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RESUMO

Esse trabalho apresenta a otimização de dois controladores de um tanque separador bifásico cujo
principal objetivo é amortecer os efeitos de um fluxo intermitente de gás e líquido. O modelo
do tanque separador é linearizado e dois controladores Proporcional-Integral-Derivativo (PID)
são implementados para o controle do nível do líquido e da pressão do gás. A otimização dos
parâmetros é feita com um Algorítimo Genético. Esse algorítimo minimiza a amplitude da fração
de abertura das válvulas de líquido e gás, e também os desvios do nível, da pressão e do fluxo de
saída, mantendo os parâmetros PID dentro de valores estipulados. É possível ver nos resultados
que o método converge em poucas iterações, mantendo as frações de abertura das válvulas, nível
de líquido e pressão do gás em pequenas amplitudes. Essas baixas variações garantem maior
vida útil ao tanque e às válvulas, resultando em menor necessidade de reparos e economia de
recursos.
Palavras-chave: Teoria de Controle, Otimização de Parâmetros, Algoritmo Genético, Simulação
Numérica, Controle PID



ABSTRACT

This work presents two controllers optimization for a biphasic separator which main objective
is to damp intermittent liquid and gas flow effects. The separator tank model is linearized and
two Proportional-Integral-Derivative (PID) controllers are implemented to control its liquid level
and gas pressure. This parameters optimization is done using a Genetic Algorithm function.
This algorithm minimizes valves opening fraction amplitude for liquid and gas and deviations
for liquid level, gas pressure and outlet liquid flow while keeping the PID parameters bounded.
Results show that the method converges to an optimal value in few iterations, keeping valves
opening fractions, liquid level and gas pressure within small range values. This low variation
assures longer life span for the tank and valves which results in less maintenance and resources
saving.
Keywords: Control theory, Parameter optimization, Genetic algorithm, Numerical simulation,
PID control.
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1 INTRODUCTION

1.1 MOTIVATION

Slug flow is an unwanted behavior during petroleum extraction and separation. This
intermittent liquid and gas flow results in low quality separation and flooding in separator tanks,
liquid flowing through the gas valve, wearing and corrosion in equipment and tubing, flaring,
and eventually plant shutdown due to high liquid level inside the separator tank (GODHAVN et
al., 2004).

Bai and Bai (2016) state that slug flow may induce problems to operation and project
processes, including kinectic forces in equipment, oscillatory pressure, instability in the control
system and inadequate separation. Swindell (2011) also relates intermittent flow to tubing
oscillation, even calling it a "hidden threat" since this is hardly ever perceived in oil platforms
topside. Up to 21% of platforms topside tubing fail can be related to vibrational problems
(SWINDELL, 2011).

Godhavn et al. (2004) present reasons why controlling slug flow is important. Less
plant shutdowns translates to major economic enhancement besides improved oil quality after
separation and increased life span of equipment. Several optimization tools are available to solve
engineering problems like this, and metaheuristic algorithms have been extensively implemented.

Genetic Algorithms (GA) are metaheuristic methods that have been widely explored in
solving engineering problems and have proved to be efficient in finding good solutions. Romero
and Carter (2001) characterized oil reservoirs using a special GA resulting in a robust solution
that could be used in automatic reservoir characterization algorithms. Ahmadi et al. (2013)
developed an effective and robust oil flow predicting method by evolving an Artificial Neural
Network (ANN). Güyagüler et al. (2002) implemented a GA with other solving methods to a
waterflooding project which decreased the number of iterations needed to solve the problem and
prevented issues related to stochastic simulations. Camargo et al. (2010) predicted reservoir oil
flow using GA and obtained results equivalent to commercial softwares. Ghaedi et al. (2014)
optimized multistage separation pressures in separator tanks with a GA, resulting in a larger oil
recovery factor in the end of the process.

