Artificial Neural Networks (ANNs) have emerged as
one of the most useful tools in Artificial
Intelligence. Composite materials are increasingly
used in critical and demanding applications.
However, the challenging of the current Structural
Health Monitoring (SHM) methodologies is to
detect damage in entire composite structure in real
time and continuously, without time-consuming. In
this way, this work aims to evaluate a SHM-
methodology for fault diagnosis in composite
materials. The methodology used includes the use
of a piezoelectric system as input sensor, vibration-
based methods for the analysis of the different
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reducing data and machine learning (ANNs)
algorithms for classifying all the structural states.
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ABSTRACT

ROSENSTOCK VOLTZ, Luisa, FAULT DIAGNOSIS IN COMPOSITE STRUCTURES
USING ARTIFICIAL NEURAL NETWORK AND PRINCIPAL COMPONENT ANALY-
SIS. 2019. 201 f. Master Thesis (Master in Mechanical Engineering - Area: Numerical
Modeling and Simulation) — Santa Catarina State University. Master in Mechanical
Engineering Joinville 2019.

Artificial Neural Networks (ANNs) have emerged as one of the most useful tools in
Artificial Intelligence, being used in many applications. Due to their high capacity for
learning, adaptation, and generalization, ANNs can fit linear and non-linear models
that other methods are not able to describe. Composite materials are increasingly
used in critical and demanding applications, mainly due to their high specific strength
and stiffness. However, the challenging of the current Structural Health Monitoring
(SHM) methodologies is to detect damage in entire composite structure in real time
and continuously, without time-consuming and unnecessary expenses in mainte-
nance. In this way, this work aims to evaluate a SHM-methodology for fault diagnosis
in composite materials. The methodology used in this work includes the use of a
piezoelectric system as input sensor, vibration-based methods for the analysis of
the different structural states, Principal Component Analysis (PCA) for reducing data
and machine learning (ANNSs) algorithms for classifying all the structural states. To
assess the applicability of the methodology, carbon fiber/epoxy composite plates are
evaluated in healthy and damaged state conditions. Later glass-fiber/epoxy beams
are manufactured by the modified Vacuum Assisted Resin Transfer Molding process
and with the aid of a Teflon tape to simulate delamination damages in 3 different
proportions: 5 mm, 10 mm and 19 mm. Vibration-based tests are performed to acquire
Frequency Response Functions from healthy and damages conditions. PCA is used
to reduce the dimension of the problem while maintaining its main characteristics.
Next, a multi-layer neural network is developed, based on automatic differentiation
and dual numbers for sensitivity analysis. A Particle Swarm Optimization algorithm is
used to find the best topology of the ANNs maximizing the accuracy of the validation
dataset. The last step is the evaluation of the ANN-classifier using a confusion matrix
technique and its indicative parameters. Finally, a discussion is made with respect to
the potentialities and limitations of the methodology for using in fault diagnosis systems.

Key-words: Artificial neural network (ANN), composites materials, damage detection,
principal components analysis (PCA), pattern recognition.






RESUMO

ROSENSTOCK VOLTZ, Luisa, DIAGNOSTICO DE FALHAS EM ESTRUTURAS DE
COMPOSITOS UTILIZANDO REDE NEURAL ARTIFICIAL E ANALISE DE COMPO-
NENTES PRINCIPAIS. 2019. 201 f. Dissertacao (Mestrado em Engenharia Mecanica
- Area: Modelagem e Simulagdo Numérica) — Universidade do Estado de Santa Cata-
rina. Programa de Pés-Graduacdo em Engenharia Mecéanica Joinville 2019.

As Redes Neurais Artificiais (RNAs) surgiram como uma das ferramentas mais Uteis
na Inteligéncia Artificial, utilizadas em diversas aplicagcdes. Devido a sua grande ca-
pacidade de aprendizado, adaptacédo e generalizacdo, as RNAs podem se ajustar a
modelos lineares e ndo-lineares. Os materiais compdsitos estao sendo cada vez mais
utilizados em aplicacdes criticas e exigentes, devido a sua alta resisténcia e rigidez.
No entanto, o desafio das atuais metodologias de Monitoramento da Integridade Estru-
tural (SHM em inglés) é a deteccao de danos em estruturas de compdésitos em tempo
real e continuo, sem perda de tempo e gastos desnecessarios com manutencgéo. Di-
ante disso, este trabalho tem como objetivo avaliar uma metodologia de SHM para
diagnostico de falhas em materiais compdésitos. A metodologia utilizada inclui o uso
de um sistema piezelétrico para a inspecao das estruturas, métodos baseados em vi-
bracbes para a analise dos diferentes estados estruturais, Andlise de Componentes
Principais (ACP) para reducédo dos dados e algoritmo de aprendizado de maquina
(RNAs) para classificagéo. Visando verificar a aplicabilidade da metodologia, placas
de fibra de carbono/ep6xi sdo avaliadas em condi¢des de estados intactas e danifi-
cadas. Posteriormente, vigas de fibra de vidro/epdxi sao fabricadas pelo processo
modificado de Moldagem por Transferéncia de Resina Assistida a Vacuo e com o
auxilio de uma fita Teflon para simular os danos de delaminagdo em 3 diferentes pro-
porgdes: 5 mm, 10 mm e 19 mm. Testes baseados em vibragdes sdo executados para
obter as Funcdes de Resposta em Frequéncia das condicdes estruturais. A ACP é im-
plementada para reduzir a dimenséo dos dados, mantendo suas principais caracteris-
ticas. E desenvolvida uma RNA multicamada, baseada em diferenciagdo automatica e
em numeros duais para analise de sensibilidade. Um algoritmo de otimizacao de enx-
ame de particulas (PSO em inglés) é usado para obter a melhor topologia da RNA,
maximizando a acuracia dos dados de validagdo. O ultimo passo é a avaliacao do
classificador de RNA usando a matriz de confus&o. Por fim, sdo discutidas as poten-
cialidades e limitac6es da metodologia para uso em sistemas de diagnéstico de falhas.

Palavras-chave: Rede neural aritificial (RNA), materiais compdsitos, deteccao de
danos, andlise de componentes principais (ACP), reconhecimento de padrdes.
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Chapter 1
Introduction

This chapter introduces the background and motivation for this work: the use of
Artificial Neural Networks (ANNs) and Principal Component Analysis (PCA) as a tool
for monitoring the structural integrity of composites structures.

1.1 Background and Motivation

Structural health monitoring (SHM) has played an import role in protecting equip-
ment and structural components from performance degradation and failure. Such in-
terest is driven by the hazard of human lives losses, due to unpredictable structural
damages, like building collapses and airplane crashes (LOPES et al., 2011).

In 2017, a tragic plane crash ended the lives of 16 soldiers, as shown in Fig.
1.1. A KT-130C plane crashed killing 16 people from Marine Reserve in the USA, due
to sloppy maintenance work at an Air Force depot. According to Insinna (2018), the
report shows "A corroded blade broke off of the aircraft, sliced through the fuselage,
and set off a chain of events that ended with the plane splitting into three pieces and
crashing into a Mississippi soybean field". In the report, it was found that the blade
was last revised in 2011 by Warner Robins Air Logistics Complex, where the company
was responsible for rooting out corrosion and fixing other problems. However, the
maintainers did not correctly fix it. The auditors found proofs that small cracks and
pits already existed in the propeller blade, resulting in increased damage into a long
fracture.

Another plane crash due to poor maintenance occurred in 2005 in Miami (Chalk’s
Ocean Airways Flight 101). The possible cause was a fatigue failure in the right wing
initialized by a crack. According to NTSB (2005), "The crack had been detected run-
ning through a slosh hole and seemingly repaired earlier, but the repair was eventually
to prove ineffective".

A large diversity of highly effective local non-destructive evaluation (NDE) tools
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Figure 1.1 — Plane crash in Mississippi.

Source: Insinna (2018).

are accessible for health monitoring. Although there are several NDE techniques that
can be used to detect damage, they may be time-consuming or even require physical
access to difficult places, increasing the risk of human error (FARRAR; WORDEN, 2007).

The majority of SHM investigation performed over the past years has persuaded
to identify damage in structures on a global basis (FARRAR; WORDEN, 2007), in online
conditions and continuous evaluation of the structure state (BENZONI et al., 2013). As a
result of many uncertainties in most of real-life applications, the use of statistical pat-
tern recognition methodologies in SHM has gained much attention in the past decade
(GUL; CATBAS, 2009). According to Webb (2003), statistical pattern recognition is an
approach used in all the steps of a damage analysis, from problem definition and data
acquisition, to discrimination and classification, evaluation of results and interpretation.

In past years, machine learning and deep learning have become a rapidly ex-
panding research topic, redefining state-of-the-art performance in a broad range of
areas, such as object recognition, image segmentation, modeling and predicting non-
linear system behavior (ZHAO et al., 2019). Artificial Neural Networks (ANNs) are deep
learning technologies, suited to model complex processes. A classic ANN is a group
of algorithms which model data using neurons for machine learning. The application of
ANNSs has proved to be a powerful tool for signal processing, system identification and
pattern recognition and classification (PUSCASU; CODRES, 2011). Following the behav-
ior of the biological nervous system, ANNs methodology is an attractive mathematical
tool, which can be used to simulate a wide diversity of scientific and engineering prob-
lems. Like their biological counterparts, ANNs can learn from examples and can be
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trained to find solutions to complex non-linear multi-dimensional function relationships
without any prior assumptions about their nature (ZHANG; FRIEDRICH, 2003).

The modern era of ANNs started with McCulloch and Pitts in 1943. A signifi-
cant improvement came in 1949 with the publication of Hebb’s book, where an explicit
statement of a physiological learning rule for synaptic modification was presented for
the first time. In 1958, a new path to the pattern recognition problem was introduced
by Rosenblatt in his work on the perceptron, an original procedure of supervised learn-
ing. In 1960, Widrow and Hoff proposed the least-mean-square algorithm and used
it to formulate Adaline - Adaptive Linear Element and Madaline - Multiple Adaptive
Linear Element in 1962. In 1967, Amari used the stochastic gradient method for adap-
tive pattern classification. A great achievement, done by Malsburg in the 1970s, was
self-organizing maps using competitive learning. Followed by the development of the
Hopfield networks and Kohonen in 1982. Ackley, Hinton, and Sejnowski in 1985 de-
veloped the first achievement of a multilayer neural network which become known as
Boltzmann machine. The development of the back-propagation algorithm was reported
by Rumelhart, Hinton, and Willians in 1986. In 1988 the Radial Basis Function was
developed by Broomhead and Lowe. In the early 1990s Vapnik created a computation-
ally powerful class of supervised learning networks known as support vector machines
(HAYKIN, 2007). In 1993 the first version of the WEKA machine learning software was
released by Waikato University. In 1997, IBM’s deep blue computer beat the chess
world champion Garry Kasparov, and at the end of the 1990s a Prototype Intelligent
Workstation, developed at the University Chicago, reviewed 22.000 mammograms and
detected cancer 52% more accurately than radiologists did (MARR, 2016; BUILD, 2017).

Entering the 2000s, Fig. 1.2 shows the main advances, in the industry, about
machine learning and deep learning methods. In 2006, Geoffrey Hinton presented the
term "deep learning" to clarify new algorithms that allow computers to distinguish ob-
jects and text in images. In 2010, the Microsoft Kinect could trail 20 human features
at a rate of 30 times/second, grating people to interact with the computer by move-
ments and gestures. In 2011, IBMs Watson beat two human champions in a Jeopardy
competition, and in the same year, Google Brain was developed where a deep neural
network can learn to discover and categorize objects. One year later, the same brand
created a machine learning algorithm capable to identify videos that contained cats
from YouTube videos. In 2014, Facebook developed a software algorithm capable to
recognize individuals on photos to the same level as humans can, called DeepFace.
One year later, another big brand released its own machine learning platform called
Amazon SageMaker. In the same year, Microsoft developed the Distributed Machine
Learning Toolkit, allowing the efficient distribution of machine learning problems across
multiple computers. At the end of 2015, the AlphaGo algorithm from Google beat a pro-
fessional player at the world’s most complex board game - Chinese Board Game Go
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(MARR, 2016). In 2016, The North Face became the first brand to use IBM Watson’s
in a mobile app, helping the costumers to find what they are looking for through a
conversation. In 2017, the Alphabets Jigsaw team developed a system that learned
to identify trolling by reading millions of website comments as part of anti-harassment
efforts (BUILD, 2017).

Figure 1.2 — Machine and deep learning 2000s timeline.
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Source: Authors production based on Marr (2016) and Build (2017).

ANNSs have seen increasing application for the determination of material proper-
ties, as well as damage detection and localization, especially for challenging complex
multiphase and composite materials (SHA; EDWARDS, 2007). Table 1.1 shows some
literature examples using machine learning in the mechanical engineering area.

Due to an increasing demand for lightweight, corrosion and chemical materials
in the industry, the composites market has a promising future. Figure 1.3 shows the
global composites market from 2015 to 2021 (expected), in terms of value and volume
(HACLALIOGLU, 2018), reaching 12.9 million tons and $ 103.0 billion. According to Smith
(2018), the last report about Global Advanced Composite Materials Market, the global
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Table 1.1 — Literature examples related to machine learning and mechanical engineer-
ing.

Authors,Year | Paper Material | ML Method
Deteccao e localizagcao de danos em materiais com-
Franca, 2014 pésitos aplicado em aeronaves utilizando redes neu- | composite| BP-ANN
rais artificiais
Bandara, Frequency response function based damage identi-
Chan and | .. . o )
Thambirat- fication using principal component analysis and pat- | metal BP-ANN
nam, 2014 tern recognition technique
Abdeliaber et Real-time vibration-based structural damage detec-
) tion using one-dimensional convolutional neural net- | metal CNN
al., 2016
works (CNN)
Failure strength prediction of glass/epoxy composite
Kumar et al, ; . LY ! .
2016 laminates from acoustic emission parameters using | composite] RBFNN
artificial neural networks
Zhana et al A deep convolutional neural network with new train-
9 ” | ing methods for bearing fault diagnosis under noisy | metal CNN
2017 . . )
environment and different working load
An intelligent fault diagnosis approach based on
Yang et al, transfer learning from laboratory bearings to locomo- | metal FTNN and
2018 . ) CNN
tive bearings
Hoang and | Rolling element bearing fault diagnosis using convo- metal CNN
Kang, 2018 lutional neural network and vibration image
Glowacz, 2018 Acoustlc based fault diagnosis of three-phase induc- metal BP-ANN
tion motor
Khan et al Structural vibration-based classification and predic-
2018 ” | tion of delamination in smart composite laminates | composite] CNN
using deep learning neural network
. Optimization of acoustic emission parameters to dis- k-means;
Chelliah et al., S . . . .
2018 criminate failure modes in glass—epoxy composite | composite| FCM and
laminates using pattern recognition KSOM
Finotti et al., An_SHI\_/I a_pproach using machine learning a_lnd sta- ANN and
tistical indicators extracted from raw dynamic mea- | metal
2018 SVM
surements
Jiang et al, | Multiscale convolutional neural networks for fault di-
X ! : metal CNN
2019 agnosis of wind turbine gearbox

ML:machine learning; BP-ANN: backpropagation artificial neural networks; CNN: convolutional neural
networks; FTNN: feature based transfer neural network; RBFNN: radial basis function neural network;
FCM: fuzzy C-means; KSOM: Kohonen'’s self-organizing map; SVM: support vector machine.

Source: Author’s production.

composites end product market is looking forward to reaching an estimated $ 107.4
billion by 2023. Figures 1.4 show the volume-distribution (left) and value-distribution
(right) of the composite materials applications in 2016, where the top three industries
in terms of volume are logistics, construction and building, and electrical and electronic,
and in term of value are logistics, electrical and electronic, and defense and aviation.
Nevertheless, the main drawback of composite materials is the difficulty in pre-
dicting the exact failure mode, reflecting in the reliability of manufactured structures. In
the current context of aviation safety, it is crucial to prove that structures made of com-
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Figure 1.3 — The global composites market (value and volume).
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Figure 1.4 — The global composites market application.
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posites are capable of sustaining loading even with damage, corrosion or errors during
manufacture, without suffering accidents, failure or significant impacts until the damage
is detected. This type of concept is called damage tolerance. The damage tolerance
in metallic materials is already well developed and known, being possible to determine
periods for inspection based on fatigue sensitivity evaluation and taking advantage of
the slow growth rate of a crack. However, for composite materials, the knowledge
behind the mechanical behavior is still in development (SILBERSCHMIDT, 2016).
The predominant damage types in laminated composites are interlaminar debond-

ing, micro-cracks and micro-buckling. Delamination is undetected by visual procedures
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and, as a result, is one of the most critical types of damage, being also the most com-
mon in aeronautical components (LOPES et al., 2011). In addition, composite materials
are almost insensitive to fatigue, especially for composites made of carbon fiber, a ma-
terial broadly used in the aviation industry. This insensitivity to fatigue usually does
not lead to increased damage in service, so it is difficult to predict the inspection inter-
vals as in metals. Further, composite materials are highly sensitive to impact, which
reduces the residual strength of the structure below a tolerable limit (SILBERSCHMIDT,
2016).

1.2 Objectives and Scope

Due to the expanding application of machine learning techniques, this work aims
to evaluate the applicability of a methodology that contemplates Artificial Neural Net-
works (ANNs) and Principal Component Analysis (PCA) for the failure diagnosis in
composite structures. Since the prediction of the use of these unconventional materi-
als over the next 4 years in the global industry has a significant growth prospect. Due
to the difficulty in predicting and diagnosing faults in composite materials, there is a
need for a more in-depth study of a methodology capable of predicting in real time the
presence of faults in these systems. Thus the principal objective can be split into small
steps mentioned below:

e To propose a methodology to faults diagnosis using ANNs and PCA;

e To perform preliminary studies using conventional and non-conventional materi-
als in order to evaluate the application of the methodology to some non-complex
systems;

e To manufacture undamaged and damaged composite beams and carry out exper-
imental analyses using vibration-based methods to acquire Frequency Response
Functions (FRFs);

¢ To evaluate the potentialities and the limitations of the methodology in composite
materials.

1.3 Brief Outline of Thesis

The thesis consists of six chapters as follow:

e Chapter 1: Introduction - describes a brief overview of the background and
motivation as well the objectives and the scope of the study.
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Chapter 2: Structural Health Monitoring - Review - presents the principal con-
cepts of the methods and areas involved in the study, an overview of Structural
Health Monitoring (SHM), Composite Materials and Vibration-based Methods,

Chapter 3: Pattern Recognition - Review - presents the concepts of Pattern
Recognition, Artificial Neural Networks, Principal Component Analysis, Particle
Swarm Optimization, Automatic Differentiation, and Dual Numbers.

Chapter 4: Materials and Methods - explains the methodology for faults diag-
nosis step by step, the processes involved during the study, and the experimental
analysis.

Chapter 5: Results - presents the results obtained with the study as well as
some discussions.

Chapter 6: Conclusions and Future Works - describes the potentialities and
limitations of the methodology and the recommendation of future works.
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Chapter 2
Structural Health Monitoring - Review

The present chapter presents concepts and mathematical formulae as well as
the methods used in this work.

2.1 Structural Health Monitoring

The goal of Structural Health Monitoring (SHM) is to identify as early as pos-
sible the changes introduced in a system that affect its performance. Thus, correc-
tive actions can be taken in a way that minimizes time, operational and maintenance
costs, and therefore prevents greater damages and losses (YUAN, 2016). The process
of SHM comprehends the continuous observation of the structure using periodic mea-
surements to analyze its structural characteristics. The extraction features, using these
measures combined with statistical techniques, determine the actual health state of the
system (FARRAR; WORDEN, 2007).

In the question of why there is much attention to SHM techniques, two quick
answers come in mind: financial motivation and human life protection. Many structures
undergo periodic inspections and maintenance to ensure the structural stability of the
system, so an early stage of damage detection can have a considerable economic
impact. The costs of these inspections could be reduced if these inspections are shown
to be not required in case of a healthy system, and this could automatically be displayed
by using an SHM system (DERVILIS, 2013).

Farrar and Worden (2007) define SHM as a technique in terms of four-step sta-
tistical pattern recognition:

1. Operational evaluation.
2. Data acquisition, normalization and cleansing.

3. Feature selection and information condensation.
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4. Statistical model development for feature discrimination.

The operational evaluation consists in a study of the characteristics of the sys-
tem and how the monitoring will be performed, especially if the features are unique to
the system and then can be used as an advantage for damage identification. In this
step, some questions are raised as life-safety justification for performing SHM, damage
types possibilities and which cases are of the most concern, operational and environ-
mental conditions, and the data acquisition limitations.

The data acquisition step encompasses selecting the excitation methods such
as quantity and types of sensors, sensors location, sensors resolution, bandwidth, data
acquisition systems software, and test conditions. For test conditions, it is necessary
to evaluate the interval that the data should be acquiring (MONTALVAO et al., 2006).
Data normalization is the action of separating changes in sensor reading induced by
damage from those caused by varying operational and environmental conditions. One
of the most known methods is to normalize the measured responses by the measured
inputs. When the variability is a problem, especially when changing environmental and
test conditions, it is necessary to normalize the data in some temporal fashion to help
comparing the acquired data to similar times in an operational cycle. Data cleansing
is the procedure of selectively choosing data to pass on to or reject from the feature
selection process, especially when the acquired data shows some noise coming from
sensors or poor operational performance (FARRAR; WORDEN, 2007).

The data feature extraction receives the highest attention because it allows dis-
tinguishing between healthy and damaged cases. The most common feature extrac-
tion technique is based on mechanical system responses, such as the vibration-based
method. Another technique, widely used in finite element computational simulation, is
to apply a failure similar to real conditions to the system and evaluate which param-
eters are sensitive to the expected damage. A condensation of the data is needed
when comparisons are made between data obtained during the life cycle of the system
(MONTALVAO et al., 2006).

The statistical model phase is the implementation of an algorithm that operates
on the extracted features to quantify the damage state of the structure. Another tra-
ditional aim of feature selection and discrimination is to generate quantities with a low
dimension. The sense for this is that the data requirements of learning algorithms
usually grow exponentially with the dimension of the problem - the so-called curse of
dimensionality (WORDEN; MANSON, 2006). The algorithms for statistical models are di-
vided into three categories: classification, when the data from both intact and damaged
are available; analysis of outliers, when one has only undamaged data, and regression
analysis which refers to the process of correlating data features with particular types,
locations or extents of damage (FARRAR et al., 2001). The statistical models are used to
answer the five questions regarding the damage state of the structure including dam-
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age existence (I), damage location (Il), damage type (lll), damage extension (V) and
residual life of the structure (V). Statistical models are also used to study and minimize
the possibility of false damage indications. Which are divided into (1) false-positive
damage indications and (2) false-negative damage indications. The first one refers
to damage indication when none is present. These errors can cause unnecessary
downtime and operational resources, as well as a loss of confidence in the SHM. The
second one refers to the cases when there is no indication of damage, but the damage
is present. When this type of false indication is present, errors can cause catastrophic
failure or even loss of life (FARRAR; WORDEN, 2007).

An overview of some damage identification approaches can be seen in Fig. 2.1,
focusing on vibration-based methods and their damage feature types as well as the
statistical classifier.

Figure 2.1 — An overview of the range of damage identification approaches, focusing
in vibration-based methods.
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A summary of some techniques applied to damage detection in composite struc-
tures is described in Tab. 2.1 with an overview of their advantages and limitations,
damage state scale and damages composites types.
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Table 2.1 — Summary of the techniques applied to damage detection in composite structures.

Technique Advantages Limitations sD::::ge Types of damages
Easy applicability; cost-effective; high sen- | o i1 measurements; environmental fac- | 1l I
Vibration -based sitivity to damage; online monitoring; global tors ’ a’néj v Delamination and cracks.
area '
Travels over long distances without deviat- ] . Delamination; matrix
o . ) .| Cannot detect small damage; multiple wave- . Lo
Lamb waves ing; Monitoring large area from a single point; form in sinale frequency affect its aoplication: | 1 and I cracking;broken fiber; im-
cost-effective; can detect internal damages in . 9 9 y . PPICE o pacts; adhesive defects
. L o requires skilled personnel for interpretation;. . .
thin material; safe and no harmful radiation. on stiffness, and posority.
Difficult to find damage; cannot characterise
Can detect several types damages caused by damage; requires load application to gener- Translaminar cracks; fiber
Acoustic  emis- fatigue Ioadmg;_ h|gh sen3|t|V|ty;_ fast results. ate AE event; requires skilled personnel to | I, Il and | breakage; delamination;
sion - AE and global monitoring using muiltiple sensors; correlate data to the specific damage mech- | IV fiber matrix debondin
used for leak detection and location; online . ° SP A9 L, 9
L anism; a crack that is not propagating cannot and matrix microcracks.
monitoring and global area.
be detect.
Ultrasonic in- Easy to |.ntle.rp_ret;. can detect early _stage _of lelteq in depth t_)ecause of_ attenuatlo_n; vari- Cracks: delamination and
. damage initiation; cheap and readily avail- | ations in composite properties affects its per- | I, Il and Il .
spection debonding.
able. formance.
Not useful for the detection of delamina-
Acousto ) Assgssment o_f n_on-crltlcal damages; global | tion an(_:l voids; mandat_ory_ setup and pre- L I, 1| Translaminar cracks and
ultrasonic area; a good indicator of accumulated dam- | calculations before testing; surface rough- and IV debondin
age due to impact damage. ness and texture affect its performance; of- 9:
fline monitoring.
Eddy currents Convenient to apply; no contact needed. _Not_ ap_pllcable for a_II composites; offline mon- | I, 1, I Crack§; delamination and
itoring; local detection. and IV porosity.
_ . . Needs high-resolution measurements; re- Microcracks, delamipa-
Digital Image Cor- | Simple to use; non-contact needed; images : . C tion, pullout, progressive
quires output post-processing; requires suf- | I, Iland Il

relation

in 3D.

ficient black and white contrast.

debonding of interfaces;
crack along interfaces.

Source: Based on Amafabia et al. (2018), Speckmann and Henrich (2004) and Hild et al. (2015).



37

2.2 Composite Materials

According to Reddy (2004), composite materials consist of two or more com-
bined constituents, which produce desirable properties, such as low density, high strength
and stiffness, excellent fatigue and corrosion resistance. One constituent is the rein-
forcing phase and can be in the form of fibers, particles or flakes. Another one is
called matrix or continuous phase. The reinforcement provides strength and stiffness,
while the matrix provides protection. The mechanical performance depends on the
reinforcement and matrix properties, and the amount and orientation of the reinforce-
ment (CHUNG, 2010). The reinforcement arrangement is led by structural concerns and
the fabrication process. Usually, composite materials are made of thin layers called
laminate or plies.

According to Kaw (2005), the main drawbacks and limitations when working
with composite materials include: (1) high cost of composites fabrication; (2) the me-
chanical characterization is more complex compared with isotropic materials; (3) the
damaged detection in composite materials is not a simple process, especially when
some critical cracks may be undetected; and (4) composites do not necessarily give
the best performance in all the mechanical properties.

2.2.1 Composite classification

Figure 2.2 shows the classification of the two phases of composite materials.
Some materials usually used as the continuous phase are polymers, metals, and ce-
ramics. The polymer material can be classified into three other categories: thermoset,
elastomer, and thermoplastic. Architecture can be continuous or discontinuous. Dis-
continuous composites contain particles and short fibers, nanotubes or whiskers that
can be either oriented in some directions or randomly. Particulate composites consist
of particles of different sizes and shapes randomly dispersed within the matrix. Contin-
uous fiber can be aligned in the same direction, called unidirectional continuous-fiber
composite or in different directions, called multidirectional continuous-fiber composite
or textile (KOLLAR; SPRINGER, 2003). The material used as fiber can be Glass, Aramid,
Carbon, among others.

