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RESUMO

Dentre a vasta gama de polímeros estruturais atualmente dispo-
níveis no mercado, este trabalho está particularmente voltado ao
estudo do polietileno de alta densidade. Embora este material já
tenha sido investigado por diversos autores, seu típico comporta-
mento viscoelástico não-linear apresenta dificuldades na mode-
lagem. Visando uma nova contribuição, este trabalho propõe a
descrição de tal comportamento utilizando uma abordagem ba-
seada em derivadas fracionários. Esta formulação produz equa-
ções constitutivas fracionais que resultam em boas propriedades
de ajuste de curvas com menos parâmetros a serem identifica-
dos que nos métodos tradicionais. Neste sentido, os resultados
experimentais de fluência para o polietileno de alta densidade,
avaliados em diferentes níveis de tensão, são ajustados por este
esquema. Para estimar a deformação à níveis de tensão que não
tenham sido medidos experimentalmente, o princípio da equiva-
lência tensão-tempo é utilizado e os resultados são comparados
com aqueles apresentados por uma interpolação linear dos parâ-
metros. Além disso, o princípio da superposição modificado é
aplicado para predizer a comportamento de materiais sujeitos a
níveis de tensão que mudam abruptamente ao longo do tempo.
Embora a abordagem fracionária simplifique o problema de oti-
mização inversa subjacente, é observado um grande aumento no
esforço computacional. Assim, alguns algoritmos que objeti-
vam economia computacional, são estudados. Conclui-se que,
quando acurária é necessária ou quando um modelo de séries
Prony requer um número muito grande de parâmetros, a aborda-
gem fracionária pode ser uma opção interessante.

Palavras-chave: Viscoelasticidade. Derivadas fracionárias. Prin-
cípio da equivalência tensão-tempo. Princípio da superposição
modificada. PEAD.





ABSTRACT

Among the wide range of structural polymers currently available
in the market, this work is concerned particularly with high den-
sity polyethylene. The typical nonlinear viscoelastic behavior
presented by this material is not trivial to model, and has already
been investigated by many authors in the past. Aiming at a fur-
ther contribution, this work proposes modeling this material be-
havior using an approach based on fractional derivatives. This
formulation produces fractional constitutive equations that result
in good curve-fitting properties with less parameters to be iden-
tified when compared to traditional methods. In this regard, ex-
perimental creep results of high density polyethylene evaluated
at different stress levels are fitted by this scheme. To estimate
creep at stress levels that have not been measured experimen-
tally, the time-stress equivalence principle is used and the results
are compared with those presented by a linear interpolation of
the parameters. Furthermore, the modified superposition princi-
ple is applied to predict the strain for materials subject to stress
levels which change abruptly from time to time. Some compar-
ative results are presented showing that the fractional approach
proposed in this work leads to better results in relation to tradi-
tional formulations described in the literature. Although the frac-
tional approach simplifies the underlying inverse optimization
problem, a major increase in computational effort is observed.
Hence, some algorithms that show computational cost reduction,
are studied. It is concluded that when high accuracy is manda-
tory or when a Prony series model requires a very large number
of parameters, the fractional approach may be an interesting op-
tion.

Key-words: Viscoelasticity. Fractional derivatives. Time-stress
equivalence principle. Modified superposition principle. HDPE.





LIST OF FIGURES

Figure 1 – HDPE pipelines installation in storm drain project

in Mexico. . . . . . . . . . . . . . . . . . . . 31
Figure 2 – GL coefficients for α = 0.1. . . . . . . . . . . . 45
Figure 3 – Time line representing the G1 algorithm. The red

range is the whole fractional derivatives history. . 45
Figure 4 – Time line illustrating the P2 algorithm. The red

range is the calculated history and the black one

is the disregarded history. . . . . . . . . . . . . 47
Figure 5 – Time line representing the SG algorithm. . . . . . 48
Figure 6 – Strain and stress behavior in the creep-compliance

phenomenon. . . . . . . . . . . . . . . . . . . 53
Figure 7 – Stress and strain behavior in the stress relaxation

phenomenon. . . . . . . . . . . . . . . . . . . 54
Figure 8 – Representation of the spring. . . . . . . . . . . . 55
Figure 9 – Representation of the dashpot. . . . . . . . . . . 55
Figure 10 – Traditional rheological models of viscoelasticity:

Maxwell, Kelvin and the two equivalent represen-

tations of the Zener model. . . . . . . . . . . . . 56
Figure 11 – Generalized Kelvin model. . . . . . . . . . . . . 57
Figure 12 – Generalized Maxwell model. . . . . . . . . . . . 57
Figure 13 – Representation of the fractional element. . . . . . 61
Figure 14 – Fractional rheological models of viscoelasticity:

Maxwell, Kelvin and the two equivalent represen-

tations of the Zener model. . . . . . . . . . . . . 62
Figure 15 – Zener fractional model used to deriving the frac-

tional constitutive relationship strain-stress in this

work. . . . . . . . . . . . . . . . . . . . . . . 63
Figure 16 – Example of an unsuccessful material parameter

interpolation. . . . . . . . . . . . . . . . . . . 68
Figure 17 – TSEP master curve formation for the horizontal

shift φσ. In this example, σ1 is the reference stress

level. . . . . . . . . . . . . . . . . . . . . . . 72



Figure 18 – Two-step loading effect. . . . . . . . . . . . . . 74
Figure 19 – Experimental data obtained from Liu’s work. . . . 79
Figure 20 – Sample used in Kühl’s experimental procedure:

(a) Extraction; (b) Sample of HDPE PE80 extracted

from water transport pipes. . . . . . . . . . . . . 80
Figure 21 – Experimental data obtained by Kühl (2014). . . . 80
Figure 22 – PSO behavior after n iterations in a three-dimensional

space. . . . . . . . . . . . . . . . . . . . . . . 83
Figure 23 – PSO updating of the best positions towards to the

optimum value in a three-dimensional space. . . . 86
Figure 24 – Fractional fitting obtained for Liu’s experimental

data in Case 1 (a) and in Case 2 (b). . . . . . . . 90
Figure 25 – Fractional Zener and generalized Kelvin fittings

for Kühl’s experimental data. . . . . . . . . . . 93
Figure 26 – Linear interpolation approach for Liu’s experimen-

tal data: (a) 5.97 MPa; (b) 7.71 MPa; (c) 10.31 MPa. 96
Figure 27 – Linear interpolation approach for Kühl’s experi-

mental data: (a) 5.5 MPa; (b) 7.2 MPa; (c) 9.1

MPa; (d) 11 MPa. . . . . . . . . . . . . . . . . 97
Figure 28 – Master curve fitting in the TSEP for Liu’s data:

(a) log-log scale; (b) linear scale. . . . . . . . . . 99
Figure 29 – Fitting of the shifts values for Liu’s data: (a) hor-

izontal shift (φσ); (b) vertical shift (δσ). . . . . . 99
Figure 30 – TSEP results for Liu’s experimental data. . . . . . 101
Figure 31 – Master curve fitting in the TSEP for Kühl’s data:

(a) log-log scale; (b) linear scale. . . . . . . . . . 102
Figure 32 – Fitting of the shifts values for Kühl’s data. . . . . 102
Figure 33 – TSEP results for Kühl’s’s experimental data. . . . 103
Figure 34 – Increasing two-step loading: (a) changing from

5.25 to 8.31 MPa at t1 ≈ 16000s; (b) changing

from 5.33 to 10.55 MPa at t1 ≈ 18000s. Decreas-

ing two-step loading: (c) changing from 10.59 to

5.35 MPa at t1 ≈ 17000s; (d) changing from 8.36

to 5.29 MPa at t1 ≈ 13000s. . . . . . . . . . . . 105



Figure 35 – (a) Application of P2 algorithm in contrast with

the G1 algorithm for some values of Nmax; (b)

Emphasis on the interest region X. . . . . . . . . 106
Figure 36 – ℓ2 norm of the relative error for P2 algorithm in

contrast with the CPU time: (a) linear scale; (b)

logarithm scale. . . . . . . . . . . . . . . . . . 107
Figure 37 – Ratio (∆ time/∆ error) of P2 algorithm in relation

to the truncation value. . . . . . . . . . . . . . 108
Figure 38 – (a) Application of the SG algorithm in contrast

with the G1 algorithm for some values of i = k;

(b) Emphasis on the interest region X. . . . . . . 109
Figure 39 – ℓ2 norm of the relative error for SG algorithm in

contrast with the CPU time: (a) linear scale; (b)

logarithm scale. . . . . . . . . . . . . . . . . . 109
Figure 40 – Ratio (∆ time/∆ error) of SG algorithm in rela-

tion to the parameters i = k. . . . . . . . . . . . 110
Figure 41 – Gamma function, Γ(x). . . . . . . . . . . . . . 127
Figure 42 – Ratio Rfr , r = 2, ...5 in comparison with R1 ac-

cording to Eq. (2.24). . . . . . . . . . . . . . . 130
Figure 43 – Transfer funtion Tn in relation to the Eqs. (2.25)

and (2.23). . . . . . . . . . . . . . . . . . . . 131
Figure 44 – Relative error in Tn given by Eq. (2.25) and the

actual Tn given by Eq. (2.23). . . . . . . . . . . 132
Figure 45 – Rods of polyoxymethylene (POM), also known

as polyacetal. . . . . . . . . . . . . . . . . . . 133
Figure 46 – Schematized polyacetal rod. . . . . . . . . . . . 133
Figure 47 – Fractional viscoelastic model for polyacetal: two

fractional Maxwell models and a spring in parallel. 134
Figure 48 – Discretized viscoelastic rod. . . . . . . . . . . . 136
Figure 49 – Evaluation of the Smε and Smσ. The actual time

calculation uses the overall variable history. . . . 138
Figure 50 – Displacement in the node i = 30 for the polyac-

etal rod. . . . . . . . . . . . . . . . . . . . . . 143
Figure 51 – Strain in the node i = 30 for the polyacetal rod. . 143



Figure 52 – Stress in the node i = 30 for the polyacetal rod. . 144
Figure 53 – Displacement in the node i = 30 for an instanta-

neous initial load. . . . . . . . . . . . . . . . . 144



LIST OF TABLES

Table 1 – Identified Prony series parameters by Liu, Polak

and Penlidis (2008). . . . . . . . . . . . . . . . 78
Table 2 – Identified Prony series parameters by Kühl (2014). . 81
Table 3 – Identified fractional parameters for Liu’s experi-

mental data (Case 1). . . . . . . . . . . . . . . . 90
Table 4 – Identified fractional parameters for Liu’s experi-

mental data (Case 2). . . . . . . . . . . . . . . . 91
Table 5 – ℓ2 norm of the relative error between the experi-

mental strains and the fractional fitting in Case 1

and 2. . . . . . . . . . . . . . . . . . . . . . . 91
Table 6 – Identified fractional parameters obtained for Kühl’s

experimental data (Case 1). . . . . . . . . . . . . 92
Table 7 – ℓ2 norm of the relative error between the experi-

mental strains and both, the fractional fitting and

the Prony series fitting. . . . . . . . . . . . . . . 94
Table 8 – Identified fractional parameters to model the poly-

acetal rod. . . . . . . . . . . . . . . . . . . . . 141





LIST OF SYMBOLS

General Symbols:

A Material constant in the Doolittle’s equation

Am+1 Grünwald-Letnikov coefficient for m+ 1

a Optimum solution for the particle swarm op-
timization method

a Material constant in the fractional derivative

B Material constant in the Doolittle’s equation

b Fractional parameters vector

bi Fractional derivative parameter in the posi-
tion i

bmin Inferior limiting in the minimization proce-
dure

bmax Superior limiting in the minimization proce-
dure

C1, C2, C3 Material constants in the time-stress equiva-
lence principle

c1, c2 Material constants in the fractional deriva-
tive

D1, D2 Material constants in the time-stress equiva-
lence principle

E Spring stiffness constant

Ei Spring stiffness constant for the i-th rheolog-
ical block



f Free volume fraction

f0 Free volume fraction in the reference state

G Relaxation function

g Best know position of the entire swarm (par-
ticle swarm optimization method)

i Factor considered in the algorithm SG

J Creep-compliance function

J̃ Master curve creep

JProny Creep-compliance in the Prony series formu-
lation

Jϕ Time independent component for creep

Jχ Time dependent component for creep

k Factor considered in the algorithm SG

l Counter in the Prony series

m Counter in the fractional derivative definition

N Set of natural numbers

N Number of divisions in the time interval

Nmax Truncation value for the G1 algorithm
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1 INTRODUCTION

Polymers have been used increasingly in the industry in
the last decades. Especially in engineering, it has been ever more
frequently applied as a lighter and cheaper substitute of metallic
materials. One of the most currently used type of polymer is the
high density polyethylene (HDPE). Due to its favorable chemi-
cal and physical properties, it has gained wide use in structural
applications. Among these properties, chemical inertness and
good ratio stiffness/weight have turned HDPE into one of the
preferred materials for manufacturing pipes for gas and water
distribution (see Fig. 1).

Figure 1 – HDPE pipelines installation in storm drain project in Mex-
ico.

©Tomas Castelazo

Structural use implies that the HDPE-made components
are subjected to non-negligible stress conditions, which should
be predicted in order to avoid failure in service. Like other poly-
mers, HDPE shows a time-dependent material response and vis-
coelastic properties, which must be considered when checking
satisfaction of these failure criteria. Viscoelastic behavior can
be represented by a constitutive equation that specifies the re-
lationship between stress, strain and their respective time rates
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(TSCHOEGL, 1989). If the constitutive equation can be ex-
pressed as a linear differential equation with constant coefficients,
the material is said linear viscoelastic, otherwise the material
shows nonlinear viscoelasticity. Boltzmann superposition prin-
ciple describes the response for deformations under linear be-
havior. However, nonlinear behavior is much more complex,
requiring more elaborate constitutive models (WINEMAN; RA-
JAGOPAL, 2000; DEALY; WISSBRUN, 1999). In spite of sub-
stantial work on nonlinear time-dependent analysis has been done,
researchers have considerable difficulty finding an accurate and
easy way to simulate structural problems which captures non-
linear effects of polymeric materials (LIU; POLAK; PENLIDIS,
2008).

Literature shows no consensus whether HDPE presents
linear viscoelastic behavior at any stress range. For instance,
while Elleuch and Taktak (2006) report linear viscoelastic be-
havior for this material in both tensile and compressive creep
tests in the range of 3 to 10 MPa, most researchers have found
that HDPE shows nonlinear viscoelastic behavior up to nearly
vanishing stresses (LAI; BAKKER, 1995). This implies that
the mechanical behaviour of HDPE cannot be described by the
Boltzmann superposition principle. Different constitutive mod-
els have been developed for this purpose [e.g., Schapery (1969),
Krishnaswamy et al. (2006), Liu, Polak and Penlidis (2008)]. In
particular, Liu, Polak and Penlidis (2008) developed a practical
method for constitutive modeling that includes time and non-
linear effects with an accuracy acceptable for structural analy-
sis. Their formulation adopts the generalized rheological Kelvin
model, described by Prony series, to fit experimental results of
creep tests at given stress levels. Thereafter, a simple linear inter-
polation is performed to estimate the corresponding creep coef-
ficients at intermediate stresses. Muñoz-Rojas and Kühl (2011)
proposed a slight modification in Liu’s interpolation procedure,
resulting in better agreement with experimental results. The
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work presented here consists of an extension of such method,
where the generalized Kelvin model, expressed in terms of Prony
series, has been replaced by a simple rheological Zener model
described by fractional derivatives.