1.2 OBJECTIVE

1.2.1 Main Objective

The main objetive of this work is to optimize a biphasic separator tank liquid level and
gas pressure control using a genetic algorithm method to find optimal PID parameter values.
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1.2.2 Specific Objectives

• Literature review of mathematical, physical and computational tools;

• Literature review of genetic algorithm;

• Develop a biphasic separator tank model and PID control strategy;

• Simulate and optimize PID parameters.

1.3 STRUCTURE

In Section 2 several tools ranging from mathematical to computational that helps solving
the optimization problem are reviewed. In Section 3 the model and its parameters are presented.
Results from the optimization are shown in Section 4 and an in-depth discussion is made in
Section 5, where suggestions for future works are also presented.
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2 LITERATURE REVIEW

2.1 MATHEMATICAL TOOLS

This section contains a brief explanation of Differential Equations, Laplace Transforms
and Taylor Series.

2.1.1 Differential Equations

Several natural phenomena occur as functions of the rate that variables change (BOYCE;
DIPRIMA, 2004). Mathematically, the behavior of these systems can be modeled as relationships
of derivatives, called Differential Equations. Algebraic Equations result in values; Differential
Equations result in functions. For instance, consider the tank system of Figure 1.

Figure 1 – Tank System

Source: SEBORG et al. (2011).

This system contains an inlet volumetric flow qi, an outlet volumetric flow q, a fluid
volume V which level is h, and a cross-sectional area A. Supose there is a valve that controls q

that behaves as
q =

1
Rv

h, (2.1)

where Rv is the flow resistence constant. Assuming the fluid is incompressible with constant
density ρ , the tank behavior can be modeled by a conservation of mass equation:

dm
dt

= ṁi− ṁ

d
dt
(ρV ) = ρqi−ρq

d
dt
(ρAh) = ρqi−ρq

ρA
dh
dt

= ρqi−ρq
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A
dh
dt

= qi−q. (2.2)

Substituting Equation 2.1 in Equation 2.2 results in

A
dh
dt

= qi−
1
Rv

h. (2.3)

Equation 2.3 is a differential equation since ir relates dh/dt and h. Solving this equation
will result in a function that describes the behavior of h as a function of time. Section 2.1.2 will
explore this topic further.

Another example is the heat flow equation,

α
∂ 2u(x, t)

∂x2 =
∂u(x, t)

∂ t
. (2.4)

This equation also relates the derivative of u in respect to x axis and time t. Solving this equation
results in the behavior of heat flow as a function of time and space.

Boyce and DiPrima (2004) present some differential equations classifications:

Ordinary and Partial Differential Equations. Ordinary Differential Equations (ODE) solutions
are functions of a single independent variable; Partial Differential Equations (PDE) solutions are
functions of several independent variables. Therefore, Equation 2.3 is an ODE and Equation 2.4
is a PDE.

Differential Equation System. When more than one differential equation is required to solve a
specific problem, it is a system of differential equations. The number of equations in this system
must be equal to the number of unknown functions.
Order. A differential equation order is equal to the higher order derivative in the equation.
Therefore, Equation 2.3 is a first order ODE whilst Equation 2.4 is a second order PDE.

Linearity. A linear differential equation can be written as

a0(t)y(n)+a1(t)y(n−1)+ · · ·+an(t)y = g(t). (2.5)

It is possible to conclude then that both Equations 2.3 and 2.4 are linear. An example of a
non-linear differential equation occurs when deriving a pendulum system:

d2θ

dt2 +
g
L

sen(θ) = 0. (2.6)

Since it is significantly more difficult to deal with non-linear differential equation, it is a common
practice to linearize them. This topic will be further studied in Sections 2.1.3 and 2.2.3.

Solution. A differential equation solution is a function that satisfies the conditions of a differential
equation.
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2.1.2 Laplace Transform

There are several methods available to solve differencial equations. This work focuses
in the Laplace Transform. Being f (t) a function defined to t ≥ 0 and continuous by parts, the
Laplace Transform is

L { f (t)}= F(s) :=
∫

∞

0
e−st f (t)dt, (2.7)

when this integral converges. Examples 1 to 4 in Annex A refer to solving Laplace Transforms.
Some known Laplace Transforms are presented in Table B.1.