Fibers are a singular class of materials because of their anisotropy. Usually,
fibers have a high length compared to their diameter. This so-called high aspect ratio
is responsible for the singular properties compared to a bulk material. Common fibers
for composite employments have high strength and stiffness in fiber direction, while
they are weak and flexible perpendicular to it. Another particular property is the high
surface area of fibers, induced by their small diameter compared to their length. The
fiber surface, with its topography and chemistry, is the interface to the matrix material.



38

Figure 2.2 — Structural components of composite materials.
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Consequently, the interface between fiber and matrix is responsible for the load transfer
to the fiber (RANA; FANGUEIRO, 2016).

Textile structural composites are widely applied in many industrial applications,
as they have better specific properties in comparison to basic materials (metal and ce-
ramics)(RANA; FANGUEIRO, 2016). Woven fabrics have a structure in which warp yarns
and weft yarns are interlaced. The possibilities of woven styles in textile reinforcement
are categorized, basically, in three types of patterns, which can be assembled in incre-
assily complex configurations. These patterns are plain weave, harness satin weave
and twill weave (FAZITA et al, 2016), and can be seen in Fig. 2.3. In the plain weave

Figure 2.3 — Woven fabric styles.

(a). Plain weave (b). Twill weave (c). Satin weave

Warp yarn
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Source: Fazita et al. (2016).

pattern the warp and weft yarns are interlaced in a regular sequence of one under and
one over; in the twill weave pattern the yarns are interlaced to produce a pattern of
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diagonal lines, and the satin weave pattern is characterized by sparse positioning of
interlaced yarns.

2.2.2 Mechanisms of failure in composites materials

The diversification of microstructure and the anisotropy properties provide no-
tably distinct features to composite materials in how they deform and fail when com-
pared to other materials. Furthermore, when an interface is present, the stress transfer
by interfaces provides conditions for multiple cracking (TALREJA; SINGH, 2012). Differ-
ent manufacturing methods may promote different process-related defects including
porosity, shrinkage cracking and fiber-matrix debonding due to resin shrinkage. Figure
2.4 shows different types of failure mechanisms: (a) tensile load can produce matrix
cracking, fiber bridging, fiber rupture, fiber pull-out, and fiber-matrix debonding. (b)
out-of-plane stress can lead to delamination.

Figure 2.4 — Types of composites cracks mechanisms (a) In-plane damage, (b) Delam-
ination.
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Source: Anderson (2017).

e Fiber-matrix debonding.
Fiber debonding due to shrinkage arises as a result of low adhesion between
fiber and matrix, causing a weak interface. Another reason for the appearance
of this type of crack is thermomechanical loading (TALREJA; VARNA, 2015). If the
fiber-matrix interaction is weak, the composite begins to form a matrix crack even
at low stress. If the interaction is strong, this type of cracking is delayed, but the
composite will fail drastically due to the fiber breakage that will lead to the pull-out
phenomenon as the matrix cracks. Pull-out is characterized by the fiber pulling
from the matrix. Before the pullout, there may be the formation of Fiber Bridg-
ing, where the crack propagates through the matrix, and the fiber forms a kind
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of bridge interconnecting the two surfaces of the crack matrix. In a unidirectional
composite, the interfacial debonding occurs when the fibers are poorly held by
the matrix. When the fiber fracture strain is larger than the matrix, the crack orig-
inated at a stress point concentration in the matrix is interrupted by the fiber in
the low-stress case. On the other hand, when the load applied increases, there is
a local stress accumulation in the fiber, causing a local Poisson contraction, and
meanwhile, the shear stress developed at the interface surpasses the interfacial
shear strength. Thus, fiber debonds growing from the ends of the fractured fiber
along the fiber length (TALREJA; SINGH, 2012).

Matrix cracking.

Generally caused by tensile loading, fatigue loading or by changes in the tem-
perature. It leads to stiffness reductions in composite laminates, not causing
structural failure, but generating more fatal types of damage such as delamina-
tion and fiber breakage. They may originate from the fiber-matrix debonding or
due to defects in the manufacturing process (TALREJA; VARNA, 2015). The me-
chanical properties of the composite materials are generally low in the transverse
direction, which results in cracks along the fibers. In laminates of different plies
orientations, these cracks can appear from imperfections in a ply and extend
across the thickness of the ply and begin to run parallel to the fiber in that ply
(TALREJA; SINGH, 2012).

Fiber breakage.

Fiber-reinforced composites are made from bundles of fibers, and the failure
strain of each fiber within the bundle will not be the same, mainly because of
the different size of fibers or imperfection during fiber manufacture. If these fibers
are used for a manufacturing composite, they will crack at different values of the
applied strain, usually generating isolated fiber fractures. At higher strains, the
locals stress concentrations produced by isolated fiber fractures can cause failure
in adjacent fibers, leading to an increase in fiber fractures and composite failure
(TALREJA; VARNA, 2015). Compressive loading can produce fibers micro-bukling
(TALREJA; SINGH, 2012).

Delamination.

Due to mismatch of the elastic properties of interlaminar plies, cracking in the
interfacial plane (between two adjacent plies in a laminate) causes separation
of the plies, as delamination. This phenomenon can happen at free edges or
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at an exposed surface through the thickness. Also, it can be formed as a con-
sequence of low-velocity impact. Delamination accompanies most failure pro-
cesses in composites, but it is most critical under compressive stress, either
from direct compressive loading or as induced by bending loads. The main prob-
lem of delamination is that it can decrease the performance of strong fibers and
make the properties of the weaker matrix control the structural strength (TALREJA,;
SINGH, 2012). The general analytical treatment of delamination is to partition it
into modes: model | (peel), mode Il (in-plane shear) and mode Il (out-of-plane
shear). The existence of delamination causes a redistribution of stress within
the laminate, which may influence the initiation of fiber breakage in the primary
load-bearing plies and reduce the fatigue life of the laminate (MALLICK, 2007).

2.2.3 Damage tolerance of composites structures

According to Silberschmidt (2016), the damage tolerance concept, introduced
in the 1970s for civil aircraft structures, corresponds of certifying that the structure is
able to sustain acceptable loads, without significant deformations, failures and break
until the damage is detected. Damage tolerance means:

e Even with damage, the residual strength of the structure must stay higher than
the Limit Load (LL).

e Any damage advancing to residual strength below the Ultimate Load (UL) must
be immediately detected and fixed, restoring the strength up to the UL.

The type of in-service damage that most significantly affects the strength of
composite structures is the damage caused due to the impact. The delaminations in
the impact area have an unfavorable effect, especially on the compression strength.
According to Handbook-MIL-HDBK (2002), a laminate can lose 60 to 65% of its un-
damaged static strength by impact damage that is essentially non-visible (apud Heida
and Platenkamp (2012)). In addition, delaminated areas can grow in-service due to
the moisture uptake that undergoes a repeated freezing-thawing period meanwhile
consecutive flight cycles (HEIDA; PLATENKAMP, 2012).

Figure 2.5 compares a composite non-growing damage and metal fatigue crack
damage. The damage tolerance of metallic materials is based on a slow-growth ap-
proach. The damage growth in metallic structures is relatively slow and generally well
controlled, enabling the determination of inspection intervals to guarantee that damage
does not grow too much undetected. Initially, the residual strength is constant until the
existence of the damage. As the damage increases the residual strength decreases,
passing below the UL and if the damage is not detected passing the LL. This damage
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Figure 2.5 — Comparison of composite non-growing damage and metal fatigue crack
damage (UL: Ultimate Load and LL: Limit Load).
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is known as critical damage. The objective is to decrease the time spent below the UL
(SILBERSCHMIDT, 2016).

In contrast, strength in composites reduces not continuously - even with dam-
age there is generally no damage growth due to their insensitivity to fatigue - then it
becomes impossible to determine maintenance intervals based on the concept of slow
growth (SILBERSCHMIDT, 2016). However, an impact can abruptly drop the strength to
an unwanted level - below UL. The requirement then is that as long as damage can-
not be detected visually, it should never drop the structural strength below UL. Only
detectable damage may cause structural degradation below UL (but never below LL),
and should be properly detected by visual inspection or more advanced NDI methods.
The inspection interval should be related to the probability of damage. After detec-
tion, the damage must be fixed to recover UL capability or the component should be
replaced (HEIDA; PLATENKAMP, 2012).

2.2.4 Manufacturing processes

The most widely employed manufacturing processes used for high-performance
composites includes automated ply cutting, manual lay-up, and autoclave curing. Most
of then are very expensive. Considering the high cost is a problem, a number of low
cost processes such as automated tape laying, filament winding, and fiber placement
are adopted for certain classes. Another low-cost fabrication process is in limited pro-
duction and has received significant attention, such as liquid composite molding and
pultrusion (JUNIOR, 2011).

In the filament winding process, the filaments (fibers) are properly impregnated
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by a polymer and subjected to winding on a rotating mandrel, as shown in Fig. 2.6. The
cure can be carried out at room temperature, but a post-cure stage is generally carried
out at elevated temperatures. After the healing process, the mandrel is removed (LEVY-
NETO et al., 2016). The positioning and angle of the fiber are defined by controlling the
mandrel, and carriage speeds and the relative volume of fibers are controlled by their
tensioning. Despite the high initial cost, one of the main advantages of the method is
the fast production of parts with high fiber volume (about 70%) (MENDONCA, 2005).

Figure 2.6 — Filament winding process.
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Source: Aliancys (2019).

Liquid composite molding (LCM) is a manufacturing process capable of build-
ing complex and accuratelly dimensional parts. One of the most used liquid molding
processes is the resin transfer molding (RTM). This technique consists of fabricating a
dry fiber which is placed in a mold, impregnated with resin and then cured in the mold.
Another variation of RTM is the VARTM (Vaccum Assisted Resin Transfer Molding),
where vacuum is used in addition to the resin injection to pull the liquid resin into the
preform (JUNIOR, 2011), as shown in Fig. 2.7.

For the LCM process it is import to consider the viscosity of the resin. The
viscosity increases with increasing cure time and temperature. The rate of viscosity
increase is small at the initial phase of curing. After a threshold degree of cure is
complete, the resin viscosity increases at a quick rate. The time at which this happens
is known as the gel time. The gel time is a crucial molding parameter since the flow of
resin in the mold becomes progressively difficult at the end of this time cycle (MALLICK,
2007).
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Figure 2.7 — VARTM process.
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2.3 Vibration-based Methods

According to Fu and He (2001) vibration can be described as time transfer be-
tween the kinetic energy and potential energy. A vibratory system has to contain a
means of storing and releasing both energies, as the single degree of freedom mass-
spring-damper system showed in Fig. 2.8.

Figure 2.8 — Single degree of freedom mass-spring-damper system.

Source: Matlab (2017).

Most classes of damage detection methods use structural dynamic character-
istics, including Frequency Response Functions (FRF), natural frequencies and mode
shapes (BANDARA et al., 2014). In addition, the main idea behind damage detection
techniques based on structural dynamic changes, is the fact that the modal parameters
are functions of the physical parameters like mass, stiffness, and damping, and thus, it
is reasonable to assume that the existence of damage leads to changes in the modal
properties of the structure (CAMPBELL, 2010). On the other hand, the low sensitivity
of natural frequency to damage requires high levels of damage and the experimental
analysis should be made with high accuracy for reliability (MONTALVAO et al., 2006). An-
other problem is that the natural frequencies are easily overwhelmed by environmental
changes such as humidity and temperature, generating unrealistic results. The mode
shapes are also influenced by environmental changes, and additionally affected by the
number and location of sensors (BANDARA et al., 2014). In recent years, the use of FRF
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data has grown for damage identification and detection, mainly due to the fact that it
requires a small number of sensors, simple application and, beyond that, the fact that
it can be obtained in real time. However, FRF approaches have some disadvantages
such as the large size of FRF data, and that as natural frequencies, they are sensi-
tive to environmental fluctuations and to measurement noise. An improper selection of
the frequency windows from which the data are drawn results in the loss of important
information and introduces errors to the damage identification strategy (DACKERMANN,
2009).
Rao and Yap (2011), define the motion equation of a structure with N degree of
freedom as,
M&(t) + Bi(t) + Kx(t) = f(t), (2.3.1)

where M, B and K represent the N x N mass, damping and stiffness matrices, re-
spectively. If an harmonic input is assumed, the external force can be expressed as,

f(t) = F(w)e™, (2.3.2)

and displacement as,
z(t) = X (w)e™". (2.3.3)

Substituting Eq. (2.3.2) and Eq. (2.3.3) into Eq. (2.3.1)
(—w*M + jwB + K) X (w)e™! = F(w)e™". (2.3.4)
Then Eqg. (2.3.4) can be expressed as,
X (w) = H(w)F(w). (2.3.5)
Where the FRF matrix, H (w), is defined as,

H(w)=(—w’M + juB+ K)™ . (2.3.6)

2.3.1 FRF measurement set-up

Frequency response function (FRF) measurement set-up should have three
steps. The first step is responsible for producing the excitation force, which applies
a force of enough amplitude and frequency contents to the structure, that can be done
using a hammer or a shaker. The hammer is made of a tip, a force transducer, a bal-
ancing mass and a handle. The hammer tip can be altered to change the hardness
according to the material of the structure, and it is related to the frequency range of
the input pulse force. The second step is to measure the data, by using a transducer,
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such as an accelerometer. It measures the acceleration of a test structure and the
output signal in the form of voltage. There are two considerations in the acceleration
measurement that a sensor must be able to deal with: frequency and amplitude. Both
are reflected in the input-output relationship of an accelerometer. The main parameters
influencing the execution of a piezoelectric accelerometer are:

e frequency range property: decides the linearity of the sensor;

e sensitivity: determines the signal to noise ratio. Large and stable sensitivity
means accurate measurement;

e cross-axial sensitivity: generates inaccuracy in measurement;

e base strain: is caused by the flexure of the accelerometer base interacting within
a non-rigid structure surface.

The accelerometer mass has the potential to change the characteristics of the test
structure. Finally, the third step provides the signal processing capacity to derive FRF
data from the measured force and response data (FU; HE, 2001).

During the FRF measurement, some adjustments must be made to get clean
data. One of them is to do the pre-trigger with the hammer. As the impulse signal
exists for a short period of time, it is essential to catch all of it in the sampling window,
i.e., the analyzer must be able to capture the impulse, and the response signals prior
to the occurrence of the impulse, which is often set to a small percentage of the peak
value of the impulse. Another setting is the force and exponential windows. The force
window is applied to remove noise from the impulse signal. The exponential window is
used in the impulse response signal to reduce leakage in the spectrum of the response
(SCHWARZ; RICHARDSON, 1999). Leakage occurs from the transformation of time data
to the frequency domain using the Fast Fourier Transform (FFT). The FFT calculations
need that the sampled data consist of a complete representation of the data for all
time or contain a periodic repetition of the measured data. When this is satisfied,
then the FFT produces a proper representation of the data in the frequency domain.
However, when this is not the case, then leakage will cause severe distortion of the
data in the frequency domain (AVITABILE, 2001). Another problem in Fourier analysis
is known as aliasing. The existence of very high frequencies in the original signal may
well be misinterpreted if the sampling rate is too slow (EWINS, 2000). A signal must
be sampled at a rate higher than twice the frequency of the highest frequency of the
interest, according to the Nyquist sampling theorem (CRAIG; KURDILA, 2006).

Graphical display of an FRF plays a vital role in the modal analysis. A different
graphical display highlights different information an FRF carries. They are displayed as
an amplitude-phase plot, a real-imaginary plot, a Nyquist plot, and a dynamic stiffness
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plot (FU; HE, 2001). Figure 2.9 shows an example of an amplitude-phase plot and an
example of the real-imaginary plot.

Figure 2.9 — Graphical display of an FRF: (a) Amplitude-phase plot and (b) Real-
imaginary plot.
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A measure of the amount of the output signal that is due to the input signal is
the coherence, known as +?, defined as,

H1<CU)

~ ) (2.3.7)

7 (w)

where H; (Noise on the output) and H, (Noise on the input) are the FRF estimators
(CRAIG; KURDILA, 2006). The coherence function is used as a data quality assessment
tool, which identifies how much of the output signal is related to the measured input
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signal. Poor coherence is indicative of a poor signal to noise ratio, measurement errors,
nonlinear or time-variant, the behavior of the structure or a combination of them (Fu;
HE, 2001). An example of a coherence plot is shown in Fig. 2.10.

Figure 2.10 — Coherence display plot.
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2.3.2 Damping ratio

According to Fu and He (2001) the peak-picking method, also called the half-
power method, is the simplest single degree of freedom (SDoF) method for estimating
modal parameters, such as resonance frequency and damping ratio (¢). The method is
based on the FRF observation, looking for a point of maximum amplitude, i.e., a peak
(Anmaz)- The frequency at which the peak value is observed is known as the resonance
frequency (w,). The damping factor can be estimated by finding the points w, . and w, .
on both sides of the FRF peak, which correspond to amplitude % as shown in Fig.
2.11, defined as,

Wo,r — Wir

(= —2r — r (2.3.8)

W

There are four common types of damping mechanisms used in the construction
of vibratory models, such as: viscous damping, Coulomb damping, hysteretic damping,
and fluid damping (FU; HE, 2001). Nevertheless, according to Amafabia et al. (2018)
"proportional damping can be assumed as a special case of damping and it suggests
that the damping matrix is a linear combination of the mass and stiffness matrices".

Proportional damping has found several applications in finite element analysis
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Figure 2.11 — Peak-peaking method.
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where damping needs to be included to carry out significant response analysis and pre-
diction. Considering again the Eqg. (2.3.1), in general, the viscous damping matrix B
cannot be mathematically constructed from the damping matrices of the elements, as
is done for the mass matrices and stiffness through the classical Finite Element Method
formulation. A usual alternative is the use of Proportional Damping (or Rayleigh), de-
fined as

B =aM + K, (2.3.9)

where a and /3 are proportional constants (FU; HE, 2001), obtained using

_ o Bun
(= o T (2.3.10)

So, it is necessary to know two natural frequencies and two damping ratios, so that it
is possible to compose the linear system of two equations and two unknowns (NEGRI,
2018).
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Chapter 3

Pattern Recognition - Review

3.1 Pattern Recognition

Pattern recognition is a process where a signal is referred to as one of a given
set of categories. Patterns recognition carried out by an ANN is statistical in its nature,
with the patterns being points in a multidimensional decision space, which is divided
into regions related to each category, according to their characteristics. Haykin (2007)
complemented that the existence of a large number of input variables can present some
serious problems for pattern recognition systems. Data pre-processing is one of the
essential steps in the development of the solution, and the selection of pre-processing
methods can often have an important consequence on generalization performance.
One essential form of the pre-processing involves the reduction in the dimensionality of
the input data. Another approach involves forming linear (or non-linear) combinations of
the original variables to make a small number of new variables called features (BISHOP,
1995a). Many techniques can be used for pre-processing such as Principal Component
Analysis, Factor Analysis, Clustering, among others.

3.1.1 Confusion matrix

The confusion matrix is used to find out how the errors are distributed across the
patterns (KUNCHEVA, 2004). The method is also commonly used to measure over- and
underestimates of a particular category according to Hay (1988). Figure 3.1 shows an
example of a confusion matrix, where true positive (TP) is the number of samples of
the damaged class that were correctly classified as damaged and false positive (FP) is
the number of samples not belonging to damaged class but misclassified into damaged
class. False negative (FN) is the number of damaged samples class misclassified as
an undamaged class, and true negative (TN) is the number of samples of undamaged
class that were classified correctly. Recall (R), or sensitivity, is the proportion of posi-
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Figure 3.1 — Confusion matrix example.
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tive cases that were correctly identified (zHU et al., 2010). It indicates, how good a test
is at detecting the positives. The recall is defined as,
TP

Precision (P), also known as positive predictive value, is the proportion of the predicted
positive cases that were correct. This measure is defined as,

TP
P=—r——0 1.2
(TP + FP) (3.1.2)
Specificity (E) indicates how good the test is at avoiding false alarms, which means,
the proportion of negative cases correctly classified. It is defined as,
TN
E=———. 1.
(TN + FP) (3.1.3)
Matthews correlation coefficient (MCC) has a range of —1 to +1, where —1 indicates
a completely wrong binary classifier, 0 indicates no better then random prediction and
+1 indicates a completely correct binary classifier, defined as,
TP xTN—FPxFN

MCC = . (3.1.4)
V(TP +FP)x (TP +FN) x (IN + FP) x (TN + FN)

The accuracy of the classifier can be estimated using the trace of the matrix
divided by the total sum of the entries. This measure is highly susceptible to an imbal-
ance of the data set and can easily lead to a wrong conclusion about the performance
of the system. In practice, sensitivity and specificity vary in opposite directions. This
usually happens when a method is very sensitive to positives, tends to generate many
false positives, and vice versa (CLESIO, 2014). Because of that, it is essential to eval-



93

uate the efficiency of the system, that is, the arithmetic mean of both sensitivity and
specificity. One important information that the confusion matrix provides is where the
misclassifications have occurred.

3.2 Artificial Neural Networks

Bishop (1995a) defined that the role of Artificial Neural Networks (ANNSs) is to
provide general non-linear parameterized mappings between a set of inputs and out-
puts variables. ANNs can be employed in several problems related to engineering and
science. The potential areas of applicability are signal processing, pattern recognition,
pattern association, clustering, function approximation, speech recognition, business
forecasting, and others. Examples are shown in Fig. 3.2.

Figure 3.2 — ANNSs potential areas of applicability.
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The simplest neuron model that encompasses the main features of a neural
network was proposed by McCulloch & Pitts. In this representation, each artificial
single neuron, known as Perceptron, can be implemented as shown in the Fig. 3.3. The
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input signals are represented by x,,, and w;,, are the connective weights responsible
for weighting each input variable, allowing to quantify its relevance to the functionality
of the respective neuron. The total input, i.e., the sum of the input signals weighted by

Figure 3.3 — Example of a single neuron.

Has

X1 0= Wy \
I?j- Quiput

B = B SN oy B

Ame—s Wiy

2ynaptic

veights

Source: Adapted from Haykin (1999).

the respective weights is described by
I =) zpwj, (3.2.1)
k=1

Usually, a neuron cannot produce an output until the total input exceeds a certain
value, vitalizing the neuron. This value is known as bias b;, or threshold, of the neuron.
Depending on the signal of the bias, the relation between the induced local field (or
activation potential) v; of the neuron j, defined as

Uj = Ij —+ bj, (322)

and the linear combiner output j is modified, and the form is illustrated in Fig. 3.4. It
can be noticed that depending on whether the bias is positive or negative, the line no
longer passes through the origin. () is the activation function, whose purpose is to
limit the neuron output within a range of reasonable values and «; is the output signal
of the neuron, (HAYKIN, 2007), defined as

a; = ¢(vj). (3.2.3)

Typically, the activation functions used in the Perceptron are the step function or bipolar
step, having only two possible values to be produced by its output (0 or 1) or (—1 or
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Figure 3.4 — Relation between the induced local field and linear combiners output.
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1), respectively. Considering a Perceptron with two inputs (z; and z;) and the step
activation function, in mathematical terms, the output of the Perceptron will be given
by:

0, otherwise

a:{ Lif> wjz;+b>0 (3.2.4)

Since the inequalities represented by a first degree expression, the decision boundary
for the two-input Perceptron will then be a line defined by

wW1T1 + Wy + b=0. (325)

Therefore, the Perceptron behaves as a pattern classifier whose function is to divide
classes that are linearly separable, i.e., the Perceptron can only solve linear problems
such as the AND or the OR-problems, as shown in Fig. 3.5, a line positioned at the
separability boundary.

3.2.1 Network architectures
The ANN can be divided into three parts denominated layers:

¢ Input layer: as the name says, the input layer receives the input data, whose
values are usually normalized. Is the only layer that is not constituted of neurons.

e Hidden layer(s): the main function is the feature extraction associated with the
problem.

e Output layer: as the name says, it is responsible for the network output.
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Figure 3.5 — Separability boundary illustration AND and OR-problems.
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Haykin (1999) presented three different classes of network categories. The first
one is Single-Layer Feedforward Networks, and the neurons are organized in the form
of layers. Since it is composed of a single layer, there are no hidden layers, just input-
output layers. The main types of single-layer forward networks are Perceptron and
Adaline. The second class of network category is named Multilayer Feedforward Net-
works, as the previous one the neurons are organized into layers, but now hidden layers
are present, either only one or multiple. The neural network can be fully connected,
where every neuron in each layer is connected to every neuron in the adjacent forward
layer, or partially connected where some of these connections are missing. Among
the main types of multilayer forward networks are Multilayer Perceptron - MLP and Ra-
dial Basis Function - RBF. The last network category is called Recurrent Networks and
distinguishes from a feedforward neural network because it has at least one feedback
loop, which consists of a single layer (or multiple) of neurons with each neuron feeding
its output signal back to the inputs. The examples of Recurrent Networks are Hopfield
Network and MLP with feedback.

Network architecture or topology plays a critical role in neural net classification,
and the optimal topology will depend on the problem. The number of hidden neurons
determine the total number of weights and biases in the neural network, which is the
number of degrees of freedom, and thus it is reasonable that we should not have more
weights (and biases), than the total number of training samples (DUDA et al., 1973).

The Single-Layer Feedforward Networks can only converge if the two classes
involved with the problem are linearly separable. A classic case known as the XOR
problem (OR-exclusive), involving a boolean logic, can be seen in Fig. 3.6. Looking
at the XOR problem is possible to note that it would be impossible to position a single
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line that would separate the two classes. This situation can be resolved using a MLP

Figure 3.6 — XOR problem.
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network with one hidden layer, such as [(z1,72), (A,B), (Y:output)]. The separability
result problem is shown in Fig. 3.7. Assuming logistic function as activation function,
note that neuron A will have its exit equal to one only for those patterns that are above

its straight line, while the neuron B will provide one for all those below (SILVA et al.,
2010).

Figure 3.7 — XOR problem with MLP Networks.
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Considering a MLP network with only one hidden layer, it can classify patterns
that are arranged in a convex region, it can also be deduced that a network with two
hidden layers is capable to classify patterns that are in any type of regions, including
non-convex regions (SILVA et al., 2010).

For classifying problems with two or more classes, it is necessary to add more
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neurons in the output layer, because a MLP network with only one neuron in the output
layer is able to classify only two classes. A MLP network with n output-neurons is
capable to classify till 2™ classes. However, due to the complexity of some problems
the adoption of this codification can make MLP network much more difficult to training
because the classes would be represented by points that are spatially close to each
other, demanding an increase in the number of neurons in the intermediate layers. One
of the most used methods, known as one of the c-classes, is to associate the output of
each neuron directly to the corresponding class (SILVA et al., 2010).

3.2.2 Types of activation functions

Silva et al. (2010) classify the activation functions in two categories:

¢ Partially differentiable functions: such as the Heavyside or hard limiter func-
tion, the symmetric hard limiter function and the symmetrical ramp function.

¢ Fully differentiable functions: for example the logistic function, the hyperbolic
tangent function, the Gaussian function and the Identity function.

The logistic function is defined as

1

_ 2.
1+ expovi’ (3.2.6)

o(v;) =
where § is a constant and represents the slope of the function. The logistic function
assumes a continuous range of values from 0 to 1, as shown in Fig. 3.8. The logistic
function derivative assumes small values in the interval between 0 and 0.25.

The hyperbolic tangent (tanh) activation function is defined as

exp®i — 1

m. (3-2-7)

p(v;) =
The tanh function assumes a continuous range between —1 and 1, and the derivative
of the function assumes values between 0 and 1, as shown in Fig. 3.9.

The logistic function is quite useful in probabilities and classification problems
because it transforms an input value into an output range of [0,1]. However, in deep
networks logistic and fanh functions suffer from the vanishing gradient problem, when
the gradient becomes very small, and the learning process gets stuck (NIELSEN, 2018).