The application of fractional derivatives in viscoelastic
problems has been studied substantially by many authors, [e.g.,
Bagley and Torvik (1983b), Lion (1997), Friedrich, Schissel and
Blumen (1999), Glockle and Nonnenmacher (1991)]. This ap-
proach results in fractional-order differential stress-strain rela-
tions that provide good curve-fitting properties and require fewer
parameters than traditional methods (PADOVAN, 1987). In this
regard, the present work proposes the evaluation of the HDPE
creep behavior using fractional derivatives in four different and
complementary steps. Firstly, the fractional Zener model is used
to fit results from creep tests. Secondly, a different approach
based on the time-stress equivalence principle in association with
the fractional derivatives is employed to predict the strain at inter-
mediate stress levels, different from those experimentally mea-
sured. Thirdly, the modified superposition principle is used to de-
scribe the uniaxial response of HDPE bars subjected to complex
(non-constant stress) loadings. Finally, some economic schemes
are studied in order to improve the efficiency in numerical eval-
uation of fractional derivatives used to fit the nonlinear behavior
of HDPE.

1.1 Objectives

The objectives of this work are:

1. To use the fractional derivatives formulations in order to
fit experimental creep results provided by Kühl (2014) and
Liu, Polak and Penlidis (2008);



34 Chapter 1. INTRODUCTION

2. To approximate the creep behavior of HDPE in stress lev-
els, different from those experimentally measured, using
a linear interpolation of the material parameters and the
time-stress equivalence principle;

3. To estimate the strain behavior of HDPE when subject to
non-constant stress levels, using the modified superposi-
tion principle;

4. To implement the numerical fractional derivative formula-
tions G1, P2 and SG and compare the results provided by
them regarding to accuracy and computational effort.

It is important emphasize that to the author’s knowledge,
there are not precedents in the literature for the applications pro-
posed in the items 2 and 3. In this sense this part of the study is
an original contribution.

1.2 Outline of the Thesis

Chapter 2 provides background information on fractional
derivatives. A brief historical overview around this subject is car-
ried out followed by the presentation of the Grünwald-Letnikov
(GL) definition. Some aspects concerning such definition are
discussed leading to numerical extensions of the GL fractional
derivative: the algorithm G1, that is used as referential in the
proposed applications; and the economy schemes P2 and SG,
which are introduced aiming to reduce the computational effort
associated with the fractional derivatives evaluation.

In Chapter 3 a literature review is presented, covering top-
ics such as viscoelastic behaviour and modeling. The basic tradi-
tional viscoelastic models are presented, along with a discussion
concerning the Prony series formulation. The extension of the
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traditional approach to the fractional counterpart, through the in-
troduction of the rheologial element called spring-pot is given.
Both these approaches, using Prony series and fractional deriva-
tives, are used to fit results from experimental creep tests. Two
procedures to approximate the creep behavior at intermediate
stress levels are used, namely, a linear interpolation of the mate-
rial parameters and the time-stress equivalence principle (TSEP).
Finally, the modified superposition principle (MSP) is used in or-
der to estimate the strain resulting for stress levels which change
over the time.

Chapter 4 expose the obtaining of experimental data used
to test the fractional approach. Such data is divided in two groups:
the first one is provided by Liu, Polak and Penlidis (2008) and
the second is given by Kühl (2014). Additionally, the particle
swarm optimization method (PSO), that is chosen to solve the un-
derlying inverse optimization problem associated with the curves
fitting, is detailed.

In Chapter 5 the fitting and interpolation results are pre-
sented. Moreover the application of the modified superposition
principle is employed for some cases of stress which change in a
stepwise pattern. It additionally describes the outcome of numer-
ical schemes G1, P2 and SG, used in the fractional derivatives
modeling.
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2 FUNDAMENTALS OF FRACTIONAL DERIVATIVES

In this chapter some aspects of the fractional derivative
are discussed. First, the historical background around the origin
of this concept is briefly summarized. Afterwards, the particular
kind of fractional derivative, chosen to be used in this work, is
discussed in the framework of its analytical definition and the
resulting numerical extensions.

2.1 BRIEF HISTORICAL OVERVIEW

The origin of fractional derivatives is as old as the defini-
tion of the usual derivative. Indeed, it can be said that it refers
to the year 1695, when Leibniz created the following notation to
characterize the derivative:

dn

dxn
(·).

After being advised of such notation, Marquis de L’Hôpital ini-
tiated a discussion around the “nature” of the factor n. He sent
a letter to Leibniz saying: “Your notation for derivatives pleases
me... however, I have a doubt. What is the mathematical in-
terpretation when n is 1/2, 1/3, 2/5, and so forth?” Leibniz
answered to L’Hospital as follows: “An apparent paradox, from
which one day useful consequences will be drawn.”(LOVERRO,
2004). These words would be the starting point for a discussion
that lead to the first definitions of non-natural order derivatives
and giving rise to fractional derivatives (NISHIMOTO, 1991).

In the eighteenth century, Euler and Lagrange considered
some issues involving fractional derivatives, but it was only in
the nineteenth century that more relevant works began to be pub-
lished. In 1812, Laplace proposed a formulation to fractional
derivatives, but it was Lacroix who first used the term derivative
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of arbitrary order, followed by Fourier who presented a general-
ization of the derivative definition. Pursuant to, other mathemati-
cians such as Riemann, Liouville, Abel, Hargrave, Holmgren,
Heaviside, Marchaud, among others, also have devoted time to
study this subject (SAMKO; KILBAS; MARICHEV, 1987).

Until the late nineteenth century, the development of frac-
tional derivatives occurred strictly in the field of pure mathemat-
ics, without major applications in other areas. However, with the
twentieth century awakening intriguing leaps in engineering start
to be linked to the development of the fractional derivatives. This
fact lead to the change of some mathematical concepts to meet
the requirements of physical reality. In 1969, Caputo reformu-
lated the definition of Riemann-Liouville for fractional deriva-
tives in order to use integer order initial conditions to solve frac-
tional order differential equations. More recently, Kolowankar
and Gangal (1996) reformulated again the Riemann-Liouville
fractional derivative in order to study fractal functions.

The authors mentioned have sought, using their own no-
tations and methodologies, definitions for the concept of frac-
tional order derivatives. Currently, the number of definitions is
as large as the amount of people who have studied the subject,
so that there is no uniqueness of definitions and, in many cases,
not even equivalence between them. For instance, in the work
of Oliveira and Machado (2014) it can be found more than thirty
definitions for fractional derivatives. In Appendix A, one can
see the most famous fractional derivatives definitions. Such con-
cepts are, in most cases, variations of Riemann-Liouville and
Grünwald-Letnikov definitions, which are the most widely ac-
cept and disseminated definitions.

Considering the studies over the past 300 years, Leibniz’s
response to L’Hôpital has proven right with some caveats. The
physical meaning of this subject is certainly difficult, or even
impossible to interpret (LOVERRO, 2004). On the other hand,
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numerous applications and physical manifestations of fractional
derivatives have been found and the mathematical background
underlying fractional derivatives is nowadays no more rigorous
than the integer order counterparts.

2.2 ASPECTS OF GRÜNWALD-LETNIKOV FRACTIONAL
DERIVATIVES

Different definitions of fractional diferential derivatives
may lead to different mathematical and physical results, making
it difficult to establish a systematic theory. Although in a purely
mathematical viewpoint it is legitimate accept or even use one or
all, from the standpoint of applications the situation is different.
Only the definitions that may lead to a theory consistent with
usual practice can be accepted.

In the study that follows, the Grünwald-Letnikov defini-
tion for fractional derivatives is used to formulate the proposed
applications of viscoelasticity. Therefore, the meaning of the no-
tation that will be common in the text is established: following
Davis (2008) notation, the derivative of arbitrary real order α is
denoted by t1D

α
t2
(·), where the subscripts t1 and t2 are the two

limits related to the operation of fractional derivation.

2.2.1 Definition of Grünwald-Letnikov

The Grunwald-Letnikov (GL) definition stems from the
generalization of the incremental ratio used in the natural order
derivatives. According to the usual definition, the first order
derivative in terms of the backward quotient of the function f(t),
in the time interval [t1, t2], is defined by

t1Dt2f(t) = lim
∆t→0

f(t)− f(t−∆t)

∆t
, (2.1)
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when ∆t is the time-step increment. Applying successively the
above equation one obtains higher order derivatives. For in-
stance

t1D
2
t2
f(t) = lim

∆t→0

f(t)− 2f(t−∆t) + f(t− 2∆t)

∆t2
.

(2.2)

To the n-th derivative, this procedure is consolidated by induc-
tion:

t1D
n
t2
f(t) = lim

∆t→0
∆t−n

n
∑

m=0

(−1)m
(

n

m

)

f (t−m∆t) , (2.3)

with n ∈ N and
(

n

m

)

=

{

n!
m!(n−m)!

, for 0 ≤ m ≤ n,

0, for 0 ≤ n < m.
(2.4)

If ∆t = t/N , such that N = 1, 2, 3, ..., then

t1D
n
t2
f(t) = lim

N→∞

∆t−n

N−1
∑

m=0

(−1)m
(

n

m

)

f (t−m∆t) , (2.5)

with n ∈ N. The upper limit of the sum N − 1 seems to be
somewhat arbitrary. However, it derives from defining the lower
limit of an integral, when Eq. (2.5) is used to define integrals as a
limit of the Riemann sum. More details can be found in Oldham
and Spanier (1974).

Although the subscripts t1 and t2 in the notation t1D
n
t2
(·),

are not compulsorily required for n ∈ N, they are included to
construct a link between the usual definition and the fractional
counterpart. In order to deduce a formulation that is valid for
any real order derivative, one can use the extended definition of
the binomial coefficient

(

n

m

)

=

{

n(n−1)...(n−m−1)
m!

, for m > 0,
1, for m = 0.

(2.6)
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Thus, for m > 0

(−1)m
(

n

m

)

=
(−1)m

m!

m
∏

k=1

(n− k + 1)

=
1

m!

m
∏

k=1

(m− n− k)

=

(

m− n− 1

m

)

=
Γ(m− n)

Γ(−n)Γ(m+ 1)
, (2.7)

such that Γ is the usual gamma function (see Appendix B) and
n ∈ Z∗

−
due to gamma function definition. Replacing the above

equation into Eq. (2.5), one obtains

t1D
n
t2
f(t) = lim

N→∞

(∆t)−n
N−1
∑

m=0

Γ(m− n)

Γ(−n)Γ(m+ 1)
f (t−m∆t) ,

(2.8)
which is valid for all n ∈ Z∗

−
. Removing the restriction that n

should be an integer, one may assume the following generaliza-
tion for Eq. (2.8).

t1D
α
t2
f(t) = lim

N→∞

(∆t)−α
N−1
∑

m=0

Am+1fm, (2.9)

where α ∈ R− N, fm = f (t−m∆t) and

Am+1 =
Γ(m− α)

Γ(−α)Γ(m+ 1)
. (2.10)

Eq. (2.9) is said generalized form of the GL and Am+1 are the
GL coefficients.

Note that in this context, all the GL coefficients Am+1

are different from zero as long as the derivative order α is not a
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natural number. If, e.g α = −1, then Am+1 = 1 for all m. For α
being a natural number n, only the first n+1 GL coefficients are
non-zero, indicating a local operator1. Conversely, since for any
positive non-integer number all coefficients Am+1 are non-zero,
fractional derivatives are non-local operator (SCHMIDT; GAUL,
2002). Regarding to the form of the sum in Eq. (2.9), the first
factor (m = 0) is A1f(t) and the last (m = N − 1) is

ANf

(

t−
N − 1

N
t

)

= ANf

(

t

N

)

. (2.11)

2.2.2 Numerical Calculation of the Grünwald-Letnikov Frac-

tional Derivatives

The GL definition has been considered naturally appro-
priate for numerical and incremental computations by many au-
thors, e.g., Sousa (2012) and Akil, Muniandy and Lim (2012).
On account of this feature, the numerical extensions of the GL
definition are present in this section. Additionally some aspects
of the GL coefficients are discussed.

2.2.2.1 Behavior of the Grünwald-Letnikov Coefficients

In the calculation of GL coefficients by Eq. (2.10), some
numerical issues can arise if α is close to a natural number or
if large values of m occur. Accordingly, the calculation of such

1 The definition of fractional derivative is a non-local operator for non-
positive integers because it is defined on an interval. In other words,
calculating time-fractional derivative of a function f(t) defined in the in-
terval [t1, t2] at some time t1 ≤ ti ≤ t2 requires all the previous history,
i.e., all f(t) from t = t1 to ti.
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coefficients should be accomplished by the recursive relationship

Am+1 =
Γ(m− α)

Γ(−α)Γ(m+ 1)

=
(m− 1− α)Γ(m− 1− α)

Γ(−α)Γ(m+ 1)

=
(m− 1− α)

m

Γ(m− 1− α)

Γ(−α)Γ(m)

=
(m− 1− α)

m
Am. (2.12)

In the above equation, Γ satisfies the property established in Eq.
(B.2) (see Appendix B). From (2.12) it follows that

|Am+1| =

∣

∣

∣

∣

m− 1− α

m

∣

∣

∣

∣

|Am|

≤ |Am|, m > α, α > 0, (2.13)

since
∣

∣

∣

∣

m− 1− α

m

∣

∣

∣

∣

< 1. (2.14)

It means that the sequence given by the absolute value of the GL
coefficients is strictly monotonic and decreasing for α > −1 if
m > α. When m→∞ one obtains

lim
m→∞

|Am+1| =

∣

∣

∣

∣

1

Γ(−α)

∣

∣

∣

∣

lim
m→∞

∣

∣

∣

∣

Γ(m− α)

Γ(m+ 1)

∣

∣

∣

∣

<

∣

∣

∣

∣

1

Γ(−α)

∣

∣

∣

∣

lim
m→∞

∣

∣

∣

∣

Γ(m)

Γ(m+ 1)

∣

∣

∣

∣

, (2.15)

as long as m > α + 2, since the Gamma function is strictly non-
decreasing for values greater than two. Considering that m ∈ N,
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then Γ(m+ 1) = m! and

lim
m→∞

|Am+1| <

∣

∣

∣

∣

1

Γ(−α)

∣

∣

∣

∣

lim
m→∞

∣

∣

∣

∣

(m− 1)!

m!

∣

∣

∣

∣

=

∣

∣

∣

∣

1

Γ(−α)

∣

∣

∣

∣

lim
m→∞

∣

∣

∣

∣

1

m

∣

∣

∣

∣

= 0. (2.16)

Equation (2.16) can be interpreted in the example presented in
Fig. 2, where the GL coefficients are shown for α = 0.1 (for
other α values the behavior is similar). The value of Am+1 tends
to zero when m > α. The behavior that Am+1 assumes when m
is close to the α value is not relevant in this work, since m ∈ N,
such that Am+1 is discrete. The GL coefficients are weighting
functions values that are situated farther in the past with grow-
ing m. In other words, the influence of the past is faded out as
time elapses. This property is called “fading memory” 2 and is
used in the numerical fractional derivatives schemes presented in
the next sections. In the following text, the fractional derivative
operator for f(t) in the interval [t1, t2] assumes t1 = 0, such that
the notation becomes 0D

α
t2
(·), or simply Dα(·).

