or non-metallic particles are
dispersed. The reinforcement efficacy depends strongly on the adhesion between the dif-
ferent phases present (CALLISTER et al., 2007).

• Fiber-reinforced: These are classified as continuum and non-continuum, depending on
the fiber length, fundamentally, which influences the resultant strength. For composite
with non-continuum fibers, the mechanics of strengthening the matrix occurs similarly to
those of the reinforced by particles. However, the fiber can be aligned with the load axis
and provides more specific strength (CALLISTER et al., 2007).

• Structural: These are normally used where better performance is mandatory. The prop-
erties do not depend on the materials used, but the geometry too. Thus, the principal
examples of this class are laminated and sandwich panels (CALLISTER et al., 2007). Ac-
cording to Jones (1999), the laminate is composed of different materials lamina, with
fibers continuum and oriented in a direction, which has a significant influence in its me-
chanical behavior. Sandwich Panels has two outer sheets, or faces, separated and bonded
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with a thicker core. The fundamental idea is that most of the load is absorbed by the
outer sheets, where commonly a more rigid material is used, such as reinforced plastics,
for example. While the core has no structural function, so polymeric materials with low
elastic modulus are often found (CALLISTER et al., 2007).

3.3 Damage and failure on composite materials

Even presenting several advantages in engineering applications, especially in the aero-
nautical and aerospace industry related to metals, this class of materials has the disadvantage
of susceptibility to damage, losing much of its structural integrity when they occur. Therefore,
damage can occur in different ways; during the processing of the raw material, part manufac-
ture, handling, transportation, storage, maintenance, or in service. The possible damages in
this type of material are fiber discontinuities, porosity, delamination, areas poor or rich resin,
or in operations involving abrasion, erosion, the impact of hail, stones, and birds. Also, it must
be taken into account that the damage is not always visible, but can reduce the resistance of a
certain component significantly, and, in cases where damaged components are exposed to the
effects of the environment such as temperature, environment, humidity and/or ultraviolet ra-
diation, there may be a significant increase in the degradation of its physical and mechanical
properties (REZENDE, 2007).

Figure 3.2 – Failures mechanism on laminated composite materials.

Source: (ANDERSON; ANDERSON, 2005)

Therefore, the main damages and failure mechanism are described:

1. Pull-out: It is expected that the laminated has good adhesion between fiber and matrix,
providing higher load transfer, which yields strength along the cross-section. However,
once these phases do not have suitable adhesion, it is inevitable the fiber slips, character-
izing the pull-out phenomenon, causing loss of mechanical properties (TALREJA; SINGH,
2012).
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2. Fiber Bridging: It occurs when the fiber is very strength. Hence, even the matrix is
ductile and has a suitable interface, the crack caused by bubbles or void propagates, such
that the fibers form a kind of bridge connecting the intermediate surfaces of the matrix
causing stress concentrators (TALREJA; SINGH, 2012).

3. Fiber/Matrix Debonding: Thermomechanical loading is a significant contributor to this
type of failure. Considering that the resin shrinks during the cooling phase, residual
stresses are generated, resulting in the detachment between the phases. The performance
in the load transfer along the section of the blade is impaired, which can cause failure.
Such defect is extremely difficult to be detected by the naked eye, or by other visual tools
(TALREJA; VARNA, 2015).

4. Fiber Failure: When failures occur in the weak points of the fibers, redistributing the
load in the cross-section in a non-uniform manner, which can overload the neighborhood,
causing the breakage of other fibers. As a consequence, the tensile strength of the laminate
drops significantly (TALREJA; SINGH, 2012).

5. Matrix Cracking: It is one of the most severe types of damage that occur in the com-
posite laminated, which can result in other types of damage such as fiber breakage and
delamination. Therefore, cracks start in sharp corners, voids, distortions, or other stress
concentrators, which coalesce until the properties offered by the matrix are definitively
lost (TALREJA; VARNA, 2015).

6. Delamination: It corresponds to the separation of adjacent layers by shearing stresses
in the layer plane is considered the most critical damage mechanism for composite de-
sign because it is barely vision. Some factors can lead to delamination initiation such as
manufacturing by cutting and drilling operations, for example. A geometrical configura-
tion such as curved segments, transitions, sudden changes of section and inclusion, even
low-impact (SRIDHARAN, 2008).

3.4 Damage tolerance on composite materials structures

Damage tolerance was introduced in the 1970s for civil aircraft structures. According
to Heida and Platenkamp (2012), the fundamental points are that flaws already exist in the
structure as manufactured and that the structure may be inspectable or non-inspectable in ser-
vice. Non-inspectable structures must be designed in such a way that the initial damage will not
propagate to a critical size (causing failure) during the design service life. For inspectable struc-
tures, the initial damage must grow slowly and not reach a critical size in some predetermined
inspection intervals. In this context, the projects are developed from the determination of Limit
Load (LL) and Ultimate Load (UL). The first is defined as the load where the structure does not
present any damage, while the second admits that damage occurs, without catastrophic failure.
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Nevertheless, as the damage is inevitable and can evolve under fatigue solicitations, reducing
resistance to a level below UL, the following recommendations must be followed in direction
to increase the security of the application:

• It is recommended that even damaged the residual strength of the structure must remain
above LL.

• Any damage that leads to a reduction in residual resistance below UL must be quickly
detected and repaired so that the resistance stands above UL.

Figure. 3.3 shows the difference between damage tolerance in structures of metallic and
composite materials. It can be seen that the damage progression. According to Fig. 3.3(a), it can
be seen that the damage evolution in metallic materials occurs slowly, which allows monitoring
through periodic inspections so that interventions are carried out before UL is less than LL,
and reaches the critical level of damage. On another side, composite structures, when damaged
present high residual strength loss instantly (Fig. 3.3(b)), which demands more conservative
actions. FAA (2011) determines that the time of a composite material structure below UL
should be less critical than for a metallic structure. It is necessary, therefore, to prove that UL
always remains above the LL (except in some special cases). Additionally, it is essential that the
damage is identified in its initial stage, so that repairs can be carried out, increasing its residual
resistance, consequently, the safety of the structure (SILBERSCHMIDT, 2016).

Figure 3.3 – (a) General principle of damage growth and repair of metallic and (b) composite
materials.

(a)

(b)



44

It becomes very important because, when subjected to impact, composite materials have
high sensitivity to the appearance of sub-surface damage that is barely visible (BVID) or even
without any visible mark impact, as Fig. 3.4 shows. Impact damage is the most significant type
of in-service damage affecting the structural strength, such that a laminate can lose up to 65%
of its undamaged static strength (HEIDA; PLATENKAMP, 2012). In this way, composites one up
being normally over-sized, presenting residual resistance on the effects of damage.

Figure 3.4 – Cross-section of an impact damaged carbon-epoxy laminate.

Source:(HEIDA; PLATENKAMP, 2012)



Chapter 4

Rolling Bearings

4.1 Introduction

The term rolling bearing is used to describe the classes of mechanical components re-
sponsible for transfer the main load trough elements in rolling contact rather than in sliding
contact. These elements must be designed to fit into space whose dimensions are specified, to
receive a specific load, and to have a higher life when operated under the specified conditions.
Thus, it can be found in different models, depending on the design load; pure thrust radial loads,
pure thrust loads, or a combination of them (SHIGLEY, 2011). Therefore, the most used bear-
ing is balls and roller bearings. It has different setups according to rolling element geometry
such as deep groove ball bearings (BB), angular contact BB, cylindrical roller bearings (RB),
spherical RB, needle RB and tempered RB. Figure 4.1 shows a ball bearing illustrating the main
components. The balls are held in a polyamide cage and are supported by the inner and outer
raceways. To keep lubricating grease inside the bearing and to protect the bearing from hard
particle contaminants from outside during the operation, two lip seals and shields are installed
at both sides of the bearings (NGUYEN-SCHÄFER, 2016).

Present in rotating machinery to perform a rotational or linear movement of various
sub-components while reduces friction and stresses. Therefore, rolling bearings have several
industrial applications in different fields as the petroleum industry, automotive, and food pro-
cessing, for example. It is crucial inside the production chain, and when it fails, the higher
financial loss can occur. Due to it, during the years, different maintenance techniques were
developed to avoid catastrophic failures and control financial losses. There are three primary
approaches for bearing fault diagnosis, namely Reactive maintenance, Preventive maintenance,
Predictive maintenance, and Proactive maintenance (PATIL et al., 2016).

• Reactive Maintenance: This type of maintenance focuses on replacing the component
only when it fails, which usually results in reduced safety, unforeseen downtime of pro-
duction assembly lines, and higher cost.

• Preventive Maintenance: On the other hand, preventive maintenance focuses on strate-
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Figure 4.1 – Components of deep-groove ball bearings.

Source: (NGUYEN-SCHÄFER, 2016)

gic planning, which imposes some corrective activities at pre-established time intervals,
even without knowing the current condition of the bearing. This approach is better than
the previous one, but it demands a high cost in maintenance activities and is not necessar-
ily more efficient.

• Predictive Maintenance: The strategy is to take action when the rolling bearings show
certain behaviors that usually result in a failure or degraded performance.

• Proactive Maintenance: As an addition to Predictive Maintenance, Proactive Mainte-
nance focuses on not just identifying the failure, but the root causes. Industrial plants that
have matured preventive and proactive maintenance approaches pay a lot of attention to
real-time condition monitoring and diagnosis to implement corrective measures promptly,
as early as possible.

However, if applied useful tools to damage detection in the rolling bearings, conse-
quently, more effective and productive will be a system where it is inserted, suggesting a study
more deeply about damage defects and their features.

4.2 Rolling bearings diagnosis

Bearing defects can be classified in localized and distributed. The localized defects
include cracks, pits, and spalls caused by fatigue on the rolling surfaces, while distributed are
surface roughness, waviness, misaligned races, and off-size rolling elements. These defects
may result from manufacturing errors and abrasive wear from, sometimes, improper installation
(CHOUDHURY; TANDON, 1998).
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As mentioned, machinery condition is straightly related to defect presence on bearings,
and their smooth performance is vital for the proper functioning of the machine. Therefore, sev-
eral techniques for the detection of defects in rolling bearings are currently available based on
changes caused in the mechanical properties of the component, which consequently affects its
performance. These include vibration and acoustic measurements like overall level, statistical
parameter as kurtosis, spectral analysis, high-frequency resonance, shock pulse, sound, acoustic
emission, and oil monitoring such as spectrograph analysis, particle counting, ferrography, and
chip detection. Above all, the most efficient technique used was vibration and acoustic mea-
surements though sensibility in the signal response for damaged components (TANDON; NAKRA,
1992).

4.2.1 Time-domain approach

According to Tandon and Choudhury (1999), the simplest approach in time-domain used
to rolling diagnosis are to measure the overall Root-Mean-Square (rms)

rms =

√√√√ 1

n

n∑
i=1

(yi)
2, (4.2.1)

and Crest Factor

XCf =
ypeak
rms

, (4.2.2)

i.e., the ratio of peak value to RMS value of acceleration. However, even though it is widely
applied, this method is not efficient in detecting localized defects. Farrar and Worden (2012)
shown that vibratory response of a healthy structure excited in the time-domain approximates
data generated randomly via normal or Gaussian distribution of probabilities shown in Fig. 4.2.

Figure 4.2 – Gaussian distribution.
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Hence, when faults and other anomalies occur, the acceleration increases and the changes
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the probability distribution. Such that, statistical moments of data can be used as feature extrac-
tion and damage sensitive

My =

∫ +∞

−∞
yiP (y)dy i = 1, 2, ...,m, (4.2.3)

where P (y) is the probability density function of instantaneous amplitude y, and i corresponds
to the order of the moment. The first and the second moment are the mean

y =
1

n

n∑
i=1

yi. (4.2.4)

And variance,

σ2 =
1

n

n∑
i=1

(yi − y)2 . (4.2.5)

The third is known as skewness

γ =
1
n

∑n
i=1(yi − y)3

σ3
, (4.2.6)

and fourth is called kurtosis

κ =
1
n

∑n
i=1(yi − y)4

σ4
. (4.2.7)

Mean and Root-Mean-Square measures the central tendency. When the response vi-
bration signal present irregularities, alters both parameters. Mean is more sensitive to damage
existence, while the other to the damage level because the mean value is sensitive to outliers.
So a few extreme data points can influence this parameter, and sometimes, it suggested the use
of median. The second moment in terms of variance and Standard deviation measures the dis-
persion around the mean of the times-series amplitudes. For a fixed level of excitation, it will
increase with the level of damage. Skewness is related to the asymmetry of the random signal
distribution. When this value moves away from zero means that there is non-linearity in the sys-
tem, which may indicate plastic deformation and, consequently, the appearance of damage. In
this way, Kurtosis measures the peaked nature of the response distribution, where 3 is the value
expected for a Gaussian response. As with skewness, Kurtosis can also show an inconsistent
tendency regarding the magnitude of the damage. Besides, the K-factor

XK = ypeak · rms, (4.2.8)

is used to assess the deviation from the sinusoidal response in a rotating machine, which has the
sensibility to the damage location (FARRAR; WORDEN, 2012).
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4.2.2 Frequency-domain approach

An alternative to detect defects in bearings is using the frequency domain. Considering a
specific failure type occurs, localized impulses happen significantly increasing the signal ampli-
tude, at a determined frequency, i.e., certain failure type is associated with a specific frequency.
A bearing with several rolling elements generates dynamic forces with a single characteristic
frequency, called rolling element passing frequency. Whenever a rolling element passes close
to a machine part vibrations are excited in part. The damaged bearing spectrum and reference
spectrum for undamaged bearing are required to be compared for increase amplitude at the de-
fect frequency (DHAMANDE; CHAUDHARI, 2017). Hence formulas defining the characteristics
frequencies for damages located on the rolling elements as well as on the inner and outer races
can be found by

BPFO =
N × n

2

(
1− d

D
cos(b)

)
, (4.2.9)

BPFI =
N × n

2

(
1 +

d

D
cos(b)

)
, (4.2.10)

BSF =
N

2

D

d

(
1−

(
d

D
cos(b)

)2
)
, (4.2.11)

FTF =
N

2

(
1− d

D
cos(b)

)
. (4.2.12)

Figure. 4.3 shows the localization of each frequency, where BFFO and BPFI denote
Ball Pass Frequency Outer and Ball Pass Frequency Inner, respectively. BSF and FTF denote
Ball Spin Frequency and Fundamental Train Frequency, respectively. N is shaft speed, n is the
number of rolling elements, D is the pitch circle diameter of rolling element, and b the contact
angle.