The Rectified Linear Unit (ReLU) is the most used activation function nowadays,
(SHARMA, 2017), defined as

©o(vj) = max(0,v;). (3.2.8)

That is, when the input is smaller than zero, the function will output zero and the amount
of change of the function is zero. When the input is greater or equal to zero, the output
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Figure 3.8 — Logistic function.
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Figure 3.9 — Hyperbolic tangent function.
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is directly the input, and thus the derivative is equal to one. However, a problem when
using RelLU is the function output zero when the input to it is negative, blocking the
learning process due to gradients dying off. To solve this problem another activation
function called Leaky-ReLU is used. Instead of giving zero gradients the function give
a very small gradient when the input is negative, giving the chance for the network to
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continue its learning, defined as

©(v;) = maz(kvj,vj), (3.2.9)

where « is a small number, such as 0.01 (KAPUR, 2016). Figure 3.10 presents a Leaky-
RelLU function and its derivative. Nevertheless, ReLUs and leaky RelLUs are not nec-

Figure 3.10 — Leaky-ReLU function.
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essarily always optimal results, because the output of ReLU is not bounded between 0
and 1 or —1 and 1, the activations (i.e., neurons output, not the gradients) can, in fact,
explode with extremely deep neural networks. During the learning process, the whole
network becomes fragile and unstable in that, if the weights are updated in the wrong
direction (even the slightest) the activations can blow up (KAPUR, 2016).

Another particularly useful activation function is known as Softmax and is used
in an output layer (L), defined as

L
vV
I erp’s

V) = —=———7,
o) Zkefﬁpv’?

which is a set of positive numbers which sum up to 1, i.e., a probability distribution

making it useful for finding the most probable occurrence of output with respect to
other outputs.

(3.2.10)
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3.2.3 Learning process

One of the most significant highlights of the ANN is the ability to learn from its
environment. After the network has learned the relation between inputs and outputs, it
is able to generalize solutions (SILVA et al., 2010). The learning process is the ability of
the ANN to adapt free parameters through the process of stimulation by the environ-
ment in which the network is working, being the type of learning process defined in a
particular way as the adjustments are made (BRAGA et al., 2000).

To achieve good results in prediction problems, the ANN requires the division
of the dataset into three subsets: training, validation, and testing. The training subset
should be adequately large to cover the possible known variation in the problem do-
main and is used in the training phase to update the weights and bias of the network.
The validation subset is used during the learning process to find the best hyperparame-
ters, which include the number of hidden neurons and layers and their connectivity, the
form of activations functions and parameters of the learning algorithm itself. The data
contained in this subset should be distinct from those used in the training but lie within
the training data boundaries. The testing subset should include different samples from
those in the other subsets and is used to confirm the accuracy and efficiency of the
ANN (BASHEER; HAJMEER, 2000). Looney (1996) recommended partition the database
with 65% for the training set, 10% for the validation set and 25% for the verification
testing set. Silva et al. (2010) divided into two subsets, 60-90% for the training (and
validation) set a 10-40% for the testing set. Pereira and Bezerra (2007) used in their
work 70%, 20% and 10% for the training, the validation, and the testing sets, respec-
tively.

According to Bose and Liang (1996), the performance of learning does depend
on the distribution of the training exemplars, since the way which the N samples are
split from the entire exemplars influences the generalization of the future samples. In a
classification problem, samples close to the decision surface known as boundary sam-
ples, carry more information for training the network. Indeed, the boundary samples tell
us about the shape of the decision surface to be learned. This not only cuts down the
training time since the number of samples is smaller, but also, in general, should yield
a good generalization after the boundary samples are successfully learned. These de-
sired properties are achieved because of the prior knowledge about the samples that
are at the boundary. However, this prior knowledge may not be available.

Two learning techniques are known in the literature as follow.

3.2.3.1 Supervised learning

The strategy of this type of learning consists of providing known samples with
known desired (target) output. The weights and biases are adjusted by comparing the
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output produced by the network and the desired output, performed by the learning al-
gorithm. The difference between the two values is used in the adjustment procedure.
It can be implemented in three ways: off-line (or batch), where the adjustment pro-
cess are made only after the presentation of the entire training set; stochastic, where
the patterns are chosen randomly from the training set and the network weights are
updated for each pattern presentation and online, where adjustments are made after
the presentation of each training sample (DUDA et al., 1973). Haykin (2007) related two
main methods used in supervised learning algorithms: Error-correction learning and
Memory-based learning.

e Error-correction learning: A type of supervised learning that aims at the mini-
mization of the cost function defined in terms of the error signal. The error signal
is defined as, (HAYKIN, 2007)

¢;(t) = z(t) — a;(1), (3.2.11)

where z; is the target output, and «a; is the output signal from the neuron j. The
cost function is defined as .

E(t) = 5ej?(t). (3.2.12)
The minimization of the cost function leads to a learning rule usually assigned
to as the Delta rule or Widrow-Hoff rule, named in honor of its creators, or also
Gradient-descent method. The basic idea with the application of the Delta rule in
order to adjust the values of the neuron design variables lies in the minimization

of the error function. For the variable w, the delta rule can be defined as
AW(t) = —n(t)VE(W)(t), (3.2.13)

where VE(w) is the gradient operator of the error with respect to the vector w,

defined by

OE(w)
oW

n is called the learning rate. Having calculated the synaptic adjustment the up-

dated value of the synaptic weight, w, is driven by

VE(wW)(t) = (1), (3.2.14)

wW(t) =w(t—1)+ Aw(t). (8.2.15)

Figure 3.11 shows the geometric interpretation of the Delta rule.
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Figure 3.11 — Geometric interpretation of the Delta rule.
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3.2.3.2 Unsupervised learning

As the name suggests, there is not a supervisor to oversee the learning pro-
cess, i.e., there are no marked samples of the function to be learned by the network.
The network then establishes a harmony with the statistical regularities of the input
data developing an ability to form internal patterns to encode the characteristics of the
input data and thus create new classes automatically. The network must self-organize
in relation to these characteristics existing between the samples identifying clusters
that contain similarities. The synaptic weights are adjusted by the learning algorithm to
reflect this internal representation of the network (SILVA et al., 2010). The methods for
unsupervised learning implementations, commonly used are Hebbian learning, Com-
petitive learning, Boltzmann learning and Reinforcement learning (HAYKIN, 1999).

3.2.4 Multilayer Perceptrons networks

The Multilayer Perceptrons (MLP) networks are used in most applciations as
pattern recognition, process identification and control, time series forecasting and are
also considered one of the most versatile architectures, (SILVA et al., 2010).

3.2.4.1 Network learning

The basic approach in learning processes is to provide a training pattern to
the input layer, propagate the signal through the layers and calculate the output at the
output layer, as can be seenin Fig. 3.12. The outputs are compared to the target values
and the difference corresponds to an error. This error is a function of the weights and
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Figure 3.12 — Multilayer Perceptron network.
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bias and is minimized when the network outputs match the target values. The weights
and bias (design variables) are adjusted to reduce this error. The error function, also
known as cost funtion (or loss function), is based on the supervised learning seen in
the previous section based on Widrow-Hoff rule, being the sum over outputs units of
the squared difference between the target value z and the computed output a, (DUDA
etal., 1973)

n

1 1
B(w,b) = o > (5 — a)’ = Sllz —al, (3.2.16)
k=1

where w and b represent all the weights and biases respectively and n the length of the
output vector. This type of error function is known as the quadratic function. Another
type of the error function known in the literature is the L, distance where the p-norm
(for p even), (CARLINI; WAGNER, 2017), is defined as

k=1

n 1/p
E(w,b) = (Z(zk - ak)p> = ||z — all,. (3.2.17)

when p=2, the equation is known as L, distance measured the Euclidian distance
between z and a. An alternative approach for error function is the Cross-entropy error
function, (BISHOP, 2006), defined as

n

E(w,b) = =Y (zxlnay + (1 - 2)In(1 — ax)). (3.2.18)

k=1
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Simard et al. (2003) found that the cross-entropy function trained faster than the quadratic
function for classification problems. The use of the quadratic function is that sometimes
the network learning process is very slow, which means, the partial derivatives 85, %’g ,
are small. Considering the quadratic cost function presented in Eq. (3.2.16), where a
is the neurons output when the training input x=1 is used, and z=0 is the desired output

and recall equations (3.2.2) and (3.2.3). Using the chain rule

0E(z,a) 0E(z,a)0a Ov

ow  Oda Ovow’ (3.2.19)

differentiating with respect to the weight and bias, and replacing x=1 and a=0, the result
is

g_i = (2 — a)¢'(v)z = 2¢/(v),
v (3.2.20)
O - a)e) = 0.

Thus, the magnitude of the sensitivity, depends on of ¢’ (v), which is close to zero. Now
do the same procedure but instead of using quadratic function replacing it for cross-
entropy function. Substituting Eq. (3.2.3) into Eqg. (3.2.18) and applying the chain rule
twice, obtaining

0E(z,a) z (1—2)\ O¢
TR Y (77 1520) 50 9221
aEa(z; @) . Z (gp(zv) — 1“_;(23)) ¢'(v)x. (3.2.22)

Placing everything over a common denominator and simplifying
aE(;: @) _ 3 . (wfl(i)“; ) =) (3.2.23)

xT

Using the logistic function - Eqg. (3.2.6) - and some algebra

8E (z,a) Z o(v SD(U)) (p(v) — 2). (3.2.24)

After some simplification, the resultant equation is presented as

8Ea(;’ %) = Z z(p(v) — 2). (8.2.25)

So Eq. (3.2.25) describes the rate at which the weight learns is controlled by ¢(v) — z,
that means the error in the output. The larger the error, the faster the neuron will learn,
and it avoids the learning slowdown caused by the derivative term ¢’(v) as shown when
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using quadratic function (NIELSEN, 2018).
Assuming a training set composed of s samples, the measurement of the overall
performance of the learning process is done by

1 S
Erotat = — > E(k), (3.2.26)
k=1

The learning rule is based on gradient descent. The principal objective of the
iterative optimization process based in the gradient descent is to reach a minimum
point for the error function FE, finding de desirable search direction d to reach this point
(ARORA, 2004). Assorted optimization methods can be employed such as Steepest De-
scent, Newton, Conjugate Gradient, Levenberg-Marquardt, etc. The search direction
can be determined, for each iterations ¢, (ARORA, 2004), as

d = -VE' (3.2.27)

where
OF
o (%) 6229
ob
The gradients can be evaluated using the backpropagation algorithm. It is one of
the most popular technique for training MLP based on gradient descent in error (DUDA
et al., 1973). An alternative approach is the use of finite differences combined with
weight perturbation, that estimates the gradients by independently perturbing synaptic
weights and observing the change in the cost function (JABRI; FLOWER, 1992). Another
approach evaluates the gradient using automatic differentiation, which works by sys-
tematically applying the chain rule of differential calculus at the elementary operator
level (KEDEM, 1980).
The weights and biases are initialized with random values, and then adjusted in
a direction that will reduce the error, opposite of the gradient, (HAYKIN, 2007), as

Aw = —na—E, (3.2.29)

ow

and .
Ab = —77%, (3.2.30)

where 7 is the learning rate, that expresses how fast the network training process is
being conducted towards its convergence. Substituting Eq. (3.2.27) into Eq. (3.2.29)
and Eq. (3.2.30), the adjustment of the synaptic weight and biases, for t iterations, are
done by

Aw' = n'd’, (3.2.31)
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Ab' = n'd, (3.2.32)

such that
w' = w™! + Aw, (3.2.33)
bl = b !+ Ab. (3.2.34)

The learning rate can also be seen as a step size to reach the minimum of
the error (cost) function along the search direction (SILVA et al., 2010). The behavior
of the cost function during iterations with different values of the learning rate can be
seen in Fig. 3.13. The smaller we make it, the smaller the changes to the weights
(and biases) in the network will be from one iteration to the next, and the smoother
will be the trajectory in weight space. If n is too big to accelerate the learning process,
the changes in the weights (and bias) may assume a form that the network becomes
unstable.

Figure 3.13 — Behavior of the cost function with different values of the learning rate.
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The learning rate can be maintained constant (HAYKIN, 1999) or variable and
calculated using some line search method. One approach is called Backtracking (or
Armijo-Goldstein) line search. The algorithm starts with a fixed value of step size and
repeatedly shrinks it by a factor 7, called the relaxation step until the Armijo-Goldstein
condition is fulfilled. Figure 3.14 shows that condition, the region between the two lines
is the region where n can be taken from. The structure of the algorithm is shown in
Tab. 3.1, where p is the relaxation of the initial slope (ARORA, 2004).

A simple method of increasing the learning rate avoiding instability is to modify
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Figure 3.14 — Armijo-Goldstein condition.
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Table 3.1 — Algorithm Backtracking line search

Algorithm Backtracking line search
1 being initialize n, 7, p, 1+ 0
2 dot <« ¢+ 1 (increment epoch)

3 until E(w, b) — E((w,b) + n'd) < —n'pd’ V E(w, b)
4 nt — Tnt—l

5 return '

6 end

Source: Author’s production.

the delta rule - Eqg. (3.2.31) and Eq. (3.2.32), including the term known as momentum
~, as follow
Aw' = yAw'™ + n'd', (3.2.35)

Ab' = yAb !+ ptdt. (3.2.36)

The momentum term value is between 0 and 0.9 (SILVA et al., 2010). When the current
solution is far from the final (minimum) solution, the variation in the opposite direction
of the gradient between two successive iterations will also be large. This implies that
the difference between the matrices of weights and bias of these iterations will be
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significantly large, making a larger increment step for the weights and bias toward the
minimum of the error function. The execution of such a task is made by the momentum
term. When the actual solution is very close to the final solution, the contribution of the
momentum term to the convergence process is very small, and the adjustments in the
matrices of weights and bias are driven only by the learning term (SILVA et al., 2010).
One problem with simple gradient descent with momentum term is that it contains two
parameters, n and v, whose values must be selected by trial and error (BISHOP, 1995a).
An approach to setting the optimal learning rate parameter was introduced by LeCun
et al. (1993).

Due to the fact the error surface produced from MLP is non-linear, there is a
possibility that the learning process directs the weights (and biases) matrix to a local
minimum, which may not correspond to the most appropriate values for the good net-
work generalization. The convergence for a given minimum local is then conditioned to
the spatial position, which the weight (and bias) matrices are started. Aiming to avoid
the convergence of the MLP to inappropriate local minimum, one of the procedures
adopted is to execute the MLP-candidates many times during the training process,
with distinct initial weights (and bias) matrices (SILVA et al., 2010). A good choice for the
initial weights (and biases) values improves the success of the learning process. When
large initial weight values are assigned, it is highly likely that the neuron will be satu-
rated, consequently, the local gradients assume small values and the learning process
slows down. On the other hand, small weight corresponds to a very flat region of the
error surface (LECUN, 1993). Thus, it is desirable an uniform distribution, from which
the weights are selected to have a mean of zero and a variance equal to the reciprocal
of the number of connections of a neuron (HAYKIN, 2007).

According to Haykin (2007), each input variable should be preprocessed so that
its mean value is close to zero or it is small compared to its standard deviation. In order
to accelerate the learning process, the normalization of the inputs should also include
two other measures:

e The input variables contained in the training set should be uncorrelated;

e The decorrelated input variables should be scaled so that their covariances are
similar, ensuring that the different synaptic weights in the network learn at ap-
proximately the same speed.

3.2.5 Bias and variance tradeoff
First, it is necessary to introduce two concepts, according to Bishop (1995a).

e Bias: is an error from the erroneous assumption in the learning algorithm. It is
the difference between the expected prediction and the target value.



70

e Variance: is an error from the variability of a model prediction for a given data
point, that is, is how the predictions for a given point vary between the different
realization of the model.

A model, which is too simple (or inflexible) will have a large Bias while one which
too much flexibility in relation to the particular data set will have a large variance. The
best generalization is obtained when there is the best compromise between the conflict-
ing requirements of small Bias and small variance, and then the Bias-variance tradeoff
is in which the generalization error is decomposed into the sum of the Bias squared
plus the variance. Figure 3.15 shows the Bias-variance tradeoff (BISHOP, 1995a).

Figure 3.15 — Bias-variance tradeoff.
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Increasing the quantity of the neurons, and also the hidden layers do not ensure
the generalization of the MLP. Such actions tend to lead the MLP to the memoriza-
tion (called overfitting), where the network ends up to memorize the response against
the presented input pattern. The cost function during the learning phase tends to be
small, otherwise, during the generalization phase, when the testing set is used, the
cost function tends to be larger. When overfitting, the algorithm has low Bias and can-
not generalize because it has more complexity than necessary, considering features
that should not (like noise). However, a network with a very small number of neurons
may be insufficient for the feature extraction that allows the network to implement the
hypotheses regarding the behavior of the process. This situation is called underfitting.
In this case, the cost function during learning and generalization phases will be high.
When we are facing an underfitting case, the problem has a high Bias and can cause
it to miss the relevant relations between features and targets output (DUDA et al., 1973).
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Figure 3.16 shows an example of underfitting, good fitting and overfitting representa-
tions.

Figure 3.16 — Examples of underfitting, optimal fitting and overfitting cases.
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Some solutions can be implemented to overcome the high variance and the
overfitting problem. This includes selecting a smaller set of variables, implement reg-
ularizations models, use cross-validation and early-stopping techniques. To minimize
the problem of high Bias and consequently underfitting it is recommended the use of
more training samples (BISHOP, 1995a). According to Duda et al. (1973), in order to
achieve the desired low generalization error it is more important to have low variance
than to have low Bias. Bias and variance can be lowered with large training size.

3.2.5.1 Cross-validation

One of the most used statistical techniques to select the best candidate topolo-
gies is the cross-validation (SILVA et al., 2010). The k-fold cross-validation technique is
a common technique to evaluate the performance of the classifier. The training set is
randomly split into k sets of approximately equal size s/k, where s in the total number
of samples in the dataset, as seen in Fig. 3.17. The classifier is trained k times, each
time with a different set held out as a validation/testing set. The estimated performance
is the mean of these k errors (DUDA et al., 1973).

3.2.5.2 Training with noise

According to Bishop (1995b), one way to control the trade-off Bias against vari-
ance involves the addition of artificial noise to the input data during training. Adding
small quantities of artificial noise can increase generalization power as long as the
amount of noise is maintained small to have little effect on the desired output. One
technique consists of the addition of noise with Gaussian distribution to the uncorre-
lated input patterns (SILVA; ADEODATO, 2011). The expression used to generate the
noise values is defined as

c=1vG(0,1), (3.2.37)
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Figure 3.17 — Example of 5-fold Cross-validation.
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where c is the noise added to every input variable, ¢ is the amount of noise and G is
the Gaussian distribution with zero mean and unitary variance.

3.2.5.3 Regularization techniques

The regularization techniques encourage smoother network mapping by adding
a penalty €2 to the error function defined as

E=FE+¢9, (3.2.38)

where E is the error function defined previously, £ is a control parameter that extent
the penalty term and influences the solution, and €2 a function of the weights (BISHOP,
2006).

A network with large weights can be a sign of an unstable network where small
changes in the input can lead to large changes in the output. The effect of regulariza-
tion is to make the network prefers to learn small weights, all other things being equal.
Large weights will only be allowed if they considerably improve the first part of the cost
function. If the penalty values is too large, the model will underestimate the weights
and underfit the problem, on the other hand, small penalty parameter value can lead to
an overfitting problem (BROWNLEE, 2018).

One of the most known regularization technique is called weight decay (or L,
regularization) and consists of the sum of the squares of the all weights in the network

1 2
Q= Zw . (3.2.39)
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Another technique is called L, regularization, defined as
Q=" |wil. (3.2.40)

In both expressions the effect of regularization is to shrink the weights. In L, reg-
ularization, the weights shrink by a constant amount toward 0 (because of the derivative
of |w|). In L, regularization, the weights shrink by an amount, proportional to w (be-
cause the derivative of w?). When a specific weight has an absolute large magnitude,
L, regularization shrinks the weight much more than L, regularization does. When |w|
is small, L, regularization shrinks the weight much less than L, regularization (NIELSEN,
2018).

3.2.5.4 Early stopping

A different strategy for controlling the effective complexity of a network is the
procedure of early stopping. As defined previously, the training of neural networks is
the iterative reduction of the cost function, in which this value decreases as a func-
tion of the number of iterations. However, the error measured with respect to another
dataset, such as the validation dataset, generally exhibits a decrease at first, trailed by
an increase as the networks start to over-fit. Such problems can be solved stopping
the training process at the point of the smallest error in the validation dataset (BISHOP,
2006).

3.3 Principal Component Analysis

Pre-processing is often one of the most significant steps in the development
of reliable ANN, and the choice of pre-processing steps can often have an important
consequence on generalization. One of the most important models of pre-processing
involves a reduction in the dimensionality of the input data. At the simplest level, this
could involve rejecting a subset of the original inputs. The main reason for dimension-
ality reduction is that it can support to mitigate the worst effects of the curse of dimen-
sionality, which was introduced by Richard Bellman (BISHOP, 1995a). The phenomenon
can be explained basically as much as the number of training elements required for a
classifier to have good performance is an exponential function of the dimension space
of the characteristics (HAYKIN, 1999). Furthermore, Zang and Imregun (2001b) de-
scribed the relationship between the number of input variables m, output variable n,
training samples s, and hidden neurons h,,,

s 14 mmintl) (3.3.1)

n
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For example, take n=2 (undamaged and damaged classes), m=2048 input variables
and assuming that the number of hidden neurons is half of the input variables. In this
case, the required number of training samples becomes 1.050.113.

Principal Component Analysis (PCA) is a statistical technique that uses an or-
thogonal projection, transforming a set of correlated variables into a set of uncorrelated
variables, called principal components (PCs). The aim of the PCA is a dimensional re-
duction and elimination of the noise present in the original data (DACKERMANN, 2009).
Let the matrix H (w)sx., be formed with all frequency response functions (FRFs) data,
where s is the number of training samples and m the frequency points. The first step
for PCA is standardizing the data, which depends on the measurement scales of the
original features. The mean response vector h is defined as

h; = 2izo s (3.3.2)

)
J S

where j are lines, and j are columns. Then, the determination of standard deviation S>

can be defined as s o 2
S? = iz Sﬂ_ i) (3.3.3)

A single element of the FRF matrix can then be replaced by

7.
i — 3.4
S5 (3.3.4)

hij(w) = "

and a response variation matrix H can be found. The correlation matrix C can be
defined as
Coxm = Hw)L  H(w)sxm. (3.3.5)

mXxs

Typically, the correlation matrix is used when variables are on different scales and the
co-variance matrix is used when the variables scales are similar. Finally, the PCs are
obtained using

Codr= N, (3.3.6)

where / is the principal component’s index with \; being the eigenvalue (PC) and ¢, the
corresponding eigenvector. The first PCs are the highest eigenvalues corresponding
to the direction and amount of the maximum variability in the raw data (ZANG; IMREGUN,
2001a). A schematic illustration of how PCA takes the high variance is shown in Fig.
3.18.

The projection matrix A can be defined as

Agy = H(W)gum®Prp, (3.3.7)

where p is the number of the PCs retained to achieve the maximum variance of the
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Figure 3.18 — PCA-variance illustration.

b

Y

Source: Zhang and Castell6 (2017).

problem. This linear dimensionality reduction procedure is also called the Karhunen-
Loéve transformation, summarized in Fig. 3.19.

Figure 3.19 — PCA illustration.
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Source: Author’s production.

The response variation matrix can be reconstructed from p components by

Hp= A%, (3.3.8)
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The reconstruction FRF can be calculated as
Hyp=SsHpg+h. (3.3.9)

Therefore the projection matrix A is used as input to the Neural Networks.

3.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based stochastic optimiza-
tion technique, based on the behavior of a colony or swarm of insects, a school of fish
or a flock of birds. The word particle denotes, for example, a bird in a flock. Each
particle behaves in a distributed manner using its own intelligence and the collective
intelligence of the flock (swarm). If one particle discovers a good track to food, the rest
of the flock will also be able to follow a good track immediately even if their location is
far away in the flock (RAO, 2009). Each particle is assumed to have two characteristics:
a position (X) and a velocity (V), both defined as

V(t) = WrandV (t — 1)+ Cyrand(pBest — X (t — 1)) + Cyrand(gBest — X (t — 1), (3.4.1)

X(t)=X(t—1)+ V(1) (3.4.2)

By randomly initializing the algorithm with candidate solutions, the PSO tries to lead
to a (more suitable) local optimum which is the best objective function of the individual
(pBest) and of the group (gBest) (ARORA, 2004). W, C, and C, are PSO parameters
known as inertia weight, self confidence factor and swarm confidence factor, respec-
tively (HASSAN et al., 2004). The main lines of the code are shown on Tab. 3.2.
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Table 3.2 — PSO Algorithm

PSO Algorithm

Maximize f(X) with X'v < X < Xuprer

1 being initialize the size of particle and others PSO parameters, t < 1

2 initialize the positions and velocities for all particles

calculate the fitness value of each particle

if (currentSolution' < pBest') then pBest'= currentSolution’
update particles position and velocity (equations 3.4.1 and 3.4.2)

end if

gBest’ = argmin(pBest’,gBest'!)

t—t+1

until criterion stop

10 return gBest

11 end

©ooNOO O~ W

Source: Author’s production.

3.5 Automatic Differentiation and Dual Numbers

Automatic differentiation (AD) performs a non-standard interpretation of a given
computer program by replacing the domain of the variable to incorporate derivative val-
ues. Redefining the meaning of the operators to propagate derivatives per the chain
rule of differential calculus according to Fike and Alonso (2011). According to Manzyuk
et al. (2012) the meaning of Forward AD is to attach perturbations to each input num-
ber, and propagate these through the computation.

Consider an ordered pair of real numbers (u,z). A dual number can be written
as,

U= u+ eu, (3.5.1)

with €2 = 0 (EASTHAM, 1961) and the coefficient of ¢ is called a perturbation. The fact
that €2, in the Taylor expansion, vanishes facilitated the differentiation operation for
functions of dual numbers (LEUCK; NAGEL, 1999)

f@) = fluten)
= f)+ 5 L e+ LT e + .

— f(u)+e (ﬂg—i@)) . (3.5.2)

Arithmetic over dual numbers is again defined by simple rules derived alge-
braically, as
(ur + etiy) + (ug + etiz) = (uy + ug) + (U1 + Ua)e, (3.5.3)
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(Ul + 6121)(162 + 61[2) = UjUg + (uldg + IZ1U2)€ + 12112262 = U1Ug + (uldg + U~1UQ)€. (354)

The value of a function of an independent dual-number variable is also a dual-
number and is given by the first derivative of the function with respect to the real part
of the independent variable. The chain rule works as expected

(Fon@ = (fog)u)+ LoD )

= flg(a)). (3.5.9)

The method for computing derivatives of functions expressed as computer pro-
grams can be described in a few steps, (MANZYUK et al., 2012):

e One organizes for the programming language to support dual numbers and the
arithmetic on dual numbers;

e To compute the derivative f’ at a point u:
1. re-write as u + le,
2. applied f to u + 1e to obtain a result f(u) + f'(u)e, and
3. extract f/(u) from the result f(u) + f'(u)e.
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Chapter 4
Materials and Methods

In this chapter, the development of the work is presented, starting with the de-
scription of the manufacturing process of glass-fiber/epoxy and the vibration-based
tests, followed by the details of the dynamic tests using carbon-fiber/epoxy plates, and
the whole presentation of the methodology using Principal Component Analysis (PCA)
and the Artificial Neural Networks (ANNs) algorithms.