2.2.2.2 Algorithm G1

Oldham and Spanier (1974) presented the algorithm G1,
which results from Eq. (2.9), by taking just N terms in the sum-
mation

0D
α
t2
f(t) ≃ ∆t−α

N−1
∑

m=0

Am+1fm, (2.17)

where ∆t = t/N is the time increment. The time interval [0, t2]
is divided into N equally spaced sections of size ∆t. Thus, at

2 The property of fading memory is also called weak memory or logarith-
mic memory (DENG, 2007) and is largely discussed by Podlubny (1999).
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Figure 2 – GL coefficients for α = 0.1.

the N-th step, the summation in Eq. (2.17) requires N−1 opera-
tions if the GL coefficients are given. The whole time-integration
process requires N2 operations. In this algorithm, all the frac-
tional derivatives must be evaluated at each increment in time,
and every time the whole variable history must be accounted for.
Thus, as time evolves, the computational effort and storage re-
quirement grow considerably and the process slows down signif-
icantly (SCHMIDT; GAUL, 2002). This algorithm is illustrated
in Fig. 3, where the red line represents the fractional derivative
calculated history.

Figure 3 – Time line representing the G1 algorithm. The red range is
the whole fractional derivatives history.
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2.2.2.3 Algorithm P2

The algorithm called P2 by Padovan (1987) uses the fad-
ing memory property. This means that, as long as the order of
the derivative satisfies α > −1, the GL coefficients Am+1, which
are the weighting factors of the function values at different times,
tend to zero when m increases. Thus, since the influence of any
value fades out as time elapses, it is reasonable to truncate the se-
ries, considering only the newest part of the historical variables
in the evaluation of fractional derivative. This can be expressed
mathematically as

0D
−α
t2

f(t) ≃ ∆tα
r

∑

m=0

Am+1fm, (2.18)

where r = min{N,Nmax}, Nmax = tc/∆t is the truncation value
and tc is the truncation time, i.e., the time-step increment where
the economic process begins. According to Eq. (2.18), only
function values associated to the last Nmax are taken into ac-
count. This can be visualized by a time slot: the influence of
all functions outside the time slot simply drops out. The numer-
ical effort is the same as for G1 algorithm as long as the num-
ber N of time steps satisfies N ≤ Nmax . If N > Nmax, the
number of operations is constant and equal to 2Nmax − 1. For
the whole time integration consisting of N > Nmax time steps,
N(2Nmax−1)−Nmax(Nmax−1) operations must be performed to
evaluate the sum in Eq. (2.18) (SCHMIDT; GAUL, 2002). Note
that this expression is linear in N in contrast to the G1. The
algorithm P2 is illustrate in the Fig. 4, where the black range
represents the neglected history and the red one represents the
considered history.
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Figure 4 – Time line illustrating the P2 algorithm. The red range is
the calculated history and the black one is the disregarded
history.

0

2.2.2.4 Algorithm SG

The basic idea of the SG algorithm (SCHMIDT; GAUL,
2002) is to reduce the numerical effort by considering the infor-
mation of the farther past only approximately through a cheap
interpolation scheme. The fractional derivative of the function
f(t), evaluated at the actual time ta, can be written as

0D
α
ta
(ta)f(t) = 0D

α
tI
(ta)f(t) + tID

α
ta
(ta)f(t), (2.19)

Using the G1 algorithm one obtains

0D
α
tI
(ta)f(t) ≃ ∆t−α

i+k−1
∑

m=i

Am+1fm, (2.20)

and

tID
α
ta
(ta)f(t) ≃ ∆t−α

i−1
∑

m=0

Am+1fm. (2.21)

Equation (2.20) represents the contribution of the old part of the
function’s fractional derivative history. According to this idea,
the interval will be kept constant during further time integration
(i.e, i, k = constant) as shown in Fig. 5.

After n time steps one obtains

0D
α
tI
(ta + n∆t)f(t) ≃ ∆t−α

i+k−1
∑

m=i

Am+n+1fm

= ∆t−αAi+n+1Tn, (2.22)
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Figure 5 – Time line representing the SG algorithm.

where Tn is a transfer function defined by

Tn = fi +

(

i+ n− α

i+ n + 1

)

fi+1 +

(

i+ n− α

i+ n + 1

)

(

i+ n− α + 1

i+ n + 2

)

fi+2 + ...+

(

i+ n− α

i+ n + 1

)

(

i+ n− α + 1

i+ n + 2

)

...

(

i+ n+ k − 2− α

i+ n + k − 1

)

fi+k−1.

(2.23)

In order to reduce the numerical costs, the factor Tn, which
includes the contribution of k function values, is approximated
as one single contribution to the fractional derivative. This is
done by calculating the starting value T0 according to Eq. (2.23)
at the time ta and the limiting value

T∞ = fi + fi+1 + fi+2 + ...+ fi+k−1.

From Eq. (2.23) it can be seen that all the weighting fac-
tors multiplied by fm, m = i, . . . , (i + k − 1) are positive, but
less or equal to one. In addition, as time elapses these factors in-
crease monotonically and tend to unity. Therefore, the following
expression can be defined

Rf =
Tn − T0

T∞ − T0
≈ R1 =

T 1
n − T 1

0

T 1
∞
− T 1

0

→
t→∞

1, (2.24)
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where Rf is the ratio corresponding to any function f and the
index 1 denotes that the respective ratio is calculated using the
test function f(t) = 1. From Eq. (2.24), it results

Tn ≈ T0 +
T 1
n − T 1

0

T 1
∞
− T 1

0

(T∞ − T0)

= T0 +R1(T∞ − T0), R1 ∈ [0, 1]. (2.25)

In the above equation it is possible to see that the transfer func-
tion associated to any function f(t) can be interpolated at any
given point between T0 and T∞, using the ratio R1. The approxi-
mation given by Eq. (2.25) replaces Eq. (2.23) in this algorithm.
Thus, Eq. (2.19) can be rewritten as

0D
α
ta
(ta)f(t) ≃ ∆t−αAi+n+1 [T0 +R1(T∞ − T0)] +

+∆t−α

i−1
∑

m=0

Am+1fm. (2.26)

Equation (2.26) reduces the numerical effort needed to
calculate Tn, since the whole history previous to the i-th incre-
ment is approximated using only one contribution to the frac-
tional derivative. So, instead of processing and storing all the
functions with their historical values at each time step, only two
values, T0 and T∞ are used for each interval. In addition, the
oldest history of variables needs not to be taken into account,
contrary to what happens in the P2 algorithm. A study concern-
ing the results provided by the SG scheme is proposed by Gaul
and Schmidt (2007) and shown in detail in Appendix C.

A preliminary investigation on the behavior of the GL
fractional derivative applied to viscoelastic modeling preceded
the drafting of the present work. A problem proposed by Gaul
and Schmidt (2007) was implemented and solved following the
suggestion of this authors. The employed formulation in such a
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problem is given in Appendix D. More details can be found in
Costa Haveroth (2015).

Regarding the applications that will be shown later in
this work, the numerical algorithm G1 is taken as referential for
evaluating the fractional derivatives. Furthermore, a compari-
son between the results supplied by the algorithms G1, P2 and
SG about the efficiency and accuracy intended for computational
cost reduction, is also discussed in Section 5.4.
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3 FRACTIONAL DERIVATIVES IN VISCOELASTIC-

ITY

In this chapter the fractional derivatives are discussed in
the framework of viscoelasticity analysis. Such discussion starts
with a description of the viscoelastic behavior followed by the
presentation of the traditional method to model this phenomenon,
which is based on the use of Prony series. Furthermore, the frac-
tional counterpart is presented. Both these formulations are pre-
sented aiming at the description of creep-compliance for HDPE.

In order to predict the strain behavior of HDPE at non-
experimentally measured stress levels, two different schemes are
proposed, namely, a linear interpolation of the material parame-
ters (LIU; POLAK; PENLIDIS, 2008) and the time-stress equiv-
alence principle (LUO; YANG; AN, 2001). It additionally de-
scribes the modified superposition principle to approximate the
strain behavior at non-constant stress levels.

3.1 VISCOELASTIC BEHAVIOR

In general, materials can be classified by their behavior
when subjected to strain. If the material deforms under stress
but returns instantaneously to its original state (size and shape)
when the load is removed, it is said to show elastic response.
On the other hand, when a material deforms continuously under
constant tension, it is said to present viscous behavior (RIANDE
et al., 1999). However, certain materials, called viscoelastic, ex-
hibit a partially viscous and partially elastic behavior. In this
case, the time dependence can be represented by constitutive
equations between stresses, strains and their respective time rates.
Depending on the relation between the strain rate and stress,
the viscoelasticity can be categorized as linear or nonlinear. If
the stress is linearly proportional to the strain rate this material
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is said linear viscoelastic (Newtonian) (MEYERS; CHAWLA,
2009). Conversely, if the material exhibits non-linear stress re-
sponse for the strain rate, then it is said nonlinear viscoelastic
(non-Newtonian). For many materials, the linear viscoelasticity
exists only at very small strains, where the response is indepen-
dent of the strain (LIU; POLAK; PENLIDIS, 2008). In view of
that, nonlinearity must be considered in most structural applica-
tions.

Polymers are a classic example of viscoelastic material.
They are susceptible to changes as a result of environmental con-
ditions, applied loading and aging over time. While the envi-
ronmental conditions and aging are related to a time-dependent
degradation process, the influence of the applied load can be at-
tributed to a viscoelastic behavior that is manifested mainly in
two ways: creep-compliance and stress relaxation, as described
next.

3.1.1 Creep-Compliance

The phenomenon called creep-compliance (or creep) is
associated with an instantaneous elastic initial strain, followed
by a time dependent strain (Fig. 6). The creep-compliance re-
sponse, J(t), for a constant stress level σc is

J(t) =
ε(t)

σc

. (3.1)

According to Dasappa, Lee-Sullivan and Xiao (2010),
creep tests are a good alternative to characterize the viscoelastic
behavior, due to their experimental relative ease. Furthermore,
the material creep behavior must be accounted for design and
manufacturing, since this has a great impact on the end product
(MUI, 2008).
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Figure 6 – Strain and stress behavior in the creep-compliance phe-
nomenon.

c

3.1.2 Stress Relaxation

Another phenomenon that results from time-dependent
material behavior is stress relaxation, where the stress in the ma-
terial decreases over the time while subjected to a constant strain
(MUI, 2008). The relaxation G(t), for a constant strain level εc
is

G(t) = σ(t)/εc. (3.2)

Figure 7 illustrates the typical stress response of a material un-
dergoing relaxation.

Many authors have studied the stress relaxation for poly-
mers [e.g., Ayoub et al. (2010) and Hodge and Huvard (1983)].
The current study focuses mainly on creep behavior.
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Figure 7 – Stress and strain behavior in the stress relaxation phe-
nomenon.

c

3.2 TRADITIONAL VISCOELASTIC MODELING

Models based on mechanical analogues have been cre-
ated to approximate the viscoelastic constitutive equations (FIND-
LEY; DAVIS, 2013). Such models are based on the duality of the
viscoelastic behavior: elastic solid + viscous fluid = viscoelastic
solid. Usually, the material elastic behavior is represented by
springs (see Fig. 8). The equation that describes the stress-strain
relationship in this component is given by Hooke’s Law

σ(t) = Eε(t)

= ED0ε(t), (3.3)

where E denotes the spring stiffness constant and D0 denotes
the derivative operator of order zero. Equation (3.3) shows that
for an abrupt loading, the spring responds with an instantaneous
strain, and when the loading is removed it responds instanta-
neously once again, recovering the original dimensions.

The dashpot is used to model the viscous behavior and
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Figure 8 – Representation of the spring.

Spring Simplified model

the equation that describes this element is

σ(t) = ηDε(t)

= ηD1ε(t), (3.4)

where η denotes a viscous constant. Figure 9 depicts the symbol
for the dashpot.

Figure 9 – Representation of the dashpot.

Dashpot Simplified model
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A wide variety of viscoelastic materials, including HDPE,
can be modeled using combinations of springs and dashpots. Such
combinations are known as rheological viscoelastic models, and
although purely phenomenological, they are particularly useful
for predicting the material response under creep (constant stress)
or relaxation (constant strain) conditions. The most famous rheo-
logical models are Maxwell, Kelvin and Zener which are shown
in Fig. 10.

Figure 10 – Traditional rheological models of viscoelasticity:
Maxwell, Kelvin and the two equivalent representations
of the Zener model.

Maxwell Kelvin Zener 1 Zener 2

3.2.1 Generalized Chains

One way to systematically construct complex rheologi-
cal models is combining Kelvin or Maxwell models1, creating
generalized chains. In the case of the Kelvin model, the general-
ization is done connecting a certain number of blocks in series,
and optionally allowing for the inclusion of an additional spring

1 The generalized Maxwell and Kelvin models are the most extensively
used ones, however, there are other types of generalized chains as it can
be seen in the work of Schiessel et al. (1995).
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or dashpot in series (see Fig 11). The presence of the additional
spring gives the model instantaneous response, while the pres-
ence of the dashpot results in viscous behavior. For the Maxwell
model, some blocks can be connected in parallel, according to
Fig. 12. Similarly to the Kelvin model, the additional spring
or dashpot gives to the model instantaneous elastic response or
fluid behavior.

Figure 11 – Generalized Kelvin model.

q
q

q

q

Figure 12 – Generalized Maxwell model.

q

q

q

q

In particular, this work uses extensively the traditional
generalized Kelvin model described by Prony series as referen-
tial to construct comparisons with the fractional model that will
be shown later. Both these models, will be used to model the
HDPE viscoelastic behavior.
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3.2.2 Prony Series Formulation

The Prony series scheme is used to represent the general-
ized Kelvin model (see Fig. 11). In such formulation the result-
ing strain is

εProny(t) =
σ(t)

E0(σ)
+

q
∑

l=1

σ(t)

El(σ)

[

1− exp

(

−
t

τl

)]

. (3.5)

where τl(σ) = ηl(σ)/El(σ), l = 1, ..., q are the relaxation times.
If σ(t) = σc is constant, then the creep-compliance can be given
by

JProny(σc, t) =
1

E0(σc)
+

q
∑

l=1

1

El(σc)

[

1− exp

(

−
t

τl

)]

, (3.6)

where El(σc), l = 0, ..., q denote the material parameter at a
given stress level σc. Equivalently, one can rewrite Eq. (3.6) in
the form

JProny(σc, t) = JϕProny(σc) + JχProny(σc, t), (3.7)

where

JϕProny(σc) =
1

E0(σc)
, (3.8)

and

JχProny(σc, t) =

q
∑

l=1

1

El(σc)

[

1− exp

(

−
t

τl

)]

. (3.9)

Here, JϕProny is the time independent component and JχProny the
time dependent component of the creep compliance. For more
details about the Prony series formulation see Park and Schapery
(1999) or Kühl (2014).
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3.3 FRACTIONAL VISCOELASTIC MODELING

Using the generalized models described in the previous
section, it is possible to establish approaches for modeling the
viscoelastic behavior. Nonetheless, such models require identi-
fication of many parameters in the constitutive equation, since
various springs and dashpots must be involved. Modifications in
these models can be obtained proposing a formulation that uses
fractional derivatives (MAINARDI, 2010).