Figure 4.3 – Frequencies for each ball bearing component.

Source: (DHAMANDE; CHAUDHARI, 2017)
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Figure 4.4 – Main steps of machinery diagnosis.
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4.2.3 Automated bearing diagnosis

All the assessments showed above depending on the action of a human being for deci-
sion making, which requires training a technician who is capable of carrying out the process.
Recently, with the advancement of technologies in the development of pattern recognition tools,
automatic models have been developed, excluding the need for a human being in the process.
Considering that the vibration signature has differences for intact and damaged bearings, the
main idea is to use the features extracted via tools as Wavelet Transform (WT), Fast Fourier
Transform (FFT) analysis, for example, to automated classify the bearings state. Therefore, it
includes some tasks in Fig. 4.4, i.e., given a machine in operation, showing vibration, an associ-
ated signal can be obtained, and from there, a feature extraction tool is applied, compressing the
information so that it is used to train a computational model. After carrying out the appropriate
training for this model, and reaching the acceptable level of learning, it can be used to diagnose
failures automatically (SUN et al., 2017).



Chapter 5

Pattern Recognition

5.1 Introduction

Pattern recognition can be understood as a process of automatic identification of regu-
larities in a data set, based on the characteristics presented by each class. This is a task that
accompanies human beings for thousands of years on the planet and fundamental for its evolu-
tion since it is present in the voice, faces, food, weapons, and manuscripts recognition (DUDA et

al., 2012).
In recent years, the demand for higher productivity in the industry has served as propul-

sion for the plant automation process, replacing humans by machines in manual tasks. How-
ever, with the resources presented by modern computing concerning information processing,
the concepts of pattern recognition were assimilated and started to incorporate statistical mod-
els capable of training machines to perform activities like humans. In this case, the machine
does not only perform a programmed task as in automation but has the autonomy to make de-
cisions based on the learning (PRASAD, 2014). According to Bishop et al. (1995), significant
remarks are necessary: Data processing and feature extraction are crucial in solving pattern
recognition problems. However, when an inappropriate tool is used, important information may
be lost during this phase, making the classifier’s task more difficult. Another consideration to
use efficiently pattern recognition is that the data set must be large enough to identify the fea-
tures. However, depending on the type of problem, the number of samples can be a limiting
factor such as damaged or destroyed objects and medical tests, where evasive examinations are
required.

Regarding the aspects pointed above, in this chapter, a brief review of Artificial Neural
Networks will be carried out, in the context of pattern classification problems, showing their
main properties, and how it can be used to solve classification problems, with emphasis on the
simple Perceptron model and Multilayer Perceptron (MLP).
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5.2 Artificial Neural Networks

Artificial Neural Networks have foundations in several areas such as neuroscience, math-
ematics, statistics, computer science, and engineering, so it has become a powerful tool for
solving complex problems in several areas, which gives it a high degree of multidisciplinary.
Modeling, pattern recognition, time-series analyses, signal processing, and control are prob-
lems that can be solved by the Neural Networks application, due to its ability to learning from
examples of the input data. As studies on the human brain progressed discovers that its process-
ing information happened from a network of units called neurons, connected one by another
via axons (transmission lines) and dendrites (receptive zone), the connecting regions between
axons and dendrite are called synapses, as shown in Fig. 5.1(a). The synapse is a key piece
in information processing, and the most common is the chemical synapse that occurs when a
pre-synaptic process releases a transmitting chemical substance that diffuses through the synap-
tic junction between neurons and acts resulting in an electrical output signal (HAYKIN, 2007).
Following these ideas, the biological mechanism is represented by an artificial neuron, where
weights are attributed for each signal component, simulating the synapses from the biological
one (Fig. 5.1(b)). In this way, the input data is propagated to the network output, and the
learning occurs from the adjustment of them (AGGARWAL, 2018).

Figure 5.1 – From the biological neuron model to the artificial used in the Neural Networks.

(a) Biological Neuron Network. (b) Artificial Neuron Network.

Source: (AGGARWAL, 2018)

5.2.1 Perceptron Model

The simplest network model was proposed by Rosenblatt (1958), known as the Percep-

tron Model or Rosenblat’s Perceptron shown in Fig. 5.2. It is a feed-forward network because
the information is transferred from input to output layer, such that the neuron is considered a
receptive field able to inhibit or activate the input signal, following the on or off theory devel-
oped by McCulloch and Pitts (1943). This study was fundamental for the development of more
complex models because it introduces signal processing in a neuron.
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Figure 5.2 – Perceptron model.

Author’s production.

Then, the simple Perceptron works as follow: the input signal is a vector {x1, x2, ...xm},
such that each element is multiplied to a correspondent synaptic weight and added by a linear

combiner

u =
m∑
j=1

wjxj, (5.2.1)

the result of linear combiner u is added to bias b, generating what is called local induced field

v, providing the potential activation, once that it follows for activation function ϕ(.), and it can
be inhibited or excited depending on the output network y obtained

v = u+ b, (5.2.2)

y = φ(v). (5.2.3)

In this way, the weights and bias (parameters that make up the neuron model) can be
adjusted, so each the input xj is correctly mapped to an output y. The bias b is responsible
to shift off the hyperplane, modifying the relation among locally induced field v and linear
combiner output u as shown in Fig. 5.3. It represents constants in the system.

Mathematically, the neuron’s output by on or off modeling is represented as

yk =

{
1, if

∑m
j=1wkjxj + bk > 0,

0, Otherwise
, (5.2.4)

being 1 if its induced local field is non-negative, activating the neuron, and 0 otherwise, inhibit-
ing the signal. It permits classifications between two linearly separable classes, such as AND
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Figure 5.3 – The relation between the induced local field and linear combiners output.

Adapted from Haykin (2007)

and OR problems, presented in Fig. 5.4.

Figure 5.4 – AND/OR classification.

Source: (VÖLTZ, 2019)

5.2.1.1 XOR-exclusive problem

One of the limitations of the perceptron model is the inability to classify input pat-
terns that are non-linearly separable. This situation arises, for example, in the problem of OR-
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exclusive (XOR), which as a particular case of a more general problem, such as classifying
points in a hypercube (HAYKIN, 2007).

Assume a unit square whose vertices correspond to the entries (0, 0), (0, 1), (1, 1), (1, 0).
Therefore, using the Boolean operator ⊕ representing the OR-exclusive function, the following
results are obtained

0⊕ 0 = 0,

1⊕ 1 = 0,

1⊕ 0 = 1,

0⊕ 1 = 1.

Thus, (0, 0) e (1, 1) belong to class 0, while (0, 1) and (1, 0), located at opposite vertices
belong to class 1. As previously seen, in the case where two patterns are linearly separable, by
adjusting the weights and bias a line establishes a decision boundary, separating the different
classes. However, in the case of XOR, it is clear that with the location of points belonging to
the same pattern at the vertices, only one line can not be able to correctly define appropriate
decision boundary according to the (c.f. Fig. 5.5), where a straight line acts to separate different
classes, but always there is an error because of the points on the vertex (HAYKIN, 2007).

Figure 5.5 – Error in the classification of points located at the vertices of a unit square, charac-
terizing the XOR-problem.

Author’s Production. Adapted from (HAYKIN, 2007)

This problem can be solved by using at least one more layer of neurons in the network.
In this way, as the information spreads from the input layer to the output layer, this intermediate
neuron has the function of adding non-linearity to the system, allowing the following decision
boundary in Fig. 5.6 to be formed by the network, solving the problem of XOR.
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Figure 5.6 – Correct boundary decision obtained when an additional neuron layer is added to
the network, solving the XOR-problem.

Author’s Production. Adapted from (HAYKIN, 2007)

5.2.2 Activation Functions

Activation functions play a fundamental role in the exercise of neural networks, defining
the neuron’s output. However, there are different types of functions, each one with specific
properties that must be considered to solve a problem. In general, they can be classified into
partially differentiable and fully differentiable Silva et al. (2010).

5.2.2.1 Partially differentiable activation functions

The main property of this type of function is that it does not have a first-order derivative
at some points throughout its domain, as it has discontinuities. The most common are step,
bipolar step, and a symmetric ramp function. A more detailed explanation of each is provided
below:

• Heavy-side/hard limiter: For this function, positive unit values are assumed when the
neuron activation potential is greater than or equal to zero. Otherwise, null results will be
obtained as

φ(v) =

{
1, se v ≥ 0

0, se v < 0
, (5.2.5)

corresponding to Fig. 5.7.
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Figure 5.7 – Heavy-side/Hard limiter.
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• Symmetric hard limiter: It is similar to the heavy-side function. However, it allows a
negative unit to be evaluated when the function domain is also negative. Mathematically
can be described as

φ(v) =


1, se v > 0

0, se v = 0

−1, se v < 0

, (5.2.6)

followed by the graphic representation in Fig. 5.8.

Figure 5.8 – Symmetric hard limiter
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• Symmetric ramp function: The values returned are equal to the values of the activation
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potentials themselves when they are defined in the range [−1, 1], being restricted to the
limit values otherwise. In mathematical notation, therefore:

φ(v) =


1, se v > 1

y, se − 1 ≤ v ≥ 1

−1, se v < −1

. (5.2.7)

It can be seen in a graphic representation, as shown in Fig. 5.9.

Figure 5.9 – Symmetric ramp function.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

v

φ
(v

)

Symmetric ramp function

Author’s Production

5.2.2.2 Fully differentiable activation functions

The fully differentiable activation functions are those that present first-order derivatives
for all points in the domain and has the important role of the apply non-linearity to the system.
Commonly, in applications in neural networks, the logistic, hyperbolic, and linear functions are
employed.

• Linear Function or identity: The linear function results in output values identical to the
activation potentials v. It is the most simple differentiable activate function, commonly
used in output neurons when the target is a real value. Mathematically it is defined as,

φ(v) = v, (5.2.8)

and represented by a straight line in Fig. 5.10
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Figure 5.10 – Identity.
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• Sigmoid (σ): The sigmoid activation has real numbers in an interval [0, 1], helps perform
computations that should be interpreted as a probability and has the sensibility to β used,
then, for higher values, it will be closer to heavy-side. This function is written as

φ(v) =
1

1 + e−βv
, (5.2.9)

and represented by the curve seen in Fig. 5.11.

Figure 5.11 – Sigmoid (σ)
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• Tanh: As an alternative to the logistic function, this type of function presents values in the
interval [−1, 1], where the parameter β influence the curve similar to the one previously
demonstrated. However, in this case, it is closer to the symmetric hard limiter. The
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tanh function is recommended when are desired both positive and negative output. It is
represented by the equation

φ(v) =
1− e−βv

1 + e−βv
, (5.2.10)

and the following Fig. 5.12.

Figure 5.12 – Tanh.
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Sigmoid and tanh are the most used functions to insert non-linearity into artificial net-
works. However, in the last years, according to Aggarwal (2018), several piecewise linear
activations functions have become popular as ReLU and Hard tanh because of the ease pro-
vided to train complex networks. Respectively, their functions are mathematically represented
by

φ(v) = max{v, 0}(Rectfied Linear Unit [ReLU]), (5.2.11)

φ(v) = max{min[v, 1],−1}(Hard tanh). (5.2.12)

Their representations are exposed in Fig. 5.13.
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Figure 5.13 – Activation functions that have become popular recently.
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5.2.2.3 The Softmax Function

The softmax activation function forces the output of the neural network to represent the
probability that the input falls into each class. Without the softmax, neuron’s outputs are simply
numeric values, with the highest indicating the winning class. In the softmax equation below, i
represents the index of the output neuron calculated, and j all neurons in the level/group, while
the variable z designates the array, which contains the information of other output neurons

φi =
ezi∑
j∃ezj

. (5.2.13)

In practice, to solve pattern classification problems using neural networks requires the
use of this type of function in the neurons that make up the output layer, when partially differen-
tiable functions are used. Differently from previously activation functions presented, softmax
is only used in the output layer and uses the information of other neurons directly (HEATON,
2015).

5.2.3 Multilayer Perceptron (MLP)

As previously seen, Perceptron networks with only one neuron layer for processing in-
formation from the input signal are, in a way, limited for solving complex problems. Therefore,
the approach used to make networks more robust and able to be applied for more complex
problems is inserting more layers and neurons, defining a new concept called the Multilayer

Perceptron (MLP) model. As a fundamental characteristic, this type of network has at least one
hidden layer between the input and output layers. Also, it allows the existence of more than one
neuron in the output layer, which gives the ability to solve extremely complex problems (SILVA
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Figure 5.14 – Classical Multilayer Perceptron Model.
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et al., 2010).
MLP can be understood as a generalization of the Perceptron model, and thus, it has

the characteristic of being a network of the type feed-forward. In addition, it is important to
highlight three other characteristics:

1. The neurons of this network include a non-linear activation function, inserting non-linearity,
which is an important property for learning.

2. The hidden layers in MLP enable the network to learn complex tasks, progressively ex-
tracting the most significant features from the input patterns.

3. The networks are highly connected, and the modification of the weights of a neuron
changes the whole set.

The combination of these characteristics, leverage MLP networks to solve hard prob-
lems. However, they are responsible for some deficiencies presented by the model. The dis-
tributed non-linearity and high connectivity between neurons make a theoretical analysis of
multilayer perceptron difficult. Second, the use of hidden layers considerably increases the size
of the solution space, which can make it difficult to learn the network (HAYKIN, 2007).