4.1 Damage Detection in Glass Fiber/Epoxy Beams

A set of (healthy and damaged) glass fiber/epoxy beams is built in order to
study the applicability of the proposed methodology. The modified-VARTM (Vacuum
Assisted Resin Transfer Molding) technique is used, and different delamination sizes
are introduced during the lamination. Then, dynamic tests are performed to obtain
the Frequency Response Function (FRFs) data followed by the application in PCA and
ANN.

4.1.1 Manufacturing process

The epoxy resin used is the AR-260, combined with a hardener epoxy AH-150
in the proportion 3:1, part both from Barracuda Advanced Composites. The gel time
is 50 minutes at 25°C. The glass fibers fabric (WRU 221 RT) was manufactured by
Texiglass. This woven type is a kind of satin weave known as Shallow Turkish, and its
characteristics are shown in Tab. 4.1.

The modified-VARTM layout scheme is shown in Fig. 4.1. Instead of using a
resin injection pump, the epoxy resin is directly placed in the mold. To reduce the
moisture absorption from the epoxy resin, the fibers and the resin are stored inside
the kiln around 100 °C before starting the manufacturing process. The plates (40 x 40
cm) have twelve layers with stacking sequence [0];2. It is important to note that fabric
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Table 4.1 — Characteristics of glass fiber shallow turkish.

Dimension Unity | Value
Weight g/m? | 230.2
Warp number | yarn/cm | 18.0
Weft number | yarn/cm | 6.0
Thickness mm 0.24

Source: Author’s production.

weave presents 75% of the fibers aligned in 0° direction and 25% in 90° direction.

Figure 4.1 — VARTM manufacturing process layout.

- Kiln.

- Vacuum pump.
- Vacuum tank.
- Scale. i
- Mold and vaccum bag.
- PVC hose with wire.
- PE spiral tube.

- Tacky tape.

WO NGOV, WNR

Source: Author’s production.

The manufacturing process is summarized in a few steps:

Step 1: put the tacky tape around the mold (glass), and spread a thin layer of
carnauba wax. The carnauba wax helps at the demolding time, so the resin is
not glued to the glass mold - Fig. 4.2;

Step 2: put a peel ply layer, to help during demolding - Fig. 4.3;

Step 3: spread a mixture of resin and hardener above the peel ply - Fig. 4.4;

Step 4: position the glass fibers aligned. To simulate the delamination damage,
a Teflon tape is placed above the fiber fabric - Fig. 4.5 (a);



81

Step 5: put another peel ply layer - Fig. 4.5 (b);

Step 6: place a flow media, to help the resin to flow - Fig. 4.5 (c);

Step 7: close the bag vacuum with a vacuum film - Fig. 4.6;

Step 8: start the vacuum pump, and monitor the flow of the resin;

Step 9: turn off the pump after 5 hours (depend the gel time);

Step 10: unmold after 24 hours of curing. Sometimes it is required the use of a
pos-curing method.

Figure 4.2 — VARTM manufacturing process: step 1.

Source: Author’s production.

Figure 4.3 — VARTM manufacturing process: step 2.

Source: Author’s production.

Different damage patterns are generated to evaluate the performance of the
methodology. The set is composed of 3 undamaged plates, 2 plates with 5 mm delam-
ination, 2 plates with 10 mm delamination, and two plates with 19 mm delamination.
To simulate the delamination damage, a brown PTFE (polytetrafluoroethylene) Teflon
tape is introduced in the middle of the plate (between plies 6 and 7). With the aim of
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Figure 4.4 — VARTM manufacturing process: step 3.

Source: Author’s production.

Figure 4.5 — VARTM manufacturing process: step 4 (a), 5 (b) and 6 (c).

Source: Author’s production.

Figure 4.6 — VARTM manufacturing process: step 7.

Source: Author’s production.
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obtaining the largest number of samples, the plates are transversely cut into compos-
ites beams by using a diamond disk to avoid another delaminations cases as shown
in Fig. 4.7. Figure 4.8 shows the composites beams with the four damages cases. In
total, there are 25 beams for healthy case H, 15 beams for damage Level 1 D-L; (5
mm), 16 beams for damage Level 2 D-L, (10 mm) and 17 beams for damage Level 3
D-L; (19 mm). The dimensions of all beams are shown in Tab. 4.2 and Tab. 4.3 shows
the mean dimensions and the mean deviation dimensions from all beams.

Figure 4.7 — Cutting machine.

Source: Author’s production.

Figure 4.8 — Composite beams: four damages cases.

st

]

Source: Author’s production.
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Table 4.2 — Glass fiber/epoxy beams dimensions.

Beam | Width | Length | Thickness || Beam | Width | Length | Thickness
(mm) | (m) (mm) (mm) | (m) (mm)
1 28.10 | 0.229 3.00 38 28.70 | 0.227 2.60
2 28.40 | 0.229 2.90 39 28.30 | 0.226 3.10
3 28.50 | 0.228 3.00 40 28.55 | 0.227 3.05
4 28.55 | 0.228 3.00 41 28.40 | 0.227 3.20
5 28.55 | 0.227 2.90 42 28.55 | 0.227 3.00
6 28.30 | 0.229 2.90 43 28.35 | 0.227 3.00
7 28.30 | 0.228 3.10 44 28.15 | 0.226 3.20
8 28.40 | 0.228 2.95 45 28.40 | 0.226 3.10
9 28.30 | 0.228 2.90 46 28.05 | 0.227 3.10
10 28.50 | 0.228 2.90 47 28.30 | 0.227 3.20
11 28.30 | 0.229 2.95 48 28.30 | 0.227 3.00
12 28.30 | 0.227 2.65 49 28.30 | 0.227 3.00
13 28.45 | 0.228 2.90 50 28.40 | 0.227 3.15
14 28.55 | 0.227 2.95 51 28.20 | 0.226 3.15
15 28.55 | 0.228 2.95 52 28.20 | 0.227 3.15
16 28.35 | 0.228 2.80 53 28.35 | 0.227 3.10
17 28.35 | 0.229 2.90 54 28.55 | 0.227 3.20
18 29.40 | 0.228 2.95 55 28.30 | 0.227 3.00
19 28.40 | 0.228 2.90 56 28.30 | 0.227 2.95
20 28.50 | 0.227 2.90 57 28.30 | 0.229 3.15
21 29.30 | 0.228 2.90 58 28.00 | 0.228 3.20
22 28.70 | 0.228 2.90 59 28.15 | 0.229 3.15
23 28.00 | 0.229 2,95 60 28.05 | 0.229 3.35
24 28.60 | 0.227 2.80 61 22.35 | 0.230 3.15
25 28.60 | 0.227 3.05 62 28.30 | 0.230 3.35
26 28.40 | 0.227 3.05 63 28.05 | 0.230 3.35
27 28.55 | 0.226 3.05 64 27.90 | 0.229 3.00
28 28.55 | 0.226 3.05 65 28.00 | 0.229 3.15
29 28.55 | 0.226 2.70 66 28.45 | 0.230 3.00
30 28.55 | 0.227 2.65 67 28.35 | 0.229 3.10
31 28.60 | 0.226 3.00 68 28.30 | 0.230 3.05
32 28.50 | 0.227 2.60 69 28.05 | 0.229 3.35
33 28.60 | 0.226 2.95 70 28.10 | 0.229 3.35
34 28.60 | 0.226 2.65 71 28.30 | 0.230 3.05
35 28.60 | 0.227 2.55 72 28.40 | 0.230 3.05
36 28.30 | 0.226 2.95 73 28.40 | 0.230 3.10
37 28.55 | 0.227 2.60 - - - -

Source: Author’s production.

Table 4.3 — Glass fiber/epoxy beams mean and mean deviation dimensions.

Width (mm) | Length (mm) | Thickness (mm)
Mean 28.35 227 3.00
Mean Deviation 0.146 0.097 0.136

Source: Author’s production.
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4.1.2 Dynamic tests: Experimental

Dynamics tests are performed in each beam in free-free conditions as shown in
Fig. 4.9. The excitation is provided by an impact hammer model 8206-003 (sensitivity
1.14 mV/N) with an aluminum tip from Briiel & Kjaer (B&K), and the response is mea-
sured by using a miniature accelerometer model 4517-C (sensitivity 0.18 pC'/m?* and
weight 0.6 g) from B&K, as shown in Fig. 4.10. The PULSE LabShop software from
B&K is used.

Figure 4.9 — Beam experimental setup.

1-frame.
2 - strips (free-free conditions).

3 -beam.

4 - accelerometer position.

5 -impact hammer.

6 - Pulse LabShop software.

7 - Pulse LAN-XI 3160 acquisition system.

Source: Author’s production.

Figure 4.10 — Impact hammer (a) and miniature accelerometer (b).
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Source: B&K
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To connect the miniature accelerometer signal to CCLD inputs, a signal con-
verter must be used. The converter model is 2647-B - fig. Fig. 4.11 - with a fixed
sensitivity of 10 mV/pC. The experimental setup is shown in Tab. 4.4. The analyzed
frequency range was 0 — 3200 Hz, in a total of 6400 spectral points.

Figure 4.11 — Signal converter.

Source: B&K

Table 4.4 — Experimental setup.

Parameter Value
Bandwidth 3.2k Hz
Spectral lines 6400
Acquisition time 2 seconds
Resolution 0.5 Hz
Averages 3
Window input Force - Transient
Window response Exponential
Frequency response H1

Test variance 2 days

Source: Author’s production.

The accelerometer position is shown in Fig. 4.12, it is glued on the back side of
the position 1, the forces are applied in position 1 (FRF Hy;) and 2 (FRF Hy).

To analyze which modes correspond to flexural and torsional modes a modal
analysis is performed in an undamaged beam using the same experimental system
mentioned above as shown in Fig. 4.13, considering 15 excitation points.
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Figure 4.12 — Accelerometer position and excitation position on glass fiber/epoxy

beam.
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Source: Author’s production.

Figure 4.13 — Modal Analysis Setup.

1 - accelerometer position (in

the back side).
2 - strips (free-free condition).

3 - beam.
4 - excitation positions.

Source: Author’s production.
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4.1.3 Dynamic tests: Numerical

A numerical example using a finite element method (FEM) of a simple composite
beam in free-free condition is selected to validate the effectiveness of the proposed
methodology. The FEM model is done in ABAQUS 6.12, and consists of 25938 (mesh
size 0.001) quadrilateral continuum shell elements (SC8R), with 8 nodes with three
degrees-of-freedom (displacement). Shell elements are used to model structures in
which one dimension, the thickness, is significantly smaller than the other dimensions.
Conventional shell elements apply this condition to discretize a body by delimited the
geometry at a reference surface. In the other hand, continuum shell elements discretize
an entire three-dimensional body. The thickness is defined from the element nodal
geometry (SIMULIA, 2013), as explained in Fig. 4.14.

Figure 4.14 — Conventional shell and continuum shell.
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elamant hicknass s dalined by nodal geomeatny.

Simulia (2013)

The double-beam can be seen in Fig. 4.15 where the line between the beams
is characterized by the delamination.
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Figure 4.15 — Double-beam FEM model with delamination.

B

Source: Author’s production.

The total number of elements is chosen according to the error between the
frequencies of a very refined mesh (mesh size: 0.0009) and another two (0.002 and
0.001), as shown in Fig. 4.16. The maximum error between the frequencies of the
mesh of 0.002 compared to the most refined is 6.99% (first mode), and the maximum
error between the frequencies of the 0.001 mesh is 0.047% (third mode). Thus, as
decides to use a mesh size of 0.001.

Figure 4.16 — Mesh convergence.
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Source: Author’s production.

The geometrical and the mechanical properties are shown in Tab. 4.5, and they
are chosen according to the calculations done in the Ignition loss test of manufactured
specimens (Appendix C), and also through the model updating comparing with the
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experimental natural frequencies.

Two accelerometers and a force excitation are added in the same position as
in the experimental procedure (Fig. 4.12), and the vibration signals are simulated with
a sampling frequency of 1.0 Hz. The frequency range studied is 1500 Hz using the
direct steady-state dynamic analysis, and the state conditions are simulated as in the
experimental phase. The Rayleigh damping is used and its proportional parameters
(o and f) are introduced in the simulation. The parameters are calculated using the
critical damping found using peak-picking method from the experimental beams.

Table 4.5 — Geometrical and mechanical properties: numerical simulation.

Property Value

Length 227 mm
Width 28.35 mm
Thickness 3.00 mm

Longitudinal elasticity modulus - £y, | 30.0 GPa
Transversal elasticity modulus - Es, 15.0 GPa

Composite density - p,. 1260 kg/m?
Shear modulus - G5 5.9 GPa
Shear modulus - G5 5.9 GPa
Shear modulus - G3 4.0 GPa
Poisson ratio - v 0.18
Stacking orientation [0]12

Source: Author’s production.

In this study different dynamic tests are simulated for each stage of damage,
varying the mechanical properties and the stacking orientation as presented in Tab.
4.6. The values are chosen varying the properties between + 10%. The procedure
is implemented as a Python script in order to automate the process. So for example,
varying the longitudinal modulus from 27.0 GPa to 33.0 GPa at a 0.5 GPa step gets
in total 26 FRFs for position Hy; and Hs;. In total 94 FRFs are simulated for state
conditions healthy and damaged level 1, 72 FRFs for damaged level 2 and 70 FRFs
for damaged level 3. In the case of damaged level 2 and 3 the changes in the stacking
orientation were not considering, because that the difference of the numbers of FRFs
comparing with the first two states conditions. And, also, in damaged level 3, the
changes in the shear modulus were only from 5.3 GPa and 5.9 GPa, because that
there are 70 FRFs instead of 72 FRFs.
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Table 4.6 — Mechanical properties variation: numerical simulation.

Property Minimum Value | Maximum Value Step Samples
E1 27.0 GPa 33.0 GPa 0.5 GPa 26
Ey 13.5 GPa 16.5 GPa 0.5 GPa 14
Pe 1160 kg/m? 1380 kg/m? 20 kg/m3 24
Gz 5.3 GPa 6.2 GPa 0.3 GPa 8
Stacking orientation [—5]12 [+5]12 1.0° 22

Source: Author’s production.

4.2 Damage Detection in Carbon Fiber/Epoxy Plates

Sixteen composite plates produced from carbon fibers with epoxy resin through
the filament winding process are studied. The specimens were manufactured by the
Brazilian Navy Technology Centre in Sdo Paulo and made available for previous studies
made by Medeiros (2016). The carbon fiber composites are split into two groups: eight
plates with twelve layers and stacking orientation [0/15/-15/0/15/-15]s, and eight plates
with eight layers and stacking orientation [0]s. The average thickness for the first group
is 3.39 mm (standard deviation = 0.07) and for the second 2.23 mm (standard deviation
= 0.02). The experimental procedure was previously carried out by Medeiros (2016).

Initially, the dynamic response of each healthy laminated plate was obtained by
using four accelerometers (models 352A24) in free-free boundary conditions, as shown
in Fig. 4.17. The impulse input by impact hammer was applied on a fixed point on the
back side of the plate. In the vibration tests, the analyzed frequency range was 0 — 1024
Hz, in a total of 2048 spectral points. Each Frequency Response Function (FRF) was
obtained through an average of five samples, aiming to reduce the effects of variation
(MEDEIROS, 2016).

The second stage consists of the damage test phase. For the [0]s stacking
orientation group, five plates were damaged by impact loading, one was damaged by
drilling a center hole, and the other two kept undamaged. For the [0/15/-15/0/15/-15]s
plates, four were damaged by impact loading, two by delamination and other two kept
undamaged. The damaged plates were analyzed again through the use of vibration
methods monitored by accelerometers. In total 56 FRFs for [0]s orientation plates were
obtained, 32 FRFs for healthy cases and 24 FRFs for damaged cases. For [0/15/-
15/0/15/-15]5 plates, a total of 48 FRFs were obtained, 24 for undamaged cases and
24 for damaged cases (MEDEIROS, 2016).

Due to a large number of inputs associated with each FRFs, and the conse-
quently large number of connections required to form a suitable ANN topology, the
PCA is used to reduce the dimension of the experimental data. After using the PCA,
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Figure 4.17 — Dynamic experimental set-up.

1-Specimen
2-Accelerometers
3-Elastomericwires

4-Impact Hammer

5-Data acquisition LMS system
* 6-PC analyser interface TestLab

Source: Medeiros (2016)

the data is split into three data sets: training, validation, and testing. The training set
is used as input into the neural network, and the error calculation was performed. The
validation set is then used to monitor the behavior of the network simultaneously with
the training set during the learning phase, to monitor the best values of the hyperpa-
rameters and topology. After the learning phase, the network is then tested by using
the last set of data, data not used during training. A confusion matrix is performed in
the testing set to evaluate the performance of the ANN classifier.

4.3 Fault Diagnosis of Composite Structures: Method-
ology.

4.3.1 Principal Component Analysis

Considering a large number of spectral lines acquired in the vibration tests, the
use of this data directly applied in the neural network would produce slow and inefficient
learning. For example, if 3201 spectral points (raw data) were used as the input to a
single large neural network, which would give 3202 adaptive weights (including the
bias) for every unit in the first hidden layer. This suggests that a very large training set
would be needed to ensure that the weights and bias were well determined, as well
as huge computational resources would be necessary to find an appropriate minimum
of the error function and the problem becomes infeasible. To try to ensure network
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convergence the size of the original data must be reduced.

To reduce the dimension of the problem, a Principal Component Analysis (PCA)
is implemented in the raw data to get the first principal components (PCs) with the
maximum variance. Discussions between machine learning and data extraction tech-
niques have been carried out around the order of the PCA application and the division
of the data set into training, validation, and testing. Authors like Bandara et al. (2014),
Li et al. (2011) and Zang and Imregun (2001a) use the PCA before splitting the dataset
into three subsets. Other authors, Karpathy (2017), Ng (2018) and Vidhya (2016), first
split the three subsets and then apply the PCA only in the data set called training after
applying them to the two subsequent sets. According to them, starting with the PCA
and then splitting the dataset the validation and testing sets samples would be con-
taminated with training data, since ANN'’s approach is that the validation and testing
sets contain unseen samples, that is, not used during neural network training. The two
approaches are used in this work, as can be seen in Fig. 4.18, in approach 1 the PCA
is first applied and then the dataset is divided whereas in approach 2 the dataset is
split using cross-validation (k-fold) before using PCA.

Figure 4.18 — Dataset split and PCA approaches.

Split dataset into
Raw data from p . .
d ics test training, validation
ynamicstes and testing sets
,L using k-fold

PCA

|

Split dataset into
training, validation
and testing sets

Approach 1
PSO+ ANN Approachz

Table 4.7 shows the main lines of the PCA-2 to get a better idea of Approach 2.
First, the raw dataset is split into 5-folds containing training set and testing set, using
kfold.jI subroutine. For example, if the dataset is composed by 90 observations, 18
observations go to the testing set and 72 go to the training set. After that, each 5-fold of
the training sets are again split by 85% for a new training set and 15% for validation set

Source: Author’s production.
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using stratifiedobs.jl subroutine. The use of stratifiedobs will try to make sure that both
subsets are both appropriately distributed. After PCA calculations on the training set,
the change of space of the validation and the testing sets are performed by multiplying
the eigenvectors (which means the new base) found during PCA calculations using
only the training set.

Table 4.7 — PCA Algorithm - approach 2

0 begin
1 Split the raw data into Xi,qin and Xiesting: Using kfold(data,k=5)
2 Splitthe X¢pqin iNt0 Xyrgin,.., @Nd Xyaridation, USing stratifiedobs(data), p = 0.85)

3  PCA calculations:

4 for X4rqin,,.., data

5 perform the correlation matrix calculation

6 get eigenvalues A and eigenvectors ¢ from the first P-principal components
7 perform new space matrix calculation Ay,4in

8 return Agpqin, A and ¢

9 end

10 for Xvalidation and Xtesting

11 perform new spaces matrices calculations with ¢
12 return Avalidation and Atesting

13 end

14 end

Source: Author’s production.

4.3.2 Artificial Neural Networks

A Multilayer Neural Network Perceptron (MLP) program is developed in the Julia
language (version 0.6) (BEZANSON et al., 2017). Sensitivity analyses is performed by
automatic differentiation by means of dual mumbers (REVELS et al., 2016), as shown in
Tab. 4.8.

One issue when working with ANNs is the difficulty in estimating the hyperpa-
rameters, such as the number of hidden layers, the number of the neurons in each
hidden layers, the value for the momentum term, the initial value for the line search
(or learning rate), as well as what type of activation function and cost function to use
and the application of some technique to prevent overfitting. To solve the first issue, an
optimization program using Particle Swarm Optimization (PSO) method is used to find
the best topology to be used in the function of the validation set accuracy during the
learning phase. Other optimization methods can be applied but due to robustness and
ease of use, the PSO is chosen.

Being f(X;,,) a function of the validation set accuracy:

Maximize f(X;.,),
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Table 4.8 — Sensitivity analysis algorithm

0 begin
1 fort=1: Niterations
convert (weights, bias, input and output;.rge:) real numbers into dual numbers
return w,, b,/,x,- and y,,
for w =1: Nweights
forb =1: Nbias

2
3
4
5
6 apply perturbation to the current weight/bias
7
8
9

for s = 1: Nsamples
for k =1: Nlayers
for j = 1: Nneurons

10 perform an activation function calculation
11 return output ;i

12 end j

13 end k

14 perform a cost function calculation between output,etworr @aNd outputiorget
15 return error E(s) and output,etwork

16 ends

17 perform an error cost function calculation

18 return error Y E(s)

19 stores Vw and Vb

20 remove perturbation

21 end w

22 endb

23 return Vw and Vb

24 end

Source: Author’s production.

with X'ov < X, < Xuwrer,

where X,,,, is a vector composed by three design variables, such as z,: number of the
hidden layers; x5: number of the neurons from the first hidden layer, and x3: number
of the neurons from the second hidden layer. X" are the lower bound and X “”¢" the
upper bound on X.,,. The lower bound for each variable is 1 and the upper bound
depends of the problem, except for =, where the upper bound is 2, i.e., the maximum
of two hidden layers is studied. The project variables are allocated within the topology
vector represented by LC. The PSO works with continuous variables so, as in the
topology only integer variables can be entered, a rounding criterion is assumed. For
example, if the PSO found a topology of 1.51 layers then it is leased to 2 layers; if a
topology of 1.49 has been found, then it is rounded to 1 layer. The same is true for
numbers of neurons.

The whole methodology is shown in Fig. 4.19: first the raw data is introduced
to PCA analysis, and the new space data introduced to ANN. A PSO algorithm is run
in the learning phase to maximize f(X,,,), with different topologies. After the maximum
number of iterations (NI) the best solution (the most suitable topology) is introduced
again to ANN learning phase, as LC to find the best values of the weights and the
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biases (i, b). In order to verify the hyperparameters, the validation data set is run in
the learning phase to get the maximum validation accuracy. If the number of iterations
(Ni) or the tolerance (TOL) between the two consecutive error functions are exceeded
the learning process stops. The final step is to evaluate the generalization behavior of
the ANN with testing set accuracy (acciest)-

Figure 4.19 — Methodology flowchart.
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Source: Author’s production.

The main lines of the Artificial Neural Network (ANN) algorithm are shown on
Tab. 4.9. The input data are normalized to accelerate the learning process. In order to
update the weighs and biases values the gradient descent method is used. In this way,
the steepest descent method is used to generate the direction toward the minimum of
the cost function and backtracking line search to determine the step size (learning rate).
When the learning rate is a fixed number, the backtracking line search is replaced by a
constant number. Different types of activation (logistic, tanh, leaky-ReLU and SoftMax)
and cost functions (quadratic, norm-2 and cross-entropy) are studied in this work.

To verify the learning process, the validation set is used. The main lines of the
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Table 4.9 — ANN algorithm - learning phase

0 begin

1 inform hyperparameters

2 initialize weights and biases

3 normalize the input data

4 fort=1: Niterations

5 perfom senstivity analysis (Tab. 4.8)
6

7

8

9

return Vw and Vb
define the search direction: steepest descent
return d,, and dp
perform line search calculation: backtracking or fixed
10  return «
11 perform synaptic weights and synaptic biases calculation: gradient descent method
12 return Aw and Ab
13 update the weights and biases
14  return w and b
15 perform a new error cost function calculation (step 7 to 17)
16 endt
17 perform a network total error calculation (step 7 to 17)
18 return network total error
19 end

Source: Author’s production.

code are shown on Tab. 4.10.

Table 4.10 — ANN algorithm - validation set verification

0 begin
1 initialize weights and biases (according to the learning phase)
2 normalize the input data
Feedforward propagation:
for s = 1: Nsamples
for k =1: Nlayers
for j =1 : Nneurons
perform an activation function calculation
return output ;i
end |
10 end k
11 perform a cost function calculation between output,ctwort, @Nd outputierget
12 return error E(s) and outputpetwork
13 ends
14 perform an error cost function and accuracy calculations
15 return error Y E(s) and accuracy
16 end

O©oOoONOOOLhW

Source: Author’s production.
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Chapter 5
Results

In this section, the results obtained from the studies using carbon fiber-epoxy
plates and glass fiber-epoxy beams are presented. The first section discusses the
application of the methodology, in the context of damage existence, in carbon fiber-
epoxy plates with two different stacking orientations, and also the evaluation of the
classifier performance when using two types of the Frequency Response Functions
(accelerance and real part curves). In the second section, the study of glass fiber-
epoxy beams are presented with experimental tests, split in five cases. Cases | to IV
address the use of the classification methodology in the context of damage existence,
question | in the Rytter's scale (damage state). Case V addresses the use of the
methodology regarding to question | and also question IV about damage extension,
classifying among the four conditions states. In the third section, a numerical study
using glass-fiber/epoxy beams modeling in a Finite Element Model (FEM) is presented.
The curves of the dynamic responses acquired in the simulation are introduced in
the methodology to evaluate the effectiveness of the methodology compared to the
experimental study.

5.1 Damage Detection in Carbon-Fiber/Epoxy Compos-
ite Plates

As mentioned in the previous chapter, the type of the Frequency Response
Function (FRF) curves brings different pieces of information about the dynamic sys-
tem, such as magnitude curves, phase curves, real part curves, and imaginary part
curves. Each stacking orientation group is studied separately, due to the large differ-
ences in dynamic behavior among them.
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5.1.1

5.1.1.1 Dynamic tests

Composite plates with stacking orientation [0]s

The real part values of FRFs, considering a healthy and a damaged plate are
shown in Fig. 5.1 (a), and the magnitude (accelerance) values of the same FRFs, i.e.,
for the same position and plate are shown in Fig. 5.1 (b). A large difference can be
observed between healthy and damaged cases, especially when working with real part
values, where the inversions of the phases are quite remarkable. To visualize a whole
set of FRFs and see the differences between the samples, FRFs curves of all plates
are shown in Appendix A, in Fig. A.1 for magnitude values, and in Fig. A.2 for real part

values of FRF.

Figure 5.1 — FRFs from healthy and damaged plate for [0]s (a)real part and (b) magni-

tude.
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5.1.1.2 Principal component analysis

The dimension problem is very high, with 2048 spectral lines. Thus, the Princi-
pal component analysis (PCA) is used to reduce the input size of the Artificial Neural
Network (ANN) problem. The relative and the accumulated variance for the first 20
Principal Components (PCs) are shown in Fig. 5.2. As observed, the first PCs bring
more information about the data, which means, more variance. It is possible to see
that around the 10th PC the variance is less than 1%.

Figure 5.2 — Relative variance and accumulated variance using accelerance values
and real part values ([0]s).
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To evaluate how much percentage of variance is necessary to have a proper
representation of the data, the FRFs are reconstructed using the first 5 PCs giving
87.17%, and using the first 20 PCs giving 98.55% for real part values, as shown in Fig.
5.3. It can be seen that 20 PCs better represent the original curve, when compared to
the result obtained with just 5 PCs. The same procedure is performed using acceler-
ance values, the first 5 PCs bring 89.73% of the variance, and the first 20 PCs bring
99.20% of the total variance. The reconstructed FRFs are shown in Fig. 5.4 using
accelerance values.