Models of arbitrary order aiming to describe the viscoelas-
tic behavior have proven to be useful to model many materi-
als (LION, 1997; FRIEDRICH; SCHISSEL; BLUMEN, 1999;
BAGLEY; TORVIK, 1983b; GLOCKLE; NONNENMACHER,
1991). According to Welch, Rorre and Duren (1999), the use of
a fractional derivative operator typically demands fewer rheolog-
ical elements, providing more flexibility to the models.

Indeed, in spite that the relationship between viscoelas-
ticity and fractional derivatives begun to be treated only after
1930, nowadays viscoelastic analysis is definitely the field of the
most extensive applications of fractional derivatives. This fact
can be attributed to its ability to model hereditary phenomena
with long memory (MAINARDI, 2012). The pioneers in the ap-
plication of this approach were Gemant [(GEMANT, 1936; GE-
MANT, 1938)] and Scott-Blair [(SCOTT-BLAIR, 1944a; SCOT-
T-BLAIR, 1944b)], who showed the possibility of using frac-
tional differential operators to find the relaxation curves of some
viscoelastic fluids. Thereafter, Rabotnov (1948) and Gerasimov
(1948) also used this concept.

In the second half of the twentieth century Caputo (CA-
PUTO, 1966; CAPUTO, 1967) and later Caputo and Mainardi
(CAPUTO; MAINARDI, 1971a; CAPUTO; MAINARDI, 1971b)
proposed using this approach to fit experimental creep curves. A
great advance for the grounding of modeling by fractional deriva-
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tives was done in the work of Bagley and Torvik (1983b), who
presented a physical justification for such procedure. They de-
veloped a study on the relationship between the molecular the-
ory (that describes the microscopic behavior of certain viscoelas-
tic materials) and empirical viscoelastic models. These authors
proved that when viscoelasticity is described by fractional deriva-
tives, it presents results equivalent to those obtained in the molec-
ular theory.

Koeller (1984) showed the link between fractional deriva-
tives and the usual viscoelastic formulation through the general-
ization of the traditional models. This author presented expres-
sions to creep and relaxation in terms of fractional parameters.
The resulting constitutive equations are used to describe materi-
als with time dependent behavior (memory materials).

More recently, important contributions in this sense have
been done by Schmidt and Gaul (2001) and Jia, Shen and Hua
(2007), who performed comparisons between classical models
and their fractional counterpart, showing that the latter presents
better representations in the curve fitting properties. Other au-
thors also have studied concepts in this regard [e.g., Rossikhin
and Shitikova (2010) and Mainardi and Spada (2011)].

Basically, the procedure to convert the classical models
of viscoelasticity into fractional ones is to replace the dashpot
by a rheological element that allows a continuous transition be-
tween viscous and elastic states. This element was named spring-
pot2 by Koeller (1984) and is represented by a rhombus, as shown
in Fig. 13. The resulting fractional constitutive equation for that
element is given by

σ = pDαε, (3.10)

where p is a proportionality factor, Dα denotes the fractional

2 Many authors [e.g., Mainardi and Spada (2011) and Mainardi (2010)]
refer to the spring-pot as Scott-Blair element.
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derivative operator and α is the order of the fractional deriva-
tive, which is commonly taken into the interval [0, 1] to describe
viscoelasticity. If α = 0, Eq. (3.10) describes the behavior of
a spring, where p specifies the spring stiffness. For α = 1, Eq.
(3.10) defines the constitutive equation of a dashpot, in which p
defines the viscosity. Thus, Eq. (3.10) represents an element that
behaves partly as a spring and partly as a dashpot.

Figure 13 – Representation of the fractional element.

Spring-pot

The combination of a spring-pot with the classic spring
yields fractional viscoelastic rheological models whose consti-
tutive equations are represented by fractional differential equa-
tions. Such rheological arrangements can be constructed from
modifications in the classical models presented previously just
replacing the dashpot by a spring-pot, according to the Fig. 14.

3.3.1 Fractional Zener model

The fractional model chosen to describe the HDPE vis-
coelastic behavior in this work is the fractional Zener one. The
motivation for such a choice has its basis in previous applications
found in the literature. According to Gaul and Schmidt (2007)
and Bagley and Torvik (1983a) this model which has only four
material parameters is able to show all phenomena related to vis-
coelasticity.

The fractional Zener rheological model consists of a frac-
tional Maxwell model and a spring in parallel, or a fractional
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Figure 14 – Fractional rheological models of viscoelasticity:
Maxwell, Kelvin and the two equivalent representations
of the Zener model.

Fractional Fractional FractionalFractional

Kelvin model and a spring in series (see Fig. 14). Both mod-
els lead to the same constitutive equation involving stress, strain
and time (WINEMAN; RAJAGOPAL, 2000). In what follows,
the fractional Maxwell model with a spring in parallel is adopted
for deriving the formulation.

The strain in the spring E0, shown in Fig. 15, is repre-
sented by

ε2(t) =
σ2(t)

E0

, ⇒ σ2(t) = E0ε2(t), (3.11 - 3.12)

and the equation for the fractional Maxwell model is

ε1(t) = εs(t) + εsp(t)

Dαε1(t) = Dαεs(t) + Dαεsp(t)

Dαε1(t) =
1

E1
Dασ1(t) +

σ1(t)

p1
. (3.13)

Considering null initial conditions and applying the Laplace trans-
form (see Appendix E) in Eqs. (3.11) and (3.13), one obtains

L[σ2(t)] = E0L[ε2(t)], (3.14)
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Figure 15 – Zener fractional model used to deriving the fractional
constitutive relationship strain-stress in this work.

p

and

sαL[ε1(t)] =
1

p1
L[σ1(t)] +

sα

E1
L[σ1(t)], (3.15)

respectively.

According to Fig. 15, it is possible to consider

ε(t) = ε1(t) = ε2(t), ⇒ L[ε(t)] = L[ε1(t)] = L[ε2(t)],
(3.16 - 3.17)

and

σ(t) = σ1(t) + σ2(t), ⇒ L[σ(t)] = L[σ1(t)] + L[σ2(t)],
(3.18 - 3.19)

Replacing Eq. (3.14) and (3.15) into Eq. (3.19) yields

L[σ(t)] = L[σ1(t)] + L[σ2(t)]

= L[ε1(t)]

(

p1E1s
α

E1 + p1sα

)

+ E0L[ε2(t)]. (3.20)
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Using Eq. (3.17) in the above equation, it comes out that

L[σ(t)] = L[ε(t)]

(

p1E1s
α

E1 + p1sα

)

+ E0L[ε(t)]. (3.21)

Finally, applying the inverse Laplace transform in Eq. (3.21), it
can be rewritten as

E1σ(t) + p1D
ασ(t)−E0E1ε(t)− E0p1D

αε(t) = p1E1D
αε(t).

(3.22)

The standard form of Eq. (3.22) is

σ(t) +
p1
E1

Dασ(t) = p1

(

E0 + E1

E1

)

Dαε(t) + E0ε(t), (3.23)

which is the one-dimensional constitutive equation for the frac-
tional Zener model where the material parameters are α, p1, E0

and E1.

3.3.2 Grünwald-Letnikov Definition for the Zener Model

The GL definition, presented in Section 2.2, can be used
in order to solve numerically the constitutive equation for Zener
model. Considering Eq. (3.23) and replacing the referential al-
gorithm G1, represented by the Eq. (2.17), into Eq. (3.23), one
obtains

σ(t) +
p1
E1

∆t−α

N−1
∑

m=0

Am+1σm = E0ε(t)+

p1

(

E0 + E1

E1

)

∆t−α

N−1
∑

m=0

Am+1εm. (3.24)

Considering

N−1
∑

m=0

Am+1σm = σ0 +

N−1
∑

m=1

Am+1σm, (3.25)
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and

N−1
∑

m=0

Am+1εm = ε0 +

N−1
∑

m=1

Am+1εm, (3.26)

with ε0 = ε(t), one can rewrite Eq. (3.24) in the form

σ(t)

(

1 +
p1
E1

∆t−α

)

+
p1
E1

∆t−α

N−1
∑

m=1

Am+1σm =

ε(t)

(

E0 + p1
E0 + E1

E1
∆t−α

)

+

+p1
E0 + E1

E1
∆t−α

N−1
∑

m=1

Am+1εm, (3.27)

or equivalently

σ(t)(1 + a) + aSσ = ε(t)[E0 + b] + bSε, (3.28)

where

a =
p1
E1

∆t−α1 , b = a[E0 + E1], (3.29 - 3.30)

Sσ =
N−1
∑

m=1

Am+1σm, Sε =
N−1
∑

m=1

Am+1εm. (3.31 - 3.32)

Solving for ε(t) in Eq. (3.28), gives

ε(t) = σc1 +
a

c2
Sσ −

b

c2
Sε, (3.33)

with

c1 =
1 + a

c2
, c2 = E0 + b. (3.34 - 3.35)



66 Chapter 3. VISCOELASTICITY

Similarly, if σ(t) = σc constant, the creep compliance J(t) =
ε(t)/σc associated with the applied stress σc is given by

J(t) = c1 +
a

c2
SA −

b

c2
SJ

= Jϕ(σc) + Jχ(σc, t), (3.36)

where

SA =
n−1
∑

m=1

Am+1, SJ =
n−1
∑

m=1

Am+1Jm, (3.37 - 3.38)

with Jm = J(t−m∆t) and

Jϕ(σ) = c1, Jχ(σ, t) =
a

c2
SA −

b

c2
SJ. (3.39 - 3.40)

In the above equation, Jϕ(σc) represents the time-independent
part of the creep-compliance and Jχ(σc, t) represents the time-
dependent component.

In a similar way is possible to solve Eq. (3.23) using the
algorithms P2 and SG through Eqs. (2.18) and (2.26), respec-
tively.

Equations (3.33) and (3.36) describe the strain behavior
along time and are used to fit experimental results obtained in
creep tests for the HDPE, as will be explained later. For analysis
of the strain behavior in stress levels different from those experi-
mentally measured or in situations of non-constant stress levels,
a modification in the above formulation should be done. For this
purpose, two principles are presented in the next sections.

3.4 CREEP AT INTERMEDIATE STRESS LEVELS

The theoretical background of two different approaches
which aim to approximate the creep behavior at intermediate
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stress levels, are presented in this section. The first one is based
in a simple linear interpolation of the material parameters, and
the second is grounded on the concept of time-stress equivalence
principle. It is important to emphasize that in a creep analysis the
stress level remains constant along time. Hence in the following
derivations it is considered that σ(t) = σc. Moreover, the mate-
rial parameters associated with each formulation correspond to
the considered stress level.

3.4.1 Linear Interpolation Scheme

Liu, Polak and Penlidis (2008) propose the application
of Eq. (3.5) to identify the HDPE material parameters Ei, at
different stress levels, using three rheological blocks (q = 3,
l = 0, ..., q). Pursuant to, they use the identified parameters to es-
timate the strain behavior at intermediate stress levels, according
to the following linear interpolation scheme:

E0(σ) = E0(σm) +
σ − σm

σn − σm

[E0(σn)−E0(σm)] , (3.41)

and

1

El(σ)
=

1

El

(σm) +
σ − σm

σn − σm

[

1

El(σn)
−

1

El(σm)

]

, (3.42)

where σm ≤ σ ≤ σn and l = 1, 2, 3. Adopting a similar proce-
dure for the interpolation of the fractional parameters in the Eq.
(3.33), one obtains

bi(σ) = bi(σm) +
σ − σm

σn − σm

[bi(σn)− bi(σm)] , (3.43)

where b = [α, p, E0, E1] is the fractional parameters vector.

According to Liu, Polak and Penlidis (2008), the pre-
sented linear interpolation yields in acceptable accuracy for struc-
tural analysis. On the other hand, in the work of Costa Haveroth



68 Chapter 3. VISCOELASTICITY

et al. (2015), it is shown that if the individual parameters are
not well behaved (in the sense that a monotonic change of pa-
rameters should occur when the stress levels are monotonically
increased) the interpolation scheme does not give useful approx-
imations. This situation is illustrated in an example in Fig. 16,
where the parameter E0 does not present a monotonic change
with the increase of the stress levels, yielding in an unrealistic ap-
proximation in the interpolation. In the next section, an approach
less dependent of the material parameters behavior is presented.

Figure 16 – Example of an unsuccessful material parameter interpola-
tion.

3.4.2 Time-Stress Equivalence Principle (TSEP)

The time-temperature-stress equivalence principle can be
deduced from the free volume theory that refers to a small amount
of unfilled volume associated with the end of a polymer chain
(PETERS, 2013; LUO; YANG; AN, 2001). According to this
theory, the viscosity of the material η, which is associated with
the material’s intrinsic time, can be related to the free volume
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fraction, f, via Doolittle’s equation (AKLONIS; MACKNIGHT,
1983):

ln η = lnA+B
V − Vf

Vf

, (3.44)

where V is the total volume, Vf is the free volume, and A and B
are material constants. Defining the fractional free volume as

f =
Vf

V
, (3.45)

Doolittle’s equation becomes,

ln η = lnA+B

(

1

f
− 1

)

. (3.46)

The change in the free volume fraction that results from a
change in temperature is usually assumed to depend linearly on
the temperature change. It is further assumed that the stress has
a similar effect, so that the change in the free volume fraction
resulting from a change in the stress dependents linearly on the
stress change (LUO; YANG; AN, 2001). When the combined
effect of temperature and stress on the free volume fraction of
viscoelastic materials is considered, the free volume fraction can
be expressed as

f = f0 + γT(T− T0) + γσ(σ − σ0), (3.47)

where γT is the thermal expansion coefficient of the free vol-
ume fraction, γσ refers to the stress-induced expansion coeffi-
cient, and f0 is the free volume fraction in the reference state
(TALLA et al., 2014; AKLONIS; MACKNIGHT, 1983). Re-
placing (3.47) into Eq. (3.46) yields

ln η(T, σ) = lnA+B

(

1

f0 + γT(T− T0) + γσ(σ − σ0)
− 1

)

.

(3.48)
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The natural logarithm of the viscosity ratio at any temperature
and stress divided by the viscosity at the temperature T0 and
stress σ0 will give, after simplification

ln
η(T, σ)

η(T0, σ0)
= B

(

1

f0 + γT(T− T0) + γσ(σ − σ0

−
1

f0

)

.

(3.49)
Converting the above equation to base 10 logarithm and suppos-
ing that there exists a temperature-stress shift factor φT,σ satisfy-
ing the relation

φT,σ =
η(T, σ)

η(T0, σ0)
,

one obtains

log φT,σ = −C1

[

C3(T− T0) + C2(σ − σ0)

C2C3 + C3(T − T0) + C2(σ − σ0)

]

,

(3.50)
where C1 = B/(2.303f0), C2 = f0/γT and C3 = f0/γσ (BRIN-
SON; BRINSON, 2015). Equation (3.50) reduces to the Williams-
Landel-Ferry equation at a single stress level if there is no stress
difference.