5.2.4 Supervised Learning

This type of learning, also known as learning with a teacher is based on feeding the
network in pairs of data, contenting the input, and correspondent output
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[Data] =

{x1, ..., xk}︸ ︷︷ ︸
Input

; {z1, ..., zk}︸ ︷︷ ︸
Output

 k = 1, 2, ...n. (5.2.14)

From Eq. 5.2.1-Eq.5.2.3, using the weights {w} and bias {b} through feed-forward network,
the output an is evaluated for a MLP. Therefore, it is possible to establish an error function to
measure the distance between predicted an and expected zn values. Thus, supervised learning
concerns to adjust the bias and weight values in direction to minimize the error evaluated.

There are different ways to evaluate the error. However, one of the simplest commonly
used is the mean square error

MSE =
1

2

n∑
k=1

(zk − ak)2 =
1

2
‖z− a‖. (5.2.15)

This function evaluates the distance among z and a in the euclidean field by the norm-p for
p = 2. Then, with the parameters determined for each neuron, in each layer, the final output z
is evaluated, and compared to the expected result a. The error obtained in the last layer returns
to the previous, so the adjustments of the weights and bias are carried out in proportion to
the sensitivity of the function, about to the weights and thresholds through the so-called back-

propagation algorithm (BISHOP, 2006). This technique feeds back the error in the network,
from the neurons of the output layers to the intermediate ones, allowing the weights and bias
to be adjusted. Thus, the node delta δi is the value calculated for each node, and they take into
account the error function for the neural network. Thus, for the mean-square function

δk = (zk − ak)φ′k. (5.2.16)

It is possible to observe that when the quadratic error function is used, the appropriate ad-
justment of the weights can become slow, due to the small steps coming from the very small
gradient (φ′k) as it approaches the minimum error (BISHOP, 2006). Hence, Cross-entropy (CE)
is an interesting alternative to fix this problem

CE = − 1

n

n∑
k=1

(zklnak + (1− zk)ln(1− ak)). (5.2.17)

Using CE, the node delta turns less complex than the mean-square error, because does
not have an activation function derivative component

δk = (zk − ak) . (5.2.18)

Thus, this error function will require much fewer gradients calculations (HEATON, 2015).



64

5.2.4.1 Back-propagation algorithm

The learning algorithms are optimization-based mechanisms to minimize the error eval-
uated in the network, by updating the weights corresponding to the neurons. Therefore, the
most used is the back-propagation. Thus, considering as an optimization problem, several meth-
ods can be applied to solve the problem, the most common among them is the Steep Descent
method, which uses the negative direction of gradient function for minimization

{X}i+1 = {X}i − λi{∇f (Xi)}, (5.2.19)

where f is the function to be minimized, and λi, the step which {X}i+1 is updated (RAO, 2009).
In deep learning, the function will be the error, bias turns out a constant input x0 = +1 with
wj0 = bj(n), n is the number of the epoch which the weights were updated for a complete
evaluation of the dataset and η called learning rate. Therefore, the Eq. (5.2.19) can be rewritten

{wt+1} = {wt} − η {∂E(n)

∂w
}︸ ︷︷ ︸

∆w

, (5.2.20)

in general, {∆w} is the proportion of updating the weights, known as the delta rule. The partial
derivative is treated as a sensitivity factor, and according to the Steepest method. Applying the
chain rule,

∂E(n)

∂wki
=
∂E(n)

∂ek(n)

∂ek(n)

∂ajk(n)

∂ak(n)

∂vk(n)

∂vk(n)

∂wki(n)
, (5.2.21)

whose ej(n)is the signal of the error obtained at the output of the neuron k, defining the value
of the instantaneous energy of the error,

ek(n) = zk(n)− ak(n), (5.2.22)

which is related to E in the output layer,

E(n) =
1

2

∑
k

e2
k(n), (5.2.23)

and determine the local gradient or node delta δk

δk(n) =
∂E(n)

∂vk
. (5.2.24)

Therefore, by calculating the successive derivatives explained in the chain rule, the equa-
tion corresponding to the minimization direction is defined,

{∂E(n)

∂w
} = −e(n)φ′(v(n))a(n). (5.2.25)

However, optimization methods based on the gradient have the disadvantage of being
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sensitive to the existence of local minimums, consequently, can offer difficulties during the
network training. Then, it becomes convenient to use the momentum α to reduce this effect
(HAYKIN, 2007). Therefore, the weights update becomes

{wt+1} = {wt}+ α{wt − wt−1} − η{∂E(n)

∂w
}. (5.2.26)

The idea is to consider how much the synaptic weights change between two successive
iterations. Considering the optimization method, many epochs can be taken, which increases
the possibility of finding a minimum location along the way. When the current solution is far
from the minimum, the difference between them becomes great, the momentary term will act
as a brake on updating the weights, in an attempt to avoid convergence to a local minimum.
Otherwise, as this value becomes small, approaching the minimum, the momentum influence
will be almost zero. Thus, the use of this term tends to improve the training convergence of the
network (SILVA et al., 2010).

5.2.4.2 Stochastic Gradient

Understood as an optimization process, the network weights adjustments searches for a
set of parameters that minimize the error evaluated between the target and network output. How-
ever, as the complexity of the problem increases with the number of hidden layers, the amount
of data and neurons used, the error is described by a more complex function, consequently,
presenting non-convexity properties. In this case, algorithms used for training would have a
significant influence on network performance. According to Goodfellow et al. (2016) the use
of a stochastic gradient can improve it significantly. The insight is that the gradient can be esti-
mated using a small set of samples. Thus, taken mini-batch of examples B = {z1, z2, ..., zm′ , }
from training set

{g} =
1

m′
{∇w}

m′∑
k=1

E(zk, ak, w), (5.2.27)

such that m′ < m, where m is the total samples. Thus, the weights adjustment follows the
estimated gradient downhill

{w}k+1 ← {w}k − η{g}k. (5.2.28)

5.2.4.3 Algorithms with Adaptative Learning Rate

One of the recent advances in neural network models is the use of adaptive learning,
which has less influence on the value adopted for hyper-parameters, such as learning rate and
momentum. The main idea of these algorithms is to separate learning rates for each term in the
gradient so that they automatically adjust to the natural learning course. The most commonly
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used are AdaGrad, RMSprop, and ADAM (GOODFELLOW et al., 2016). The particularities of
each one is discussed below, as well as respective algorithms.

• AdaGrad: In this algorithm, the parameters are updated according to the square root of
the summed squares of the gradient. Therefore, the directions that show the largest partial
derivatives have a decrease in the learning rate. The AdaGrad enjoy some desirable tech-
nical properties to solve non-convex problems. However, empirically it has been found
that - for training deep neural network models - the accumulation of squared gradients
from the beginning of training can result in a premature and excessive decrease in the
effective learning rate (GOODFELLOW et al., 2016).

Algorithm 1 AdaGrad algorithm.
Require: Global Learning rate η
Require: Initial parameters {w}

Initialize δ = 10−7 r = 0

while stopping criterion not met do
Sample a mini-batch of m examples from the training set

(
{x(1)}, ..., {x(m)}

)
with corre-

sponding targets {z(i)}
Compute gradient: {g} ← 1

m′{∇w}
∑m′

k=1E(zk, ak, w)

Accumulated squared gradient: {r} ← {r}+ {g} � {g}
Compute update: ∆w ← − η

δ+
√
r
� {g} (Division and square root applied element-wise)

Apply update {w} ← {w}+ {∆w}
end while

• RMSProp: As a property, AdaGrad converges quickly in convex cases, and it has an
impact on the performance of the deep neural network train. Thus, RMSProp uses an
exponentially decaying average to discard history from the extreme past so that it can
converge rapidly after finding a convex bowl as if it were an instance of the AdaGrad
algorithm initialized within that bowl. RMSProp is an efficient and practical optimization
algorithm for deep neural networks (GOODFELLOW et al., 2016).
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Algorithm 2 RMSProp algorithm.
Require: Global Learning rate η, decay rate ρ
Require: Initial parameter {w}
Require: Small constant δ = 10−7 for numerical stability

Initialize gradient accumulation variable r = 0

while stopping criterion not met do
Sample a mini-batch of m examples from the training set

(
{x(1)}, ..., {x(m)}

)
with corre-

sponding targets {z(i)}
Compute gradient: {g} ← 1

m′{∇w}
∑m′

k=1E(zk, ak, w)

Accumulated squared gradient: r ← ρr + (1− ρ){g} � {g}
Compute update: {∆w} ← − η√

δ+r
�{g} (Division and square root applied element-wise)

Apply update: {w} ← {w}+ {∆w}
end while

• Adam: Adam is an algorithm for first-order gradient-based optimization of stochastic ob-
jective functions, based on adaptative estimates of lower-order moments. The method is
also appropriate for non-stationary objectives and problems with high noise and/or sparse
gradients. If the function is differentiable, its parameters, gradient descent is a relatively
efficient optimization method, since the computation of first-order partial derivatives all
the parameters is of the same computational complexity as just evaluating the function
(KINGMA; BA, 2014).

Algorithm 3 The Adam algorithm.
Require: Global Learning rate η (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, ρ1 and ρ2 in [0, 1). (Suggested de-

faults: 0.9 and 0.999 respectively)
Require: Initial parameters {w}

Initialize small constant δ used for numerical stabilization. (Suggested default: 10−8

Initialize 1st and 2nd moment variables s = 0, r = 0.
Initialize time step t = 0

while stopping criterion not met do
{g} ← 1

m′∇w
∑m′

k=1 E(zk, ak, w)

t← t+ 1

Update biased first moment estimate: {s} ← ρ1{s}+ (1− ρ1){g}
Update biased second moment estimate: r′ ← ρ2{r}+ (1− ρ2){r}
Correct bias in first moment: s′ ← s

1−ρt1
Correct bias in second moment:r′ ← r

1−ρt2
Compute update: ∆w = −η s′√

r′+δ
(operations applied element-wise)

{w} ← {w}+ {∆w}
end while
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5.2.4.4 Generalization

In general, the main objective of a neural network is to make good predictions of a
system, to make a generalization of the prediction model. The learning process can be seen as
an adjustment of the curve that represents the input/output mapping over the network. In this
way, it can be said that a network was generalized when samples that have not been used in
the training step presents correct results. Figure 5.15(a) shows how generalization occurs in a
neural network, fitting the training data along a curve, representing an interpolation problem.
Therefore, in the case where this curve that represents a non-linear mapping is smooth, good
predictions are realized, otherwise, such as Figure 5.15(b), the non-linear mapping is over-
fitted, and cannot generalize. Generalization is influenced by factors such as: (1) the size of the
training set, and how much it represents the system in question, (2) the network architecture,
and (3) the physical complexity of the problem. It must be agreed, therefore, that there is no
control over the latter term. Then, for a good generalization to be achieved it will be necessary
to use good architecture and representative training set (HAYKIN, 2007).
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Figure 5.15 – The generalization problem is seen as an interpolation that performs the mapping
between input and output data.

(a)

(b)

Author’s Production: Adapted from (HAYKIN, 2007).

5.2.5 Unsupervised Learning

Different from the previous approach, where the data set to train the classification model
used was labeled, defined as learning with a teacher, once that in the training phase each input
has an associated output. Unsupervised procedures use unlabeled samples, without being told
their classes before (DUDA et al., 2012). However, in engineering applications, this approach
may be very useful. According to Verstraete et al. (2020), labeling output requests a significant
investment, in addition to limiting the model’s generalizability, because the solution is restricted
to the engineer’s knowledge.

Figure. 5.16 shows as clustering algorithm work in a dataset, finding groups of items
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that are similar through their features. For example, an insurance company might group cos-
tumes according to income, age, types of policy purchase, or prior claims experience. In fault
diagnosis, a different failure type might be grouped according to the values of certain variables
keys (BRAMER, 2007).

Figure 5.16 – Clustering data.

Source: (BRAMER, 2007)

5.2.6 Bias and variance trade-off in ANN application

A common problem in the Artificial Neural Network (ANN) application is to determine
the number of neurons and layers needed for a good fitting in the data set and, therefore, a
suitable generalization. The key to understanding this problem and knowing how to get around
it is to decompose the network error (supervised-learning) into two components called bias

and variance. It is convenient to use the sum-of-square error without losing the generality of
the conclusions to be taken. Considering that the network has only one output denoted by the
function y(x), the sum-of-squares error at the limit of an infinite set of data can be written in
the form

E =
1

2

∫
{y(x)− 〈t|x〉}2p(x)dx+

1

2

∫
{〈t2|x〉 − 〈t|x〉2}p(x)dx, (5.2.29)

where p(x) is the unconditional density of the input data, and 〈t|x〉 denotes the conditional
average, or regression of the target data given by

〈t|x〉 ≈
∫
tp(t|x)dt, (5.2.30)

so that p(t|x) is the conditional density of a target t about an input vector x. Similarly



71

〈t2|x〉 ≈
∫
t2p(t|x)dt. (5.2.31)

Looking to the Eq. (5.2.29), it is possible to observe that the second term is independent of the
network function y(x), therefore, independent of the network weights. The optimal network
function, in terms of minimizing the error, is the one which makes the first term in Eq. 5.2.29
vanish, and is given by y(x) = 〈t|x〉. Such that, the second term represents the intrinsic noise
in the data sets a lower limit on the error which can be achieved (BISHOP et al., 1995).