102

Figure 5.3 — FRFs reconstructed with 5 PCs (a) and 20 PCs (b) comparing with original
FRF: real part values ([0]s).

. FRF_original

€ 50+ ——————— FRF_R_PCS

&

2

E

= 0

[

k=3

=

E 50

< (a)
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Frequency (Hz)

_ FRF_original

£ 504 ————— FRF_R_PC20

&

@

E

= 0

(]

=}

2

E' 50

< (b)
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Frequency (Hz)

Source: Author’s production.

Figure 5.4 — FRFs reconstructed with 5 PCs (a) and 20 PCs (b) comparing with original
FRF: accelerance values ([0]s).
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As mentioned in previous chapters, as the problem size increases, the more
samples are needed to train the network. So it is important to take a look of the sam-
ples and the reconstructed FRFs to evaluate if the PCs is not carrying some noise or
irrelevant information about the data.

Figure 5.5 shows the PCs curves for healthy and damaged cases, using the
real part values (a) and the PCs curves using the accelerance values (b) for the same
specimen. No physical meaning is observed as expected. To visualize a whole set of
PCs curves, Appendix A brings the graphics of PCs using accelerance values in Fig.
A.5 and using real part values in Fig. A.6.

Figure 5.5 — PCs curves using (a) real part values and (b) accelerance - ([0]s.)
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5.1.1.3 Artificial neural networks and pattern recognition

The data are split into 61% for the training set, 21% for the validation set and
18% for the testing set. A Particle Swarm Optimization (PSO) is used to find the ap-
proximate topology of the ANN, in which the program finds the best results, maximizing
the accuracy of the validation set according to three design variables, as explained in
the previous chapter. The PSO parameters used are shown in Tab. 5.1.

Table 5.1 — PSO algorithm parameters.

Parameter Value
C 1.2
Cy 1.2
w 0.5
Iterations 10
Particles number 10
Variables number 3
Lower bound values | [1;1;1]
Upper bound values | [2;24;24]

Source: Author’s production.

The PSO results for accelerance values is X;,,=[1.51;9.05;2.10] with 91.67%
of accuracy in the validation set and for real part values is X,,,=[1.48;5.97;5.59] with
100% of accuracy in the validation set.

The first simulation is performed using only accelerance values, the ANN topol-
ogy is [20-(9,2)-1], i.e., 20 inputs, 9 and 2 neurons for the first and second hidden
layers, respectively, and one output neuron (0 for healthy and 1 for damaged). The
logistic function is used as an activation function and L, function as a cost function.
Steepest descent method and backtracking line search are used for the descent direc-
tion calculations. Also, a momentum term of 0.7 is used.

The second simulation is performed using only the real part values of the FRFs.
The topology consists of 20 inputs, 6 neurons in the hidden layer and one output neuron
(0 for healthy and 1 for damaged) — [20-(6)-1]. The same activation and cost functions,
and also the same parameters (backtracking line search and momentum term) are
used as before.

Each simulation is run 100 times to assess the convergence of the method. For
each run the weights and biases are initialized with different values. The mean results
are shown in Tab. 5.2.
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Table 5.2 — ANNs simulations summary results for [0]s plates (100 times runs).

Data set

Accelerance
values

Real part
values

Training: mean accuracy (mean deviation)

100.0% (0.000)

100.0% (0.035)

Validation: mean accuracy (mean deviation)

83.3% (0.025)

83.3% (0.046)

Testing: mean accuracy (mean deviation)

70.0% (0.073)

93.5% (0.091)

Source: Author’s production.

As observed both simulations reach 100.0% of accuracy in the training set,
showing no signal of underfitting problems, and 83.3% of accuracy in the validation
set. However, using real part values show better generalization than accelerance val-

ues.

Table 5.3 shows the confusion matrix after 100 runs, considering the acceler-
ance values of the FRFs. For real part values, the confusion matrix is shown in Tab.
5.4. The confusion matrix parameters for both simulations are shown in Tab. 5.5.

Table 5.3 — Confusion matrix after 100 runs [0]s plates (accelerance values).

Predict Class

Source: Author’s production.

Actual Class

Damaged | Healthy
Damaged 89 89
Healthy 211 612
Total 300 701

Total
178
823

1001

Table 5.4 — Confusion matrix after 100 runs [0]s plates (real part values).

Predict Class

Source: Author’s production.

Actual Class

Damaged | Healthy
Damaged 295 60
Healthy 5 641
Total 300 701

Total
355
646
1001
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Table 5.5 — Confusion matrix parameters for [0]s plates (100 times runs).

Parameters Accelerance | Real part
values values
Recall 29.7% 98.3%
Specificity 87.3% 91.4%
Accuracy 70.0% 93.5%
Matthews correlation coefficient (MCC) 0.20 0.86
Efficiency 58.5% 94.9%

Source: Author’s production.

It can be noted that using the data from real part values returns better results
than if using accelerance values, as observed previously. The data from accelerance
values has more false-negatives (FN) than true-positives (TP), i.e., the classifier is
not good to predict damaged conditions, since only 29.7% was correctly classified as
damaged. The classifier is able to hit 87.3% of the cases of absence of the damage
condition (specificity), and 12.7% of false alarms. The Matthew correlation coefficient -
MCC - is much smaller than +1, showing almost an average random prediction. Taking
into account the data balanced, the efficiency of the classifier is 58.5%. On the other
side, data from real part values brings more positive results. The classifier is 98.3%
able to predict TP conditions, where the damage is present. The MCC is almost one,
showing an excellent prediction and the efficiency is 94.9%.

The best results achieved after 100 times runs for both simulations are shown
on Tab. 5.6.

Table 5.6 — ANNs best results for [0]s plates.

Simulation | Training Training Validation Testing
cases iterations | accuracy (%) | accuracy (%) | accuracy (%)
Accelerance 300 100.0 83.3 90.0
Real part 150 100.0 100.0 100.0

Source: Author’s production.

5.1.2 Composite plates with stacking orientation [0/15/-15/0/15/-
15]s

To verify the performance of the methodology when the differences between
healthy and damaged structures are small, another stacking orientation is studied.
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5.1.2.1 Dynamic tests

The real part values of FRFs are shown in Fig. 5.6 (a), and (b), the accelerance
values of the same FRFs. As can be seen, there is a small difference between the
resonant frequencies in some modes only. To visualize a whole set of FRFs and see the
differences between the samples, FRFs curves of all plates are shown in the Appendix
A, in Fig. A.3 for accelerance values and in Fig. A.4 for real part values.

Figure 5.6 — FRFs from healthy and damaged plate for [0/15/-15/0/15/-15]s (a) real part
and (b) accelerance.
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5.1.2.2 Principal component analysis

The relative and the accumulated variance for the first PCs are shown in Fig.
5.7. Considering the accelerance values, the first 20 PCs bring 98.11% and for real
part values, the first 30 PCs bring 98.85% of the total variance. As noted, at this time,
to recover the approximate value of the total variance the data from real part values
need more PCs than the data from accelerance values.

Figure 5.8 shows the original FRFs and the reconstructed FRFs using the first
5 PCs (75.90% of variance), the first 20 PCs (96.18% of variance) and the first 30
PCs, when working with real part values. It can be seen a correlation among the total
variance and the FRF reconstruction. In the same way, but for accelerance values, Fig.
5.9 show the original FRFs comparing with reconstructed FRFs with the first 5 PCs
(71.70% of variance) and with the first 20 PCs.

Figure 5.7 — Relative variance and accumulated variance using accelerance values
and real part values ([0/15/-15/0/15/-15]5).

30 100

- 90
I Accelerance values

EE Real part values - 80

o)
[%a]
]

- 70

[
(=]

- 60

50

=
=]
I

- 30

Relative Variance (%)
&
Accumulated Variance (%)

- 20

- 10

1234567 8 91011121314151617181920212223 24252627 282930

Principal Component

Source: Author’s production.



109

Figure 5.8 — FRFs reconstructed with 5 PCs (a), 20 PCs (b) and 30 PCs (c) comparing
with original FRF: real part values ([0/15/-15/0/15/-15]s).

Source: Author’s production.
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FRF: accelerance values ([0/15/-15/0/15/-15]).

. FRF_ariginal

Z 601 FRF_R_PC5

N

i" 40

.

2

S 204

.2:

< 0 (@)
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Frequency (Hz)

—and FRF_original

z 80 FRF_R_PC20

N

i" 40

E

Y

3 201

§-

£ o (b)
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Frequency (Hz)

Source: Author’s production.



110

Figure 5.10 shows the PCs curves for the two cases, healthy and damaged,
using real part values (a) and (b) accelerance values of the FRFs. It can be noted,
differently than the previous plate [0]s, here for the first PCs, the curves between healthy
and damaged are almost identical. In Appendix A, Fig. A.7 shows all the PCs curves
for accelerance values and Fig. A.8 for real part values.

Figure 5.10 — PCs curves using real part values (a) and accelerance (b) - ([0/15/-
15/0/15/-15]5).
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5.1.2.3 Artificial neural networks and pattern recognition

The data is split into 62% for the training set, 21% for the validation set and 17%
for the testing set. First, the PSO program is run to get the best topology maximizing
the accuracy of the validation set. The PSO parameters used are the same as shown
in Tab. 5.1, except for the upper bond variables values when using real part values, as
the number of the inputs are greater (30 PCs) the upper bound values are [2;36;36].



111

The PSO results for accelerance values is X,,,=[1.07;11.94;12.10] with 80.00%
of accuracy in the validation set and for real part values is X;,,=[1.84;19.91,9.55] with
70.0% of accuracy in the validation set.

The first simulation is performed using only accelerance values, the ANN topol-
ogy is [20-(12)-1], i.e., 20 inputs, 12 neurons for the hidden layer and one output neuron
(0 for healthy and 1 for damaged). The logistic function is used as activation function
and L, function as a cost function. Steepest descent and backtracking line search are
used for the gradient direction calculations. Also, the momentum term of 0.7 is used.

The second simulation is performed using only real part values of FRFs, the
topology consists of 30 inputs, 20 neurons in the first hidden layer, 10 neurons in the
second hidden layer and one output neuron — [30-(20,10)-1]. The logistic function is
used as activation function and cross-entropy function as a cost function. Steepest
descent, fixed learning rate (0.1) and also the momentum term (0.1) are used. The
mean results for both simulations, after 100 times runs, are shown on Tab. 5.7. For the
training set, both simulations achieved 100% of accuracy; for the validation set, using
real part values performed better than accelerance values. Although, for the testing
set simulation using accelerance values the accuracy is 94.10%, better than real part
values.

Table 5.7 — ANNs simulations summary results for [0/15/-15/0/15/-15]s plates (100
times runs).

Data set Accelerance Real part
values values
Training: mean accuracy (mean deviation) 100.00% (0.0) | 100.00% (0.0)
Validation: mean accuracy (mean deviation) | 62.50% (0.078) | 70.00% (0.041)
Testing: mean accuracy (mean deviation) 94.10% (0.065) | 73.75% (0.027)

Source: Author’s production.

The confusion matrix, for accelerance values after 100 times runs, is shown in
Tab. 5.8, and for real part values in Tab. 5.9. Also, their parameter’s values in Tab.
5.10. Opposite to the results obtained from the previous plates ([0]s), the data from
accelerance values show better results than real part values of FRF. With 88.2% of
the capacity to predict correctly the samples with damaged against 47.5% for real part
values. Also, for accuracy, MCC and efficiency. The accelerance values performed
superior results when compared with real part values. The reason may be that when
using accelerance values some characteristics can help the network to learn some im-
portant relationship between a certain class and its main features. Another reason may
be that with the accelerance values the region becomes less non-convex, being easier
the separation between classes. Can be observed in Fig. 5.10 that the difference be-
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tween healthy curve and damaged curve using accelerance values is around the fifth
principal component. On the other hand using real part values this difference can only
be seen around principal component 15. So using accelerance values the differences
between the classes can be seen more quickly. The MCC get close to +1, showing the
excellent prediction. One important thing to note is that there is no misunderstanding
between the actual healthy class and predicted damaged class, that is, the specificity
is 100% for both simulations.

Table 5.8 — Confusion matrix after 100 runs [0/15/-15/0/15/-15]s plates (accelerance
values).

Actual Class

Damaged | Healthy | Total

. Damaged 353 0 353
Predict Class Hoalthy 47 100 | 447
Total 400 400 800

Source: Author’s production.

Table 5.9 — Confusion matrix after 100 runs [0/15/-15/0/15/-15]s plates (real part val-
ues).

Actual Class

Damaged | Healthy | Total

: Damaged 190 0 190
Predict Class Healthy 210 100 | 610
Total 400 400 800

Source: Author’s production.

Table 5.10 — Confusion matrix parameters for [0/15/-15/0/15/-15]¢ plates (100 times
run).

Parameters Accelerance | Real part
values values
Recall 88.2% 47.5%
Specificity 100.0 % 100.0%
Accuracy 94.1% 73.75%
Matthews correlation coefficient (MCC) 0.89 0.56
Efficiency 94.1% 73.75%

Source: Author’s production.
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The best results achieved after 100 times runs for both simulations are shown
on Tab. 5.11. With just 150 iterations accelerance values get maximum accuracy for
validation set of 90% and 100% of generalization.

Table 5.11 — ANNs best results for [0/15/-15/0/15/-15]s plates.

Simulation | Training Training Validation Testing
cases iterations | accuracy (%) | accuracy (%) | accuracy (%)
Accelerance 150 100.0 90.0 100.0
Real part 400 100.0 80.0 87.7

Source: Author’s production.

Finally, as observed, all the ANNs showed good learning and generalization.
The best result for each orientation agreed to what is observed in the originals FRFs.
Large differences can be observed when using the real parts and accelerance values
for [0]s stacking orientation. During ANN simulations, it is verified that when using only
real parts values as input the behavior of the network is better than when using accel-
erance values. It is probably due to the fact that in the real part of FRFs there are phase
shifts in almost all the modes between intact and damaged plates. This situation is hid-
den when working with accelerance values. The phase shifts, differentiating the intact
from the damaged ones, can contribute to feature extraction during the learning and
then to the classification performed by the network. For [0/15/-15/0/15/-15]s laminates,
the best result is obtained when the accelerance values are used. This is probably
due to the fact that values in accelerance carry more information about each integrity
condition. As the FRFs are similar, the features acquired only by the real part created
a more complex decision boundary between healthy and damaged cases. Transform-
ing the features in accelerance values, the curves changed, differentiating the dynamic
behavior between them. Due to this feature addition, the network begins to rank better
and evaluates the presence or not of the damage and thus make its decision correctly.

5.2 Damage Detection in Glass-Fiber/Epoxy Compos-
ite Beams: Experimental

5.2.1 Dynamic and modal analysis

A total 25 beams are manufactured without damage (H), 15 beams with 5 mm
delamination size (Level 1: D-L,), 16 beams with 10 mm delamination size (Level 2:
D-L,) and 17 beams with 19 mm delamination size (Level 3: D-L3). As the vibration-
based tests are performed in two points of each beam, there are in total 73 FRFs for
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each position (Hy; and Hs;). The Hy; - FRFs can be seenin Fig. 5.11 and H,, - FRFs
in Fig. 5.12, both using accelerance FRFs. In Appendix A the Fig. A.9 shows the FRFs
from all damaged cases from position H;; and Fig. A.10 from position H,;.

Figure 5.11 — H,; - FRFs curves (accelerance values).
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Source: Author’s production.

As one of the four-step of statistical pattern recognition, the feature extraction
and selection has been a very important and critical procedure to get a very good
generalization in classification. Taking this into account and observing the FRFs from
the dynamics tests, it can be observed that some FRFs from damaged Level 1 (D-
Ly) are distinct from the pattern. They are signalized with a light blue color curves.
Because this difference in the pattern those curves are removed from the dataset.
The reason is the difference in the dimensions of the beams, in thickness, due to the
manufacturing process.

The range between the minimum frequency and maximum frequency, for the
first five mode shapes from the four states conditions are shown in Fig. 5.13. It may
be noted that the interval of each mode for a particular state is large. And when com-
pared to the mode and the states it is noted that many samples are within the same
range. Thus, the separation of the classes becomes more difficult, since the resonant
frequencies are very close to each other when compared to the structural conditions
of the system. Figure 5.14 shows an example of undamaged-FRF (accelerance and
phase) and the coherence from the positions Hy; and Hs;.



Figure 5.12 — H,; - FRFs curves (accelerance values).
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Source: Author’s production.

Figure 5.13 — Frequency range (Hz) for the first five mode shapes from the four damage

states (H1,).

Mode 1 Mode 2
Damaged 3 231 I 250 534 I 563.5
Damaged 2 237 I 256 542.5 I 575.5
Damaged 1 239.5 | 247 545.5 | 558.5
Healthy 223 I 251 467 . 572

Source: Author’s production.

Mode 3 Mode 4 Mode 5
593 651.5 1125 I 1167 1149 1294
613.5 672.5 1147 I 1186 1179 1289
630.5 | 652 1147 I 1170 1209.5 | 1242
594.5 659.5 1048 . 1201 1138 1300

Results for the modal analysis performed in one undamaged beam are shown

in Tab. 5.12.
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Figure 5.14 — Positions H,; and H,; - FRFs curves (Beam 6).
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Source: Author’s production.

Table 5.12 — Modal analysis results - flexural modes (Beam 3).

Flexural Mode | Frequency (Hz)
1 232.5
2 644.5
3 1253.5

Source: Author’s production.

5.2.2 Principal component analysis

The number of spectral lines, 1500, is very large. Thus, the PCA is used in order
to reduce the number of inputs and also to reduce the complexity of the input data.

First, to analyze if there is some influence in performing PCA in the complete
dataset or just in the partial dataset, the two approaches are performed, as explained
in Fig. 4.18 in the previous chapter. Fast Fourier Transform (FFT) curves are used
to perform the calculations and the first 10 PCs are used for both approaches. In
order to evaluate each approach without the influence of the samples from a particular
region - such as the border samples - they are not contained in another set of the other
approach, the same FFT curves are used for both approaches in the training set, as
well in the validation set and in the testing set. The ANN topology is 10 inputs, 8 and 8
neurons for the first and second hidden layers and 4 outputs. The logistic function and
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L, cost function are used as well a step size of 0.1 and a momentum term of 0.5. Table
5.13 shown the results after 500 times runs.

Table 5.13 — Summary results for PCA-total and PCA-partial using FFT curves (500

times runs).
Data set Approach 1 Approach 2
PCA-total PCA-partial

Training: mean accuracy (mean deviation) | 94.0% (0.015) | 92.0% (0.018)
minimum accuracy 87.0% 80.0%
maximum accuracy 99.0% 98.0%

Validation: mean accuracy (mean deviation) | 41.1% (0.076) | 41.1% (0.072)
minimum accuracy 23.5% 17.6%
maximum accuracy 76.5% 76.5%

Testing: mean accuracy (mean deviation) | 55.2% (0.061) | 55.2% (0.057)
minimum accuracy 24.1% 31.0%
maximum accuracy 72.4% 79.3%

Source: Author’s production.

The results show that, apparently, there is no leakage of information from the
training set to the other sets when the PCA is performed in the whole dataset prior to
the split step. Since the mean accuracies for all the datasets are the same for both
approaches. The small differences between the minimum and the maximum accura-
cies achieved may be due to the initialization region of the weights and bias of a given
iteration.

The accelerance of all 132 FRFs are split into two datasets called training set
and testing set using 5-fold cross-validation. The testing set contains approximately
20% of the samples. After that, the training set is again split into two groups, training
set, and validation set, where 15% of the samples go to the validation set. After that,
the datasets for each fold are introduced to PCA. The relative variance for each fold is
shown in Fig. 5.15.
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Figure 5.15 — Relative variance (%) for the 5-fold for the first 30 PCs .
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Source: Author’s production.

Table 5.14 shows the total variance from the 5-folds (sets) using the first 20, 25
and 30 PCs.

Table 5.14 — Total variance for each 5-folds with 20, 25 and 30 PCs.

Set Number | Total variance (%) | Total variance (%) | Total variance (%)
20 PCs 25 PCs 30 PCs

Set 1 97.935 98.767 99.236

Set 2 97.706 98.663 99.183

Set 3 97.754 98.678 99.220

Set 4 97.708 98.703 99.232

Set 5 97.922 98.731 99.213

Source: Author’s production.

The original and reconstructed FRFs with 20, 25 and 30 PCs are shown in Fig.
5.16 for the 5-folds.



Figure 5.16 — FRFs reconstructed using 20, 25 and 30 PCs for the 5-folds (sets).
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5.2.3 Artificial neural networks and pattern recognition: Case |

The first case studied is when the samples introduced in the ANN are all from the
four state conditions classes: healthy, damaged level 1, damaged level 2 and damaged
level 3 with 2 neurons in the output layer: healthy and damaged.

PSO is used to find the approximate topology of the ANN, in which the pro-
gram finds the best results, maximizing the accuracy of the validation set. The PSO
parameters used are shown in Tab. 5.15.

Table 5.15 — PSO algorithm parameters.

Parameter Value
C 1.2
Cy
w .
Iterations 5
Particles number 100
Variables number 3
Lower bound values [1;1;1]
Upper bound values [2;34;34] for 30 PCs
[2;25;22] for 20 and 25 PCs

Source: Author’s production.

The best PSO-result for 30 inputs is X;,,=[1.68;22.42;16.76] with 75.0% of ac-
curacy, for 25 inputs is X;,,=[1.77;1.37;6.74] with 81.2% of accuracy and for 20 inputs
is Xi0p=[1.89;13.58;17.66] with 75.0% of accuracy.

Table 5.16 shows several ANNs simulations with different parameters varying
the topology, the activation function, the cost function, the fixed size or variable step
size (Backtracking line search), the noise, the regularization technique, the momentum
term and if the training data is shuffle or not. The term shuffle refers that for each
iteration X% of the training set is used for the training.

Table 5.17 shows the results for the 1% set, i.e., the 1%'-fold, for all simulations
presented in Tab. 5.16 after 150 times runs. As the accuracy from the training set is
high (around 95%) there is no underfitting indication. Table 5.18 shows the four best
accuracy results achieved using the other sets (274, 37, 4" and 5'"). It can be noted
that set 4 presents the worst results and set 5 the best results.



Table 5.16 — ANNs simulations with different parameters - Case |.

ANN Topology Activation Cost Step | + | Regularization | Noise | Shuffle
function function size technique samples

ANN, | 30-[22,17]-2 tanh quadratic BK | 0.3 L, (0.001) no no
ANN, | 30-[22,17]-2 logistic 2-norm BK | 0.3 no no no
ANN; | 30-[22,17]-2 Leaky-RelLU quadratic BK | 0.3 L, (0.001) no no
ANN, | 30-[22,17]-2 tanh quadratic BK | 0.3 no 5% 55 %
ANN5 | 30-[22,17]-2 logistic 2-norm 0.05 | 0.3 no no no
ANNg | 30-[22,17]-2 | logistic + softmax | cross-entropy | BK | 0.3 no no no
ANN; | 30-[22,17]-2 | logistic + softmax | cross-entropy | BK | 0.3 no no 55 %
ANNg | 30-[22,17]-2 | logistic + softmax | cross-entropy | BK | 0.3 no 10 % 55 %
ANN, | 30-[22,17]-2 | logistic + softmax | cross-entropy | 0.05 | 0.3 no 10 % 55 %
AN Ny, | 30-[22,17]-2 | logistic + softmax | cross-entropy | 0.1 0.3 no 10 % 55 %
AN Ny, | 30-[22,17]-2 | logistic + softmax | cross-entropy | BK | 0.3 no 10 % 55 %
AN Ny, | 30-[22,17]-2 | logistic + softmax 2-norm BK | 0.3 no 10 % 55 %
ANNy3 | 25-[1,7]-2 | logistic + softmax | cross-entropy | BK | 0.3 no no % 55 %
ANNy | 25-[1,7]-2 tanh + softmax quadratic BK | 0.01 L, (0.001) no 55 %
ANNy5 | 25-[1,7]-2 tanh + softmax quadratic BK | 0.01 L, (0.001) 5% 55 %
ANNyg | 25-[1,7]-2 tanh quadratic BK | 0.3 L, (0.001) no no
ANNy; | 25-[30,10]-2 | tanh + softmax quadratic BK | 0.3 no no 55 %
AN N5 | 25-[30,10]-2 | tanh + softmax quadratic BK | 0.3 L, (0.001) no 55 %
AN Ny | 25-[30,10]-2 | tanh + softmax quadratic BK | 0.01 L, (0.001) no 55 %
AN Ny, | 25-[30,10]-2 | tanh + softmax quadratic BK | 0.01 L, (0.0001) no 55 %
AN N, | 25-[30,10]-2 | tanh + softmax quadratic BK | 0.01 L, (0.01) no 55 %
AN Ny | 25-[30,10]-2 | tanh + softmax quadratic BK | 0.01 L, (0.1) no 55 %
AN N3 | 25-[30,10]-2 | tanh + softmax quadratic BK | 0.01 Ly (0.0001) no 55 %
AN Ny, | 25-[30,10]-2 | tanh + softmax quadratic BK | 0.01 L, (0.001) no 55 %
AN No5 | 25-[30,10]-2 | tanh + softmax quadratic BK | 0.01 L, (0.01) no 55 %
AN Ny | 25-[30,10]-2 | tanh + softmax quadratic BK | 0.01 L, (0.01) 5% 77 %
AN Ny, | 25-[30,10]-2 | tanh + softmax quadratic BK | 0.01 L, (0.01) no 77 %
AN Nog | 25-[30,10]-2 | logistic + softmax | cross-entropy | BK | 0.3 no no 55 %
AN Ny | 25-[30,10]-2 | tanh + softmax | cross-entropy | BK | 0.01 L, (0.001) no 55 %

Source: Author’s production.

BK=backtracking line search; y=momentum term.

gl
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Table 5.17 — ANNs simulations with different parameters - results (Set 1) - 150 times run - Case |.