The stress shift factor at constant temperature, φT
σ , and

the temperature shift factor at constant stress φσ
T, may be defined

such that

η(T, σ) = η(T, σ0)φ
T
σ = η(T0, σ0)φ

σ0

T φT
σ

= η(T0, σ)φ
σ
T = η(T0, σ0)φ

T0

σ φσ
T. (3.51)

Equation (3.51) leads to

φT,σ = φσ0

T φT
σ = φT0

σ φσ
T. (3.52)

From Equation (3.52) it can be seen that the viscoelastic
behavior at different stress levels and temperatures can be shifted
along the time scale by constructing a master curve at a reference
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stress level, σ0 and a reference temperature, T0. It may be done
at one time via temperature-stress shift factor, φT,σ, or in two
steps by combining the shift factor at a constant temperature, φT

σ

and the temperature shift factor at constant stress level φσ
T (LUO;

YANG; AN, 2001). This allows the evaluation of the viscoelastic
behavior at convenient time scales.

By choosing the reference temperature, T0, Eq. (3.50)
reduces to

log φσ = −
B

2.303f0

(

σ − σ0

f0/γσ + σ − σ0

)

=
−C1(σ − σ0)

C3 + (σ − σ0)
, (3.53)

where φσ denotes the stress shift, also called horizontal shift.
Such equation characterize the time-stress equivalence principle
(TSEP).

The creep compliance curves at different stress levels can
be related to each other by the reduced time ξ = t/φσ, (see Fig.
17):

J(σ, t) = J̃(σ0, ξ) = δσJ(σ0, ξ), (3.54)

with J̃(σ0, ξ) the master curve creep at the stress level σ0 and δσ
the vertical shift factor along the creep compliance axis, that has
the form similar to the horizontal shift factor:

log δσ = −
D1(σ − σ0)

D2 + (σ − σ0

), (3.55)

with D1 and D2 material constants.

It must be emphasized that temperature and stress shifts
are only allowed for thermorheologically and piezorheologically
simple materials, respectively (MUñOZ-ROJAS; KüHL, 2011).
HDPE is a semicrystalline polymer, and thus not thermorheo-
logically simple, so time-temperature equivalence cannot rigor-
ously be applied. In spite of that, successful application of the



72 Chapter 3. VISCOELASTICITY

Figure 17 – TSEP master curve formation for the horizontal shift φσ.
In this example, σ1 is the reference stress level.

Edited from Brinson and Brinson (2015).

TSEP has been reported in some references (LAI; BAKKER,
1995; LUO; YANG; AN, 2001). According to Barbero (2010)
and Brinson and Brinson (2015), the TSEP is frequently used to
predict long term viscoelastic behavior from short term experi-
mental data, but in this work it is used to approximate the creep
behavior at non-experimentally measured stress levels from data
obtained in tested levels. One advantage in using this method
for this purpose is the possibility of obtaining a unique set of
parameters, through the master curve fitting, with is able to ap-
proximate the strain or creep-compliance in any stress level in a
preset range.

3.5 MODIFIED SUPERPOSITION PRINCIPLE (MSP)

The modified superposition principle (MSP) was intro-
duced by (FINDLEY; LAI, 1967) and consists of relaxing the
requirement of linearity to describe the nonlinear time behavior
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for stress levels which change abruptly from time to time. The
strain response in such a case will be considered the sum of the
strain due to the first loading and the strain response due to each
change of stress (FINDLEY; LAI, 1967). Namely, the stress σ1

is applied instantaneously at time t0 and held constant until the
time t1. At time t1, the strain is equal to

ε1 = σ1J
ϕ(σ1) + σ1J

χ(σ1, t1 − t0), (3.56)

where Jϕ and Jχ are respectively the time independent and the
time-dependent components of the creep-compliance. In the case
of the Prony series formulation these components are shown in
Eqs. (3.8) and (3.9). For the fractional formulation the same
components are given by Eqs. (3.39 - 3.40).

If in time t1 a new stress σ2 is applied in a step and held
constant until time t2, the stresses σ1 and σ2 are considered in-
dependent and the calculation of strain at time t2 includes strain
recovery from time t1 to t2:

ε2 = σ2J
ϕ(σ2) + σ1J

χ(σ1, t2 − t0) + σ2J
χ(σ2, t2 − t1)

−σ1J
χ(σ1, t2 − t1). (3.57)

Figure 18 shows a two-step loading and the resulting strain ac-
cording to Eq. (3.57).

In the same manner, one obtains the strain response when
the state of stress changes Ñ times, as follows:

εÑ = σÑJ
ϕ(σÑ ) +

Ñ
∑

w=1

[

σwJ
χ(σw, tÑ − tw−1)

−σw−1J
χ(σw−1, tÑ − tw−1)

]

, (3.58)

in which the total time t is divided into Ñ discrete intervals.
Equation (3.58) shows that the time-dependent part of the strain
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Figure 18 – Two-step loading effect.

Edited from (FINDLEY; LAI, 1967)

depends on both stress state and stress history, while the time
independent part depends only on the current state of stress.

FINDLEY and LAI (1967) have investigated many ways
to introduce the MSP. However the results provided by these
other formulations are not as satisfactory as those obtained us-
ing the approach presented here. The application of the theory
described above to model nonlinear viscoelasticity is done as
follows: initially the Prony series formulation is used in associa-
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tion with the linear interpolation procedure shown in the Section
3.4.1; thereafter, the fractional formulation proposed in the Sec-
tion 3.3, is applied in association with the linear interpolation
and the TSEP. Both approaches are compared with the experi-
mental results provided by Liu, Polak and Penlidis (2008).
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4 CREEP EXPERIMENTS AND OPTIMIZATION

PROBLEM

The experimental data employed to corroborate the nu-
merical procedures proposed herein are presented in this chapter.
Also, a detailed presentation of the optimization algorithm used
for curve fitting is given.

4.1 CREEP EXPERIMENTS

The creep experimental data used are obtained from two
different fonts, as explained below.

4.1.1 Experiments Conducted by Liu, Polak and Penlidis

(2008)

Liu, Polak and Penlidis (2008) obtained experimental data
for creep testing samples extracted from HDPE pipes at 2.97,
5.97, 7.71, 10.31, and 12.19 MPa1. They also perform some step
loading tests. These authors fitted the experimental data to the
generalized Kelvin model [see Eq. (3.5)] adopting three rheolog-
ical blocks in the Prony series formulation with preset relaxation
times τ1 =500, τ2 =1000 and τ3 =200000 s. For step loading
cases, the same procedure to fit each individual stress level is
posed in association with the modified superposition principle
(MSP) to evaluate hereditary effects in the behavior of HDPE.

In this work, sampled points from the creep curves iden-
tified by Liu, Polak and Penlidis (2008) (Tab. 1) are used to
simulate the actual experimental values to be matched. The re-
sulting curves in such a case are depict in Fig. 19. Afterwards,

1 The reader interest in details about experimental conditions and setup is
referred to Liu’s original work.



78 Chapter 4. CREEP EXPERIMENTS AND OPTIMIZATION PROBLEM

an estimate of the stress behavior at intermediate stress levels
is done via linear interpolation of the parameters and via time-
stress equivalence principle (TSEP). The results are compared
with those obtained by Liu’s linear interpolation of the Prony
series material parameters. The MSP is applied in association
with the fractional derivatives to approximate some cases of step
loading creep.

Table 1 – Identified Prony series parameters by Liu, Polak and Pen-
lidis (2008).

Stress Prony series parameters

(MPa) E0(N/m2) E1(N/m2) E2(N/m2) E3(N/m2)

2.97 650 797.3889 2320.3566 925.0882

5.97 580 913.5936 1212.2605 695.0461

7.71 520 1224.7911 1104.9922 385.8572

10.31 500 1034.2045 694.1084 226.4555

12.19 470 1128.4448 806.0972 140.6875

4.1.2 Experiments Conducted by Kühl (2014)

In the creep experiments developed by Kühl (2014), ma-
terial samples of HDPE – PE80 were extracted from water trans-
port pipes using mechanical pressure according to the NBR 96-
22 Brazilian norm [see Figs. 20(a) and 20(b)]. The samples were
kept at controlled constant temperature of 20°C and subjected to
axial loading dead during approximately 22 hours (80000 sec-
onds). The creep tests were performed at six different stress lev-
els: 3.6, 5.5, 7.2, 9.1, 11 and 13 MPa. The resulting strains were
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Figure 19 – Experimental data obtained from Liu’s work.

measured with a strain gage and the loading was monitored using
a load cell. A data acquisition system was used to measure and
store the strain history. The time interval between each of the ex-
perimental data was 1000 seconds, resulting in 80 experimental
points, as schematized in Fig 21.

Kühl (2014) also employed the traditional Kelvin model
described by Prony series with two rheological blocks in order
to fit the experimental data shown in Fig. 21. The parameters
identified by this author are presented in Tab. 2 and the resulting
fitting is shown later in section 5.1.2, where a comparison with
the fractional fitting proposed in this work is performed.

In this case, the actual experimental data is used to test
the fractional formulation. The material parameters are iden-
tified using the Zener fractional model and an estimate of the
stress behavior at intermediate stress levels is done via linear in-
terpolation of the material parameters, and via TSEP.
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Figure 20 – Sample used in Kühl’s experimental procedure: (a) Ex-
traction; (b) Sample of HDPE PE80 extracted from water
transport pipes.

Pipe

(a) (b)

Font: Edited from Kühl (2014)

Figure 21 – Experimental data obtained by Kühl (2014).

3.6 MPa

5.5 MPa

7.2 MPa

9.1 MPa

11 MPa

13 MPa
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Table 2 – Identified Prony series parameters by Kühl (2014).

Stress Prony series parameters

(MPa) E0(N/m2) E1(N/m2) E2(N/m2)

3,6 1038.55 664.60 1335.50

5.5 986.98 840.13 632.55

7.2 1086.73 4120.26 333.63

9.1 459.19 550.15 589.98

11.0 420.09 1275.85 353.47

13.0 370.96 1582.65 275.45

4.2 OPTIMIZATION PROBLEM

An optimization algorithm is employed for curve fitting
data obtained in the creep tests (described in the previous sec-
tion) by the problem:

Minimize f : Rn → R, (4.1)

with

f(b) =

√

√

√

√

npts
∑

n=1

|εnexp − εn(b)|2, (4.2)

subject to
bmin
i ≤ b ≤ bmax

i , (4.3)

where εnexp is the experimental strain, npts is the number of sam-
pled experimental points (here npts = 80), εn is the strain ob-
tained by fractional derivatives modeling (see Eq. (3.33)), and
the design variable vector is b = [α, p, E0, E1] .
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The chosen optimization algorithm is the PSO, which is
described below.

4.2.1 Particle Swarm Optimization (PSO)

The particle swarm optimization method (PSO) is orig-
inally attributed to Kennedy, Eberhart and Shi (2001) and is
inspired in the way groups behave (SHI; EBERHART, 1998;
KENNEDY; EBERHART, 1995), for instance, fish school, flock
birds or insects swarm2.

Basically, the PSO method proposes to solve an optimiza-
tion problem where the candidate solutions are called particles
and the set formed by them is known as swarm. These parti-
cles are moved around in the search-space where the movements
of each particle are guided by its own best known position in
the search-space (the position that comes closest to the optimum
point for the considered particle) and the entire swarm’s best
known position (defined by the position that comes closest the
optimal point among the positions of all particles) (BAI, 2010).
This process is repeated until a stop criterion be met, so that the
swarm must be led towards to the optimal solution (see Fig. 22).
Each iteration is named generation, such that this method is clas-
sified as evolutionary.

PSO is also considered an heuristic method as it makes
few or no assumptions about the problem that is being optimized
and can search very large spaces of candidate solutions. In spite
of that as this type of algorithm does not employ guaranties,
it cannot ensure that a satisfactory solution will be discovered
(BAI, 2010). As PSO does not use gradients, it does not require
that the optimization problem be differentiable, and for this rea-

2 In the work of Kennedy, Eberhart and Shi (2001) aspects around the ori-
gin of the PSO are substantially discussed.
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Figure 22 – PSO behavior after n iterations in a three-dimensional
space.

n

son, it is extensively used in optimization problems that are par-
tially irregular, noisy, change over time, and so forth.

According to Vaz and Cardoso (2014), the PSO termina-
tion criteria can be a preset number of generations ng, the differ-
ence between the best and worst particles or the difference be-
tween the best fitness of consecutive generations, among other
alternative criteria found in the literature. In this work, a preset
number of generations is adopted, namely ng = 200.

In order to formally describe the canonical PSO problem,
it is considered the objective function

Minimize f : Rn → R. (4.4)

The goal is to find a solution a such that

f(a) ≤ f(as) ∀ as ∈ X, (4.5)

being X ⊂ Rn the search space where the upper and lower limit-
ing are respectively bmin and bmax, according to Eq. 4.2.

Let np be the number of particles in the swarm, each hav-
ing a position xi ∈ X, i = 1, ..., np and a velocity vi ∈ V, where
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V ⊂ Rn is the search space of the velocities associated to each
particle. It is also considered that pi is the best known position
of particle i and g the best known position of the entire swarm.
Thereat, the description of the classical PSO is done considering
the following steps:

1. For each particle i = 1, ..., np:

(i) The initial position xi is randomically gen-
erated and

pi ← xi.

(ii) Initialize the particle’s best known position
g to its initial position:

g ← pi,

where

f(pi) ≤ f(pj) ∀ j = 1, ..., np.

In other words, g receives the value pi with
best approximate the minimum of f among
the considered particles.

(iii) The velocity of each particle is also random-
ically initialized:

vi ∈ V.

After that, the following steps are iterated until
the termination criterion.

2. For each particle i = 1, ..., np:
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(i) For each dimension d = 1, ..., n (n = num-
ber of design variables)

* The values rp, rg ∈ (0, 1) are generated
randomically;

* Update the particle’s velocity:

vi,d ← ωvi,d + ϕprp(pi,d − xi,d) +

ϕgrg(gd − xi,d),

where vi,d and xi,d are respectively the
particle i velocity and position associate
with the dimension, and the control pa-
rameters ω, ϕp and ϕg are constants heuris-
tically chosen

(ii) Update the particle’s position:

xi ← xi + vi

(iv) If f(xi) < f(pi) then

* Update the particle’s best known posi-
tion:

pi ← xi.

* If f(pi) < f(g) update the swarm’s
best known position:

g ← pi

3. In this moment g holds the best found solution
(see Fig. 23).

Many techniques have been proposed to refine or com-
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Figure 23 – PSO updating of the best positions towards to the opti-
mum value in a three-dimensional space.
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plement the original canonical PSO algorithm described above
(PIRES; MACHADO; OLIVEIRA, 2009), namely regarding it
tuning parameters and by considering hybridization with other
evolutionary techniques. In this work, the PSO is employed in
association with fractional derivatives. Such combination has
achieved satisfactory results in many recent works, as can be
seen in the paper of Lewandowski and Choraśyczewski (2010)
and Pires, Machado and Oliveira (2009).

4.2.2 Optimization Procedure

The identification of the material parameters, for the frac-
tional Zener model at each experimental group of stress levels, is
done via PSO method in two different ways, according to the fol-
lowing description:
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Case 1. Initially, only lateral constraints are used, namely
[0, 106] for p, E0 and E1, and [0.00001, 0.99999] for α. It
is important emphasize that the range chosen to the pa-
rameters p, E0 and E1 is based on the default values for
such elements found in the literature, and the range for α
is based on the duality of the viscoelastic behavior (elastic
+ viscous), as explained in the section 3.1.