However, i the practice, pattern classification problems have a data set finite. Be D a
training set with N patterns, and each taken from the some fixed joint distributions p(x, t), the
optimal networking making is given by the conditional average 〈t|x〉. Therefore, to measure
how close the actual mapping function y(x) is to the derived one is given by the integrand of
the first term in Eq. 5.2.29. This quantity depends on the particular data set D. A manner of to
eliminate this dependence is considering an average over all data set, which can be rewritten as

τD
[
{y(x)− 〈t|x〉}2

]
, (5.2.32)

such that τD[.] denotes the expectation or ensemble average. An important remark is that if
network function y(x) is always a perfect prediction of the regression function 〈t|x〉 then this
error would be zero. However, a non-zero error can arise for essentially two distinct reasons.
It may be that the network function is on average different from the regression function. This
called bias. Alternatively, it may be that the network function is very sensitive to the particular
data set D, so that, at a given x, it is larger the required value for some data sets and smaller
for other data sets. This is called variance. Finally, the error decomposition can be explicit by
writing

{y(x)− 〈t|x〉}2 = {y(x)− τD[y(x)] + τD[y(x)]− 〈t|x〉}2, (5.2.33)

resulting in

{y(x)−〈t|x〉}2 = {y(x)−τD[y(x)]}2+{τD[y(x)]−〈t|x〉}2+2{y(x)−τD[y(x)]}{τD[y(x)]−〈t|x〉}.
(5.2.34)

Taking the expectation in both sides over the ensemble of D, the third term on the right
side vanishes, and

τD
[
{y(x)− 〈t|x〉}2

]
= {τD[y(x)]− 〈t|x〉}2︸ ︷︷ ︸

(bias)2

+ τD[{y(x)− τD[y(x)]}2]︸ ︷︷ ︸
(variance)

. (5.2.35)

The bias measures the extent, which average (over all data sets) of the network function differs
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from the derived function 〈t|x〉. While the variance measures the extent to which the network
is sensitive to the particular choice of data set (BISHOP et al., 1995). Figure. 5.17 shows how
these affect the predictions, where the center of the target represents a perfect prediction.

Figure 5.17 – Graphical illustration of bias and variance.

Source: (FORTMANN-ROE, 2012)

As parameters are added in the network, increasing the complexity of the system. It also
increases the variance and reduces the bias, according to Fig. 5.18. Increasing the complexity
of the model does not necessarily mean that the best predictions will be achieved. When the
model has less complexity, Bias2 will exert greater influence on the error, while for greater
complexity, a variance has a higher influence. Therefore, the sweet spot for any model is
the level of complexity at which the increase of bias is equivalent to the variation reduction.
Mathematically:

dBias

dComplexity
= − dV ariance

dComplexity
(5.2.36)

When the complexity model exceeds this sweet spot, the model is over-fitted; and under-
fitting if the complexity falls short of the sweet spot. In practice, there is no analytical way to
find this location and, it is recommended that many tests be made for different complexity levels,
choosing which presents the best performance in the desirable work (FORTMANN-ROE, 2012).
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Figure 5.18 – Bias and variance trade-off.

Source: (FORTMANN-ROE, 2012)

5.3 Confusion Matrix

A conventional manner to evaluate the pattern classifier performance is using the called
confusion matrix (KUNCHEVA, 2004). This tool provides to verify the error distribution among
different classes, evaluating the over and sub-estimation problem (HAY, 1988). Figure 5.19
shows an example of a confusion matrix. Considering a data set of healthy and damaged sam-
ples, subjected to a classifier, when a healthy sample is correctly predicted as healthy, it is a True
Positive (TP ) phenomenon. Otherwise, it corresponds to False Positive (FP ) (ZHU et al., 2010).
On the other side, for a damaged sample, True Negative (TN ) is the correct classification, while
False Negative (FN) is the misclassification.

Some important parameters to evaluate the classifier performance as sensibility, sensitiv-

ity, and accuracy can be described in terms of (TP ), (TN), (FP ), and (FN). Thus, sensitivity
(S) is the proportion of true positives that are correctly identified by a diagnostic test

S =
TP

TP + FN
. (5.3.37)

Specificity (E) is the proportion of the true negatives correctly identified by a diagnostic test

E =
TN

TN + FP
. (5.3.38)

Accuracy (A) measures the degree of veracity of a diagnostic test on a condition

A =
TP + TN

TP + TN + FP + FN
. (5.3.39)
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Figure 5.19 – A simple confusion matrix example.

Author’s production.

5.3.1 Convolution Neural Network

It is a type of Multilayer Perceptron network (MLP) where the input is not a vector
as shown before, but a matrix with dimensions (m × n), such that a convolution operation is
applied by kernels k with p × q, where p and q have smaller size, resulting in features matrix
(m − p + 1) × (n − q + 1). Figure. 5.20 shows an example a convolution operation by the
kernel in an input matrix. Each term multiplies the elements of the matrix with specific weights,
which permits that deep features are identified during the training. Thus, the output for a neuron
is obtained by

yli = φ

blj +
∑
i∈M l

j

yl−1
i ∗ klij

 , (5.3.40)

where φ is a non-linear activate function, bj l the bias for lth layer, kernel [k]p×q, and M l
j the

selected feature which maps i in the layer (l − 1)th by the convolution (∗) applied to the input
yl−1
i . This step is followed by pooling operation, ensuring that important information is carried

forward. Each feature map is subject to groupings by region, such as maximum or average non-
overlapping elements. The output of this layer results in a dimensional reduction, depending on
the step size choose

dlh = Ψ(alj, N
l), (5.3.41)

such that Ψ is a function to evaluate the pooling N l and alj the feature map resultant from the
convolution (WANG et al., 2017).

Although the suitable results offered by this network type in pattern recognition prob-
lems, high computational efforts are demanded, becoming a limitation in their application.
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Figure 5.20 – Map of a Convolution layer over a kernel size 5× 5

Source: (WANG et al., 2017)



Chapter 6

Materials and Methods

In the previous chapters, a review of the essential subjects needed to develop this work
was presented, fostering a theoretical background that will be used in further discussions. This
chapter shows how they can be joined to provide a multidisciplinary methodology for detection
and classification of damage in different structures, using Vibration-Based Model (VBM) re-
sponse (time and frequency-magnitude) and Artificial Neural Networks (ANN). Initially, a data
set consolidated by the researches community is used to verify the feasibility of the proposed
technique. Therefore, after validated, the same strategy is used to evaluate delamination damage
on composite laminae (responsible for most of the failures in structures of this type of material).

It will be seen that vibration responses have large size and feature extraction techniques
are required to processing them, before feeding the neural network. It corresponds to an im-
portant step of the methodology because is not feasibly to use the total raw signal as input,
considering the high computational cost demanded in relation to the number of neurons and
hidden layers. However, the efficiency of damage detection/classification depends directly on
the ability of such a technique to compress the largest amount of essential information for this
task into a smaller feature vector. In this case, it will be used Statistical Parameters (SP) for
rolling bearings time-domain data, and Principal Component Analysis (PCA) for composite
beams both time-domain and frequency-domain. In addition, an alternative called Dislocated-
Series (DS) is used, which does not apply statistical properties as the others, in order to evaluate
how the quality of data-compression can improve the network performance.

The amount and quality of the data set are some of the most important factors to obtain
good network generalization in problems of damage detection. Nevertheless, in a practice ap-
plication, this methodology can be very expensive, because it is necessary to produce samples,
insert damages in some of them, and extracting vibration response using data and acquisition
system. In order to despite these problems, this work presents an alternative based on the finite
element model able to smooth dimensional uncertainties and generate more samples.
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6.1 Rolling bearings fault diagnosis

Rolling bearings data is provided by Case Western Reserve University (CWRU). Ac-
cording to Loparo (2013), experiments were conducted using 2 horsepower (hp) Reliance Elec-
tric motor, and acceleration data was measured. Motor bearings were seeded with faults from
different sizes; 0.007” (0.177 8mm), 0.014” (0.3556 mm), and 0.021” (0.5334 mm), introduced
separately at the inner raceway, rolling element (i.e., ball). After each component was rein-
stalled and the vibration data was collected for different motor loads condition ( motor speeds
of 1797 to 1720 RPM).

6.1.1 Experimental procedures

Figure. 6.1 shows the experimental procedure to data extraction of the rolling bearings,
which occurred through a system that contains a motor on the left and a dynamometer on the
right a control system. The bearings support the motor shaft, and the damage was introduced to
the bearing samples using electro-discharge (LOPARO, 2013).

Vibration data was collected using accelerometers, attached to magnetic bases. Ac-
celerometers were placed at the 12 o’clock position at both the Drive End (DE) and Fan End
(FE) of the motor housing. During some experiments, an accelerometer was attached to the
motor supporting base plate as well. Vibration signals were collected using a 16 channel DAT
recorder and were post-processed in a Matlab environment. Digital data was collected at 12,000,
and 48,000 samples per second for drive end bearing faults. Speed and horsepower data were
collected using the torque transducer/encoder and were recorded by hand.

Outer raceway faults are stationary faults. Therefore, the fault location relative to the
load zone of the bearing has a direct impact on the vibration response of the motor/bearing
system. Experiments were carried out to quantify this effect for both fan and drive end bear-
ings with outer raceway faults located at 3 o’clock (directly in the load zone), at 6 o’clock
(orthogonal to the load zone), and 12 o’clock. Fan End (FE) bearing: 6203-2RS JEM SKF,
deep groove ball bearing. Drive End (DE) bearing: 6205-2RS JEM SKF. Specifications of the
rolling bearings used are shown in Tab. 6.1.

Table 6.1 – Bearings specifications.

Parameter Drive End (DE) Fan End (FE)

Inside Diameter [mm] 25.00 17.00
Outside Diameter [mm] 52.00 40.00

Thickiness [mm] 15.00 12.00
Ball Diameter [mm] 8.00 6.75
Pitch Diameter [mm] 39.00 28.50
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Figure 6.1 – Test rig to measure vibration signals from damaged and undamaged bearings.

Source: (LI et al., 2019)

6.1.2 Fault Diagnosis in rolling bearings

Case studies will be developed to detect and classify damages of different sizes in the
balls and inner race of the Fan End (FE) rolling bearing, using Artificial Neural Network (ANN).
For the first time, the objective is only to know about the damage existence, as well as level 2 of
SHM. After, the damage should be classified according to the corresponding magnitudes. The
data used are the signals obtained from time-domain, with a sampling of 12.000 samples/second
for both bearings choose, Fan End (FE), and Drive End (DE). It is worth mention that different
loads were applied in the shaft by rotational velocity: Load 0 (1797 RPM), Motor Load HP 1
(1772 RPM), Motor Load HP 2 (1750 RPM), Motor Load HP 3 (1730 RPM). This simulates
changes that can occur in the signal of the machines by external agent so that the classifier must
be able to recognize them. Therefore, with 1920 samples for undamaged bearings, and 2880 for
damaged, where each damaged state have the same number of 960 samples. All data is grouped
and labeled to train, test, and validate the networks.

Before, as feature extraction whole an important step in pattern recognition problems,
two techniques are applied; Statistical Parameters (SP) and Dislocated-Series (DS) for time-
domain signals. In this work, the signals extracted in the time-domain are arranged in vectors,
so each Statistical Parameter (SP) is evaluated, and the following matrix created, where m is
the total number of signal samples and n is the number of SPs

SP11 SP12 · · · SP1k

SP21 SP22 · · · SP2k

...
... . . . ...

SPq1 SPq2 · · · SPqk


m×n

. (6.1.1)
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6.2 Damage detection in Glass/Epoxy beams

A study will be carried out on the use of dynamic responses (time and frequency-

domain), aiming to detect damage in a glass-epoxy laminated beam with twelve laminae 0
degrees oriented [0]12. The data used in this work was acquired by Völtz (2019) in the labora-
tory of Vibrations at Santa Catarina State University (UDESC), where the dynamic testing was
performed.

6.2.1 Previous samples analysis

Different samples were manufactured for undamaged and damaged states. Figure. 6.2
presents the different delamination damage sizes for damaged beams using a Teflon between
the middle plies, so it is classified into; D1 - 5 mm, D2 - 10 mm, and D3 - 19 mm. Thus,
73 specimens were manufactured in total, of these 25 for undamaged beams, 15-D1, 16-D2,
17-D3. Another important information is the variability presented by the samples, considering
the limitations of the manufacturing process. Table 6.2, a statistical analysis of the data was
performed, evaluating the mean, standard deviation, variance, maximums, and minimums for
each variable. Then, normalizing the data to their respective maximum, fixing them on the same
scale, with the help of a box-plot from Fig. B.1, it is noticed that the thickness has the highest
variation between them.

Table 6.2 – Dimensional variation of samples.

Parameters Width (mm) Length (mm) Thickness (mm)
Mean (µ) 28.31 227.75 2.99
Maximum 29.40 230.00 3.35
Minimum 226.00 22.35 2.55

Standard deviation (σ) 1.24 0.74 0.18
Variance (σ2) 1.54 0.56 0.03

It is necessary to consider these changes because all of these samples were subjected
to modal analysis, and thus, these variations can significantly influence the collected dynamic
responses.

6.2.2 Dynamic test: Experimental

The free-free boundary condition was chosen because it is the simplest form of boundary
condition, and reduces effects from imperfect supports. The beams were suspended using wires
to simulate a “free-free” boundary condition, as shown in Fig. 6.3. The natural frequencies and
the Frequency Response Functions (FRFs) for undamaged and damaged beams were obtained
using one accelerometer. The accelerometer model is 4517-C (sensitivity 0.18 pC=m2, and
weight 0.6 g) lightweight structure, and was set in position 1 (c.f. Fig. 6.4). The accelerometer



80

Figure 6.2 – Healthy and Damaged composite beams.

Source: (VÖLTZ, 2019)

position was selected based on previous modal analyses, avoiding the presence of sensors in
nodal lines. The excitation is provided by an impact hammer model 8206-003 (sensitivity 1.14
mV/N) with an aluminum tip from Brüel & Kjaer (B&K), and the position showed by the
schematic representation of Fig. 6.4. Position 1 refers to H11, and position 2 refers to H21,
concerning to the FRF matrix. The signals are processed by the data acquisition center via
PULSE software. Note that the accelerometer position was dislocated from the centreline in the
x-y plane, hence information about torsional modes could be evaluated. The analyzed frequency
range was 0-3200 Hz, in a total of 6400 spectral points, as it shows in Tab. 6.3, and the values
associated with the other setup parameters.
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Table 6.3 – Experimental Setup.

Parameter Value

Bandwidth 3.2 kHz
Spectral Lines 6400
Acquisition Time 2 seconds
Resolution 0.5 Hz
Averages 3
Window input Force-Transient
Window response Expotential
Frequency response H1

Test variance 2 days

Source: (VÖLTZ, 2019)

Figure 6.3 – Beam experimental setup.

Source: (VÖLTZ, 2019)
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Figure 6.4 – Schematic beam setup for test.