Training set Validation set Testing set
ANN Mean - % (mean deviation) | Maximum || Mean - % (mean deviation) | Maximum || Mean - % (mean deviation) | Maximum
ANN; || 92.13 (0.062) 98.88 50.00 (0.041) 62.50 44.44 (0.057) 62.96
ANN, || 75.28 (0.029) 96.63 37.50 (0.054) 62.50 37.04 (0.037) 55.55
ANNj3 || 94.39 (0.081) 98.88 43.75 (0.067) 62.50 37.04 (0.060) 59.26
ANN, | 96.00 (0.087) 100.00 56.25 (0.047) 68.75 57.41 (0.055) 70.37
ANN; || 89.89 (0.026) 94.38 50.00 (0.025) 50.00 44.44 (0.033) 59.26
ANNg | 93.26 (0.097) 97.75 56.25 (0.072) 62.50 62.96 (0.073) 70.37
ANN; || 96.00 (0.063) 100.00 68.75 (0.051) 75.00 59.26 (0.056) 70.37
ANNg | 96.00 (0.060) 100.00 68.75 (0.054) 75.00 62.96 (0.044) 74.07
ANNy || 92.00 (0.011) 96.00 68.75 (0.028) 75.00 62.96 (0.026) 66.67
AN Ny, || 92.00 (0.012) 96.00 68.75 (0.031) 75.00 59.26 (0.023) 66.67
ANNy; || 96.00 (0.103) 100.00 68.75 (0.055) 75.00 62.96 (0.048) 74.07
ANN;, || 92.00 (0.100) 100.00 65.62 (0.056) 75.00 55.56 (0.036) 70.37
ANNy; || 86.00 (0.126) 96.00 62.50 (0.101) 75.00 59.26 (0.080) 74.07
ANNy, || 68.00 (0.115) 96.00 62.50 (0.074) 75.00 55.56 (0.050) 74.07
AN N5 || 68.00 (0.113) 96.00 62.50 (0.072) 75.00 55.56 (0.048) 70.37
AN Ny || 83.15 (0.206) 95.50 50.00 (0.135) 68.75 55.56 (0.131) 70.37
ANN;; || 84.00 (0.076) 100.00 62.50 (0.065) 81.25 59.26 (0.050) 74.07
AN N5 || 84.00 (0.081) 100.00 62.50 (0.061) 75.00 59.26 (0.053) 74.07
AN Ny || 90.00 (0.078) 100.00 62.50 (0.066) 75.00 62.96 (0.048) 77.78
AN Ny, || 84.00 (0.077) 100.00 62.50 (0.057) 75.00 59.26 (0.044) 74.07
AN Ny, | 90.00 (0.089) 100.00 62.50 (0.062) 75.00 59.26 (0.054) 74.07
AN Ny, || 80.00 (0.112) 98.00 62.50 (0.061) 75.00 59.25 (0.054) 77.78
AN N,3 || 84.00 (0.071) 100.00 62.50 (0.061) 75.00 62.96 (0.041) 77.78
AN N,y || 86.00 (0.074) 100.00 65.62 (0.061) 75.00 62.96 (0.053) 74.07
AN Ny || 90.00 (0.080) 100.00 68.75 (0.060) 75.00 66.67 (0.065) 74.07
AN Ny || 85.71 (0.076) 100.00 56.25 (0.047) 75.00 62.96 (0.050) 74.07
AN Ny || 85.71 (0.058) 100.00 56.25 (0.047) 75.00 59.26 (0.040) 70.37
AN Nyg || 94.00 (0.111) 100.00 68.75 (0.054) 75.00 62.96 (0.063) 74.07
AN Ny || 100.00 (0.146) 100.00 62.50 (0.100) 75.00 62.96 (0.103) 74.07

Source: Author’s production.



Table 5.18 — ANNs simulations with different parameters - accuracy results (Sets 2, 3, 4 and 5) - 150 times run - Case |.

AN Ng AN Ng AN Ny AN Ny,
Mean - % Mean - % Mean - % Mean - %
Set | Dataset (mean devia- | Maximum || (mean devia- | Maximum || (mean devia- | Maximum || (mean devia- | Maximum
tion) tion) tion) tion)
Training 90.00 (0.065) | 97.78 100.00 (0.014) | 100.00 98.00 (0.006) | 100.00 100.00 (0.034) | 100.00
2 Validation || 60.00 (0.071) | 80.00 53.33 (0.035) | 66.67 53.33 (0.025) | 60.00 53.33 (0.064) | 66.67
Testing 62.93 (0.047) | 74.07 55.56 (0.036) | 62.96 59.26 (0.022) | 62.96 59.26 (0.049) | 66.67
Training 92.22 (0.098) | 98.89 94.00 (0.111) | 100.00 96.00 (0.019) | 100.00 88.00 (0.070) | 98.00
3 Validation || 56.25 (0.048) | 62.50 50.00 (0.081) | 68.75 56.25 (0.060) | 68.75 56.25 (0.091) | 75.00
Testing 69.23 (0.073) | 84.61 61.54 (0.100) | 88.46 73.08 (0.052) | 88.46 76.92 (0.147) | 92.31
Training 87.78 (0.108) | 94.44 98.00 (0.067) | 100.00 98.00 (0.0012) | 98.00 96.00 (0.126) | 100.00
4 Validation || 37.50 (0.052) | 75.00 43.75 (0.040) | 62.50 43.75 (0.035) | 56.25 43.74 (0.070) | 62.50
Testing 53.85 (0.056) | 61.54 61.54 (0.050) | 69.23 57.70 (0.030) | 65.39 73.08 (0.064) | 86.61
Training 86.67 (0.100) | 97.78 92.00 (0.109) | 100.00 96.00 (0.022) | 98.00 92.00 (0.076) | 100.00
5 Validation || 62.50 (0.063) | 81.25 62.50 (0.057) | 81.25 68.75 (0.041) | 75.00 68.75 (0.100) | 81.25
Testing 65.38 (0.095) | 80.77 65.38 (0.105) | 76.92 69.23 (0.026) | 76.92 71.15(0.124) | 84.61
Training 90.00 (0.022) | 98.89 96.00 (0.024) | 100.00 96.00 (0.005) | 100.0 92.00 (0.045) | 100.00
Total | Validation || 56.25 (0.068) | 81.25 53.33 (0.054) | 81.25 56.25 (0.010) | 75.00 56.25 (0.085) | 81.25
Testing 62.96 (0.036) | 84.61 61.54 (0.024) | 88.46 62.96 (0.008) | 88.46 71.15(0.052) | 92.31

Source: Author’s production.

ecl
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The results presented previously show the average accuracy of each dataset
(training, validation, and testing) for each set of samples (5-folds), and the maximum
accuracy obtained in the total of 150 external iterations. Although the maximum accu-
racy showed good results, they do not represent the same internal iteration of the ANN,
that is, the best values found among all the simulations for a network architecture in
the same internal iteration are shown in Tab. 5.19, which corresponds to AN N,,. The
time spending for training the ANN is around 16 minutes and 44 seconds, which it
depends on the topology, the iteration numbers, the learning rate and the size of the
dataset. The CPU used to calculate the training time is Intel Core 2 Duo 3.0 GHz. The
generalization accuracy of the ANN is 84.61% for set 3 and 88.46% for set 5.

Table 5.19 — ANN two best accuracy results (AN Ny, - Set 3 and 5) - Case I.

Set Training Training Validation Testing
number time accuracy (%) | accuracy (%) | accuracy (%)
Set 3 16'44" 100.0 56.25 92.31
Set5 16'44" 98.00 81.25 84.61

Source: Author’s production.

The confusion matrix for the best result is shown in Tab. 5.20 for set 3 and in
Tab. 5.21 for set 5, as well as its parameters in Tab. 5.22. For set 3 recall is 100.00%
with no false negative alarms. For the MCC parameter, the best value presented is for
set 3, since the error between the classifications is smaller. Because of this both the
accuracy and the efficiency for the set 3 is also higher.

Table 5.20 — Confusion matrix for AN N,, - Set 3: best result - Case I.

Actual Class

Damaged | Healthy | Total
) Damaged 15 2 17
Predict Class Healthy 0 9 9
Total 15 11 26

Source: Author’s production.
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Table 5.21 — Confusion matrix for AN N,, - Set 5: best result - Case |I.

Actual Class

Damaged | Healthy | Total

: Damaged 12 2 14
Predict Class Healthy 5 10 12
Total 14 12 26

Source: Author’s production.

Table 5.22 — Confusion matrix parameters for AN N, - Sets 3 and 5: best result - Case
l.

Parameters Values-Set 3 | Values-Set 5
Recall 100.00% 85.71%
Specificity 81.82% 83.33%
Accuracy 92.31% 84.61%
Matthews correlation coefficient (MCC) 0.85 0.69
Efficiency 90.91% 83.52%

Source: Author’s production.

The training error curve and the accuracy convergence curves for the three
dataset are shown in Fig. 5.17, there is an oscillation in the testing set until itera-
tion 224 and between 490 and 720. So the best is use a early stopping technique at
iteration 224.
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Figure 5.17 — Training error (dot line) and accuracy (%) convergence curves for AN N,
- Set 3: best result - Case |.
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Source: Author’s production.

5.2.4 Artificial neural networks and pattern recognition: Case I

The second case studied is when the dataset is composed of three state condi-
tions: healthy, damaged level 2 and damaged level 3, with 2 output neurons (healthy
and damaged). So as well as, the previous case the PCA is used and the total variance
for each 5-folds are shown in Tab. 5.23 for the first 30 PCs.

Table 5.23 — Total variance for each 5-folds 30 PCs - Case II.

Set Number | Total variance (%)
Set 1 99.310
Set 2 99.367
Set 3 99.282
Set 4 99.301
Set 5 99.322

Source: Author’s production.

The best PSO-result for 30 inputs is X;,,=[1.66;9.29;27.04] with 85.7% of accu-
racy.

Table 5.24 shows several ANNs simulations with different parameters. Table
5.25 shows the results for the 1% set, i.e., the 1%!-fold, for all simulations presented
in Tab. 5.24 after 150 times run. Table 5.26 shows the three best accuracy results
achieved using the other sets (2°¢, 37, 4", and 5.



Table 5.24 — ANNs simulations with different parameters- Case |l.

ANN Topology Activation Cost Step | 1+ | Regularization | Noise | Shuffle
function function size technique samples
ANN; | 30-[9,27]-2 tanh quadratic BK | 0.3 L, (0.001) no no
ANN, | 30-[9,27]-2 logistic cross-entropy | BK | 0.3 no no no
ANN; | 30-[15,7]-2 tanh quaderatic BK | 0.3 L, (0.001) no no
ANN, | 30-[15,7]-2 tanh quadratic 0.05 | 0.3 L, (0.001) no no
AN N5 | 30-[15,7]-2 tanh quaderatic 0.05 | 0.3 Ly (0.001) 5% no
AN Ng | 30-[15,7]-2 logistic 2-norm BK |0.3 no no no
ANN; | 30-[15,7]-2 | Leaky-RelLU 2-norm BK | 0.3 no no no
AN Ng | 30-[15,7]-2 | tanh + softmax quadratic BK | 0.3 L, (0.001) no no
AN Ny | 30-[15,7]-2 | tanh + softmax | cross-entropy | BK | 0.3 Ly (0.001) no no

Source: Author’s production.

BK=backtracking line searc

h; yY=momentum term.
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Table 5.25 — ANNs simulations with different parameters - accuracy results (Set 1) - 150 times run - Case Il.

Training set Validation set Testing set
ANN Mean - % (mean deviation) | Maximum || Mean - % (mean deviation) | Maximum || Mean - % (mean deviation) | Maximum
ANN; || 98.46 (0.023) 100.00 51.33 (0.052) 71.43 68.58 (0.050) 87.50
ANN, || 92.67 (0.060) 100.00 52.05 (0.044) 64.28 65.17 (0.037) 79.17
ANN; || 99.10 (0.016) 100.00 53.00 (0.049) 71.43 68.75 (0.041) 83.33
ANN, || 99.99 (0.002) 100.00 50.29 (0.040) 64.28 72.00 (0.030) 83.33
ANN; || 100.00 (0.000) 100.00 50.95 (0.035) 64.28 71.75 (0.031) 83.33
ANN; || 88.34 (0.083) 100.00 50.06 (0.043) 64.28 58.61 (0.049) 75.00
ANN; || 83.72 (0.167) 100.00 44.09 (0.107) 71.43 43.40 (0.100) 65.22
ANNg || 96.15 (0.127) 100.00 57.74 (0.097) 78.57 70.83 (0.098) 91.67
ANN, || 98.72 (0.122) 100.00 50.06 (0.087) 71.43 70.83 (0.095) 87.50

Source: Author’s production.
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Table 5.26 — ANNs simulations with different parameters - accuracy results (Sets 2, 3, 4 and 5) - 150 times run - Case |l.

ANN, AN Ny AN Ng
Set | Dataset Mean - % (mean |\, imum || Mean - % (mean |y, imum || Mean - % (mean |y, imum
deviation) deviation) deviation)
Training 99.98 (0.000) 100.00 100.00 (0.000) 100.00 96.62 (0.115) 100.00
2 Validation || 59.62 (0.088) 85.57 57.48 (0.075) 92.86 50.00 (0.096) 71.43
Testing 70.35 (0.031) 82.61 69.56 (0.031) 82.61 69.56 (0.078) 78.26
Training 100.00 (0.000) 100.00 100.00 (0.000) 100.00 90.51 (0.135) 100.00
3 Validation || 70.00 (0.065) 92.86 72.09 (0.062) 92.86 64.29 (0.168) 92.29
Testing 69.30 (0.036) 82.61 69.83 (0.038) 78.26 69.56 (0.134) 82.61
Training 100.00 (0.000) 100.00 99.99 (0.000) 100.00 96.20 (0.146) 100.00
4 Validation || 60.19 (0.060) 78.57 57.24 (0.060) 78.57 64.29 (0.120) 78.57
Testing 77.22 (0.041) 91.30 76.32 (0.049) 91.30 78.26 (0.115) 91.30
Training 99.93 (0.001) 100.00 99.92 (0.002) 100.00 94.94 (0.163) 100.00
5 Validation || 65.76 (0.060) 85.71 64.95 (0.053) 78.57 64.30 (0.114) 78.57
Testing 79.87 (0.040) 85.71 80.46 (0.040) 91.30 78.26 (0.187) 95.65
Training 100.00 (0.000) 100.00 99.99 (0.000) 100.00 96.15 (0.017) 100.0
Total | Validation || 60.19 (0.054) 92.86 57.48 (0.064) 92.86 64.29 (0.051) 92.86
Testing 72.00 (0.038) 91.30 71.75 (0.038) 91.30 70.83 (0.040) 95.65

Source: Author’s production.

6c}



130

Despite the good results in the maximum accuracy between the validation and
testing sets, these values do not represent the same internal iteration of the network,
so the best result obtained is shown in Tab. 5.27 with 95.65% of the patterns correctly
classified. The confusion matrix is shown in Tab. 5.28 as well as the confusion matrix
parameters in Tab. 5.29. It can be noted that the classifier missclassifies only one
sample from healthy class as a damaged class, that means, a false positive indication.
The recall is 100% since no sample is indicated as false negative and the MCC is very
good reaching 0.92. The training error curve and the accuracy convergence curves
for the three dataset are shown in Fig. 5.18, where it can be observed that the first
iterations the ANN are quite unstable and the accuracy of the testing set is oscillates
well until it stabilizes after 360 iterations.

Table 5.27 — ANN best accuracy results (AN Ng - Set 5) - Case |l.

Training Training Validation Testing
time accuracy (%) | accuracy (%) | accuracy (%)
557" 92.40 78.57 95.65

Source: Author’s production.

Table 5.28 — Confusion matrix for AN Ng - Set 5: best result - Case Il.

Actual Class

Damaged | Healthy | Total
. Damaged 10 1 11
Predict Class Healthy 0 9 12
Total 10 13 23

Source: Author’s production.

Table 5.29 — Confusion matrix parameters for AN Ny - Set 5: best result - Case |II.

Parameters Values
Recall 100.00%
Specificity 92.31%
Accuracy 95.65%
Matthews correlation coefficient (MCC) 0.92
Efficiency 96.15%

Source: Author’s production.
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Figure 5.18 — Training error (dot line) and accuracy (%) convergence curves for AN Ng
- Set 5: best result - Case Il.
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Source: Author’s production.

5.2.5 Artificial neural networks and pattern recognition: Case Il

The third case studied is when the dataset is composed of the two-state con-
ditions: healthy and damaged level 1, with 2 output neurons (healthy and damaged).
The PCA is used and the total variance for each 5-folds are shown in Tab. 5.30.

Table 5.30 — Total variance for each 5-folds 10 and 20 PCs - Case llI.

Set Number | Total variance (%) | Total variance (%)
10 PCs 20 PCs

Set 1 96.552 99.223

Set 2 95.919 99.205

Set 3 96.031 99.283

Set 4 96.587 99.396

Set 5 96.073 99.291

Source: Author’s production.

The best PSO-result for 20 inputs is X;,,=[1.08;15.49;9.76] with 100.00% of ac-
curacy and X;,,=[1.53;2.86;4.31] for 10 inputs, with 100.00% of accuracy. Table 5.31
shows two ANNs simulations varying only the topology. Table 5.32 shows the results
for the all 5-sets (after 150 times run). Even if the 10-input net shows an average
accuracy of 68.10% in the training set, this is not an indicative of underfitting.
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Table 5.31 — ANNSs simulations with different parameters - Case lII.

ANN | Topology | Activation Cost Step | 1+ | Regularization | Noise | Shuffle
function | function | size technique samples

ANN; | 20-[15]-2 tanh quadratic | BK | 0.3 L, (0.001) no no

ANN, | 10-[3,4]-2 tanh quadratic | BK | 0.3 L, (0.001) no no

Source: Author’s production.

BK=backtracking line search; y=momentum term.



Table 5.32 — ANNs simulations with different parameters - accuracy results (Sets 1, 2, 3, 4 and 5) - 150 times run - Case Il

ANN, AN Ny
Set | Dataset Mean - % (mean deviation) | Maximum || Mean - % (mean deviation) | Maximum
Training 88.54 (0.084) 100.00 68.18 (0.164) 100.00
1 Validation || 62.50 (0.112) 87.50 50.00 (0.131) 100.00
Testing 57.14 (0.073) 85.71 50.00 (0.148) 85.71
Training 88.89 (0.092) 100.00 62.22 (0.159) 97.78
2 Validation || 50.00 (0.121) 75.00 50.00 (0.148) 87.50
Testing 76.92 (0.052) 92.31 61.54 (0.155) 92.31
Training 86.67 (0.081) 100.00 75.55 (0.130) 97.78
3 Validation || 62.50 (0.070) 75.00 62.50 (0.118) 75.00
Testing 69.23 (0.034) 84.61 69.23 (0.064) 84.61
Training 88.89 (0.076) 100.00 62.22 (0.134) 100.00
4 Validation || 62.50 (0.066) 75.00 62.50 (0.128) 87.50
Testing 61.54 (1.316) 100.00 53.85 (0.153) 84.61
Training 88.89 (0.073) 100.00 75.56 (0.107) 100.00
5 Validation || 75.00 (0.073) 100.00 75.00 (0.118) 100.00
Testing 53.85 (0.006) 76.92 46.15 (0.101) 76.92
Training 88.89 (0.006) 100.00 68.18 (0.05) 100.00
Total | Validation || 62.50 (0.021) 100.00 62.50 (0.080) 100.00
Testing 61.54 (0.403) 100.00 53.85 (0.074) 92.31

Source: Author’s production.

ect
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Table 5.33 shows the best result, as observed the best testing accuracy is 100%
for the ANN with 20 inputs in set 4.

Table 5.33 — ANN best accuracy results (AN N; - Set 4) - Case |ll.

Training Training Validation Testing
time accuracy (%) | accuracy (%) | accuracy (%)
127" 91.11 62.50 100.00

Source: Author’s production.

The confusion matrix (Tab. 5.34) and its parameters (Tab. 5.35) show good
results for the classifier, with 100.00% of recall, specificity, accuracy, and efficiency,
i.e., there is no false positive and false negative indications. Figure 5.19 shows the
training error and the three datasets accuracy curves. During almost all iterations the
validation set accuracy to keep constant with 62.50%, it can be observed also that the
training set accuracy is less than the testing set accuracy. Also, the testing set accuracy
drops after 180 iterations. So, it is recommended to use the early stopping technique.

Table 5.34 — Confusion matrix for AN N, - Set 4: best result - Case llI.

Actual Class

Damaged | Healthy | Total

. Damaged 3 0 3
Predict Class Healthy 0 10 10
Total 3 10 13

Source: Author’s production.

Table 5.35 — Confusion matrix parameters for AN N; - Set 4: best result - Case lll.

Parameters Values
Recall 100.00%
Specificity 100.00%
Accuracy 100.00%
Matthews correlation coefficient (MCC) 1.00
Efficiency 100.00%

Source: Author’s production.
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Figure 5.19 — Training error (dot line) and accuracy (%) convergence curves for AN N;
- Set 4: best result - Case llI.
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Source: Author’s production.

5.2.6 Artificial neural networks and pattern recognition: Case IV

The fourth case studied is when the dataset is composed of two state-conditions:
healthy and damaged level 3, with 2 output neurons (healthy and damaged). The PCA
is performed and the total variance for each 5-folds are shown in Tab. 5.36 for the first
25 PCs.

The best PSO-result for 25 inputs is X,,=[1.88;14.41;7.50] with 100.0% of ac-
curacy.

Table 5.37 shows three ANNs simulations with different parameters. Table 5.38
shows the results for the 15¢, 274, 374 4 and 5" sets after 150 times run. The best
result, shown in Tab. 5.46, is for AN N3 - Set 3 with 100.00% of the patterns classified
correctly.

Table 5.36 — Total variance for each 5-folds for 25 PCs - Case IV.

Set Number | Total variance (%)
Set 1 99.208
Set 2 99.249
Set 3 99.198
Set 4 99.220
Set 5 99.323

Source: Author’s production.
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Table 5.37 — ANNs simulations with different parameters - Case IV.

ANN | Topology Activation Cost Step | + | Regularization | Noise | Shuffle
function function size technique samples
ANN; | 25-[14,7]-2 tanh quadratic BK | 0.3 L, (0.001) no no
ANN, | 25-[14,7]-2 tanh quadratic 0.05 | 0.3 L, (0.001) no no
ANNj3 | 25-[14,7]-2 | tanh + softmax 2-norm BK | 0.3 L, (0.001) no no
ANN, | 25-[14,7]-2 | tanh + softmax | cross-entropy | BK | 0.3 L, (0.001) no no

Source: Author’s production.

BK=backtracking line searc

h; yY=momentum term.



Table 5.38 — ANNSs simulations with different parameters - accuracy results (Sets 1, 2, 3, 4 and 5) - 150 times run - Case IV.

ANN, AN Ny AN N3 AN Ny
Mean - % Mean - % Mean - % Mean - %
Set | Dataset (mean devia- | Maximum || (mean devia- | Maximum || (mean devia- | Maximum || (mean devia- | Maximum
tion) tion) tion) tion)
Training 100.00 (0.012) | 100.00 100.00 (0.000) | 100.00 100.00 (0.169) | 100.00 100.00 (0.165) | 100.00
1 Validation || 90.00 (0.056) | 100.00 100.00 (0.051) | 100.00 100.00 (0.163) | 100.00 90.00 (0.1648) | 100.00
Testing 82.35 (0.042) | 88.23 82.35 (0.031) | 88.23 82.35(0.141) | 88.23 82.35 (0.138) | 88.23
Training 100.00 (0.016) | 100.00 100.00 (0.000) | 100.00 98.25 (0.100) | 100.00 98.25(0.112) | 100.00
2 Validation || 70.00 (0.067) | 90.00 80.00 (0.062) | 90.00 80.00 (0.107) | 90.00 70.00 (0.120) | 90.00
Testing 82.35 (0.036) | 94.12 88.23 (0.032) | 94.12 82.35 (0.009) | 94.12 82.35 (0.106) | 100.00
Training 100.00 (0.017) | 100.00 100.00 (0.000) | 100.00 100.00 (0.206) | 100.00 100.00 (0.132) | 100.00
3 Validation || 90.00 (0.062) | 90.00 90.00 (0.031) | 90.00 90.00 (0.180) | 90.00 90.00 (0.124) | 90.00
Testing 88.23 (0.031) | 94.12 88.23 (0.031) | 94.12 88.23 (0.181) | 100.00 88.23 (0.120) | 100.00
Training 100.00 (0.011) | 100.00 100.00 (0.000) | 100.00 100.00 (0.180) | 100.00 100.00 (0.114) | 100.00
4 Validation || 70.00 (0.069) | 80.00 70.00 (0.008) | 80.00 70.00 (0.134) | 80.00 65.00 (0.092) | 80.00
Testing 76.47 (0.031) | 82.35 76.47 (0.029) | 82.35 82.35(0.141) | 88.23 76.47 (0.094) | 82.35
Training 100.00 (0.013) | 100.00 100.00 (0.000) | 100.00 100.00 (0.222) | 100.00 100.00 (0.138) | 100.00
5 Validation || 90.00 (0.031) | 100.00 90.00 (0.035) | 100.00 90.00 (0.207) | 100.00 90.00 (0.140) | 100.00
Testing 81.25 (0.050) | 93.75 81.25 (0.042) | 93.75 87.50 (0.211) | 93.75 87.50 (0.126) | 93.75
Training 100.00 (0.000) | 100.00 100.00 (0.000) | 100.00 100.00 (0.005) | 100.00 100.00 (0.006) | 100.00
Total | Validation || 90.00 (0.096) | 100.00 90.00 (0.088) | 100.00 90.00 (0.088) | 100.00 90.00 (0.108) | 100.00
Testing 82.35 (0.026) | 94.12 82.35(0.039) | 94.12 82.35 (0.026) | 100.00 82.35 (0.036) | 100.00

Source: Author’s production.

LE}
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Table 5.39 — ANN best accuracy results (AN N5 - Set 3) - Case V.

Training Training Validation Testing
time accuracy (%) | accuracy (%) | accuracy (%)
1’6562" 100.00 90.00 100.00

Source: Author’s production.

The confusion matrix is shown in Tab. 5.40 as well as the confusion matrix
parameters in Tab. 5.41, indicating no misclassification. The MCC indicates a very
good classifier prediction with 1.00.

Table 5.40 — Confusion matrix for AN N5 - Set 3: best result - Case |V.

Actual Class

Damaged | Healthy | Total
. Damaged 6 0 6
Predict Class Healthy 0 11 11
Total 6 11 17

Source: Author’s production.

Table 5.41 — Confusion matrix parameters for AN N; - Set 3: best result - Case IV.

Parameters Values
Recall 100.00%
Specificity 100.00%
Accuracy 100.00%
Matthews correlation coefficient (MCC) 1.00
Efficiency 100.00%

Source: Author’s production.

Figure 5.20 shows the training error and the accuracy curves (for the three
datasets) with a little instability until 110 iterations, and a stable learning after that,
at first with no evidence of under and overfitting.

In a general overview, the methodology using PCA and ANNs proves to be a
very effective tool for delamination damage detection in the different proportions of the
damages studied.



139

Figure 5.20 — Training error (dot line) and accuracy (%) convergence curves for AN N;
- Set 3: best result - Case IV.
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Source: Author’s production.

The best results are obtained when using only two classes as the input of the
network, as in cases lll and IV. In case | and Il, there are four and three inputs classes,
respectively. Although the output is only two classes (healthy or damaged), the pres-
ence of other damages (classes) in the input variables, can cause a larger variance in
the samples for the damaged output class. Since the damage class includes damaged
level 1, 2 and 3. Consequently, the network presents more difficulties to understand
that the different curves for 5 mm, 10 mm and 19 mm are all for the same sate condition
class (damaged), and it gets worst when the number of the samples are very small.

Despite the results found, the average accuracy in both validation and testing
sets is low. This may be due to several factors, such as, very large variance between
samples of the same class causing the network to be confused with other classes;
samples contained in the sets that do not represent the proper class due to manufac-
turing or experimental problems; the poor distribution of the samples in the training,
validation and testing sets, causing some samples in the testing set not to be con-
tained within the training set domain. As the region of study is very non-convex, the
distribution of the samples between the three sets is of fundamental importance, since
samples close to the decision boundaries carry more information about the problem.
And still addressing non-convexity, depending on the initial choice of the weights and
biases the algorithm determines which minimum the algorithm will converge to. Also,
the presence of saddlepoints, or regions where the error function is very flat, can cause
some iterative algorithms to become stagnated in local minima for many iterations.

It is verified that the use of a fixed learning rate or the use of line search presents
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different results for each case and simulation; in one case the use of a fixed learning
rate presents better performance, and in another case, the use of line search presents
better convergence. The fact comes mainly from the point of initialization of the design
variables (weights and biases) and the direction of the search for a minimum. If the
algorithm is very close to a minimum the use of a line search method can be more
advantageous since the size of the step is variable (and becoming small), if a fixed
step is used the algorithm can be going through "above the minimum" and never reach
it, thus oscillating the learning process. On the other hand, in a region with very close
locals minima, a fixed step can lead to reach a point of better minimum than with the
use of the line search, since with variable steps becoming smaller and smaller the line
search technique is in the attempt to arrive at to another local minimum. However, care
should be taken with the choice of step size.