Laplace Transform Properties

Two main properties can be used to solve differential equations: the fact that it is a linear
operation and an injective function.

i) Its linearity is inherited by the integral definition, because∫
[a f (x)+bg(x)]dx = a

∫
f (x)dx+b

∫
g(x)dx. (2.8)

where a,b ∈ℜ. Since the Laplace Transform is defined as an integral, it is possible be show that

L {a f (x)+bg(x)}= aL { f (x)}+bL {g(x)}. (2.9)

ii) Being an injective function means that an inverse function can be defined. In this case,
an Inverse Laplace Transform exists in such a way that

L −1{F(s)}= f (t). (2.10)

It is possible to see now that the Laplace Transform is a powerful tool to solve differential
equations. Table B.1 transforms a differential equation in an algebraic equation, allowing us to
solve for F(s). Then, the inverse transform can be applied to find f (t).

2.1.3 Taylor Series

Let f (x) be a continuous function in all of its domain with also continuous derivatives.
This function can be expressed as an infinite polynomial series (STEWART, 2007),

f (x) = ∑
∞
n=0 cn(x−a)n

= c0 + c1(x−a)+ c2(x−a)2 + · · · .
(2.11)

Coefficients cn are calculated by evaluating the previous expressions and its derivatives
in x = a.

f (a) = c0. (2.12)

f ′(a) = c1. (2.13)
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f ′′(a) = 2c2; (2.14)

f ′′′(a) = 2×3c3

= 3!c3,
(2.15)

and so on. The n-th coefficient is defined as

cn =
f (n)(a)

n!
. (2.16)

Equating Equations 2.11 and 2.16 wields

f (x) =
∞

∑
n=0

f (n)(a)
n!

(x−a)n. (2.17)

Equation 2.17 is defined as the Taylor Series in a and it is used to approximate functions
by a summation of polynomials with more or less precision. The more terms evaluated before
truncating the series, the more precise the approximation is. In Example 5 from Annex A, the
function sen (θ) is approximated by a Taylor Series.

This is a powerful tool to approximate non-linear differential equations by linear
differential equations. For instance, the pendulum system of Equation 2.6 could be linearized
by approximating the function sen (θ) by θ , which is Equation A.13 truncated in the first term.
This topic will be further studied in Section 2.2.3.

2.2 PHYSICAL TOOLS

In this section, the steps to model a physical system are explained followed by an
explanation on transfer functions model and linearization of non-linear models.

2.2.1 Modeling Physical Systems

There are four main reasons to model a physical system (SEBORG et al., 2011):

1) It improves understanding of the process. Dynamic models allow investigating the
transient process behavior without actually disturbing the process;

2) Can be used to train plant operating personnel;

3) Control strategy development. It allows evaluating different control strategies and
identifying controlled and manipulated variables;

4) Process operating conditions optimization. It allows recalculating optimum operating
conditions periodically in order to maximize profit or minimize costs.

Next, a systematic approach is presented in order to model a physical process:
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1) state modeling objectives and determine required levels of model detail and accuracy;

2) draw a schematic diagram of the process and label all process variables;

3) list all assumptions involved, the model should not be overly complicated;

4) determine whether or not spatial variation is relevant. If so, PDEs will be required;

5) write appropriate conservation equations;

6) introduce equilibrium relations and other algebraic equations (thermodynamics, transport
phenomena, chemical kinectis, etc.);

7) perform a degrees of freedom analysis;

8) simplify the model;

9) classify inputs as disturbance variables or as manipulated variables.

Conservation laws have a major role in modeling physical processes since they describe
the behavior of energy and matter. Some important examples are the Conservation of Mass, the
Conservation of Component and the Conservation of Energy.

Conservation of Mass

{accumulated mass}= {mass in}−{mass out} (2.18)

Conservation of Component i

{accumulated i component}= {i component in}−{i component out} (2.19)

Conservation of Energy
Second law of Thermodynamics:

{accumulated energy}= {energy in}−{energy out} (2.20)

Example 1

Consider the following tirred-tank from Figure 2. There are two inlet flows of a single
component where x1 and x2 are the concentration of each flow and w1 and w2 are the mass
flow rates. Both streams are blended resulting in a volume V . There is also an exit flow w with
concentration x, both unkown. A constant density ρ will be considered. Since it is desired to
know two variables behavior, a system of two differential equations will be needed.