Source: (VÖLTZ, 2019)

6.2.3 Dynamic test: Computational

The case study addressed in this work aims to evaluate alternatives to reduce the num-
ber of samples manufactured, to generalize a neural network capable of detecting damage in
structures of composite materials. As the works of Bakhary et al. (2007), Padil et al. (2017),
and Padil et al. (2020) shows, the use of a consistent computational model, which can absorb
the non-linearities of the properties, boundary conditions, and other uncertainties present in the
phenomenon contributes significantly to the cost of damage detection methodologies. There-
fore, several studies have been carried out in this direction. Thus, the approach discussed here
has an overview exposed in Fig. 6.6. Initially, modal analysis is performed, based on all the
responses presented by the experimental model, adjusting the properties of the laminate and the
respective damping for each mode in the frequency range studied, isolating the first six rigid
body modes.

The great advantage of developing this computational model is the higher number of
specimens generated to train the neural network, allowing better learning for detecting damage
on the structure, based on the fundamentals treated on the pattern classifiers. So, the strategy
used to generate new samples from an adjusted model consists of determining a distribution of
probabilities to obtain a new sample from the values presented for the dimensions: Length (L),
width (w) e Thickness (t). At the first moment, the maximum and minimum values are taken
into consideration, such that, it will result in [Lmax, Lmin], [wmin, wmax], [tmin, tmax]. Thus,
fixed variation is adopted for each parameter. Then, it is possible to assess the frequency of
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each value repeated, and, in this way, calculate the individual probability of a sample with that
dimension. Finally, to obtain the discrete probability distribution as

Dp =
Pi
Ns

, (6.2.2)

where Pi is the individual dimension for a specific parameter, and Ns the number of samples.
This allows some intrinsic uncertainties in the manufacturing process to be absolved and pro-
ceed to the computational model.

A numerical model using the Finite Element Method (FEM) of a simple composite
beam in a free-free condition (using springs with 0.1 N/m to anchor the beam) was made on
ABAQUS software, where the convergence was reached to 400 shell elements (S8R), with eight
nodes and six-degree of freedom (3-displacement and 3-rotation) shown in Fig. 6.5. Geome-
try and mechanics properties used to the reference model are shown in Tab. 6.4, and they are
chosen according to the previous analysis, comparing natural frequencies of the experimental
model with a numerical one.

The excitation and signal collection positions are the same as the experimental process,
presented in Fig. 6.4. Vibration signals are simulated with a sampling frequency of 0.5 Hz. The
range studied is 1500 Hz using the direct steady-state dynamic analysis, and the state conditions
are simulated as in the experimental phase. The damping factor used the pick-peak method,
which evaluates the damping ratios for each peak and adjusting, in direction to approximate
numerical response with experimental as much as possible.

Figure 6.5 – Computational model setup.

Author’s production.
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Table 6.4 – Composite beams [0]12 properties adjusted in the first step of modal analysis.

Properties Values

Length (L) 227 mm
Width (w) 28.35 mm
Thickness (t) 3.0 mm
Longitudinal Elasticity modulus (E11) 20.0 GPa
Transversal Elasticity modulus (E22) 7.3813 GPa
Poisson ratio (v12) 0.18
Shear modulus (G12) 2.1 GPa
Shear modulus (G13) 2.1 GPa
Shear modulus (G23) 4.0 GPa
Composite Density (ρc) 1260 kg/m3

Figure. 6.6 summarizes in a flowchart the activities that will be made in this part of the
work.
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Figure 6.6 – Numerical approach schematization.
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6.2.4 Damage Detection on composite beams

After extracting time-domain and frequency-domain responses from manufactured sam-
ples, feature extraction tools are used to reduce size-data without losing relevant information for
damage sensitivity. After, it can be applied in neural networks to detect and classify healthy and
damaged samples. Therefore, the objective is to use different tools for feature extractions in
the pre-processing data step, like Principal Component Analysis (PCA) and Dislocated Series



86

(DS), evaluating which can be more efficient in SHM methodology.

6.2.5 Dislocated-Series (DS)

The main idea of this methodology is to cut out the raw signal in mini-batches with
size m, and store all data in matrix the [D]m×n, such that n corresponds to the number of the
mini-batches (Fig. 6.7 shows).

Figure 6.7 – Dislocated-Series (DS) applied to raw time-domain data.

Author’s production.

a1 and a2 are calculated to shift out the mini-bathes, conforming the equation

a1 = 0.5i (i+ 1) k i = 1, 2, ...n, (6.2.3)

a2 = a1 + n, (6.2.4)

where k is the dislocated step, and n the length of the intercepted signal from original. It means
that the signal is cut out in n points from raw signal by m times.

D[i, :] = X[a1 : a2]. (6.2.5)

Figure 6.8 shows a flowchart that represents the subroutine applied in the free program-
ming language JuliaLang 1.2.0 version. In step 1, m, n, k is required to determine the matrix
size resultant of the data D, and the signal x collected per sample. In Step 2, the counter starts
i = 1, i.e., serves a reference for the loop starting after evaluating the values of a1 and a2,
extracting a piece of size m of x, allocating in a column of the matrix [D]. Finally, if n = i, the
process has been completed, and the result will be [D]. Otherwise, the process has not yet been
completed, redoing the previous steps.
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Figure 6.8 – Flowchart for Dislocated-Series (DS).
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Author’s production.

6.2.6 Principal Component Analysis (PCA)

The studies on Principal Component Analysis (PCA) started with Pearson (1901), re-
flecting on statistics as one of the most used tools for multivariate analysis of data in dimen-
sional reduction. Hotelling (1933) studied the correlation between random variables. In general,
the PCA is a linear transformation to transform an original set of k variables into a smaller set
of n uncorrelated, such that n < k, so-called Principal Components (PCs) (TIPPING; BISHOP,
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1999). These new variables are obtained from eigenvalue decomposition of the covariance ma-
trix, which forms the basis for PCA. It is worth mentioning that each PC is a linear combination
of original variables, and forms an orthogonal set. The full PCs set has the same size of original
data, therefore, by removing those with lower power, a dimensional reduction is achieved with
minimum information loss (WHITE et al., 2006).

Geometrically, PCA can be considered as a rotation applied to original data, where
the new axes are known principal axes, such that the new directions represent the maximum
variance of original data, as shown in Fig. 6.9 (DACKERMANN, 2009). In this example, some
PCA properties could be observed. Considering an observation x = (x1j, x2j); Y1 and Y2 are
the principal axes, where y1j and y2j are a projection of x onto the principal axes that gives
the PCs score; the cosine of the angle θ between Y1 and X1 gives the first component of the
eigenvector corresponding to Y1. This axis has the property that the variance of projected points
y1j , with j = 1, 2, ..., k is greater than the variance of the points when projected onto any other
line or axis passing through (x1, x2).

Figure 6.9 – Data rotation for the principle axis with max variance.

Source: (DACKERMANN, 2009)

Following the description of PCA, Jiong Tang (2006) used it as data reduction to Fre-
quency Response Function (FRF) representation for damage detection applications via pattern
recognition. Giving a matrix Xij(ω) with FRFs evaluated in each k reference node, the mean
of each column j and standard deviation are expressed respectively, as

xj =
1

m

m∑
i=1

xij(ω), (6.2.6)
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sj =

√∑m
i=1(xij − xj)2

m
. (6.2.7)

Then, the data set is transformed into a standard normal space, yielding a new FRF
matrix, expressed by x̃ij(ω)

x̃ij =
xij − xj
sj

. (6.2.8)

Once that x̃ij is the variance matrix X̃ , the covariance matrix

cov([X̃]) =
[X̃]T [X̃]

m− 1
. (6.2.9)

By definition, solving the eigenproblem, (Pi) are the principal directions, and λi the
correspondents variance

cov(X̃){Pi} = λi{Pi}. (6.2.10)

The PCs determine the amount and direction of higher variability of the data, and,
in most cases, the first ones can represent the properties of the data in the reduced space n-
dimensional. Therefore, those of lesser value can be considered as noise contribution and can
be discarded (HOYER; HYVÄRINEN, 2000).

With the use of PCs in the reduced space, FRFs can be reconstructed and compared
with the original, according to a detailed procedure by Jiong Tang (2006), serving to evaluate
the efficiency of the technique. Considering that an observation was made and (xnew)1×k be
admitted. Using xj e sj

(x̃new)1j =
xnew1j − xj

sj
. (6.2.11)

The projection of variance matrix

[A]1×k = [x̃new]1×k[P ]k×k, (6.2.12)

[x̃R]1×k = [A][P ]T . (6.2.13)

Thus, the FRF for a new observation will be

(xR)1j = sj(x̃R)1j + xj. (6.2.14)
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6.2.7 Artificial Neural Network (ANN) to fault diagnosis

The neural network model chosen was Multilayer Perceptron (MLP), using the Flux
toolbox of JuliaLang 1.2.0 version that receives pre-processed data by feature extraction tech-
niques. This data is partitioned for the training, testing, and validation steps, such that Silva
et al. (2010) proposed a percentage above 60% for training. After partitioned, the data for
each corresponding step is shuffled, making it difficult for the network to memorize data. This
model is based on supervised learning (with the help of a teacher), where the entire data set
must have labels associated with the class belonging to the samples, defining the number of
neurons that will be used in the output layer. Firstly, the objective is to classify the samples
between healthy and damaged, establishing two classes, two neurons are used, following the
method called neurons/classes, recommended facilitating classification. Thus, [0.9999; 0.0001]

(Healthy) and [0.0001; 0.9999] (Damaged). The close values instead of 0 and 1 are used, be-
cause they represent the limits of the sigmoid activation function and can exert an influence on
the training, causing the weights to increase a lot to reach that, according to Haykin (2007). The
same methodology is adopted when more classes are required.

Determining hyper-parameters such as the number of hidden neurons and layers is a
recurrent problem in the MLP networks. When too many of these are chosen, over-fitting can
occur. While under-fitting when it is insufficient. Therefore, in this work, the idea is that some
tests are carried out with different types of topologies, aiming to obtain the one that will present
the best performance. Different types of the activation functions are used (tanh, sigmoid, relu)
in the hidden neurons, and softmax in the output layer.



Chapter 7

Results and Discussion

This chapter is divided into case studies carried out for both damage detection in com-
posite material beams and bearings using Artificial Neural Networks. However, before feeding
the pattern classification tool, a feature extraction technique is necessary. Then, Statistical
Parameters (SP), Dislocated-Series (DS), and Principal Component Analysis (PCA) are used,
where their particularities are studied as:

• Number of principal components (PCs) for the PCA.

• Statistical parameters (SP) with higher sensitivity to damage.

• Size of the Dislocated Series (DS) and their influence on classifier performance.

Important parameters such as the number of neurons, layers, activate function, and learn-
ing algorithms will be studied for each case.

7.1 Damage detection on rolling bearings

The data used to detect damage was available by Loparo (2013), in the time-domain, for
ball faults and inner race faults. Therefore, based on literature and preliminary studies, the Sta-
tistical Parameters (SP) as feature extraction were studied to this data set, and comparing with
Dislocated Series (DS). After, the studies are expanded in terms of classification of different
damage sizes, evaluating positive and negatives points for each one.

7.1.1 Inner race fault detection

Figure. 7.1 shows healthy and damaged signals for different damage sizes on the inner
race. Looking at these vibration responses, first, it is possible to observe a notable difference
between healthy and other signals. The healthy signal has a lower magnitude than the damaged
one. However, when the size of damage improves, it is not easy to identify quickly features that
differentiate them.
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Figure 7.1 – Vibration signals data for both health and damaged bearings at 1797 RPM - Load
0.

(a) Baseline raw signal.

(b) 0.007” Inner race fault raw signal.

(c) 0.014” Inner race fault raw signal.

(d) 0.021” Inner race fault raw signal.

Author’s production. Source: (LOPARO, 2013).
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7.1.1.1 Statistical Parameters (SP)

The data available for rolling bearings Drive End (DE) and Fan End (FE) has 240000
points for healthy samples, and 120000 fo each damage type. Therefore, as discussed, it is nec-
essary to reduce the signal into smaller pieces to serve as input for the neural network. Thus,
smaller vectors with a size of 1000 were employed, generating several Statistical Parameters
(SP) for each sample, stored in a matrix. So, the next step consists to check the damage sensi-
tivity for the parameters studied, which can be seen in Fig. 7.2, expressed by:

1. Peak amplitude (ypeak).

2. Mean (y).

3. Mean square (ysq).

4. Root-mean-square (rms)

5. Variance (σ2).

6. Standard Deviation (σ).

7. Skewness (γ).

8. Kurtosis (κ).

9. Crest Factor (XCf ).

10. K-factor (Xk).

As seen in Fig. 7.2, the amplitude has increased the presence of faults in the inner race,
explained by periodic localized impacts, inducing a vibratory excitation in the system. As box-

plots from Fig. 7.2, it is possible to see how the damage influences each parameter specifically.
Peak amplitude, Kurtosis, Crest Factor, and K-factor show high sensitivity to damage, but not
to the size. Followed by Mean, Mean square, Root-mean-square, Variance, Standard Devia-
tion, and Skewness. Taking attention to the significant presence of outliers in the D1 and D2
damages, notable to the parameters κ, and XCf . The red line in each box indicates the median
evaluated for the samples of a given parameter. Thus, healthy samples have a tendency towards
values close to 3, which is expected by theory, indicating that the signal reaches a Gaussian
distribution. The small variation of the box for the Crest Factor and K-factor induce that the
signal was collected close to the damage, which is confirmed because the signal used comes
from the Fan End (FE).

Analyzing the damage sensibility, a Multilayer Perceptron (MLP) model with a back-
propagation learning algorithm, using η = 0.001, and moment term α = 0.99, aiming to answer
a binary question regarding the existence only, as SHM level 2 required. The data were divided
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Figure 7.2 – Analysis of statistical parameters for damaged and intact rolling bearings.
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into 80 % for training and 10 % for testing and validation. Network topology has two neurons
in the hidden and output layer by the strategy of an output neuron by class, which facilitates the
determination of a decision boundary between two sets of data. For training, the mean-square
error function was used with the softmax in the last layer, allowing the maximum probabili-
ties approximates for [0.9999; 0.00001] (intact) and [0.00001; 0.9999] (damaged), through 100
epochs to adjust the weights.