5.2.7 Artificial neural networks and pattern recognition: Case V

The fifth case studied is when the samples introduced in the ANN are all from
the four state conditions classes with 4 neurons in the output layer, representing the
four states classes. Here the intention besides to identify the existence of the damage
is also to evaluate the extension of the damage. So as in the previous case, the PCA
is done and the total variance for each 5-folds are shown in Tab. 5.42 for the first 30
PCs.

Table 5.42 — Total variance for each 5-folds 30 PCs - Case V.

Set Number | Total variance (%)
Set 1 99.170
Set 2 99.238
Set 3 99.287
Set 4 99.219
Set5 99.245

Source: Author’s production.

The different ANNs simulations are shown in Tab. 5.43 and after 150 times run
the results of them are shown in Tab. 5.44 for the 1% set and in Tab. 5.45 for the
other sets. As observed, there is no indication of underfitting as the accuracy of the
training set is reaching 100%. The problem of low accuracy in the validation set and
the testing set can be an overfitting problem, a wrong topology used as well as bad
samples distributions among the datasets.



Table 5.43 — ANNs simulations with different parameters- Case V.

ANN Topology Activation Cost Step | ~+ | Regularization | Noise | Shuffle
function function size technique samples
ANN; | 30-[20,10]-4 tanh quadratic 0.05 | 0.3 no no 90 %
ANN, | 30-[20,10]-4 tanh quadratic 0.05 | 0.3 no 5% 45 %
ANN; | 30-[20,10]-4 tanh 2-norm 0.05 | 0.3 no no 45 %
ANN,; | 30-[20,10]-4 logistic cross-entropy | 0.05 | 0.3 no no 45 %
ANNj; | 30-[20,10]-4 tanh quadratic BK |0.3 no 5% 45 %
ANNg | 30-[20,10]-4 tanh quadratic 0.001 | 0.3 no no 45 %
ANN; | 30-[20,10]-4 | leaky-RelLU + softmax quadratic 0.05 | 0.3 no no 90 %
ANNg | 30-[20,10]-4 tanh + softmax quadratic BK |0.3 L, (0.001) no 90 %
ANN,y | 30-[20,10]-4 tanh + softmax cross-entropy | BK | 0.3 L, (0.001) no 90 %
AN Ny, | 30-[20,10]-4 tanh quadratic 0.05 | 0.3 no no no

Source: Author’s production.

BK=backtracking line search; y=momentum term.
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Table 5.44 — ANNs simulations with different parameters - accuracy results (Set 1) - 150 times run - Case V.

Training set Validation set Testing set
ANN Mean - % (mean deviation) | Maximum || Mean - % (mean deviation) | Maximum || Mean - % (mean deviation) | Maximum
ANN; || 100.00 (0.000) 100.00 50.00 (0.063) 68.75 44.44 (0.042) 55.56
ANN, || 100.00 (0.000) 100.00 50.00 (0.066) 68.75 40.74 (0.035) 48.15
ANN; || 100.00 (0.000) 100.00 43.75 (0.060) 62.50 37.04 (0.036) 44 .44
ANN, || 100.00 (0.000) 100.00 50.00 (0.064) 68.75 37.04 (0.028) 44 .44
ANNs5 || 97.50 (0.091) 100.00 37.50 (0.065) 62.50 31.48 (0.054) 44 .44
ANNg || 55.00 (0.089) 85.00 18.75 (0.048) 37.50 22.22 (0.043) 29.63
ANN; || 94.38 (0.013) 96.63 50.00 (0.067) 68.75 44.44 (0.050) 62.96
ANNg || 70.00 (0.160) 98.75 37.50 (0.088) 62.50 29.63 (0.055) 51.85
ANN, | 86.25 (0.191) 100.00 43.75 (0.108) 75.00 37.04 (0.092) 59.26
AN Ny, || 100.00 (0.000) 100.00 50.00 (0.064) 68.75 48.15 (0.033) 55.56

Source: Author’s production.
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Table 5.45 — ANNs simulations with different parameters - accuracy results (Sets 2, 3, 4 and 5) - 150 times run - Case V.

AN N, AN Ny
Set | Dataset Mean - % (mean deviation) | Maximum || Mean - % (mean deviation) | Maximum
Training 100.00 (0.000) 100.00 100.00 (0.013) 100.00
2 Validation || 53.33 (0.054) 66.67 46.67 (0.066) 66.67
Testing 44.44 (0.044) 59.26 55.56 (0.054) 70.37
Training 100.00 (0.000) 100.00 100.00 (0.000) 100.00
3 Validation || 50.00 (0.050) 68.75 55.25 (0.067) 68.75
Testing 46.15 (0.051) 73.08 53.85 (0.057) 69.23
Training 100.00 (0.002) 100.00 98.75 (0.014) 100.00
4 Validation || 56.25 (0.067) 75.00 62.50 (0.077) 81.25
Testing 50.00 (0.045) 61.54 53.85 (0.056) 69.23
Training 100.00 (0.000) 100.00 100.00 (0.000) 100.00
5 Validation || 40.62 (0.062) 56.25 50.00 (0.064) 68.75
Testing 38.46 (0.036) 50.00 42.31 (0.045) 57.69
Training 100.00 (0.000) 100.00 100.00 (0.017) 100.00
Total | Validation || 50.00 (0.038) 75.00 50.00 (0.050) 81.25
Testing 44.44 (0.027) 73.08 53.85 (0.053) 70.37

Source: Author’s production.

el
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The best result is shown in Tab. 5.46 with maximum testing accuracy of 73.08%
with 62.50% of patterns classified correctly in the validation set. And its multi-class con-
fusion matrix in Tab. 5.47. For healthy class, the classifier hits 34.61% from 46.15%,
for damaged level 1 (D-L,) class the classifier does not hit sample, however, in the
selected set there is only one sample of this class. For damaged level 2 (D-L,) the
classifier hits 19.23% from 19.23% and for damaged level 3 (D-L3) the classifier hits
19.23% from 30.77%.

Table 5.46 — ANN two best accuracy results (AN N; - Set 3) - Case V.

Training Training Validation Testing
time accuracy (%) | accuracy (%) | accuracy (%)
27°46" 100.00 62.50 73.08

Source: Author’s production.

Table 5.47 — Multi-class confusion matrix for AN N, - Set 3 - Case V.

Actual Class
H D-L, D-L, D-Ls
H 9 1 0 2
34.61% 3.85% 0.00% 7.70%
" D-L,; 1 0 0 0
@ 3.85% 0.00% 0.00% 0.00%
(3)
=]
]
k' D-L, 1 0 5 1
& 3.85% 0.00% 19.23% 3.85%
D-Ls 1 0 0 5
3.85% 0.00% 0.00% 19.23%

Source: Author’s production.

The accuracy results obtained for the presence and extension of the damage are
smaller when compared to the previous one. A possible cause is that in addition to the
number of samples, as in the previous cases, in the current problem, the network needs
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to classify four classes, which make the problem more complex, since the decision
boundary changes. According to Duda et al. (1973), the degree of difficulty of the
classification problem depends on the variability in the feature values for objects in the
equal class respective to the distinctness between features values of objects in different
classes. Therefore, in all simulations cases (experimental and numerical), the results
can be a consequence to the fact that the damage imposed to the beam in the four
scenarios are very similar, making it difficult to classify these data correctly.

An important fact is a limitation of the gradient descent technique with the ne-
cessity to choose a suitable value for the learning rate as well as for the momentum
term. A poor choice can contribute to the gradient descent taking many steps to reach
the minimum, making the process inefficient. Another parameter that is defined by trial
and error is the penalty parameter when the regularization techniques are used. Small
or large values can lead to hinder the ability of the model to learn. Also, the topology
has a huge influence in the learning and generalization process, since few neurons
can lead to underfitting problems and many neurons can contribute to overfitting is-
sues. Also, the number of hidden layers and neurons are connected to the number of
samples needed to have good generalization results. An interesting point to note is
that the use of the leaky ReLU activation function leads to a better convergence for the
V case than the previous cases | to IV.

About the use of techniques to attenuate the overfitting, the use of noise in some
cases improved the performance of the validation and testing sets and in others, it
worsened. The use of L, regularization proved to be more effective when compared to
L, regularization for the testing set. Shuffle the training set always increase its training
accuracy when compared to simulations without shuffling.

Other simulations of neural networks were performed using only 20 inputs to
decrease the number of design variables. After all, the accuracy result is lower than
those obtained with 30 inputs. It was also studied the possibility of using the FRF
curves in real part values, however, for the same sets of training, validation and testing
the results are worse than the same ANN considering accelerance values. In addition
to achieving the same variance, it is necessary to use five more inputs causing the
network to increase the number of weights and bias, hampering the convergence of
the problem.
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5.3 Damage Detection in Glass-Fiber/Epoxy Compos-
ite Beams: Numerical

5.3.1 Dynamic and modal analysis

The first four modes corresponding to a healthy beam are shown in Fig. 5.21
and Fig. 5.22 and the frequencies are Mode 1: 224.76 Hz; Mode 2: 650.78 Hz; Mode
3: 889.73 Hz and Mode 4: 1226.20 Hz. Modes 1, 2 and 4 are flexural modes and mode
3 is a torsional mode.

Figure 5.21 — Mode shapes 1 and 2.

Source: Author’s production.

Figure 5.22 — Mode shapes 3 and 4.

Source: Author’s production.

The FRFs for position H;; can be seen in Fig. 5.23 and for position H,; - FRFs
in Fig. 5.24, both using accelerance values.

The range between the minimum frequency and maximum frequency for the first
four mode shapes from the four states conditions (healthy, damaged level 1, damaged
level 2 and damaged level 3) are shown in Fig. 5.25. It may be noted that the interval
of each mode for a particular state is large. And when compared to the mode and the
states it is noted that many samples are within the same range. So the four scenarios
are very similar when comparing the resonant frequencies.
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Figure 5.23 — Hy; - Numerical FRFs curves (accelerance values) - 4 states conditions.
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Figure 5.24 — H,, - Numerical FRFs curves (accelerance values) - 4 states conditions.
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Principal component analysis

The PCA is performed and the total variance for each 5-folds are shown in Tab.

5.48 for the first 10 and 20 PCs using only healthy and damaged level 1. For all the
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Figure 5.25 — Frequency range (Hz) for the first four modes shapes from the four dam-
age states (Hy,).
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states conditions the total variance for each 5-folds are shown in Tab. 5.49 for the first

30 PCs.

Table 5.48 — Total variance for each 5-folds 10 and 20 PCs - Numerical (healthy and
damaged level 1 sates conditions).

Set Number | Total variance (%) | Total variance (%)
10 PCs 20 PCs

Set 1 99.817 99.993

Set 2 99.808 99.992

Set 3 99.808 99.993

Set 4 99.816 99.993

Set 5 99.811 99.992

Source: Author’s production.
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Table 5.49 — Total variance for each 5-folds 10 and 20 PCs - Numerical (4 sates condi-
tions).

Set Number | Total variance (%) 30 PCs
Set 1 99.9975
Set 2 99.9974
Set 3 99.9973
Set 4 99.9977
Set 5 99.9974

Source: Author’s production.

5.3.3 Artificial neural networks and pattern recognition: Case I-
Numerical

The numerical case | studied is when the dataset is composed of the two-state
conditions: healthy and damaged level 1, with 2 output neurons (healthy and dam-
aged). The same studied in Case Il using experimental curves.

The 10-inputs variables correlation graph can be seen in Fig. 5.26. To a better
visualization of the variables and the surface boundaries the scatter plot can be seen
in Appendix A in Fig. A.11. Note that there is no correlation between the variables,
as a PCA result. The same is observed when using the data from the experimental
procedure (case lll) in Fig. A.12 (Appendix A). Also, can be observed in both figures
that the decision boundary is not linearly separable, when looking to a 2D plot. The
ANN simulations done are the same as performed for the Case lll described in Tab.
5.31.

Table 5.50 shows the results for the all 5-sets (after 150 times runs). It can
be noted that both simulations present very good results, with almost all accuracies
averaging more than 90.00%. The best set is set 4. It can be observed that there is
no link between the maximum variance acquired in PCA and the ANN results since
the largest variance is found in set 1 (for 10 and 20 PCs) and this one obtained the
maximum accuracy of 94.70%.

The worst mean accuracy obtained with the numerical study for the testing set
is 89.19% when compared with the experimental study for the same case the worst
result is 46.15% for the same ANN. Comparing the best mean accuracy result for the
testing set the best value for the numerical study is 100.00% and for the experimental
study, the best mean accuracy for the testing set is 76.92%. As seen the two studied
have the maximum testing accuracy of 100.00%, however, the numerical case has
more iterations represented that value when compared with the experimental case.
This response may be due to the increase in the number of samples with a greater
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Figure 5.26 — 10 inputs correlation variables.
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representatively for each condition. In a numerical study, it can be noted that there
are not very large discrepancies between the FRFs of the same state condition case,
eliminating the problem of having atypical samples, which do not represent the state
condition group. One point to note is that the methodology works very well with samples
that have small differences between them. Since healthy FRFs have values very close
to FRFs damaged by 5 mm.



Table 5.50 — ANNs simulations with different parameters - accuracy results (Sets 1, 2, 3, 4 and 5) - 150 times run - Numerical.

AN N, ANN,
Set | Dataset Mean - % (mean deviation) | Maximum || Mean - % (mean deviation) | Maximum
Training 100.00 (0.003) 100.00 100.00 (0.014) 100.00
1 Validation || 91.30 (0.027) 100.00 91.30 (0.034) 100.00
Testing 94.74 (0.015) 100.00 94.74 (0.019) 100.00
Training 100.00 (0.006) 100.00 99.21 (0.030) 100.00
2 Validation || 100.00 (0.020) 100.00 95.65 (0.052) 100.00
Testing 100.00 (0.014) 100.00 94.74 (0.041) 100.00
Training 100.00 (0.006) 100.00 100.00 (0.023) 100.00
3 Validation || 100.00 (0.011) 100.00 95.65 (0.027) 100.00
Testing 92.10 (0.016) 97.37 92.10 (0.027) 97.37
Training 100.00 (0.000) 100.00 100.00 (0.024) 100.00
4 Validation || 100.00 (0.021) 100.00 100.00 (0.034) 100.00
Testing 100.00 (0.000) 100.00 100.00 (0.025) 100.00
Training 100.00 (0.023) 100.00 97.67 (0.049) 100.00
5 Validation || 100.00 (0.027) 100.00 90.91 (0.063) 100.00
Testing 97.30 (0.000) 97.30 89.19 (0.073) 97.30
Training 100.00 (0.000) 100.00 100.00 (0.014) 100.00
Total | Validation || 7100.00 (0.028) 100.00 95.65 (0.029) 100.00
Testing 97.30 (0.027) 100.00 94.74 (0.028) 100.00

Source: Author’s production.

IS 1
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5.3.4 Artificial neural networks and pattern recognition: Case II-
Numerical

The numerical case Il studied is when the dataset is composed of the four-state
conditions: healthy, damaged level 1, damaged level 2, and damaged level 3 with 4
output neurons (corresponding for each state condition). The same studied in Case V
using experimental curves.

In order to compare numerical case Il with experimental case V the same ANN
architecture used in case V is applied here. The results for the 5-folds after 150 times
run are shown in Tab. 5.51.

Table 5.51 — ANN simulation - the best accuracy results (Sets 1, 2, 3, 4 and 5) - 150
times run - Case II-N.

ANN,
Set | Dataset Mean - % (mean deviation) | Maximum
Training 100.00 (0.000) 100.00
1 Validation || 94.87 (0.0016) 97.44
Testing 98.48 (0.000) 98.48
Training 100.00 (0.000) 100.00
2 Validation || 97.44 (0.011) 100.00
Testing 95.45 (0.007) 98.48
Training 100.00 (0.000) 100.00
3 Validation || 100.00 (0.002) 100.00
Testing 95.45 (0.011) 96.97
Training 100.00 (0.000) 100.00
4 Validation || 100.00 (0.005) 100.00
Testing 95.45 (0.011) 98.48
Training 100.00 (0.000) 100.00
5 Validation || 95.00 (0.022) 100.00
Testing 98.48 (0.000) 100.00
Training 100.00 (0.000) 100.00
Total | Validation || 97.44 (0.040) 100.00
Testing 95.45 (0.014) 100.00

Source: Author’s production.

The multi-class confusion matrix for the 150 times run each 5-folds is shown in

Tab. 5.52. The results are very good with 96.22% of healthy samples correctly clas-
sified, 92.22% of damaged level 1 samples correctly classified, 98.15% of damaged
level 2 samples correctly classified and all damaged level 3 samples correctly clas-
sified. The maximum misclassification error is 2.19% where samples from damaged
level 1 are misclassified as healthy samples.

Comparing experimental case V with the numerical case Il it can be noted that



Table 5.52 — Numerical Multi-class confusion matrix - Case V.

D-L,

D-L,

Predict Class

D-L;

Actual Class

H D-L, D-L, D-L;
13712 1085 14 0
27.70% 2.19% 0.03% 0.00%

329 12865 0 0
0.66% 25.99% 0.00% 0.00%
209 0 10600 0
0.42% 0.00% 21.41% 0.00%

0 0 186 10500

0.00% 0.00% 0.37% 21.21%

Source: Author’s production.

with numerical curves the methodology works very well.
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As explained before, the

reasons for the best results are achieved when using numerical curves are, first the
increase in the number of samples for all classes, and second in numerical curves
there are not uncertainties that come from the manufacturing process neither from the
dynamics-tests, so each pattern class has its typical features that can be easily classify

by the ANN.
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Chapter 6

Conclusions

6.1 Conclusions

In this work, a strategy for fault diagnosis in composite structures based on dy-
namic tests, principal component analysis (PCA) and artificial neural networks (ANNSs)
is investigated. With the main purpose of evaluating the potentialities and limitations
of the methodology in composite materials, different composites are studied, by vary-
ing the type of fibers, different damage types and sizes. Through which this study it
is possible to evolve the methodology for real-time monitoring of composite materials
structures.

First composites made of carbon-fiber/epoxy are evaluated in two orientations,
aiming to assess the behavior of the method, specially when the FRF curves are very
close between healthy and damaged state. Also, different types of FRFs curves (ac-
celerance values and real part values) are analyzed. As noted, there is no right answer
on which type of curve to use, since it will depend on the complexity of the problem and
the decision boundaries. Such that a preliminary analysis of the features and how to
extract them is fundamental when working with pattern recognition. Thus, the method-
ology proves to be very accurate. Subsequently, glass-fiber/epoxy plates are fabri-
cated using the modified-VARTM method with four different state conditions: healthy
(H), damaged level 1 (D-L,), with 5 mm delamination size, damaged level 2 (D-L,),
with 10 mm delamination size and damaged level 3 (D-L3), with 19 mm delamination
size. The vibration-based tests are performed for FRF acquisition. The data dimension
is reduced through the PCA, and the samples set introduced into different neural net-
works by varying several parameters. A multilayer neural network is developed in Julia
language using automatic differentiation to sensitivity analysis. This approach rewrites
the real numbers of the weight and biases in dual numbers and proceeds to derivative
calculations. To minimize the error function in the supervised learning the steepest
descent method is used. Also, a particle swarm optimization (PSO) algorithm is used
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to find the neural network topology in order to maximize a function based on the valida-
tion set accuracy. The best results are extracted and analyzsed. Techniques to avoid
overfitting are used as k-fold cross-validation, training with noise, early stopping and
regularization techniques. Five cases are studied, the first four address the existence
of the damage and the last one including the damage extension, the studying cases
are described as following

e Case l: H+ D-L; + D-Ly + D-L3: 2 classes output (healthy and damaged);
e Case Il: H+ D-L, + D-Ls: 2 classes output (healthy and damaged);

e Case lll: H + D-L;: 2 classes output (healthy and damaged);

e Case IV: H + D-Ls: 2 classes output (healthy and damaged);

e Case V:H + D-L; + D-Ly, + D-L3: 4 classes output.

The last step of the study uses a Finite Element Model (FEM) of a glass-fiber/epoxy
beam to analyze the performance of the methodology and to compare with the ex-
perimental study. The vibration-based test are simulated in ABAQUS 6.12 and the
numerical FRFs are used instead of the experimental.

The numerical study, the methodology shows very good performance and an
excellent tool for Structural Health Monitoring (SHM). In the experimental cases, the
results obtained using carbon-fiber plates indicated the methodology as a good tool
for fault diagnosis too. For the glass fiber beams, in general for damage existence
evaluation the methodology obtains good results, achieving classifications rates greater
than 88%. For damage extension, the methodology shows the worst performance with
maximum accuracy in the testing set of 73.08%. This can be explained by the fact that
the separation hyperplane, i.e., the boundary surface is more hardly adjusted when
there are more classes and a small number of samples. In other words, the complex
problems require large networks and large networks require more samples, reducing
the Bias and the variance. Taking this into account the use of the PCA technique has
become essential to transform the original data into a smaller set. However, it should
be noted that excessive reductions of the original dataset may lead to the removal of
important features.

The low accuracy in the validation and testing sets is due to the fact that the
performance of the learning process depends on the distributions of the training sam-
ples and on the nature of the function to be learned. Since there is no way a network
can learn the variations in the function that are not reflected in the training samples.
If there are some samples in the validation or in the testing set that are not reflecting
in the training set the network will not be able to classify the samples correctly. This
is why future samples should be from the same probability distribution. Besides the
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variability between the FRFs of the samples from the same class is very large as well
as the difference between healthy and D-L, FRFs be very similar. Another point that
must be taken into account is the chance of some sample happen to be very atypical.
Underfitting problems is not observed, at least for the majority of the simulation. The
big difference between the accuracy of the same set between the simulations studied
is due to the different initializations of the design variables (weights and bias) in certain
geometric planes more prone to reach the best local minimum. The manufacturing of
the plates was also not performed under the best possible manufacturing conditions
since the difference of the FRFs curves between the same delamination damages is
clear, which is not seen in the FEM simulation. This fact and also the larger number of
samples explain the high performance when using the curves from the FEM simulation.

The use of the PSO as a tool for the optimization problem — to find the best
topology — is very helpful, since its one of the many parameters to chose by trial and
error. Although, it does not give the exact result for the number of layers and neurons,
since it works with continuous variables, the results are approximate. In this way, a
refinement in the optimization problem should be done to get better results.

The use of neural networks is becoming more widespread and many studies on
how to improve network performance have been discussed and proposed. The best
way to start weights and bias, use of line search techniques or how to use an ideal step
size, use the term momentum, different activation functions to prevent the gradient from
vanishing or the training process to die, regularization techniques, introduction of noise
in the data, use of early stopping and other techniques not mentioned. However not
all of these techniques will present the best performances in all problems, since each
problem has its particularity and complexity, and each technique has its advantages
and disadvantages. With this, it is believed that the critical step for reach a very good
generalization in the network in pattern classification problems is the choice of the
distinguishing features that depend on the characteristics of the problem domain.

Generally, the methodology shows good conditions and results to be applicable
in composites fault diagnosis as a tool for structural health monitoring. Since the use of
composite materials is increasing all over the recent years and with a very promising fu-
ture. Including the use of machine learning and deep learning, resourced increasingly
exploited in the community.

6.2 Suggestions for Future Works

To improve the results obtained in this master thesis, some aspects are sug-
gested as future researches:

e Use data from time-domain response to evaluate the performance of the ANN in
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the classification problem;

Apply unsupervised learning because they do not require damaged samples and
thus reduce the problem in varying manufactured samples;

Apply another technique to feature extraction and compare with PCA;

Apply a deep learning based on health monitoring systems concepts, where the
feature extraction phase is done in more deep learning neural networks, with
multiple layers of non-linear transformations, and then there is not the necessity
to work with the features before being introduced in the deep learning neural
networks;

Study other proposals of neural networks in order to locate and evaluate the type
of damage in composite materials.
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Appendix B

Fault Diagnosis Methodology
Algorithms

# PROBLEM DEFINITION PSO
include("rotinas_RN.jI")
include("rotinas_otimizacao.jl")
include("otimizacao_RN.jl")
using Distributions

Rede = (LC,p)—> MAIN(LC,p,dados_treinoN,resultados_treinoN,dados_validacao,resultados_validacao,
dados_teste,resultados_teste,[],[],1E—8,0.3,1.0,1000,1,1,0.10,false,0.0)

function f(x,p)
# A primeira posio indica o numero de camadas
ncamadas = Int(round(x[1]))
nent = size(dados_treinoN,2)
nsaida = size(resultados_treinoN,2)
# A primeira posio o nmero de entradas
LC = Int64[]
push!(LC,nent)
# Adicionamos camadas de acordo com o seu nmero e seu valor
for i=2:1+ncamadas
push!(LC,Int(round(x[i])))
end
# A ultima posio o nmero de sadas
push!(LC,nsaida) #apenas 4 neuronio
# Agora podemos chamar a rede neural e retornar a informao que interessa
pesos, bias, objetivo, vali, melhor_vali, acTeste = Rede(LC,p)
# Como maximizao, ento invertermos o sinal
return —vali
end

#PSO
include("dif_automatica.jl")
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s2 using FD
33 include("definicao_problema.jl")

34

35 function PSO()

36 #define as restries laterais e o numero de variaveis

37 xl=[1,1,1] #x_low

38 xu= [2,34,34] #x_high

39 nvar= 3 #numero de variaveis

40 #define os parametros do PSO

4 Ci=1.2

42 C2= 1.2 #peso do grupo (global_best)

43 w= 0.5 #fator de inercia

44 NI=5 #numero de iteracoes

45 NP= 100 #numero de particulas

46 #matriz de particulas iniciais

47 X= zeros(nvar,NP) #cria a matriz com as particulas iniciais, linhas: nvar, colunas:NP
48 for i=1:nvar

49 for j=1:NP

50 X[i,jl= xl[i]+rand()*(xu[i]—xI[i])

51 end

52 end

53 #para cada particula, calcula a funo OBJETIVO (numero de acertividade)
54 val=zeros(NP,1)

55 for p=1:NP

56 val[p]=f(X[:,p],p)

57 end#for

58 XPB = copy(X) #X_personal_best

59 valPB = copy(val) #valor da funcao objetivo para aquele xpb
60 #calculo do global _best

61 valor_global_best=255E255

62 XGB=zeros(size(nvar,1))

63 for p=1:NP

64 if val[p] < valor_global_best

65 valor_global_best=val[p]

66 XGB=X[:,p]

67 end #if

68 end #for

69 #calculo da velocidade das particulas

70 V=zeros(nvar,NP)

71 for iteracao=1:NI

72 #calculo da nova velocidade de cada particula
73 for p=1:NP

74 V[:;,pl=wxrand()*V[:,p] + C1xrand()*(XPB[:,p]—X[:,p]) + C2«rand()+x(XGB—X]:,p])
75 end #for

76 #atualiza a posicao da particula

77 for p=1:NP

78 X[:,p]=X[:,p]+V[:,p]
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79 end #for

80 #verifica e aplica as restricoes x_low e x_high
81 for i=1:nvar

82 for j=1:NP

83 X[i,jl=max(xI[i],min(X[i,j],xu[i]))

84 end #for |

85 end #for i

86 #avalia se a particula melhorou

87 for p=1:NP

88 #novo valor para a funcao objetivo
89 val[p]=f(X[:,p].p)

90 #verifica a melhora da particula

91 if val[p] < valPB|p]

92 valPBIp] = val[p]

93 XPBI:,p] = X[:,p]

94 end #if

95 #avalia se o global best melhorou
96 if val[p] < valor_global_best

o7 valor_global_best = val[p]

98 XGB=X[:,p]

99 end #if

100 end#loop p

101 end#loop_iteracao

102 end#function

1 #Otimizacao RN

2 include("rotinas_RN.jI")