Case 2. In a second step, additional constraints are im-
posed. Following Cheng, Polak and Pendilis (2011) for-
mulation, E0 is taken as the ratio between the applied stress
and the strain measured in the first 60 seconds of the ex-
perimental test, i.e.

E0 =
σ

ε(t = 60s)
. (4.6)

Furthermore, the other parameters are restricted to the con-
dition: if b1 < b2 then bi < bi+1, otherwise bi > bi+1.
These constraints are defined aiming at a monotonic be-
havior of the material parameters when the stress levels
are monotonically increased. The need for enforcement of
these complementary constraints are further enlightened.

In both of these cases, the adopted PSO parameters are:
ng = 200, np = 200, ω = 0.5, ϕp = ϕg =1. Such values were ex-
tracted from previous works found in the literature [see Vaz and
Cardoso (2014) for more details]. Moreover, the convergence of
this method was tested performing the optimization procedure
four times for each stress level. The implications and results ob-
tained are presented next.
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5 APPLICATIONS, RESULTS AND DISCUSSIONS

This chapter presents fitting and interpolation results for
experimental measurements provided by Liu, Polak and Penlidis
(2008) and Kühl (2014). Moreover the application of the MSP,
in association with the fractional derivatives formulation, is em-
ployed for some cases of stress which change over the time.
The chapter additionally compares the outcome of numerical
schemes used in the fractional derivatives modeling: G1, P2 and
SG.

5.1 CURVE FITTING

Fitting results for the two groups of experimental data
considered in this work, as well as some comparisons between
them, are presented in this section.

5.1.1 Curve Fitting for Experimental Data Obtained by Liu,

Polak and Penlidis (2008)

The HDPE creep-compliance curves in Liu, Polak and
Penlidis (2008) are converted into strain curves and used as data
for testing the fractional derivative modeling given by Eq (3.33).

A parameter identification for the fractional Zener model
at each experimental stress level is carried out using Eq. (4.2) for
two different cases, as explained in Section 4.2.2. The five mate-
rial parameters of the fractional model are identified in terms of
a non-linear optimization using PSO.

For Case 1, the identified parameters at each stress level
are given in Tab. 3, and the resulting fitting, is compared to the
experimental measurements in Fig. 24(a). It may be noticed in
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Tab. 3 that the material parameters do not grown monotonically
for increasing stress levels.

Table 3 – Identified fractional parameters for Liu’s experimental data
(Case 1).

Stress Fractional parameters

level (MPa) α p(Nsα /m2) E0(N/m2) E1(N/m2)

2.97 0.2045122 848.5291 207.48341 90249.023

5.97 0.1811692 916.3561 136.51704 83515.193

7.71 0.1879511 1321.9562 81.837660 16119.714

10.31 0.3231736 6047.9332 62.467066 555.29249

12.19 0.2898247 4870.4281 10.278508 1102.2502

Figure 24 – Fractional fitting obtained for Liu’s experimental data in
Case 1 (a) and in Case 2 (b).

(a) (b)
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On the other hand, due to the additional constraints im-
posed in Case 2, the identified parameters showed in Tab. 4,
present monotonic increase, as expected. The resulting curves in
such a case are shown in Fig. 24(b).

Table 4 – Identified fractional parameters for Liu’s experimental data
(Case 2).

Stress Fractional parameters

level (MPa) α p(Nsα /m2) E0(N/m2) E1(N/m2)

2.97 0.2399289 42663.205 44.972408 1124.7627

5.97 0.2427847 56433.302 42.295203 2415.4409

7.71 0.2679076 69850.315 38.795354 3682.9055

10.31 0.2999991 89512.823 28.264060 4749.9521

12.19 0.318479 112322.31 17.797184 5932.9533

Table 5 shown the ℓ2 norm of the relative error regarding
the experimental strain for Cases 1 and 2.

Table 5 – ℓ2 norm of the relative error between the experimental
strains and the fractional fitting in Case 1 and 2.

Stress ℓ2 norm of the relative error (×10−8)

Level (MPa) Case 1 Case 2

2.97 1.5368382 6.3396940

5.97 3.5057297 47.063782

7.71 1.9053371 104.431551

10.31 19.97574 217.16936

12.19 14.987934 265.7170
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For this group of experimental data, the fractional fitting
obtained with the material parameters in Case 1 is better than
that obtained in Case 2, although the difference found is in the
order of 10−8. Furthermore, it was verified that the imposition of
constraints (Case 2) is fundamental for finding acceptable results
when using linear interpolation, as shown in Section 5.2.1.

5.1.2 Curve Fitting for Experimental Data obtained by Kühl

(2014)

The results below are based on creep experimental tests
made in HDPE samples by Kühl (2014). The identification of
the fractional material parameters in Case 1 for each stress level
is shown in Tab. 6. The resulting curves are compared to the ex-
perimental data and to the fitting given by Prony series (obtained
with the parameters given in Tab. 2) in Fig. 25.

Table 6 – Identified fractional parameters obtained for Kühl’s experi-
mental data (Case 1).

Stress Fractional parameters

level (MPa) α p(Nsα /m2) E0(N/m2) E1(N/m2)

3.6 0.2564222 10000.000 22.314933 512.71663

5.5 0.1533441 831.05537 96.170401 6529.9876

7.2 0.2165844 1482.6964 100.00000 6948.6585

9.1 0.2178070 803.22324 99.010042 62681.855

11 0.2898683 2021.0274 87.693405 90990.084

13 0.2852317 1537.5904 75.510188 33541.788

In this group of measurements, the application of addi-
tional constraints to obtain a monotonic behavior of the parame-
ters, led to frustrated attempts for good matching results.



5.1. CURVE FITTING 93

Figure 25 – Fractional Zener and generalized Kelvin fittings for
Kühl’s experimental data.

XX

X

Table 7 shows the ℓ2 norm of the relative error for both,
the fractional Zener and the generalized Kelvin models, with re-
spect to the experimental strain. It is worth noting that for all
the stress levels, the ℓ2 norm of the relative error is lower for
fractional derivatives than that for Prony series modeling. Fur-
thermore, the errors presented correspond to one and two rheo-
logical blocks for the fractional Zener and the traditional Kelvin
models, respectively. It must be remarked, however, that the G1
algorithm [Eq. (2.17)] demands the storage of variables at each
step of the implementation. This fact, combined to the use of the
PSO, where the computation of the fractional derivative is per-
formed for each generation, results in a very high computational
cost. Conversely, modeling using Prony series requires minimal
computational effort, because at each time increment, the strain
is calculated with the simple evaluation of Eq. (3.5). In this re-
gard, aiming at a reduction of computation time for the fractional
derivatives approach, a comparison between the computational
economic schemes P2, SG and the referential algorithm G1 is
presented in Section 5.4.
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Table 7 – ℓ2 norm of the relative error between the experimental
strains and both, the fractional fitting and the Prony series
fitting.

Nível de ℓ2 norm of the

tensão (Pa) relative error.

Fractional derivative Prony series

3.6 0.1116343 0.1238776

5.5 0.0499800 0.0634855

7.2 0.0608742 0.1499886

9.1 0.0414798 0.0991086

11 0.0371300 0.0420484

13 0.0485603 0.0977726

5.2 CREEP AT INTERMEDIATE STRESS LEVELS

In order to estimate the creep behavior of HDPE at stress
levels in the range, but different from the ones which were used
to calibrate the model, the linear interpolation of the material
parameters (Section 3.4.1) and the TSEP ( Section 3.4.2) are
compared. Such comparison is carried out for the two cases pre-
sented in Section 4.2.2. The comparison provides information
on how the proposed schemes work for the nonlinear behavior
of HDPE. Again, the G1 algorithm is considered as referential
in the applications that involve fractional derivatives.

5.2.1 Results for Linear Interpolation

The linear interpolation procedure, Eqs. (3.41), (3.42)
and (3.43) is employed for the two groups of experimental data
presented in Section 4.1, as described below.
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5.2.1.1 Liu’s data

The linear interpolation scheme presented in Eq. (3.43)
is employed to the fractional parameters shown in Tab. 3 (Case
1) and Tab. 4 (Case 2). The same procedure is applied to the
Prony series parameters shown in Tab 1, this time employing Eqs.
(3.41) and (3.42). Figure 26 shows the results for each consid-
ered stress level: (a) 5.97 MPa, (b) 7.71 MPa and (c) 10.31 MPa,
which are the intermediate levels in the Liu’s measurements. It is
import to emphasize that the interpolated result is obtained tak-
ing the intermediate value σ with σn ≤ σ ≤ σm (see Section
3.4.1).

It can be seen from Fig. 26 that the results provided in
Case 1 demonstrate unsatisfactory approximations. This is ex-
pected due to the behavior of the parameters in Tab. 3. On the
other hand, the additional constraints imposed in Case 2 showed
up to be vital for obtaining successful approximation results in
the linear interpolation for the fractional parameters. In this case,
the results are comparable to those obtained by Prony series pa-
rameters interpolation. Nonetheless, this procedure does not cor-
respond to the best possible fit for each individual stress level
(Fig. 24) and, in addition, it is totally dependent on well behaved
parameters.

5.2.1.2 Kühl’s data

The results of the parameters linear interpolation in Case
1 for Kühl’s experimental data is presented in Fig. 27 for the in-
termediate stress levels: (a) 5.5, (b) 7.2, (c) 9.1 and (d) 11 MPa.
As explained previously in Section 5.1.2, the application of con-
straints to obtain a monotonic behavior of the parameters (Case
2) led to frustrated attempts for good matching results, hindering
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Figure 26 – Linear interpolation approach for Liu’s experimental
data: (a) 5.97 MPa; (b) 7.71 MPa; (c) 10.31 MPa.

(a) (b)

linear interpolations.

Once again, the outcome obtained using linear interpola-
tion in Case 1 does not yield a good approximation, as conse-
quence of the non-monotonic behavior of the identified param-
eters. The approximation for 11 MPa [Fig. 27(d)] seems to be
somewhat close to the measured data, but this result is unsub-
stantiated since the reasonable outcome in this case was due to
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Figure 27 – Linear interpolation approach for Kühl’s experimental
data: (a) 5.5 MPa; (b) 7.2 MPa; (c) 9.1 MPa; (d) 11 MPa.

(d)
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coincidence and not to the robustness of the employed method.
This problem can be avoided using the TSEP, as shown in the
next section.

5.2.2 Results for Time-Stress Equivalence Principle

The TSEP, described in the Section 3.4.2, is employed
in association with fractional derivatives as an alternative to ap-
proximate strains at non-experimentally measured stress levels.
The identified parameters used here were those obtained in Case
1 for the two groups of experimental data. The results for both
of these groups are present in this section.

5.2.2.1 Liu’s data

The procedure to obtain the approximations using the
TSEP, starts with the time shift search for some experimentally
measured stress levels. It must be performed to relate the individ-
ual compliances to a master curve defined at a reference stress.
In other words, the resulting master curve is valid over the time
scale at one stress level by shifting and superposing creep com-
pliance data provided at other stress levels in a short term test
(BRINSON; BRINSON, 2015) (see Section 3.4.2).

For Liu’s experimental data, shift values are: φ2.97 = 1,
φ5.97 = 0.22380, φ7.71 = 0.10471, φ10.31 = 0.03162, φ12.19 =
0.00800, δ2.97 = 1, δ5.97 = 0.90021, δ7.71 = 0.80100, δ10.31 =
0.55101 and δ12.19 = 0.37001. The shift values φ2.97 and δ2.97
are equal to unity, so that 2.97 MPa is the reference stress level.

Figure 28(a) shows the master curve and its fitting in log-
log scale and Figure 28(b) gives the same graph in linear scale.
Both are obtained using the horizontal and vertical shifts given
by Eqs. (3.53) and (3.55) and plotted in Fig. 29(a) and 29(b),
respectively.
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Figure 28 – Master curve fitting in the TSEP for Liu’s data: (a) log-
log scale; (b) linear scale.

+

(a) (b)

Figure 29 – Fitting of the shifts values for Liu’s data: (a) horizontal
shift (φσ); (b) vertical shift (δσ).

Initial shift values

Fitting

Initial shift values

Fitting

(a) (b)

Figure 30 shows some approximations obtained by the
TSEP which evince the accuracy of the approach for (a) 2.97,
(b) 5.97, (c) 7.7, (d) 10.31 and (e) 12.19 MPa. The results are
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visually better than those obtained by linear interpolation.

5.2.2.2 Kühl’s data

The same procedure described in the previous section is
employed for Kühl’s experimental data. In this case there is no
need of to use the vertical shifts δσ, since the use of horizon-
tal shifts already results in good approximations. The consid-
ered stress levels for constructing the master curve are: 3.6, 7.2,
11 and 13 MPa; and the respective horizontal shifts found are:
φ3.6 =1, φ7.2 =0.1379288, φ11 =0.0194110, and φ13 =0.0050468.
Here, 3.6 MPa is the reference stress level. Figure 31(a) shows
the resulting master curve fitting for this data in a log-log scale
and Fig. 31(a) gives the same curve in a linear scale.

The horizontal shift curve is shown in Fig. 32 and the
resulting approximations for some stress levels are plotted in Fig.
33.

A substantial improvement in the approximation accu-
racy can be observed in Fig. 33. Moreover, for the data studied
in this work the TSEP provided excellent approximations irre-
spective of the material parameters behavior.

5.3 RESPONSE TO MULTIPLE LOADING STEPS

In addition to the creep tests at constant stresses, Liu, Po-
lak and Penlidis (2008) studied the strain response of HDPE sam-
ples to step varying loadings. They performed experimental tests
and tried to reproduce the strain response based on their linear
interpolation scheme together with the MSP. In this section, (i)
the fractional derivative approach is employed using the TSEP
(procedure proposed in this work); (ii) the Prony series formu-
lations is used with an interpolation of the material parameters
(procedure proposed by Liu, Polak and Penlidis (2008)). Both
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Figure 30 – TSEP results for Liu’s experimental data.

(d)

(e)
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Figure 31 – Master curve fitting in the TSEP for Kühl’s data: (a) log-
log scale; (b) linear scale.

(a) (b)

Figure 32 – Fitting of the shifts values for Kühl’s data.

Initial shift values

Fitting
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Figure 33 – TSEP results for Kühl’s’s experimental data.

(d)

(e) (f)
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formulations are associated with the MSP (see Section 3.5) to
approximate Liu’s experimental data.

Figure 34 shows the comparison of simulated and exper-
imental results for increasing and decreasing two-step loading
cases. Again, the approach used in this work yields visually
better results than those presented by Liu, Polak and Penlidis
(2008), especially in the decreasing step loading1.

5.4 LONG-TERM CREEP TESTS

An evaluation of different concepts for reducing the com-
putation time and storage requirements in the fractional deriva-
tives evaluation is presented in this section. It is performed by
calculating long-term creep tests for HDPE in the stress level
σ = 2.97. The algorithms P2 and SG are compared to the ref-
erential algorithm G1. The overall simulation time was 1e + 8s
with ∆t =2000s, resulting in N =50000 time steps. The ma-
terial parameters considered for σ =2.97 are shown in the Tab.
3.