The results obtained were of 100.00 % for correct predictions in the training phase, and
100.0 % for the testing. Figure. 7.3 shows the convergence curves. Considering the data that
were not previously used in the training or the testing phase, the validation phase presented 100
% accuracy. It shows that the detection problem has an excellent result.

Figure 7.3 – Convergence for training and validation phases of the network.
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After successfully detecting the damage, the next task is to classify them according to
the size of the damage present. Thus, instead of two neurons in the last layer, it is necessary
to use four to follow the strategy of one neuron per class, while the input layer remains with
ten neurons. In the hidden layer, eight neurons are used, followed by sigmoid activation func-
tions. Figure. 7.4 shows the percentage of correct answers in the learning phase, using different
algorithms. ADAM and RMSprop presented better results than Momentum and AdaMax, asso-
ciated with the presence of local minimums and how each one updates the point in the weight
field.

Table. 7.1 shows tests realized, modifying the number of hidden neurons, and acti-
vate functions. Using ADAM and RMSprop algorithms, it is presented the results for training,
testing, and validation. Distribution error of the confusion matrix shown in Fig. 7.5 permits to
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analysis that a healthy sample is correctly classified with 100% accuracy. However, it is relevant
to note that, misclassification occurs for different damage sizes.

Figure 7.4 – Accuracy curve for different learning algorithms in training step.
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Table 7.1 – Results for different ANN topologies to detect damage on the inner race.

Topology Activate Function Algorithm Training Validation Testing

10 - [8]- 4 [σ-σ]
ADAM 95.91% 95.20% 96.46%
RMSprop 85.78 % 86.25 % 88.96 %

10 - [8]- 4 [tanh-σ]
ADAM 95.46% 94.16% 96.67%
RMSprop 96.04% 96.67% 95.42 %

10 - [12]- 4 [σ-σ]
ADAM 96.09% 93.95% 96.88%
RMSprop 96.04% 95.41% 96.46 %
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Figure 7.5 – Confusion matrix for damage classification using RMSprop and 10-[8]-4 topology.
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7.1.1.2 Dislocated-Time Series (DS)

This strategy is based on breaking the signal into n pieces with m sizes, aiming to in-
crease the number of samples for the network so that it can detect the characteristics necessary
to identify the damage. The idea is to evaluate an alternative to the statistical parameters, as-
suming that they can remove important information for the process.

However, taking into account that the data set to train the model must increase con-
siderably about the statistical parameters, the complexity required for the model will also be
higher. Thus, Tab. 7.2 shows different types of models used and respective performances, using
softmax, cross-entropy, and [tanh− σ] as activate functions.

Table 7.2 – Different models and their results for bearing damage detection.

Hidden Neurons n m Algorithm Training Validation Testing

35
100 10 Momentum 100 % 96.25 % 96.25%
80 40 RMSprop 99.99% 98.81% 99.06%

50
100 10 ADAM 100 % 99.75 % 99.25 %
80 40 RMSprop 100.0 % 99.31 % 99.06%

30
100 10 ADAM 100.0 % 99.45 % 99.71 %
100 60 AdaMax 99.99 % 99.58 % 99.63%

Besides, the training becomes slower because more data used, and the results obtained
are satisfactory, with more than 99% for learning. It permits the application of the tool to
classify damages in the next step. Thus, the network must have four neurons in the output layer
to classify each state considered; Healthy, D1, D2, D3. Table 7.3 shows the models used their
respective results. However, in this approach, the time-dislocated series methodology does not
show good results. The confusion matrix in Fig. 7.6 shows that the methodology keeps useful



98

to detect damage, classifying correctly healthy samples. However, different damage becomes
hard work, needing a raw signal with large size to evaluate features and improves the results.

Table 7.3 – Inner race faults classification using time series dislocated.

Topology (n,m) Activate Functions Algorithm Training Validation Testing

100 - [10-5]- 4 (10,100) [tanh-tanh-σ] ADAM 85.85 % 46.25 % 50.31 %
100 -[20-15]-4 (10,100) [tanh-tanh-σ] RMSprop 84.68 % 50.62% 44.38 %
120-[30-15]-4 (30,120) [tanh-tanh-σ] RMSprop 96.94 % 65.72% 69.27 %
120-[25-10]-4 (60,120) [relu-relu-σ] AdaMax 98.94 % 76.04% 80.31%
120-[30]-4 (150,60) [σ-σ] AdaMax 98.25 % 72.5 % 77.29 %
150-[30]-4 (150,60) [σ-σ] AdaMax 98.24 % 73.33 77.29 %

Figure 7.6 – Decision Matrix for faults classification on rolling bearings with damage in inner
race.
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Both Dislocated-Series (DS) and Statistical Parameters (SP) show good generalization in
damage detection problem. However, while DS demands more input neurons and, consequently,
computational efforts, only ten parameters are needed for Statistical Parameters (SP). Thus, SPs
become a better alternative in this case. Besides good results obtained for damage detection,
it was not followed in the classification step. According to the confusion matrix, the damage
size is not large sufficient to change the time-domain response and be detected by the neural
network after feature extraction techniques.

7.1.2 Ball fault detection

The next case study deals with the identification of damage, and classification of the
different sizes of damage to the balls. According to the methodology, different signals are
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exposed for the prior analysis, where can be noticed differences among in Fig. 7.7, for the
data collected from the damaged bearings. Figure. 7.1(a) presents the intact signal samples
which permit verify a larger amplitude increase due to impacts caused by damage, affecting
the vibration excitation, and modifying the structural dynamic response. However, this data are
treated both employing Statistical Parameters (SP) and by the Time Series Dislocated, analyzing
benefits and negative points for each one.

Figure 7.7 – Vibration signals data to damaged bearings for different sizes, collected at 1797
rpm.

(a) 0.007” ball fault raw signal.

(b) 0.014” ball fault raw signal.

(c) 0.021” ball fault raw signal.

Author’s Production. Source: (LOPARO, 2013).
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7.1.2.1 Statistical Parameters

As in the previous case, box-plots are used to visualize how damages on balls influence
in the statistical parameters. It can be seen in Fig. 7.8 the difference between ball fault and
inner race statistical parameters. In this case, maximum peak, Kurtosis, and Crest Factor have
a higher sensitivity for D2, where the bounds of the box show higher amplitude. It is necessary
to take into account the presence of outliers, represented by red markers.

Figure 7.8 – Analysis of statistical parameters for rolling bearings with ball fault.
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Following the methodology, at first, the proposed neural network should classify the
samples only as damaged and undamaged, without having to worry about specifying the type
of damage in question. Then, the Tab. 7.4 determines the different results obtained for the
use of different training algorithms for a network with 10-[3]-2 topology, [tanh- σ] activation
functions, in addition to softmax in the output layer with the error, evaluated via cross-entropy.

Table 7.4 – Models used to detect ball faults in the rolling bearings.

Algorithm (η) (α) Training Testing Accuracy

Steepest Descent 0.00050 0.001 95.13% 96.25% 96.25%
ADAM 0.0001 - 99.92% 99.58% 99.79%

Using ADAM (without any modification) as a training algorithm, the network had a high
generalization capacity with 99.79 % of the accuracy. Figure. 7.9 shows the training and test
convergence curves.

Figure 7.9 – Curves for training and testing in damage detection model.
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Although the damage detection was successfully carried out, as shown by the previous
results, the same success was not achieved for the classification step, mainly about the damage.

As there are four classes, four output neurons are used. After some tests were carried
out, it was established the topology 10-[5-5]-4 for the network, considering different types of
learning algorithms, as shown in Tab. 7.5, which ADAM once again showed superior general-
ization capacity for 1000 times.
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Table 7.5 – Algorithms used to train the network and respective results.

Algorithm (η) (α) Training Testing Accuracy

Steepest Descent 0.0015 0.0001 72.31% 73.33% 78.13%
Adam 0.00015 - 82.96% 84.16% 82.92%

RMSProp 0.002 0.95 84.50% 84.58% 83.75%
AMSGrad 0.001 0.995 85.83% 81.67% 86.25%
AdaMax 0.001 0.995 86.22% 87.5% 87.71%

As Fig. 7.10 shows, the use of statistical parameters in this problem shows good results
when the interest is only to detect the damage. It is possible to observe that the first row and
column of the decision matrix presented 100% of the intact samples correctly classified. How-
ever, different damages types result in misclassification, limiting the methodology, associated
with the presence of outliers previously evaluated in the parameters, which make it difficult for
the network to establish a boundary decision.

Figure 7.10 – Confusion matrix resulted in AdaMax algorithm testing.
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7.1.2.2 Dislocated-Series (DS) Time

Regarding the change in the dynamic response for rolling bearing with ball faults, it is
valid to use this strategy, aiming to observe their applicability. Thus, the signal is allocated as
a package containing pieces of information about the whole. So, varying m and n that define
the size of theses packages and input layer for neural network, as well as the total packages
for a signal sampled. Therefore, Tab.7.6 shows some models used and their respective results,
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which permit evaluate the technique to detect ball faults in rolling bearings using a time-domain
response. As in the previous cases, the error function used was cross-entropy for 200 epochs.

Table 7.6 – Models of Neural Networks used to detect ball faults on rolling bearings and the
respective performance.

Topology (n,m) Activate Functions Algorithm Training Validating Testing

60-[10]-2 (60,60) [σ − σ] ADAM 96.54 % 91.25 % 93.17%
30-[20]-2 (80,30) [relu− σ] ADAM 97.73% 94.56% 95.09 %
70-[25]-2 (80,70) [σ − relu] RMSprop 99.99 % 99.50% 99.56%
80-[35]-2 (80,80) [tanh− σ] Momentum 99.99% 99.34% 99.38%

100-[40]-2 (80,100) [tanh− σ] AdaMax 99.98% 99.65% 99.69%
100-[30]-2 (60,100) [tanh− σ] ADAM 100.0 % 99.75% 99.63%

With this, it is possible to infer the viability to use the technique for identifying Ball
faults bases on the dynamic response, based on the tests that were performed varying the amount
of data, topology, and learning algorithms. The better result was found for the ADAM algorithm
with 30 neurons in the hidden layer, and a combination of the tanh and σ as activating functions,
but other models have presented good results too as Adamax, Momentum, and RMSprop.

To classify the damages in rolling bearings is not easy as seen in before cases because the
signals are very polluted, and it becomes more difficult to extract important features, hindering
effective learning. Testing several models and, therefore, as can be seen in the Tab. 7.7. All data
uses cross-entropy error function and softmax in the output layer, where the data was partitioned
in 80 % for training and 10 % for testing and validation.

Table 7.7 – Models of Neural Networks used to classify ball faults on rolling bearings and their
respective performance.

Topology (n,m) Activate Functions Algorithm Training Validation Testing
150-[80]-4 (60,150) [σ − σ] AdaMax 99.96 % 76.35 % 80.00%
120-[50]-4 (40,120) [tanh− σ] Momentum 98.24% 71.09% 72.19%
100-[35]-4 (100,80) [tanh− σ] ADAM 90.19% 58.90% 64.45%
80-[60]-4 (80,100) [relu− σ] RMSprop 91.78% 70.25% 76.19%
150-[60]-4 (100,150) [tanh− σ] AdaMax 99.59% 73.93% 78.81%

It is noticed that this technique is not suitable to classify different damage sizes due to
the intrinsic noisy of the system. Figure 7.11 deals with the decision matrix obtained by the
data from samples that were not used during the training and testing phase. Thus, proving that
healthy samples are well classified, but the efficiency drops appreciably for the classification of
damages, with worse results for Damage 3.

Statistical Parameters (SP) obtained from time-domain data have large number of out-
liers associated with noise and it makes difficult the damage classification. From two cases
studied, it can be observed that DS has a good capacity to detect local features in the signal.
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Figure 7.11 – Confusion matrix resulted for AdaMax algorithm training in a rolling bearing
damage classification problem, using dislocated series.
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7.2 Damage detection in a Glass/Epoxy Beam

As mentioned in the previous chapter, a data set was generated containing the dynamic
responses extracted from the testing, i.e, data in the time-domain and frequency-domain. Thus,
this section presents results for different techniques used in terms of extraction of properties
and data compression, to establish a reliable technique that makes accurate diagnoses about the
occurrence of damage in beams of composite material.

7.2.1 Time-domain approach

Dynamic responses for health and damaged beam in time-domain are shown in Fig.
7.12. All of them present the characteristic response of a damped system with structural damp-

ing. In this problem, it is complicated to observe with well precision changes between health
and damaged samples responses, however, the feature extraction techniques must be able to
identify damage sensitives, feeding the Artificial Neural Network (ANN) to detect and classify
damages.

7.2.1.1 Dislocated-Series Time-domain

This proposal consists of subdividing the signals obtained for samples and using them
directly in the neural network, leaving the task of selecting the necessary characteristics to clas-
sify certain types of damage, as previously applied to the rolling bearings. Therefore, the aim
is to investigate the capacity of the technique in general, being used in a completely differ-
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Figure 7.12 – Time-domain responses of samples corresponding to the different states.
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ent problem than the previous one, in order to test its generality. Initially, the algorithm for
Dislocated-Series (DS), presented in the methodology must be applied, assuming values for the
parameters k, n, and m. After that, a set of data will be obtained and sent to the neural network.
In the first step, the objective will only detect the existence of damage to the structure, encom-
passing the first two steps of SHM. In the sequence, damages are classified in relation to their
respective sizes.