3 include("inicializacao_pesos.jl")
4 include("rotinas_otimizacao.jl")

6 #carrega os dados

7 dados_treinoN=readdim("dados_4r_treino1_PCA35.1xt")

s resultados_treinoN=readdIm("resultados4_treino1_tanh.txt")
s #VALIDACAO

10 dados_validacao=readdim("dados_4r_vali1_PCA35.txt")

11 resultados_validacao=readdim("resultados4_validacaoi_tanh.txt")
12 #TESTE

13 dados_teste=readdim("dados_4r_teste1_PCAS35.1xt")

14 resultados_teste=readdIm("resultados4_teste1_tanh.txt")

15 Pesosx=|]

16 biasx=[]

17 # Topologia da rede

18 LC =[35,20,10,4]

20 function MAIN(LC,dados_treinoN,resultados_treinoN,dados_validacao,resultados_validacao, dados_teste,
21 resultados_teste, pesos=[],bias=[], tol=1E—8, momento=0.7, faixa=5.0, Niter = 300,
22 externo=1, tipo_objetivo=2, tolaccuracy::Float64=0.10,flag_ruido::Bool=true,
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k_ruido::Float64=0.05)

# Vetor com os valores. As primeiras posies so de entrada
valores = zeros(sum(LC))
# O vetor de bias tambm fcil de dimensionar, pois
numero_bias = sum(LC[2:end])
# Se os bias no foram informados, definimos um vetor aleatrio
if bias==[]

bias = [ —faixa + 2«faixaxrand() for i=1:numero_bias]
else

# Verifica se a dimenso do bias que foi informado consistente com a topologia da rede

if size(bias,1)!=numero_bias

error("A dimensao do bias no consistente com os dados do problema")

end
end
# O vetor de pesos depende das conectividades. Se considerarmos conectividade total teremos
numero_pesos =0
for i=2:length(LC)

numero_pesos = numero_pesos + LC[i]«LC[i—1]

end
# Se os pesos no foram informados, definimos um vetor aleatrio
topologia =[]
if pesos==[]
pesos, topologia, numero_pesos = Inicializa_Pesos(LC)
else

# Verifica se a dimenso do pesos que foi informado consistente com a topologia da rede
if size(pesos,1)!=numero_pesos
error("A dimensao do vetor de pesos no consistente com os dados do problema")
end
end

# Converte as entradas para que elas tenham media nula

dados_treinoN= Media_Nula(dados_treinoN)

dados_validacao = Media_Nula(dados_validacao)

dados_teste = Media_Nula(dados_teste)

ittt LOOP DE OTIMIZAQ #it ittt i
# Incrementos
const delta_pesos = 0.0
const delta_bias = 0.0

for iter=1:Niter

# SHUFFLE TODOS OS TREINOS A CADA ITERACAO
NPACOTE1, nc = size(dados_treinoN)

NPACOTE=80

# Gera uma lista aleatoria com a dimenso NPACOTE
lista=randperm(NPACOTE)[1:NPACOTE]

# Usa a lista para definir os dados de teste e 0s resultados de teste
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dados_treino=dados_treinoNJlista,:]
resultados_treino=resultados_treinoN]lista,:]
if flag_ruido
# Para cada valor de entrada, somamos kxN(0,1)
aleat = randn(NPACOTE,nc)
# Soma k_ruidoxaleat
dados_treino += k_ruidoxaleat
end

# Calcula a derivada do objetivo em relao aos pesos e bias
DW, DB = Derivadas_Pesos_Bias(pesos,bias,LC,dados_treino,resultados_treino,tipo_objetivo)
# Avalia a norma dos gradientes para verificar a condio necessria para mnimo
norma_DW = norm(DW)
norma_DB = norm(DB)
if (norma_DW-<tol) && (norma_DB<tol)
printin("\n Tolerncia foi obtida .. saindo do loop de otimizao ")
break
end
# Normaliza as derivadas
DW = DW / norma_DW
DB = DB/ norma_DB
# Define as direes de busca
dW = —DW
dB = -DB

# Line Search usando o Armijo Backtracing #MUDAR LINESEARCH
#alfa = Line_Search_Armijo(DW,DB,dW,dB,pesos,bias,LC,dados _treino,resultados_treino,
# tipo_objetivo)
alfa=0.05

# Incremento
contrib_pesos = momentoxdelta_pesos
contrib_bias = momentoxdelta_bias
# Incrementos totais momento simples
delta_pesos = contrib_pesos + alfaxdW
delta_bias = contrib_bias + alfaxdB
# Atualiza a posio
pesos = pesos + delta_pesos
bias = bias + delta_bias
# Calcula o novo objetivo, para verificao
objetivo = Avalia_Treinos(pesos,bias,LC,dados_treino,resultados_treino,tipo_objetivo)
objetivoVali= Avalia_Amostras(pesos,bias,LC,dados_validacao,resultados_validacao,tipo_objetivo)
j=0
for vv=1:size(dados_treino,1)
erro1, saidal = Treino_individual(pesos,bias,LC,dados_treino[vv,:],resultados_treino[vv,],
tipo_obijetivo)
if abs(erro1)< tolaccuracy
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j=i+
end
end #for
acT=j/size(dados_treino,1)
i=0
for v=1:size(dados_validacao,1)
erro, saida = Treino_individual(pesos,bias,LC,dados_validacao[v,:],resultados_validacao[v,],
tipo_obijetivo)
if abs(erro) < tolaccuracy
i=i+1
end
end #for
vali=i/size(dados_validacao,1)
k=0
for x=1:size(dados_teste,1)

errox, saidax = Treino_individual(pesos,bias,LC,dados_teste[x,:],resultados_teste[x,:],tipo_objetivo)

if abs(errox) < tolaccuracy
k=k+1
end
end #for
acTeste=k/size(dados_teste,1)
end # iter

# Avalia o valor final do custo da rede
objetivo = Avalia_Amostras(pesos,bias,LC,dados_treinoN, resultados_treinoN,tipo_objetivo)
objetivoVali = Avalia_Amostras(pesos,bias,LC,dados_validacao,resultados_validacao,tipo_objetivo)

# Agora vamos carregar um conjunto de dados de teste e realizar uma verificao sobre a rede otimizada
if length(dados_validacao)>0 && length(resultados_validacao)>0
# Para cada linha de verificao, e com 0s pesos e bias otimizados
# calculamos um padro de saida.
j=0
for vv=1:size(dados_treinoN,1)
erro1, saidal = Treino_individual(pesos,bias,LC,dados_treinoN[vv,:],resultados_treinoN[vv,],
tipo_objetivo)
if abs(erro1) < tolaccuracy
j=j+1
end
end #for
acT=j/size(dados_treinoN,1)
i=0
for v=1:size(dados_validacao,1)
erro, saida = Treino_individual(pesos,bias,LC,dados_validacao|v,:],resultados_validacaolv,],
tipo_objetivo)
if abs(erro) < tolaccuracy
i=i+1
end
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end #for
vali=i/size(dados_validacao,1)
k=0
for x=1:size(dados_teste,1)
errox, saidax = Treino_individual(pesos,bias,LC,dados_teste[x,:],resultados_teste[x,:],
tipo_obijetivo)
if abs(errox) < tolaccuracy
k=k+1
end
end #for
acTeste=k/size(dados_teste,1)
end # if
return pesos, bias, objetivo, vali, melhor_vali, acTeste, acT

#inicialicao_pesos
function Inicializa_Pesos(LC::Array{Int64})

# Numero de pesos
const numero_pesos::Int64 = 0
for i=2:length(LC)
numero_pesos = numero_pesos + LC[i]«LC[i—1]
end
# Vetor de pesos
pesos = zeros(numero_pesos)
# Para cada neurnio temos que determinar quais so as posies (pesos) de entrada, para ento verificar o seu

# nmero. Com isto, geramos uma distribuio normal com mdia nula e desvio igual a 1/raiz(numero_entradas)

# Cria uma lista de topologias, que tem as posies de cada neurnio na rede na forma neuronio =

# [camada pos_inicial pos_final]

topologia =[]
# Faixa de valores de entrada da camada
const inicio:Int64 = 1
const fim::Int64 = LC[1]
# offset da posio dos pesos
const offset::Int64 = 0
# Loop por cada camada
const contador_bias::Int64 = 1
const contador_saida::Int64 = LC[1]+1
@inbounds for camada=1:length(LC)—1
# Para cada neurnio, extrai 0s pesos e bias e calcula a saida
@inbounds for neuronio=1:LC[camada+1]
# Posicao inicial e final dos pesos deste neuronio no vetor de pesos
const pos_ini::Int64 = offset + LC[camada]*(neuronio—1)+1
const pos_fin::Int64 = offset + LC[camada]*(neuronio—1)+LC[camada]
# Numero de entradas
numero_entradas = pos_fin — pos_ini + 1
#distribuio de tal forma que tenha mdia nula e desvio 1/sqrt(numero_entradas)
distrib = Normal(0.0, 1.0/sqgrt(numero_entradas))
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# Gera valores nesta faixa
valores = rand(distrib,numero_entradas)
# Copia para o vetor de pesos
pesos[pos_ini:pos_fin] = valores
push!(topologia,[camada pos_ini pos_fin])
end #Neuronio
# Corrige o offset dos pesos
offset = offset + LC[camada]«xLC[camada+1]
# Atualiza estes offsets das entradas
inicio = fim+1
fim = fim+LC[camada+1]
end #camada
return pesos, topologia, numero_pesos
end

#Rotinas RN

# Carrega as rotinas de diferenciao automtica
include("dif_automatica.jl")

using FD

function Verifica_Consistencia_Treinos(LC::Array{Int64}, entradas::Array, saidas::Array ,
dados_verificacao::Array, resultados_verificacao::Array )
# Primeiro, verificamos se as dimenses esto consistentes
numero_entradas = LC[1]
numero_saidas = LC[end]

# Verifica padres de treino
numero_treinos_entrada = size(entradas,1)
numero_entradas_entrada = size(entradas,2)
numero_treinos_saida = size(saidas,1)
numero_saidas_saida = size(saidas,2)

if numero_treinos_entrada != numero_treinos_saida
error("\n Numero de treinos (linhas) na entrada $(numero_treinos_entrada) deve ser igual ao "
"nmero de treinos de saida $(numero_treinos_saida) ")
end
if numero_entradas_entrada != numero_entradas
error("\n Numero de entradas (colunas) na entrada deve ser igual a primeira posio de "
"LC $(numero_entradas) ")
end
if numero_saidas_saida != numero_saidas
error("\n Numero de saidas (colunas) na saida deve ser igual a Itima posio de "
"LC $(numero_saidas) ")
end
if length(dados_verificacao)>0 && length(resultados_verificacao)>0
# Verifica se o nmero de verificacoes consistente
if size(dados_verificacao,1)!=size(resultados_verificacao,1)
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error("\n Dimenses no conincidem na verificao ")
end
if size(dados_ verificacao,2)!=size(entradas,?2)
error("\n Dimenso de dados de entrada deve ser igual o de verificao")
end
if size(resultados_verificacao,2)!=size(saidas,?2)
error("\n Dimenso de resultados de entrada deve ser igual o de verificao")
end
end
end

## Funao Sigmoid — Aqui vamos usar a funo logstica
function Sigmoid{T}(a::T)

constum:T =1

um/(um+exp(—a))
end

#Funcao leaky—relu
function relu{T}(a::T)
saida = 0.01xa
if isa(a,Dual)
ifa.real >0
saida=a
end
else
if a>0
saida=a
end
end
return saida
end

function Saida_Neuronio(entradas_neuronio::Array, pesos_neuronio::Array, bias_neuronio,
flag_act::Bool=false)

if flag_act

return Sigmoid( dot(entradas_neuronio,pesos_neuronio) + bias_neuronio)

# relu(dot(entradas_neuronio, pesos _neuronio) + bias_neuronio)

else

return tanh( dot(entradas_neuronio,pesos_neuronio) + bias_neuronio)
end
end

# Rotina que Propaga a informao da camada de entrada para a camada de saida

# Os valores de entrada da rede devem estar nas primeiras posies de valores.

function RN(valores::Array,bias::Array,pesos::Array,LC::Array{Int64},flag_soft=false)
# Faixa de valores de entrada da camada
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const inicio::Int64 = 1
const fim::Int64 = LC[1] #entradas na primeira camada
# offset da posio dos pesos
const offset::Int64 = 0
# Loop por cada camada
const contador_bias::Int64 = 1
const contador_saida::Int64 = LC[1]+1
@inbounds for camada=1:length(LC)—1 #primeira camada nao tem neuronios so input
# Entradas desta camada
const entrada_neuronio = valores[inicio:fim] #entradas primeira camada, input
# Para cada neurnio, extrai 0s pesos e bias e calcula a saida
@inbounds for neuronio=1:LC[camada+1] #camada 2, 3 e 4
# Posicao dos pesos deste neuronio no vetor de pesos
const pos1::Int64 = offset + LC[camada]«(neuronio—1)+1
const pos2::Int64 = offset + LC[camada]*(neuronio—1)+LC[camada]
# Extrai os pesos e o bias
const pesos_neuronio = pesos[pos1:pos2]
const bias_neuronio = bias[contador_bias]
# Calcula a saida deste neurnio (escalar)
const saida_neuronio = Saida_Neuronio(entrada_neuronio,pesos_neuronio,bias_neuronio)
# Grava no vetor de valores
valores[contador_saida] = saida_neuronio
# Atualiza o contador de saida
contador_saida = contador_saida + 1
# Atualiza o contador de bias
contador_bias = contador_bias + 1
end #Neuronio
# Corrige o offset dos pesos
offset = offset + LC[camada]«LC[camada+1]
# Atualiza estes offsets das entradas
inicio = fim+1
fim = fim+LC[camada+1]
end #camada

if flag_soft

# Se formos aplicar o softmax na sada, pegamos os valores da sada e aplicamos diretamente no Softmax
y_s = valores[end—(LC[end]—1):end]
soma = sum(exp.(y_s))
expo = exp.(y_s)
finale = expo ./ soma
valores[end—(LC[end]—1):end].=finale

end

return valores

end

# Funo que recebe um padro de entrada e devolve os valores da rede
function Avalia_Padrao(pesos::Array,bias::Array,LC::Array{Int64},padrao::Array)
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127 # Descobre o tipo das entradas

128 T = eltype(pesos)

129 # Copia o padro de entrada para as primeiras posies do vetor de valores
130 const valores = zeros(T,sum(LC))

131 valores[1:LC[1]] = padrao

132 # Calcula os valores restantes para a ANN

133 valores = RN(valores,bias,pesos,LC)

134 end

135
136 # Funo que calcula o valor do objetivo para um conjunto de entradas/saidas
137 function Treino_individual(pesos::Array,bias::Array,LC::Array{Int64},

138 padrao_entrada::Array,padraco_saida::Array,
139 tipo_objetivo::Int64)

140 # Avalia o padro de entrada e obtm os valores da rede

141 const valores = Avalia_Padrao(pesos,bias,LC,padrac_entrada)

142 # A saida da rede estar nas posies finais (ultima informacao do LC)
143 const saida = valores[end—LC[end]+1:end]

144 valor_treino = 0.0

145 if tipo_objetivo==

146 # Norma 2 da diferena

147 valor_treino = norm(saida—padrao_saida)

148 elseif tipo_objetivo==

149 #Funcao quadratica

150 valor_treino = (1.0/2.0)x(norm(saida—padrao_saida))*2

151 else

152 # Cross Entropy

153 try

154 valor_treino = dot(padrao_saida,log.(saida)) + dot(1.0—padrao_saida,log.(1.0—saida))
155 catch

156 printin("\n Erro no CE ",saida," ",padrao_saida)

157 error(")

158 end

159 end

160 return valor_treino, saida

161 end

162
163 # Rotina que Aplica todos os treinos na rede — Funo objetivo
164 function Avalia_Treinos(pesos::Array,bias::Array,LC::Array{Int64},entradas::Array,saidas::Array,

165 tipo_objetivo::Int64)

166 # Descobre o tipo das entradas

167 T = eltype(pesos)

168 # Numero de entradas (treinos)

169 nt, nc = size(entradas)

170 # Vamos gravar cada resultado em uma poiso de um vetor, para ver
171 # como as coisas se comportam

172 const valores = zeros(T,nt)

173 for teste=1:nt
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const padrao_entrada = vec(entradas[teste,:])
const padrao_saida = vec(saidas[teste,:])
valores|[teste], blop = Treino_individual(pesos,bias,LC,padrao_entrada,padrao_saida,tipo_objetivo)

end
# ADICAO da tecnica de regularizacao L1 ou L2 weight decay
lambda = 0.001

L2_regularization = ((lambda/(2xnt))x(norm(pesos))"2)
L1_regularization = ((lambda/(nt))«(sum(abs.(pesos))))
saida=0.0
if tipo_objetivo==0

saida = (1.0/nt)xnorm(valores) + L1_regularization
elseif tipo_objetivo==1

saida=(1.0/nt)xsum(valores) + L2_regularization

else

saida = —(1.0/nt)xsum(valores) + L1_regularization

end
return saida
end

# ROTINA QUE APLICA FUNCAO OBJETIVO PARA OS CONJUNTOS DE VALIDACAO E TESTE,
#SEM REGULARIZACAO
function Avalia_Amostras(pesos::Array,bias::Array,LC::Array{Int64},entradas::Array,saidas::Array,
tipo_objetivo::Int64)
# Descobre o tipo das entradas
T = eltype(pesos)
# Numero de entradas (treinos)
nt, nc = size(entradas)
# Vamos gravar cada resultado em uma poiso de um vetor, para ver
# como as coisas se comportam
const valores = zeros(T,nt)
for teste=1:nt
const padrao_entrada = vec(entradas[teste,:])
const padrao_saida = vec(saidas[teste,:])
valores[teste], blop = Treino_individual(pesos,bias,LC,padrao_entrada,padrao_saida,tipo_objetivo)
end
saidaA = 0.0
if tipo_objetivo==0
saidaA = (1.0/nt)xnorm(valores)
elseif tipo_objetivo==
saidaA=(1.0/nt)xsum(valores)
else
saidaA = —(1.0/nt)xsum(valores)
end
return saidaA
end

# Rotina que varre perturba os duais dos pesos e dos bias e calcula as derivadas. Para isto, todas as operaes
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# devem ser definidas no mdulo FD.
function Derivadas_Pesos_Bias(pesos::Array,bias::Array,LC::Array{Int64}, dados_treino::Array,
resultados_treino::Array, tipo_objetivo::Int64)
# Para calcularmos as derivadas, precisamos converter todos os dados
# para Dual (internamente)
const pesos_i = convert(Array{Dual},pesos)
const bias_i = convert(Array{Dual},bias)
const dados_treino_i = convert(Array{Dual},dados_treino)
const resultados_treino_i = convert(Array{Dual}, resultados_treino)
# Para cada peso, colocamos 1.0 na parte dual e avaliamos o treino completo
const DW = zeros(size(pesos,1))
Threads.@threads for i=1:size(pesos,1)
# Peturba
pesos_i[i] = Dual(pesosii], 1.0)
objetivo = Avalia_Treinos(pesos_i,bias_i,LC,dados_treino_i,resultados_treino_i,tipo_objetivo)
# Armazena esta derivada
DWIi] = objetivo.dual
# Desfaz a perturbao
pesos_li[i] = Dual(pesos]i], 0.0)
end #i
# Para cada bias, colocamos 1.0 na parte dual e avaliamos o treino completo
const DB = zeros(size(bias,1))
Threads.@threads for i=1:size(bias,1)
# Peturba
bias_i[i] = Dual(bias][i], 1.0)
# Calcula o objetivo
objetivo = Avalia_Treinos(pesos_i,bias_i,LC,dados_treino_i,resultados_treino_i,tipo_objetivo)
# Armazena esta derivada
DBJi] = objetivo.dual
# Desfaz a perturbao
bias_i[i] = Dual(bias]i], 0.0)
end #i
return DW, DB
end

# Converte as entradas para que elas tenham uma mdia nula (por treino)
function Media_Nula(entrada)
# Entradas com mdia nula
const saida = zeros(entrada)
# Dimensoes
const nl = size(entrada,1)
const nc = size(entrada,2)
# Para cada treino (linha na entrada) calcula a mdia e translada os valores
@inbounds for linha=1:nl
media = mean(entradallinha,:])
@inbounds for j=1:nc
saida[linha,j] = entrada[linha,j]—media
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end
end #linha
return saida
end

#rotina_otimizacao

# Line— Search por Armijo
# D —> Derivada

#d —> direo

function Line_Search_Armijo(DW,DB,dW,dB,W0,B0,LC,entradas,saidas,tipo_objetivo)
# Passo inicial
const alfa = 5.0
# Relaxao do alfa
const tau = 0.1
# Relaxao da inclinao inicial
const ¢ = 0.0001
# Define um valor minimo de passo
const minimo = 1E—12
# Calcula o valor do custo no ponto atual
const fO = Avalia_Treinos(W0,B0,LC,entradas,saidas,tipo_objetivo)
# Monta dois vetores globais de derivada e de direo de busca
const D = vcat(DW,DB)
const d = vcat(dW,dB)
d = d/norm(d)
# Fator de comparao do mtodo
const direita = —cxdot(D,d)
# Loop do Mtodo
for i=1:1000
W = WO + alfaxdW
B = BO + alfaxdB
fu = Avalia_Treinos(W,B,LC,entradas,saidas,tipo_objetivo)
if f0—fu < alfaxdireita
alfa = alfa * tau
if alfa<minimo
break
end
else
break
end
end #i
return alfa
end # Armijo




195

Appendix C

Ignition Loss Test in
Glass-Fiber/Epoxy Composites

To determine the fiber volumetric fraction of the composite material the ignition
loss is performed, according to ASTM D2584 (ASTM, 2019). In total three specimens
are used to performed the test. In conforming to the standard the specimens are
heating in a muffle at 565 °C for one hour.

Table C.1 — Information of the specimens before and after the ignition loss test.

Information Sample 1 Sample 2 Sample 3
Initial Mass (g) 3.718 3.758 3.596
Volume (m?3) 2.8859 107° | 2.8598 10~° | 2.8886 10~°
Final Mass (g) 2.921 2.933 2.760
Mass Loss (%) 21.436 21.953 23.248
Density (kg/m?) 1301.9 1314.1 1244.9
Resin Mass (g) 0.797 0.825 0.836

Source: Author’s production.

Table C.2 — Mechanical properties.

Properties Epoxy | Glass Fiber
Youngs modulus - E (GPa) 4.3 72
Shear modulus - G (GPa) 1.6 30
Density (kg/m?) 1090 2550
Poisson (-) 0.35 0.23

Source: Author’s production.

According to the Mix Rule (MENDONCA, 2005), the density of composite is calcu-
lated using the total mass of the composite (M.) and the total volume of the composite
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(V.), defined as

M,
.= — CA1
pe=; (C.1)
The fiber volumetric fraction V; is defined as
My
Py X Le

where M;, is the dry fiber mass per unit area, p; if the fiber density and ¢, the layer
thickness. According to the manufactured the M, is 0.2302 kg/m?. The matrix volu-
metric fraction V,, is defined as

v, = L P XV (C.3)
Prm

where p,, is the matrix density. The longitudinal modulus FE;; and the transversal mod-
ulus E,, can be calculated as

E11 = Elm X Vm + Elf X Vf, (04)

| Vi
Es Eom EQf'
The shear modulus 15 and poisson vy, are defined as

1V N Vi
G2 Giom G12f7

(C.6)

Vig = Vi X Vm + Vg X Vf. (07)

After some calculations the mechanics properties of the composite are summa-
rized in Tab. C.3.

Table C.3 — Mechanical properties of composite.

Properties | Value
Vi (%) 39.88
Vi (%) 25.27
Eq; (GPa) 29.80
Ey (GPa) 15.55
G2 (GPa) 5.84
V192 (') 018
pe (kg/m?3) | 1292.30

Source: Author’s production.
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Appendix D

Damage Detection in Metallic Beams

Aluminum beams with a rectangular cross-section of 19.7 mm vs. 4.9 mm and
a length of 496 mm, are studied with the damaged patterns: 2 mm crack size, 4 mm
crack size, and 8 mm crack size.

Vibration-based analyses are performed using Pulse LabShop software by Briel
& Kjaer, in free-free condition with an impact hammer model 8203-006 (sensitivity 1.12
mV/N) and uniaxial accelerometer model 4397 (sensitivity 10 mV/g), as can be seen in
Fig. D.1. The excitation is applied in two different points, such that for each specimen
two FRFs are measured, Hy; for position in 0.08 m and H,; for position in 0.42 m. The
modes shapes and the positions of the accelerometer, the excitation and the crack are
shown in Fig. D.2

Figure D.1 — Experimental setup for aluminum beams.

.“ 1 — Acquisition system
- y = 2 —Frame.
1 T 3 —Elastomeric wires.

4 — Aluminumbeam.
5 — Accelerometer.
— e 6 —Impact hammer.

Source: Author’s production.

In the total 172 FRFs are taken from healthy (H) and damaged beams with 3201
frequency points from a frequency range of 0-1600 Hz. Figure D.3 shows four FRFs
from each case from one specimen. Table D.1 shows the range between the minimum
and the maximum natural frequency for each mode and each state condition.
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Figure D.2 — Modes shape of the beam.

Modes Shape
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Source: Author’s production.

Figure D.3 — FRFs for healthy, damaged with 2 mm crack size (D), damaged with 4
mm crack size (D4) and damaged with 8 mm crack size (Dy) for the first excitation point
in an aluminum beam.
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Source: Author’s production.

Principal component analysis (PCA) is applied, and the data are reduced to 10
PCs, retained 98.04% of the total variance. The dataset is split into three sets (71%
for the training, 10% for the validation and 19% for the testing sets). A fully connected
multilayer perceptron neural network using the logistic function as activation function
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Table D.1 — Frequency range (Hz) for the first five mode shapes.

Case Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Healthy 97-98 270-273 534.5-541 888-898 1327.5-1342.5
D, 96-97.5 | 269.5-272.5 | 534.5-540.5 | 886.5-897 1327-1341
Dy, 96.5-97.5 | 269.5-273 533.5-540 | 886.5-895.5 | 1323-1340.5
Dg 95.5-96.5 | 269.5-272.5 531-538 885-894.5 1324.5-1339

Source: Author’s production.

and quadratic function as a cost function is created. The two patterns (healthy and
damaged) are presented to the ANN for the learning process. The topology is ten
inputs, eight neurons in the first hidden layer, four neurons in the second hidden layer
and two neurons in the output layer (healthy or damaged).

The momentum term is 0.8 and a fixed learning rate of 0.3 is applied. Also,
3% of the artificial noise is added to the training set and L, regularization technique
is applied with a lambda value of 0.001. After 200 times run the summarized results
are shown in Tab. D.2. For one simulation, the ANN generalizes 93.55% of the pattern
correctly, the results are summarized in Tab. D.3.

Table D.2 — ANNs simulations summary results for aluminum beams (200 times runs).

Data set Values

Training: mean accuracy (mean deviation) 95.16% (0.014)
Validation: mean accuracy (mean deviation) | 82.35% (0.043)
Testing: mean accuracy (mean deviation) 80.65% (0.034)

Source: Author’s production.

Table D.3 — ANNs results: aluminum beams.

Training Training Validation Testing
iterations accuracy (%) accuracy (%) accuracy (%)
305 95.16 82.35 93.55

Source: Author’s production.

The methodology applied in aluminum beams shows good generalization, with
no presence of underfitting. The accuracy of 82.35% in the validation dataset can be
due to a overfitting problems, or the initialization of the design variables. The fact that
the average accuracy, after 200 rounds, is close to 80% (for validation and testing data),
shows that the methodology is capable to detect damages.
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Appendix E

Scientific Publications

This appendix presented the scientific contributions related to this Master thesis.
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