Supose the blending occurs instantly and homogeneously so the concentration of the
whole fluid is x. In order to model this system, the conservation of mass (Equation 2.18) and
component (Equation 2.19) are written below:

ρ
dV
dt

= w1 +w2−w, (2.21)
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Figure 2 – Stirred-Tank

Source: SEBORG et al. (2011).

ρ
d(V x)

dt
= w1x1 +w2x2−wx. (2.22)

Solving this system requires separating V and x. Thus, the chain rule is applyed,

ρx
dV
dt

+ρV
dx
dt

= w1x1 +w2x2−wx. (2.23)

Knowing ρdV/dt from Equation 2.21 allows further simplification:

x(w1 +w2−w)+ρV
dx
dt

= w1x1 +w2x2−wx (2.24)

Rearranging the system yields
dV
dt

=
1
ρ
(w1 +w2−w) (2.25)

dx
dt

=
w1

V ρ
(x1− x)+

w2

V ρ
(x2− x) (2.26)

That is, the stirred-tank blending system was modeled using the laws of conservation.
Solving this system of differential equations will result in the functions that describe the behavior
of V and x over time.

After deriving the physical process model, analyzing the degree of freedom is a necessary
step since the system of differential equations must be solvable. The number of unknown
variables must be equal to the number of differential equations (see Section 2.1.1). The degree of
freedom NF is defined as

NF = NV −NE , (2.27)

where NV is the number of process variables and NE is the number of independent equations in
the model. Three scenarios emerge from this (SEBORG et al., 2011):

1) NF = 0: The process model is exactly specified and has a solution;

2) NF > 0: The process model is underspecified ans has an infinite number of solutions;

3) NF > 0: The process model is overspecified and has no solution.
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The previous example has two equations and two unknown functions, therefore it is
exactly specified an has a solution.

2.2.2 Transfer Functions

Transfer Functions have an important role in the analysis of control systems. These
functions describe the dynamic relationship between two process variables in Laplace Domain,
that can only be applyied to linear ODE systems (SEBORG et al., 2011).

Let x(t) be an input process variable which correspondent in Laplace domain is X(s),
and y(t) an output variable with a correspondent Y (s). The transfer fuction between these two
variables is defined as

G(s) :=
Y (s)
X(s)

. (2.28)

This function is calculated by applying the Lapace Transform in the dynamic model of the
process and solving for Y (s)/X(s). Using transfer functions model requires initial conditions to
be zero, which can be achieved by introducing deviation variables.

A deviation variable is defined as the deviation from equilibrium,

x′ := x− x̄, (2.29)

where x′ is the deviation variable, x̄ is the value at equilibrium and x is the actual value. Since a
process is usually analyzed after a disturbance occurs, deviation variables will always be zero in
the initial condition.

Take the tank from Section 2.1.1 again as example, modeled by Equation 2.3,

A
dh
dt

= qi−
1
Rv

h.

The input variable is qi and the output is h, and their correspondent in Laplace domain are Qi(s)

and H(s). During steady state,

A
dh̄
dt

= q̄i−
1
Rv

h̄, (2.30)

even though dh̄/dt is zero. Subtracting Equation 2.30 from 2.3,

A
d(h− h̄)

dt
= (qi− q̄i)−

1
Rv

(h− h̄). (2.31)

Introducing deviation variables, h′ = h− h̄

q′i = qi− q̄i,

Equation 2.31 becomes

A
dh′

dt
= q′i−

1
Rv

h′. (2.32)

Now initial conditions are zero and transfer function model can be used.
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Applying Laplace Transform in both sides,

AsH ′(s) = Q′i(s)−
1
Rv

H ′(s), (2.33)

H ′(s) =
RvQ′i(s)

(RvA)s+1
. (2.34)

Finally, rearranging it so it takes the form of Equation 2.28, the transfer function is found,

G(s) = H ′(s)
Q′i(s)

= Rv
(RvA)s+1 .