Assuming k = 2, which determines the step to dislocate the signal. n = 10 for the
number of mini-batches that will be stored in a matrix for a sample and m = 20 corresponding
to the size of mini-batch, determining the number of input neurons to the network. At first, only
two neurons were considered in the hidden layer (avoiding over-fitting) problems, which had the
sigmoid (σ) activation function. The error function used was cross-entropy with softmax in the
output layer. After performing some tests, using AdaMax as a training algorithm, the network
presented the following results for 1000 epochs: 57.68% for training, 66.89% validation, and
70.27% in the testing phase. However, evaluating the confusion matrix for this case, according
to Fig. 7.13(a), it presents high specificity, indicating that the model has poor generalization
capacity. Hence, rather than modifying the number of neurons in the hidden layer, which could
significantly improves the results, considering that this problem may be associated with under-
fitting, the strategy adopted was to increase the number of input neurons before. Evaluating
only the m influence. Therefore, as presented by the Tab. 7.8, when m increases the network
performance improve. When small values are considered for m, the local features cannot be
identified, making it difficult for the neural network determines am accurate boundary decision
between the classes.
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Table 7.8 – Network results for different numbers of input neurons, changing m.

m Training Validation Testing

20 57.68% 66.89% 70.27%
40 69.34% 65.64% 65.54%
60 79.05% 68.91% 72.30%
80 82.60% 68.24% 72.97%
90 90.70% 81.08% 84.46%

Figure 7.13 – Confusion matrix o the testing step for problems presented in tab. 7.8.

Accuracy: 70.27%

70.3%
102

29.7%
43

33.3%
1

66.7%
2

Undamaged Damaged

Target Class

Undamaged

Damaged

O
ut

pu
t 

C
la

ss

(a) m = 20.

Accuracy: 65.54%

69.1%
85

30.9%
38

52.0%
13

48.0%
12

Undamaged Damaged

Target Class

Undamaged

Damaged

O
ut

pu
t 

C
la

ss

(b) m = 40.
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(c) m = 60.
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(d) m = 80.
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(e) m = 90.
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From results presented by the confusion matrices, m = 90 was adopted, because, in
addition to offering greater accuracy, it has more smoothed classification error between the two
classes (healthy and damaged). Hence, the number of hidden neurons is increased to improve
network generalization. It was made gradually as can be seen by Tab. 7.9. With 20, 25, and
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30 neurons in the hidden layer, results not was satisfactory yet, until the next training and test
results presented for 35 neurons establish an efficient choice in terms of reducing problems with
under-fitting. When the highest increase was made in the number of neurons, the discrepancies
between the results for training, validation, and testing show that the non-linear error regression
curve is not so smooth, indicating a over-fitting problem.

After verifying that the model can generalize for damage detection, the next tests will
be carried out to investigate its ability to classify them. Different models are shown in Tab. 7.10
were attributed, aiming to evaluate which offer the best generalization. Thus, with some tests
performed, using m = 80, n = 30, and 45 neutrons in the hidden layer, 96.17 % accuracy was
obtained in the testing, which represents an excellent result for the application in question. It can
be seen in Fig. 7.14 the convergence curve for training and testing, using the cross-entropy (CE)
error function. Figure 7.15 shows the distribution error through the confusion matrix, where it
is observed that Healthy, D1, and D2 samples are classified accurately, while D3 presents some
misclassification, reducing the efficiency of the model.

Dislocated-Series in a time-domain approach is useful to detect damage in composite
materials. The training algorithm with the best results is RMSprop, ADAM, and AdaMAX that
uses a stochastic gradient and adaptive learning, providing good convergence. However, the
network working becomes slower than others because of the number of neurons required in the
input layer, as well as in the hidden layer. In this case, the large difference between the different
damages sizes permits that classification to be accurately. The errors observed mainly for D3
damage can be associated with uncertainties present in the system, which the tool used was not
able to filter.

Table 7.9 – Network performance for a different amount of neuron used in the hidden layer.

Neurons Training Validation Testing

20 98.90% 95.27% 97.30%
25 99.15% 94.59% 97.97%
30 98.64% 95.94% 95.25%
35 99.07% 99.32% 97.30%
40 99.07% 95.27% 92.27%
45 98.64% 96.62% 97.97%
50 99.40% 96.62% 94.55%
60 98.47% 93.91% 99.32%

7.2.1.2 Principal Component Analysis (PCA)

All data from time-domain response for the beams positions 1 and 2 are fully stored in
a matrix [G]m×n, where m is the raw signal size evaluate to a unique sample, and n the sample
number. Principal Component Analysis (PCA) is performed to obtain a orthogonal base, and
make a projection, in order to a new reduced matrix [G]m×k, such as k < n. Therefore, in the
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Table 7.10 – Models used to classify different damage types through Dislocated-Series in time-
domain approach.

Topology (n,m) Activate Functions Algorithm Training Testing Validation
80-[25]-4 (30,80) [σ − σ] ADAM 99.74% 94.25% 93.98%
80-[30]-4 (30,80) [tanh− σ] RMSprop 99.32% 94.14% 93.92%
80-[45]-4 (30,80) [tanh− σ] AdaMax 99.29% 97.07% 96.17%
80-[35]-4 (30,80) [tanh− σ] RMSprop 99.29% 96.62% 96.17%

Figure 7.14 – Convergence to the classification model using AdaMax algorithm and 80-[45]-4
topology.
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Figure 7.15 – Confusion matrix resulted in AdaMax algorithm training.
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first time, it is needed to determine the number of PCs k that maximize the variance. Figure.
7.16 shows the accumulated and individual variance of up to 50 PCs, providing to look that, for
25 PCs, the variance reached approximately 100%, i.e, it is acceptable for the application.

Figure 7.16 – Accumulated and individual variance for the principal components.
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Following the theoretical background, 25 Principle Components (PCs) are sufficient is
to make a signal reconstruction though an onto projection, as can be evaluated in Fig. 7.17. The
reduction is performed for different PCs number, verifying its efficiency in the reconstruction,
and validating the discussed in theory. It can be seen that for 5 PCs the variance accumulated is
smaller than 70%, and, consequently, the reconstruction curve does not approach the original.
For 20 PCs (c.f. Fig.7.17(b)), it is possible to see that the area in blue is filled with orange.
Thus, it indicates better performance, until with 25 almost all the signal is already correctly
reconstructed, demonstrating one of the main properties of the method, which is to represent an
entire signal based on compressed information, os Principal Components (PCs).

After feature extraction is applied to the time-domain data set using PCA and signal
reconstruction observation, it is required to analyze the damage sensibility for PCs to use as
input in the pattern classification approach. So, taking 25 PCs for intact and damage samples,
as shown in Fig. 7.18, it is possible to plot curves that correspond to the characteristics of
each specific type of class. As can be analyzed, the curves have different amplitudes at each
point, which is linked to the differences between dynamic responses. Therefore, the damage
sensitivity analysis even allows us to verify that the PCA can make the differences between
each signal more perceptible, and this can significantly influence the performance of the neural
network. Then, different models were tested. Initially, using the learning rate η = 0.001 and
moment term α = 0.99, for a Momentum algorithm, with 15 neurons in the hidden layer. Data
was divided into 80% for training, and 10% for testing and validation. The cross-entropy (CE)
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Figure 7.17 – Signals reconstruction via Principal Component Analysis in time-domain ap-
proach.
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error function was used, as well as in the previous cases and the tanh and sigmoid (σ) activation
functions. The model was trained with 1000 epochs. For this first approach, good results were
obtained, as shown in Fig. 7.19(a), 98.83%, validating the intelligent model to detect damage
on composite beams. Another test was made with the AdaMax learning algorithm, and the good
result was kept, this time 98.42% was reached in the validation. With the good results obtained,
it can be inferred, therefore, that the established strategy works to detect damage in beams of
composite materials. Thus, the size of the damage must be classified, specifically, according to
the determined classes D1, D2, and D3.

Four neurons are considered in the output layer to classify the damage, corresponding
each class to be classified through the network. Therefore, some models were considered,
changing the number of neurons in the hidden layer, and learning algorithm, as presented in Tab.
7.11. The best performance was obtained for a neural network with 25− [15−10]−4 topology,
[relu − relu − σ] for activation functions, and ADAM as algorithm learning by 500 epochs.
Such that 93.39% is evaluated in the validation step, representing effective performance. In
this case, specifically, the addition of another hidden layer with 10 neurons and the activation
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Figure 7.18 – Damage sensitive using the PCA in time-domain.
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Figure 7.19 – Decision matrix for damage detection in composite beams using time-domain
response through PCA data reducing.
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function relu directly impact the improvements observed in the performance of the model,
since this activation function does not saturate the gradient, allowing the adjustment of weights
in minimizing error to achieve better results.

Table 7.11 – Models used to classify damage in the composite beams and its respective perfor-
mance.

Topology Activate Functions Algorithm Training Validation Testing
25-[15-10]-4 [relu− relu− σ] ADAM 93.86% 92.75% 93.39%
25-[15]-4 [tanh− σ] AdaMax 92.17% 90.05% 90.00%
25-[25]-4 [tanh− σ] RMSprop 88.37% 86.52% 89.28%
25-[10-10]-4 [tanh− tanh− σ] ADAM 87.43% 86.44% 87.06%

The confusion matrix of Fig. 7.20 shows the error distribution in classification, where



112

Healthy, D1, and D2 are classified with more than 95% accuracy. Most errors are found for the
classification of D3 with false negatives for D2 and D3.

Figure 7.20 – Decision matrix to classify damage using 25 PCs in time-domain.
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7.2.2 Frequency-domain approach

The frequency-domain approach corresponds to a good alternative in the context of
the Vibration-Based Model (VBM) because it has more information about dynamic response
of structures, which could increase ANN performance. Frequency Response Function (FRF)
presents information about modal shapes, damping ratios, and resonance frequencies of the
system. The signals extracted for the manufactured composite beams samples are shown in the
Fig B.2-B.9. Taking some signals to verify the damage sensibility in the Fig. 7.21, it is possible
see how damage affects the curves, associated to changes in the modal parameters. However,
FRFs have large number of points and cannot be used directly in the Neural Networks. Hence
two tools were used to extract the features; Dislocated-Series (DS) and Principal Component
Analysis (PCA). In this case, the Statistical Parameters (SP) method has not applicability, be-
cause it was modeled for a random dynamic response generated by a Gaussian distribution of
probabilities, which is not the case for signals in the frequency-domain.
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Figure 7.21 – Frequency Response Functions for different composite beams state in theH11 and
H21 position.

(a) Accelerometer position (H11). (b) Excitation position (H21).
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7.2.3 Dislocated-Series Frequency-Domain

The same methodology used before in time-domain data is applied. The total signal
evaluated is dislocated for n mini-batches with m points intercepted, which define the amount
of input neurons. In this case, considering that undamaged and damaged samples has notable
differences, best results for training and generalization are expected. Beginning, Table. 7.12
shows some models tested to detect damage on composite beams. As can be verified the model
that used 90 − [40] − 2 and n = 40 has obtained the best results, with 100.0% for training,
99.82% for testing, and 99.29% in the validation step. Cross-entropy (CE) as an error function
and softmax in the output layer is used. It can be seen that when the input m improves, more
hidden neurons are required, but the network presents a better generalization. Therefore, this
application is useful for the first approach, such that the damage can be detected accurately.

Table 7.12 – Models used to detect damage on composite structures using series dislocated in
frequency-domain.

Topology n Activate Functions Algorithm Training Validation Testing

60-[30]-2 40 [tanh− σ] AdaMax 96.18% 94.68% 97.16%
60-[30]-2 40 [tanh− σ] Momentum 98.89% 96.09% 97.16%
80-[30]-2 60 [σ − σ] Momentum 99.95% 98.93% 99.53%
90-[40]-2 40 [σ − σ] ADAM 100.0% 99.82 99.29%

In addition, to identify the damage, models must classify the different sizes correspond-
ing to the induced delamination failures. In this way, the same strategy is used. Keeping the
cross-entropy error function, placing 4 neurons in the last layer, and the softmax activation
function, the number of hidden layers and neurons are modified, as well as the input m and n
which determines the number of batches of the dislocated signal as show in Tab. 7.13.
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Table 7.13 – Models used to classify damages on composite beams using Series Dislocated in
frequency-domain.

Topology n Activate Functions Algorithm Training Validation Testing

90-[35]-4 40 [σ − σ] ADAM 99.84% 98.58% 99.29%
60-[20-15]-4 60 [relu− relu− σ] AdaMax 77.86% 75.41% 75.18%
80-[20-15]-4 60 [tanh− tanh− σ] RMSprop 96.30% 93.38% 93.26%
80[20-15]-4 60 [tanh− tanh− σ] RMSprop 93.91% 92.08% 93.26%

The best result was found for the network with the highest m, indicating that the impor-
tant properties necessary to assess the damage are extracted more precisely, whose distribution
of the error is shown in the confusion matrix of the Fig.7.22. In this case, the damaged beams
D1 and D2 are all correctly classified, while some classification errors arise for the Intact and
D3, which may be associated with noise in the parts of the sampled signal. A Fig. 7.23 shows
the convergence curves for training and testing the model, highlighting the presence of noise in
the signal, which shows the complexity of the problem, however, good results were obtained at
the end.

Figure 7.22 – Decision Matrix obtained to classify damages in the composite beams using
Frequency-domain response.
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Figure 7.23 – Training and testing curves for damage detection on composite beams using
Frequency-domain response.
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7.2.3.1 Principal Component Analysis (PCA)

Each sample has FRF matrix of type [H]2×1600, because it was evaluated in two point
(accelerometer and impact). As in the first time of the analyze is desirable only answer a binary
question ”yes” or ”no” for the damage existence, the signals are divided in intact samples matrix
[HI]50×1600, while damaged in a matrix [HD]96×1600. Therefore, PCA technique is performed,
storing data information in correspondent PCs, making the dimension reduction through number
of samples, keeping the amount of information to train the Neural Networks properly. So, the
FRFs matrix resultant will be HNPCs×1600.

After separating data for intact and damaged, it is necessary to evaluate the Principal
Components (PCs) and check the associated variance, as can be seen in Fig. 7.24. It is noticed
that for 30 PCs, the accumulated variance becomes very close to 100%, which determines that
this is a good number to be used to compress the data.

One way to prove is by reconstructing the signals using different numbers of PCs, as
shown in Fig. 7.25. It can be seen that for 10 PCs the accumulated variance is not sufficient
to store the necessary information for reconstructing accurately the FRF. When 20 PCs were
used, the variance improves and, the reconstructed signal become close to the original one.
Therefore, the more PCs that are used, the reconstructed signal becomes closer to the original,
as Fig. 7.25(c) illustrates for 30 PCs.