5.4.1 Results for the P2 algorithm

The evaluation of the P2 algorithm is carried out by just
inserting Eq. (2.18) into Eq. (3.23), where the resulting equation
is similar to Eq. (3.33). The HDPE creep in the stress level 2.97
MPa is simulated for different values of Nmax. Figure 35(a) de-
picts some of these fittings in contrast with the numerical fitting
by using the G1 algorithm and Fig. 35(a) shows emphasis in the
interest region X.
1 Additional quantitative comparisons regarding the accuracy of the em-

ployed method cannot be performed since the experimental data in this
case was obtained through a software to extract some points in Liu’s
graph.
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Figure 34 – Increasing two-step loading: (a) changing from 5.25 to
8.31 MPa at t1 ≈ 16000s; (b) changing from 5.33 to
10.55 MPa at t1 ≈ 18000s. Decreasing two-step loading:
(c) changing from 10.59 to 5.35 MPa at t1 ≈ 17000s; (d)
changing from 8.36 to 5.29 MPa at t1 ≈ 13000s.

(a) (b)

(c) (d)
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Figure 35 shows that as Nmax increases, the fitting be-
comes closer to the reference curve. This is expected, since the
reference fitting is equivalent to truncation with Nmax = 50000
and there are 50000 experimental points. Figure 36(a) plot the
ℓ2 norm of the difference between algorithm G1 and the fittings
provided by algorithm P2 for some truncation times Nmax. The
same figure additionally shows the CPU time spent in each com-
putation. Figure 36(b) presents the graph of Fig. 36(a) plotted in
a logarithm scale. Although the savings could be considerably
increased by reduction the factor Nmax, it can be observed in Fig.
35 that the underlying creep would stabilize too soon, thus in-
creasing the calculation error. Fig. 37 shows the rate of time
changing with the error (∆ time/∆ error) for a given truncation
value Nmax.

Figure 35 – (a) Application of P2 algorithm in contrast with the G1
algorithm for some values of Nmax; (b) Emphasis on the
interest region X.

(a) (b)

The difference between the time required by the P2 and
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the G1 algorithms is considerably large. If this tests were consid-
ered in the material parameters identification, including the PSO
calculations, a much larger difference of time could be verified,
since in this case the fractional derivative must be evaluated sev-
eral times. Hence, although the P2 algorithm is able to reduce
the numerical effort and the storage requirements, a high value
of Nmax is needed to get an acceptable norm value. For instance,
if Nmax ≥ 25000 the norm verified is much lower than for values
Nmax ≤ 25000. On the other hand, if Nmax ≥ 25000 the compu-
tational time and storage requirements increase substantially.

Figure 36 – ℓ2 norm of the relative error for P2 algorithm in contrast
with the CPU time: (a) linear scale; (b) logarithm scale.

(x
 1

e+
4

)

(a) (b)

5.4.2 Results for the SG algorithm

The SG algorithm is also compared to the referential al-
gorithm. For this purpose, Eq. (2.26) is inserted into Eq. (3.23).
Some values of i = k (see Section 2.2.2) are adopted for evalu-
ation, and the graphical result for three of these values is shown
in Fig. 38(a). Figure 38(b) shows a detail of the interest region.
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Figure 37 – Ratio (∆ time/∆ error) of P2 algorithm in relation to the
truncation value.

10000 30000 40000 5000020000

The actual creep behavior resulting from the reference calcula-
tion is better matched by the SG than by the P2 algorithm, since
in the latter case, the creeping process unrealistically stabilizes
after some time.

Figures 39(a) and (b) show the ℓ2 norm of the relative er-
ror between the G1 and the SG, contrasting with the CPU time
spent for the evaluation of the creep response using the SG al-
gorithm in linear scale and logarithmic scales, respectively. The
graph in Fig. 40 displays the rate of time changing with the error
(∆ time/∆ error) in this case.

Clearly, the ℓ2 norm for the SG calculation is lower than
that achieved with the P2 implementation. Furthermore, the
CPU time spent in the computation is also smaller.

Based on the graph of Fig. 39, it can be noticed that for
500≤ i = k ≤1000 the accuracy becomes much higher than
if i = k ≤500. Moreover, the CPU time spent in the same in-
terval also shows great advantage compared to the time spent at
the reference calculation. The SG algorithm shows good perfor-



5.4. LONG-TERM CREEP TESTS 109

Figure 38 – (a) Application of the SG algorithm in contrast with the
G1 algorithm for some values of i = k; (b) Emphasis on
the interest region X.

G1

(a) (b)

Figure 39 – ℓ2 norm of the relative error for SG algorithm in contrast
with the CPU time: (a) linear scale; (b) logarithm scale.

(a) (b)
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Figure 40 – Ratio (∆ time/∆ error) of SG algorithm in relation to the
parameters i = k.

mance, although the parameters i and k used in the simulation
are chosen somewhat arbitrarily and could be optimized for fur-
ther reduction of the numerical costs.
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6 CONCLUSIONS

In this work, Grünwald Letnikov (GL) fractional deriva-
tive was used in conjunction with the Zener viscoelastic model.
Such approach was employed aiming to model both time and
nonlinear effects in a creep analysis for high density polyethy-
lene (HDPE).

The fractional Zener model demands only four material
parameters which were identified by fitting creep tests at dif-
ferent stress levels. In this regard, an inverse constrained opti-
mization problem was solved using the particle swarm optimiza-
tion method (PSO) in two different ways: (1) firstly, lateral con-
straints related to the PSO implementation were imposed; (2)
secondly, additional constraints were defined to achieve a mono-
tonic behavior of the material parameters when the stress levels
are monotonically increased.

Some curves fitted by Liu, Polak and Penlidis (2008),
were used to generate points in corroboration of a formulation
based on the numerical fractional G1 algorithm for the two cases
previously mentioned. A comparison regarding the accuracy in
such cases was performed in relation to the collected sampled
points. Moreover, a linear interpolation of the identified param-
eters and the time-stress equivalence principle (TSEP), were ap-
plied in order to estimate the creep behavior at intermediate non-
experimentally measured stress levels. It was found that the ad-
ditional constraints, in Case 2, lead to less accurate results in the
individual fittings than in Case 1, but the observed difference be-
tween them was just around 10−8. Apart from that, only in Case
2 the application of the fractional parameters interpolation for
estimating the creep behavior at intermediate stresses, provides
results comparable to other interpolation schemes suggested in
the literature. Such fact means that, while no significant loss
of accuracy is found in the fitting with the introduction of the
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additional constraints, it is mandatory to include them if linear
interpolation schemes are to be used. On the other hand, mono-
tonicity of the material parameters was not required for the TSEP
implementation in any the problems tested.

The fractional derivatives modeling was also compared
with the traditional Kelvin model described by Prony series to
fit actual experimental creep data obtained by Kühl (2014). In
this group, the application of additional constraints to obtain
a monotonic behavior of the parameters in Case 2, led to frus-
trated attempts for good matching results. Therefore, the results
were disregarded for this case. The linear interpolation of the
material parameters and the TSEP were once again applied and
compared for this data. It was noticed that the fractional pro-
cedure presents better matching and less material parameters to
describe the creep behavior in relation to the traditional Kelvin
model. However, the linear interpolation of the fractional param-
eters for this group, lead to unsatisfactory approximations. The
latter result was expected due to the parameters obtained in this
case. Conversely, the TSEP application resulted in remarkably
accurate intermediate creep approximations for most cases tested
in this work.

In addition to the fittings and interpolation procedures de-
scribed above, the modified superposition principle (MSP) was
used to predict the strain response of HDPE samples when sub-
jected to stress levels that change in a stepwise pattern from time
to time. An approach based on the TSEP in association with
fractional derivatives was proposed and compared with the for-
mulation developed by Liu, Polak and Penlidis (2008). In all
cases analyzed the method suggested in this work showed better
agreement with the experimental data.

Although the fractional derivatives method presents ac-
curate results with less material parameters to account the vis-
coelastic phenomenon, the involved computational effort is much
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higher when compared to the traditional Kelvin model. In order
to cope with this issue, two approximate but faster algorithms, P2
and SG, are implemented and their time/accuracy performance
is evaluated in relation to the referential algorithm G1. It is ver-
ified that the P2 procedure shows a high CPU time reduction
but a significant accuracy loss when compared to the reference
algorithm. The CPU time reduction achieved with the SG is
even higher and the relative error much lower, in agreement with
the statements of Schmidt and Gaul (2002). In other words, the
SG algorithm was shown to maintain the benefits of accuracy
provided by fractional derivatives, while reducing drastically the
underlying numerical effort. Clearly the numerical analyses per-
formed evince a general trend in the comparative behavior of
the algorithms. However, quantitative conclusions regarding the
trade-off between cost and accuracy would require a deeper in-
vestigation.

This study showed that the fractional derivatives formu-
lation is a very helpful tool to perform calculation specifically
dealing with viscoelastic problems. This matter can unfold in
different directions. In this sense, continuity workflow sugges-
tions are summarized below:

1. To implement the Caputo fractional derivative for the same
applications proposed in this research and compare the re-
sults provided by such method with those showed in the
present study;

2. To extend the proposed fractional formulation to bidimen-
sional models of viscoelasticity in conjunction with finite
element method;

3. To implement other economy schemes proposed in the lit-
erature for the fractional derivatives;
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4. To extend the fractional formulation to viscoelastoplastic
behavior;

5. To improve the parameters identification including relax-
ation and dynamic tests.
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APPENDIX A – SOME DEFINITIONS OF

FRACTIONAL DERIVATIVES

The following definitions for α > are originally found in
the work of Ortigueira (2011).

Left side Riemann–Liouville:

Dα
−
f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ) · (t− τ)n−α−1dτ, (A.1)

with n ∈ N and the derivative defined in the interval [a, t].

Right side Riemann–Liouville:

Dα
+f(t) =

(−1)n

Γ(n− α)

dn

dtn

∫ b

t

f(τ) · (τ − t)n−α−1dτ, (A.2)

with n ∈ N and the derivative defined in the interval [t, b].

Left side Caputo:

Dα
−
f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ) · (t− τ)n−α−1dτ, t > 0,

(A.3)
with n ∈ N and the derivative defined in the interval [a, t].

Right side Caputo:

Dα
+f(t) =

1

Γ(n− α)

∫ b

t

f (n)(τ) · (τ − t)n−α−1dτ, (A.4)

with n ∈ N and the derivative defined in the interval [t, b].

Marchaud:

Dα
+f(t) = c ·

∫

∞

0

∆k
τf(t)

τ 1+α
dτ, (A.5)

with c a constant, ∆k
τ the time step and the derivative defined in

the interval [0,∞).
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Generalized function:

Dαf(t) =
1

Γ(−α)

∫ t

−∞

f(τ) · (t− τ)−α−1dτ (A.6)

Left Grünwald–Letnikov:

Dα
−
f(t) = lim

∆t→0+

1

∆tα

∞
∑

k=0

(−1)k
(

α

k

)

f(t− k∆t), (A.7)

with ∆t the time step.

Right Grünwald–Letnikov:

Dα
+f(t) = lim

∆t→0+

1

∆tα

∞
∑

k=0

(−1)k
(

α

k

)

f(t+ k∆t), (A.8)

with ∆t the time step.
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According to Loverro (2004), the interpretation of the
Gamma function is simply the extension of the factorial for all
real numbers, except for negative integers and zero, as can be
seen in Fig. 41.

Figure 41 – Gamma function, Γ(x).
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In general, the most extensively used definition for the
Gamma function is known as Euler integral, and is given by

Γ(x) =

∫

∞

0

tx−1e−tdt, (B.1)

where x ∈ C such that Re(x) > 0.

The Gamma function also satisfies the functional equa-
tion

Γ(x+ 1) = xΓ(x). (B.2)

Equation (B.2) is obtained calculating Γ(x+ 1) in the form

Γ(x+ 1) =

∫

∞

0

txe−tdt.
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Using integration by parts, one can rewrite
∫

∞

0

txe−tdt = x

∫

∞

0

tx−1e−tdt. (B.3)

The left side of Eq. B.3 is Γ(x + 1), and the right side is xΓ(x).
In this way, a recursive relationship can be observed:

Γ(x+ 1) = xΓ(x),

Γ(x) = (x− 1)Γ(x− 1), (B.4)

Γ(x− 1) = (x− 2)Γ(x− 2).
...

Obviously Γ(1) = 1, and using (B.2) it comes out that

Γ(2) = 1Γ(1) = 1 = 1!

Γ(3) = 2Γ(2) = 2 · 1! = 2!

Γ(4) = 3Γ(3) = 3 · 2! = 3!
...

...

Γ(n + 1) = nΓ(n) = n(n− 1)! = n! (B.5)

with n ∈ N. Equation (B.5) is also commonly referred as a
definition for the Gamma function and is used in this work.

There are some alternative definitions for this special func-
tion. For instance

Γ(x) =

∫ 1

0

(ln y)x−1dt. (B.6)

and

Γ(x) =

∫ +∞

−∞

exze−ezdz. (B.7)

The latter two equations are obtained from Eq. (B.1), just taking
y = e−t e z = ln t, respectively. In the book of Artin and Butler
(2015) the above definitions are discussed in the pure mathemat-
ics framework.



129

APPENDIX C – ANALYSIS OF THE SG ALGORITHM

The validation of Eq. (2.24) is illustrated in Fig. 42(a),
(b), (c) and (d), where the ratio

Rf =
Tn − T0

T∞ − T0
≈ R1 =

T 1
n − T 1

0

T 1
∞
− T 1

0

→
t→∞

1, (C.1)

is plotted for each elementary function showed below:

f1(t) = 1,

f2(t) = t,

f3(t) = sin(πt), (C.2)

f4(t) = et,

f5(t) =
1

t
.

The considered time interval is [2, 27]s and the additional data
are: α = 0.5, i = k = 20 and ta = 2, as suggested by Schmidt
and Gaul (2002).

The accuracy of the approximation of Eq. (2.25) is also
demonstrated using the same elementary functions given in Eq.
(C.2). The transfer function Tn is evaluated in the interval [2, 27]
with ta = 2. The time step is ta/n = ∆t = 0.05s, where n =
(t − ta)/∆t is the number of elapsed time steps until ta. The
overall simulation time demanded 500 steps. In Fig. 43(a), (b),
(c) and (d), Tn is plotted according to Eqs. (2.23) and (2.25).

Obviously, for f1 the approximation Tn results in the ref-
erential function itself, since f1 = 1 is the test function. In the
other cases, f2, f3, f4 and f5, the approximation provides the
same result of the actual Tn function when t → ∞. This can be
clearly noticed in Fig. 44(a), (b), (c) and (d), where the relative
errors for each analyzed function are shown in the considered
interval.



130 APPENDIX C. ANALYSIS OF THE SG ALGORITHM

Figure 42 – Ratio Rfr , r = 2, ...5 in comparison with R1 according
to Eq. (2.24).

(a) (b)

( c) (d)

Both, Fig. 42 and 43, show good results for the proposed
approximations with respect to the original ones.
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Figure 43 – Transfer funtion Tn in relation to the Eqs. (2.25) and
(2.23).

(a) (b)

( c) (d)
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Figure 44 – Relative error in Tn given by Eq. (2.25) and the actual Tn

given by Eq. (2.23).