(2.35)

When there are more than one input variables, several transfer functions coexist and can
be written as 

G1(s) := Y (s)
X1(s)

G2(s) := Y (s)
X2(s)

...

Gn(s) := Y (s)
Xn(s)

;

Y (s) = G1(s)X1(s)+G2(s)X2(s)+ · · ·+Gn(s)Xn(s). (2.36)

Tranfer function model has noteworthy advantages such as (SEBORG et al., 2011):

1) Transfer Functions are additive;

2) input variables that are not relevant may be considered constant when studying a specific
deviation;

3) allows studying one input variable at a time.

2.2.3 Linearization

As stated before, transfer function method can only be applied to linear models. In
Section 2.1.1 though it was presented that even simple phenomena such as a pendulum may
result non-linear models. It is a common practice then to linearize non-linear models using the
Taylor Series Expansion seen in Section 2.1.3.

Take a non-linear dynamic model such as

dy
dt

= f (y,u), (2.37)

where y is the output variable and u is the input variable. Linearization is done by expanding
f (y,u) in Taylor Series at (ȳ, ū) and truncating it in the first term:

f (y,u)≈ f (ȳ, ū)+
∂ f
∂y

∣∣∣∣
(ȳ,ū)

(y− ȳ)+
∂ f
∂u

∣∣∣∣
(ȳ,ū)

(u− ū). (2.38)
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When working with deviation variables, f (ȳ, ū) = 0 (SEBORG et al., 2011). The terms inside the
brackets are the definition of deviation variables presented in Equation 2.29. Since dȳ/dt = 0,
Equation 2.37 becomes

dy′

dt
=

∂ f
∂y

∣∣∣∣
SS

y′+
∂ f
∂u

∣∣∣∣
SS

u′, (2.39)

where the subindex SS indicates evaluation at steady state and therefore these values are constants.

Example 2

The model derived in Example 1 is described by Equations 2.25 and 2.26,

ρ
dV
dt

= (w1 +w2−w)

ρV
dx
dt

= w1(x1− x)+w2(x2− x),

assuming constant V (therefore w = w1 +w2) and x2 = 1.
Equation 2.26 is non-linear since x multiplies both variables w1 and w2. This equation

has to be linearized in order to apply the transfer function model. From Equation 2.39, Equation
2.26 is approximated by

ρV dx′
dt =

(
∂ f
∂x

)
SS
(x− x̄)+

(
∂ f
∂x1

)
SS
(x1− x̄1)+

(
∂ f

∂w1

)
SS
(w1− w̄1)+(

∂ f
∂w2

)
SS
(w2− w̄2).

(2.40)

Evaluating the derivatives:

(
∂ f
∂x

)
SS

=−w̄1− w̄2(
∂ f
∂x1

)
SS

= w̄1(
∂ f

∂w1

)
SS

= x̄1− x̄(
∂ f

∂w2

)
SS

= 1− x̄

(2.41)

∴ ρV
dx′

dt
=−w̄x′+ w̄1x′+(x̄1− x̄)w′1 +(1− x̄)w′2 (2.42)

The model is now linear at equilibrium and transfer function model can be used. Applying
Laplace Transform yields

ρV sX ′(s) =−w̄X ′(s)+ w̄1X ′1(s)+(x̄w− x̄)W ′1(s)+(1− x̄)W ′2(s)

(
V ρ

w̄
s+1

)
X ′(s) =

w̄1

w̄
X ′1(s)+

x̄1− x̄
w̄

W ′1(s)+
1− x̄

w̄
W ′2(s)

τ := V ρ

w̄

K1 := w̄1
w̄

K2 := 1−x̄
w̄

K3 := x̄1−x̄
w̄
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X ′(s) =
K1

τs+1
X ′1(s)+

K2

τs+1
W ′2(s)+

K3

τs+1
W ′1(s). (2.43)

From Equation 2.36, 
G1(s) := X ′(s)

X ′1(s)
= K1

τs+1

G2(s) := X ′(s)
W ′2(s)

= K2
τs+1

G3(s) := X ′(s)
W ′1(s)

= K3
τs+1

(2.44)

It’s important to keep in mind that the linearization process is an approximation around
a specific point (equilibrium). The further away from this point, the less representative the
approximation will be.