In this way, 30 PCs can carry with it all the information necessary to reconstruct the
signal with maximum accuracy. Therefore, it will be used as input to the neural network, such
that the numbers of hidden neurons activate the function, and the learning algorithm will be
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Figure 7.24 – Accumulated and individual variance for the PCA in the frequency domain.
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changed, in direction to obtain the best accurate model. Using cross-entropy as error function,
softmax in the 2 output layer, the Tab. 7.14 shows the models and their respective performance.
All of them have good results, with emphasis on what used ADAM as a learning algorithm, 8
neurons in the hidden and sigmoid layer for the activation functions (σ). The problem did not
present great difficulties, with the convergence occurring for most of the tested models and good
precision presented in its validation, which demonstrates the efficiency of the PCA technique
for the treatment of FRFs, so that it is used in neural networks, requiring fewer models and
faster to detect damage.

Table 7.14 – Models used to detect damage on composite beams for PCA approach and 200
epochs.

Hidden neurons Activate Functions Algorithm Training Validation Testing
8 [σ − σ] ADAM 99.78% 99.53% 99.53%
5 [tanh− σ] AdaMax 99.57% 99.68% 99.45%
10 [tanh− σ] Momentum 99.02% 98.75% 98.67%
7 [σ − σ] RMSprop 99.14% 99.45% 98.98%

With the success of the methodology previously demonstrated for the damage detection
problem, some necessary modifications are made to classified according to the different sizes of
beam damage. Thus, in addition to 2 neurons in the output layer, 4 neurons must be used. Thus,
Tab. 7.15 shows some models used in this step, such that the best result found was for the neural
network with topology de 30-[30]-4, (σ) as an activation function, and ADAM in learning.
Figure. 7.26 illustrates the decision matrix for this case, which has minimal classification errors
in the model testing.
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Figure 7.25 – Signals reconstruction using different PCs numbers.

(a) 10 PCs. (b) 20 PCs.

(c) 30 PCs.
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Table 7.15 – Models used to detect damage on composite beams for the PCA approach and
1000 epochs.

Topology Activate Functions Algorithm Training Validation Testing
30-[13]-4 [σ − σ] RMSprop 97.02% 96.79% 97.03%
30-[20]-4 [tanh− σ] AdaMax 99.90% 99.53% 99.53%
30-[25]-4 [tanh− σ] Momentum 99.95% 99.84% 99.61%
30-[30]-4 [σ − σ] ADAM 99.98% 99.68% 99.61%

It is observed that using PCA, the noise is clear, and the efficiency of technique is im-
proved, as can be seen by Fig. 7.27, where the training and testing curves are very smooth.
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Figure 7.26 – Confusion matrix for classification problem using PCA in frequency-domain.
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Figure 7.27 – Network convergence curve with the topology of 30-[30]-4 using ADAM as a
learning algorithm for 150 epochs.
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7.3 Numerical Model

Previous studies have shown that the use of neural networks in a supervised model is
a good alternative for Structural Health Monitoring (SHM) applications because it provides
damage detection efficiently in composite materials. However, this process requires a significant
amount of data, what it presupposes manufactured samples, which can, often, increase the cost
of the process. Thus, models based on vibration, modeled by the Finite Element Method (FEM),
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based on modal analysis is commonly used. On the other hand, some researches have found a
problem in its application, due to the effect of non-linearity on properties, boundary conditions,
and dimensional uncertainties. The main idea of this section is to present a technique where
dimensional uncertainties are considered to generate samples and train a neural network for
damage detection.

7.3.1 Modal Analysis considering uncertainties

It was considered a numerical reference model that could have its properties adjusted
according to the responses presented by the experimental one. A finite element model was
created in the ABAQUS software, using around 400 SR8 shell elements, which have eight
nodes in each element and a quadratic interpolation function, such that the boundary condition
for the model was free-free following the experimental procedures. Initially, the properties
used for the model were the same as those Völtz (2019) has used in their work, but the natural
frequencies obtained were not close to the experimental range shown in Tab. 7.16. Nevertheless,
after performing some analyses, the properties were adjusted, and natural frequencies within the
ranges limited by the experiment were found, as can be seen in Tab. 7.17.

Table 7.16 – Experimental measurements for natural frequencies in composite beams.

State Beam Mode 1 [Hz] Mode 2 [Hz] Mode 3 [Hz] Mode 4 [Hz] Mode 5 [Hz]

Healthy 223-251 467-572 594.5-659.5 1048-1201 1138-1300

Source: (VÖLTZ, 2019).

Table 7.17 – Numerical measurements for natural frequencies in composite beams.

State Beam Mode 1 [Hz] Mode 2 [Hz] Mode 3 [Hz] Mode 4 [Hz] Mode 5 [Hz]

Healthy 238.11 546.21 639.86 1190.80 1218.30

Author’s production.

Complementing the results obtained in the modal analysis, Fig. 7.28 shown the five
modal shapes considered, where the first and third are flexural modes, only. The second and
fourth are torsional and, fifth a combination flexural-torsional.

However, to finalize the adjustment of the model and make it fit the presented method-
ology, the damping factors corresponding to the 5 modes must shape obtained in the 1500 Hz
range considered be determined so that the numerical FRFs can be obtained. Therefore, some
analyses were made by modifying the values corresponding to each damping ratio, and the
setup considered was: ζ1 = 0.0035, ζ2 = 0.025, ζ3 = 0.008, ζ4 = 0.025, ζ5 = 0.007. These
results were based on Fig. 7.29, where the red curve represents the response of the reference
computational model while the others correspond to those obtained for manufactured samples.
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Figure 7.28 – Modal shapes for computational composite beams.

(a) Mode 1 (flexural). (b) Mode 2 (torsional).

(c) Mode 3 (flexural). (d) Mode 4 (torsional).

(e) Mode 5 (flex-torsional).
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Figure 7.29 – Using a reference response for the numerical model to adjust the damping ratios
of each mode.
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After completely model updating, adjusting its mechanical and dynamic properties so
that its response is as close as possible to the experimental, the distribution of uncertainty ob-
tained for each dimension is exposed in Fig. 7.30, and serve for samples to be created com-
putationally and have their FRFs stored in a database to train neural networks in the job of
identifying damage to composite materials. Thus 800 samples were generated, divided into 320
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are Healthy, 160 D1, 160 D2, and 160 D3.

Figure 7.30 – Discrete distributions found for Width, Length and Thickness.

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4

Thickness [mm]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
r
o
b
a
b
il
it
y

(a) Thickness distribution.
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7.3.1.1 Principal Component Analysis (PCA)

For the FRFs matrix given by computational samples, after uncertainties application,
there are two ways to apply Principal Component Analysis (PCA). The first one corresponds
to a commonly used, where the size reduction is performed about the FRFs points. While the
second possibility, used before in this work, the reduction occurs in terms of sample’s number,
maintaining the large FRF points, which help with more data than the first one to be used as
neural network input.

Then, FRFs samples are grouped in a matrix, allocating each spectral line from H11 and
H21 correspondent to individual samples, resulting in [HI]1500×320 (healthy), [HD1]1500×160

(damage 1), [HD2]1500×160 (damage 2), [HD3]1500×160 (damage 3). When the PCA is applied
in order to reduce FRFs points, the matrix resultant will be [H]PCs×Ns , where PCs are the
Principal Components used, and Ns number of samples.

Therefore, 30 PCs were chosen, determining the neural network input layer. The error
function used was cross-entropy with softmax in the last layer, and sigmoid function for hidden
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Figure 7.31 – Accumulated and individual variance for the PCA.
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neurons. Table 7.18 shows two different topologies used, and the results presented.

Table 7.18 – Neural Networks performance using different setups.

Topology Algorithm Training Validation Testing

30 - [15] - 2 ADAM 100.0% 99.375% 98.75%
30 - [10] - 2 ADAM 99.68% 97.5% 97.5%

Through PCA alternative application, reducing the term corresponding to the number
of samples, following the second approach mentioned above, obtaining the set of data that will
be used as input for the neural network. Resulting in 6000 samples; HI1500×30, HD11500×30,
HD21500×30, HD31500×30 dividing it into 80% for the training phase, 10% for testing and vali-
dation. So, using cross-entropy as error function, softmax, and sigmoid for hidden neurons, the
results obtained were better than the previous. ADAM algorithm presents the best performance
than others tested for 2500 epochs, presented in Tab. 7.19, generalizes the model when only
samples from computational models were used.

Table 7.19 – Result for the neural network in PCA alternative approach.

Topology Algorithm Training Validation Testing

30 - [15] - 2 ADAM 100.0% 100.0% 100.0%

Therefore, it is suggested that after the validation through computational samples, the
same model be used to detect damage in a real structure, using vibration response from man-
ufactured composite beams, investigating the uncertainties modeling. So a result was obtained
corresponding to 70.95% correct classifications in the detection of damage, which is not a favor-
able result that allows the widespread use of this technique, but illustrates that there is feasibility,
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as long as the model adjustment is best performed.



Chapter 8

Conclusions

It is possible to infer that Artificial Neural Networks can be used efficiently in damage
detection problems, serving Structural Health Monitoring (SHM) applications. Promising re-
sults were obtained for all cases studied. It was analyzed that feature extraction tools have a
significant influence on the neural network performance. In the rolling bearings fault diagnosis
case, among the strategies used, Statistical parameters (SP) showed the best results, working
as damage indicator for vibration data collected on time-domain. However, classifying damage
not follow the results obtained for detection, revealing low sensitivity to the size of the damage,
both for the ball and inner race faults. Another point to take into account is the correlation
necessary among vibration response and data generated randomly by a Gaussian distribution,
which limits the method utilization, and it cannot be applied to damage detection for composite
beams.

On the other hand, Principal Component Analysis (PCA) shows good results for both de-
tection and classification problems, using time-domain and frequency-domain data. Promising
results were found, with more than 99% accuracy in the testing phase. Dislocated Series (DS)
performed well too, but more neurons in the input layers were required to improve the results,
adding computational costs, requiring more time to process the data. Therefore, the vibration
data studied has intrinsic statistical properties and can be indexed on Principal Components
(PCs) maximum variance-based.

After evaluating the functionality of this multidisciplinary methodology, their use on
complex systems as plane’s wings, industrial machines, and others, encompasses the charac-
terization of main damages to generate reliable data and train the neural networks. However,
manufacturing and labeling samples can be so expensive. In direction to offer an alternative,
a promising strategy was approached using data from a numerical model, to reduce the quan-
tity of the manufactured samples to train neural networks. To this end, uncertainties present
in the dimensions were modeled using a discrete probability distribution for width, length, and
thickness. After trained and generalized with numerical samples only, the same neural network
receives data from the experiment and detects correctly 70% of the data set. It can be associ-
ated with the poor correlation between the experimental and numerical FRF verified on modal
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analysis, because mechanical properties do not correctly determined.
With the results achieved, the studies carried out in this work encourage SHM as tech-

niques for damage detection. However, it is suggested that tests be performed on structures with
more complex geometries to verify the possible limitations of the model.

8.1 Future Works

• Verify the applicability of this method in more complex composite structures and dam-
ages.

• Study strategies based on unsupervised learning to eliminate the necessity of label the
data set, which can be expensive in some cases.

• Apply probabilistic and non-probabilistic networks using the PCA as an alternative to the
deterministic model used in this work.

• Apply Wavelet Transform (WT) in high frequencies, in direction to obtain more deep
features.
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Appendix A

Auxiliary discussion

A.1 Orthogonality of modal vectors

The vibration modes of the structure have an important property in relation to mass
matrices [M ] and stiffness [K] for solving problems with multiple degrees of freedom (DOF).
Considering the eigenvalue problem established in the (2.2.8). Two solutions are assumed

[K]{φr} = ω2
r [M ]{φr}, [K]{φs} = ω2

r [M ]{φs}. (A.1)

Premultiplying both sides of the first and second equation from Eq. (A.1) by {φs}T e
{φr}T ,

{φs}T [K]{φr} = ω2
r{φs}T [M ]{φr}, {φr}T [K]{φs} = ω2

r{φr}T [M ]{φs}. (A.2)

Transposing the second equation of (A.2) and replacing in the first, the relation can be
obtained

(
ω2
r − ω2

s

)
{φs}T [M ]{φr} = 0. (A.3)

As in general the natural frequencies are distinct ωs 6= ωr, Eq. (A.3) is satisfied provided

{φs}T [M ]{φr} = 0, r 6= s, (A.4)

which represent the orthogonality relation for the modal vectors {φr} and {φs} with the inertia
matrix. Inserting Eq. (A.4) into the first of Eq. (A.3), it can be see that modal vectors are
orthogonal with respect to the stiffness matrix [K],

{φs}T [K]{φr} = 0, r 6= s. (A.5)

It is worth mentioning that the orthogonality property is valid only when the matrix [M ] and
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[K] are real positive definite and symmetric (MEIROVITCH, 2010).



Appendix B

Graphics

Figure B.1 – Individual analysis of sample dimensions.
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Figure B.2 – Frequency response functions for all Healthy samples in the H11 position.

Source: (VÖLTZ, 2019).

Figure B.3 – Frequency response functions for all Healthy samples in H21 position.

Source: (VÖLTZ, 2019).
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Figure B.4 – Frequency response functions for all D1 samples in H11 position.

Source: (VÖLTZ, 2019).

Figure B.5 – Frequency response functions for all D1 samples in H21 position.

Source: (VÖLTZ, 2019).
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Figure B.6 – Frequency response functions for all D2 samples in H11 position.

Source: (VÖLTZ, 2019).

Figure B.7 – Frequency response functions for all D2 samples in H21 position.

Source: (VÖLTZ, 2019).
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Figure B.8 – Frequency response functions for all D3 samples in H11 position.

Source: (VÖLTZ, 2019).

Figure B.9 – Frequency response functions for all D3 samples in H21 position.

Source: (VÖLTZ, 2019).