( c) (d)

(a) (b)
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APPENDIX D – AN EXAMPLE FOR VALIDATION OF

THE FRACTIONAL VISCOELASTIC

IMPLEMENTATION

A polyacetal homogeneous rod (see Fig. 45), with den-
sity ρ and constant cross-section area A, is fixed at x = 0 and
is subjected to an external force F (t) at x = ℓ, where ℓ is the
length of the rod1, as show in Fig. 46.

Figure 45 – Rods of polyoxymethylene (POM), also known as poly-
acetal.

Figure 46 – Schematized polyacetal rod.

As polyacetal presents viscoleastic properties, its behav-
ior can be described using fractional rheological models. Ac-
cording to Gaul and Schmidt (2007), a five parameters structure
(see Fig. 47) is able to characterize such behavior.
1 This problem is based on the study of Gaul and Schmidt (2007), and was

used to validate the fractional derivatives for viscoelastic problems.
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Figure 47 – Fractional viscoelastic model for polyacetal: two frac-
tional Maxwell models and a spring in parallel.

Single spring 1º block 2º block

Since the proposed rheological arrangement presents two
Maxwell models and a spring in parallel, one can use Eqs. (3.3)
and (3.13) to find a strain/stress relationship:

ε =
σ

E0

(Single spring), (D.1)

Dα1

t ε =
σ

p1
+

Dα1

t σ

E1

(1º block), (D.2)

Dα2

t ε =
σ

p2
+

Dα2

t σ

E2
(2º block). (D.3)

Applying the Laplace transform (see Appendix E) in the above
equations, and using the relations

L[ε0] = L[ε1] = L[ε2] = L[ε], (D.4)

and

L[σ0] + L[σ1] + L[σ2] = L[σ], (D.5)
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it comes out that

L[σ] = E0L[ε] +
sL[ε]

(1/p1 + s/E1)
+

sL[ε]

(1/p2 + s/E2)
. (D.6)

After some algebraic manipulations in Eq. (D.6), one obtains
[

1

p1p2
+ s

(

1

E2p1
+

1

E1p2

)

+ sα
1

E1E2

]

L[σ] =

L[ε]

{[

1

E1E2
+ s

(

1

E2p1
+

1

E1p2

)

+ sα
1

E1E2

]

E0

+s

[(

1

p1
+

1

p2

)

+ s

(

1

E1
+

1

E2

)]

}

. (D.7)

Applying the inverse Laplace transform in the above equation,
one haves the sought relationship:

σ +
p1
E1

Dα1

t σ +
p2
E2

Dα2

t σ +
p1p2
E1E2

Dα1+α2

t σ

= E0ε+ p1
E0 + E1

E1

Dα1

t ε+ p2
E0 + E2

E2

Dα2

t ε+

+p1p2
E0 + E1 + E2

E1E2

Dα1+α2

t ε. (D.8)

In order to solve this fractional differential equation, pertinent
fractional-order initial conditions have to be deffined. Following
Schmidt and Gaul (2006), all initial conditions are assumed to be
zero, referring to a material that is completely relaxed at t = 0.
The approach proposed to describe the displacement u and the
strain ε in the rod is detailed in the next section.

D.1 FINITE DIFERENCE SCHEME

Consider the mentioned polyacetal rod discretized by ns

spatial nodes with a regular spacing ∆x = ℓ/(ns − 1) (see Fig.
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Figure 48 – Discretized viscoelastic rod.

48). From the bars theory (RAO, 2007), the equation that de-
scribes the motion due to the external force F (t) in this case, is
given by

ρD2
tu(x, t) = D1

xσ(x, t), (D.9)

where u(x, t) is the displacement depending on the space x and
the time t that must be calculated for each node. The stress σ
has to be evaluated from the viscoelastic constitutive equation
(D.8). Replacing G1 approximation, shown in Eq. (2.17), in
(D.8) yields

σ +
p1
E1

∆t−α1

N−1
∑

k=0

Aα1

k+1σk +
p2
E2

∆t−α2

N−1
∑

k=0

Aα2

k+1σk +

+
p1p2
E1E2

∆t−(α1+α2)

N−1
∑

k=0

Aα1+α2

k+1 σk = E0ε+

+
p1
E1

(E0 + E1)∆t−α1

N−1
∑

k=0

Aα1

k+1εk +

+
p2
E2

(E0 + E2)∆t−α2

N−1
∑

k=0

Aα2

k+1εk +

p1p2
E1E2

(E0 + E1 + E2)∆t−(α1+α2)
N−1
∑

k=0

Aα1+α2

k+1 εk, (D.10)
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where the coefficients Aα
k+1 are defined in Eq. (2.10), εk =

ε(ta − k∆t) and σk = σ(ta − k∆t) with ta the actual time in
the analysis. Using gamma function definition in the GL coef-
ficients and opening the summations in Eq. (D.10) for the first
term, yields

σ(t)[1 + a1 + a2 + a3] = ε(t)[E0 + b1 + b2 + b3]−

−a1S1σ − a2S2σ − a3S3σ + b1S1ε + b2S2ε + b3S3ε,

(D.11)

being,

a1 =
p1
E1

∆t−α1 , a2 =
p2
E2

∆t−α2 . (D.12 - D.13)

a3 =
p1p2
E1E2

∆t−α3 , b1 = a1(E0 + E1). (D.14 - D.15)

b2 = a2(E0+E1), b3 = a3(E0+E1+E2). (D.16 - D.17)

Smσ =

N−1
∑

k=1

Ak+1σk, Smε =

N−1
∑

k=1

Ak+1εk. (D.18 - D.19)

with m = 1, 2, 3, and

α3 = α1 + α2. (D.20)

An equation analogue to Eq. (D.8) is found, but this time
using the fractional derivatives definition G1. It is import to em-
phasize that the values Smε, with m = 1, 2, 3, have to be calcu-
lated and stored for all nodes, since they are needed in the sums
for the next integration step, i.e.

Smε =

N−1
∑

k=1

Ak+1εk

= A2ε1 + A3ε2 + ...+ Anεn−1

= A2ε(ta −∆t) + A3ε(ta − 2∆t) + ...+

+ANtε[ta − (N − 1)∆t].
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For Smσ, the meaning can be interpreted in a similar way. Figure
49 illustrates this situation.

Figure 49 – Evaluation of the Smε and Smσ. The actual time calcula-
tion uses the overall variable history.

N

Solving for σ(t) in Eq. (D.11) one obtains,

σ(t) = c1ε(t)−

3
∑

i=1

[

ai
c2
Siσ −

bi
c2
Siε

]

, (D.21)

where

c1 =
E0 + b1 + b2 + b3

c2
, (D.22)

c2 = 1 + a1 + a2 + a3, (D.23)

and the strain ε(t) is given by the displacement derivative in re-
lation to the space x:

ε = D1
xu. (D.24)

Equation (D.24) can be rewritten by central finite differences for
each node 2 ≤ i ≤ ns. ε(t) = 0 for the first node, since the
latter stays on the collet and does not suffer strain. In order to
keep second-order accuracy, a “ghost” point ns+1 is needed to
evaluate the strain and its derivative at node ns:

εjns =
uns+1 − uns−1

2∆t
.

Since there cannot be any change in strain with respect to the
spatial coordinate x at the free end of the rod, we obtain

εns+1 =
uns+1 − uns

∆t
=

uns − uns−1

∆t
= εns−1, (D.25)



D.1. FINITE DIFERENCE SCHEME 139

or, simply
uns+1 = 2uns − uns−1. (D.26)

Using Eq. (D.24) and replacing Eq. (D.21) into (D.9), it
comes out that

ρD2
tu(x, t) = D1

x

[

c1ε−
3

∑

i=1

(

ai
c2
Siσ −

bi
c2
Siε

)

]

= D1
x

[

c1D
1
xu−

3
∑

i=1

(

ai
c2
Siσ −

bi
c2
Siε

)

]

= c1D
2
xu−

3
∑

i=1

(

ai
c2
D1

xSiσ −
bi
c2
D1Siε

)

.

(D.27)

Replacing the second derivatives with respect to time and space
by a central-difference quotient in Eq. (D.27), it results in

ρ

(

uj+1
i − 2uj

i + uj−1
i

)

∆t2
= c1

(

uj
i+1 − 2uj

i + uj
i−1

)

∆x2
−

−

3
∑

i=1

[

ai
c2
D1

xSiσ −
bi
c2
D1

xSiε

]

.

(D.28)

In Eq. (D.28) the upper index at the displacements uj
j denotes the

time increment (time discretization) and the lower index denotes
the node number (spatial discretization). Rearrangement of the
terms finally leads to

uj+1
i =

∆t2

ρ

{

2
( ρ

∆t2
−

c1
∆x2

)

uj
i +

c1
∆x2

uj
i+1 −

c1
∆x2

uj
i−1 −

−
ρ

∆t2
uj−1
i −

3
∑

i=1

[

ai
c2
D1

xSiσ −
bi
c2
D1

xSiε

]

}

, (D.29)
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for each node 2 ≤ i ≤ ns − 1.

The boundary conditions provide the two missing equa-
tions for the nodes i = 1 and i = ns. At the Dirichlet boundary,
the displacement

uj+1
1 = 0, (D.30)

is prescribed, whereas at the Neumann boundary the condition

σns
j =

F j

A
. (D.31)

is given. If one inserts Eq. (D.21) into Eq. (D.31) and uses a
second-order accurate central difference, it comes out that

F j

A
= c1ε(t)−

3
∑

i=1

[

ai
c2
Siσ −

bi
c2
Siε

]

=
c1

2∆x

(

uj
ns+1 − uj

ns−1

)

−

3
∑

i=1

[

ai
c2
Siσ −

bi
c2
Siε

]

.

(D.32)

In order to eliminate the ghost point displacement uj
ns+1, Eq.

(D.29) is used for node ns, finally yielding

uj+1
ns =

∆t2

ρ

{

2
( ρ

∆t2
−

c1
∆x2

)

uns
j +

c1
∆x2

uj
ns+1 −

−
c1
∆x2

uj
ns−1 −

ρ

∆t2
uns

j−1 −

−

3
∑

i=1

[

ai
c2
D1

xSnsσ −
bi
c2
D1

xSnsε

]

}

, (D.33)
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or

uj+1
ns =

∆t2

ρ

{ 2F j

A∆x
+ 2

( ρ

∆t2
−

c1
∆x2

)

uj
ns

+
2c1
∆x2

uj
ns−1 −

−
ρ

∆t2
uj−1
ns
−

2

∆x

3
∑

i=1

[

ai
c2
Siσ −

bi
c2
Siε

]

−

−
3

∑

i=1

[

ai
c2
D1Siσ −

bi
c2
D1Siε

]

}

.

(D.34)

Equations (D.29), (D.30) and (D.34) provide a system of ns
equations for uj+1

i to perform the next integration step. Subse-
quently, the spatial derivatives of the actual stresses have to be
calculated and stored for all nodes since they are needed in the
sums D1

xSiσ in the next integration step. Similarly, the stress it-
self is needed for the node ns. These calculations are performed
using the constitutive equation (D.21) and its first derivative with
respect to time. Note that due to the fractional derivatives of
strains and stresses in the constitutive equation, not only the dis-
placement history has to be stored but also the strain, stress and
their spatial derivatives.

The parameters identification in Eq.(D.8) for polyacetal
is done by Gaul and Schmidt (2007). Such identification is de-
scribed in Tab. 8 and is employed in the next subsection to solve
the rod problem.

Table 8 – Identified fractional parameters to model the polyacetal rod.

E0

[

N
m2

]

E1

[

N
m2

]

E2

[

N
m2

]

p1

[

Nsα
1

m2

]

p2

[

Nsα
2

m2

]

α1 α2

0.0 1430.1× 106 3681.3× 106 214.6× 106 20011.8× 106 0.0794 0.0202

Font: (GAUL; SCHMIDT, 2007).
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D.2 DISCUSSION AND RESULTS

The load in the free end for the considered rod is

F (t) =

{

0 if t = 0
100N if t > 0

. (D.35)

To find the displacement the finite difference scheme pre-
sented in the previous section is employed. The rod with ℓ = 2
is dicretized in ns = 30 spatial nodes. The constitutive behavior
is described by the parameters in Tab. 8.

Since the time integration is performed by the explicit
central-difference method, there is a critical time-step size ∆tcr
that must not be exceeded. Following Gaul and Schmidt (2007)
suggestion, the critical time step size was found to be 4.0 ×
10−5 ≤ ∆tcr ≤ 5.0× 10−5 s.

In order to obtain a stable scheme along with limited nu-
merical costs, the time step size was chosen to be ∆t = 4.0 ×
10−5. The overall simulation time was 6s resulting in 15000 time
steps. The area of the cross sections is A = π(0.00075)2 m2.
Moreover, the nodal distance is ∆x = 0.06897 and the polyac-
etal density is ρ =1420 kg/m3.

Since the identified material model accounts for the time-
dependent creep behavior and the decaying behavior of an oscil-
lation, the resulting motion of the rod is expected to be a free
oscillation that dies away superimposed to a creep process of
its neutral position (SCHMIDT; GAUL, 2006). In Fig. 50 this
behavior is verified in the interval [0s, 0.6s] to the reference al-
gorithm G1. The strain and stress behavior are shown in Figs. 51
and 52, respectively.

The displacement in other nodes can be seen in the work
of Costa Haveroth (2015). If the loading of Eq. (D.35) is re-
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Figure 50 – Displacement in the node i = 30 for the polyacetal rod.
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Figure 51 – Strain in the node i = 30 for the polyacetal rod.
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F (t) =

{

100 if t = 0
0 t > 0

, (D.36)

then the resulting displacements change their behavior, as shown
in Fig. 53. Such behavior is in agreement with Cook, Malkus
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APPENDIX D. AN EXAMPLE FOR VALIDATION OF THE FRACTIONAL

VISCOELASTIC IMPLEMENTATION

Figure 52 – Stress in the node i = 30 for the polyacetal rod.
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Figure 53 – Displacement in the node i = 30 for an instantaneous
initial load.
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APPENDIX E – LAPLACE TRANSFORM OF THE

FRACTIONAL DERIVATIVE

The Laplace transform is defined by

L[Dαf(t)] =

∫

∞

0

e−stDnf(t)dt, (E.1)

with α ∈ R (OLDHAM; SPANIER, 1974). It is possible gener-
alize the well known relation between natural order derivatives
and the Laplace transform for any alpha value:

L[Dαf(t)] = sαL[f ] =

n−1
∑

k=0

skDα−1−k(0), α ∈ R, (E.2)

when n is an integer and n− 1 < α ≤ n. The summation in Eq.
E.2 is empty and vanishes when q ≤ 0. According to Ortigueira
(2011), in a simplified form, the Laplace transform can be given
by

L[Dαf(t)] = sαL[f(t)], α ∈ R. (E.3)

For more details regarding this subject see Oldham and Spanier
(1974) or Ortigueira (2011).



Among the wide range of structural polymers 
currently available in the market, this work is 

concerned particularly with high density 
polyethylene. The typical nonlinear viscoelastic 
behavior presented by this material is not trivial

to model, and has already been investigated
by many authors in the past. Aiming at a further
contribution, this work proposes modeling this
material behavior using an approach based on

fractional derivatives. This formulation produces
fractional constitutive equations that result in 

good curve-fitting properties with less parameters
to be identified when compared to traditional 
methods. In this regard, experimental creep 

results of high density polyethylene evaluated
at different stress levels are fitted by this scheme.
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