2.3 CONTROL SYSTEMS

In this section, dynamic systems are represented as Block Diagrams, which makes easier
to understand the relationship between input and output variables. Then classic Closed Loops
Control Strategies are introduced followed by a Dynamic Response Characteristics of Processes
analysis. Finally, a brief explanation of Multiple-Input Multiple-Output Systems will take place.

2.3.1 Block Diagram

A Block Diagram is a physical process graphical representation that allows treating
complex systems with simple operations such as sums and multiplications (NUNES et al., 2010).
An example is shown in Figure 3.

Figure 3 – Block Diagram

Source: SEBORG et al. (2011).

The block diagram structures are (NUNES et al., 2010):

1) Variables. Shown over the lines that represent information flow direction;
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2) Blocks. Contain transfer functions between the block input and output variable. For
instance, the block in the far left of Figure 3 can be interpreted as

Ỹsp

Ysp
= Km; (2.45)

These blocks represent equipment, plants, machines, sensors, etc, that interact with the
variables.

3) Summation Point. Where variables summation or subtraction happens (Figure 4).

Figure 4 – Sumation Point

Source: adapted from SEBORG et al. (2011).

4) Derivation Point. Point where a variable information splits in more than one direction
(Figure 5).

Figure 5 – Derivation Point

Source: adapted from SEBORG et al. (2011).

The system presented in Figure 3 starts with a setpoint value of Ysp, in the left hand side,
which is the controlled variable Y desired value; the system output variable is the actual value of
Y , in the right hand side.

A pattern often present in a block diagram is a feedback loop, shown in Figure 6.
It can be demonstrated that the feedback is equivalent to the following expression

(NUNES et al., 2010):
Y (s)
U(s)

=
G(s)

1+G(s)H(s)
. (2.46)

It is then possible to see that Figure 3 contains a feedback loop where the loop transfer
function is Km, often called sensor constant.
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Figure 6 – Feedback loop

Source: NUNES et al. (2010).

2.3.2 Control Strategies

A feedback loop compares the actual output variable value to the desired setpoint value.
If they are not equal, it is desired that some action is taken so the actual value will meet the
setpoint value. This action is reffered as Control Strategy. Seborg et al. (2011) introduces three
basic control models: Proportional Control, Integral Control and Derivative Control.

2.3.2.1 Proportional Control (P)

The setpoint error is defined as

e(t) = ysp(t)− ym(t), (2.47)

where ysp(t) is the setpoint value and ym(t) is the measured value. Proportional Control adds the
error value multiplied by a constant Kc to the setpoint, thus increasing or decreasing the system
input proportionally to the error

p(t) = p̄+Kce(t), (2.48)

where p(t) is the updated input, p̄ is original input and Kc is the Proportional Gain. Proportional
Control acts proportionally to the error absolute value.

Introducing deviation variables to Equation 2.48 so it is possible to write it in transfer
function fashion results in

p′(t) = Kce(t), (2.49)

since e(t) is already defined as a deviation variable.
Applying Laplace transform yields

P′(s)
E(s)

= Kc. (2.50)

Back to Figure 3, it’s now possible to identify a proportional controler in the block
diagram, as shown in the crop of Figure 7.

An inherent disadvantage in this control strategy is that it results in a steady state offset
from the desired setpoint (Figure 8). This topic is explored further in SEBORG et al. (2011).
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Figure 7 – Proportional Controler in Figure 3

Source: adapted from SEBORG et al. (2011).

Figure 8 – Proportional Controller Offset

Source: SEBORG et al. (2011).

2.3.2.2 Integral Control (I)

Integral action is written as

p(t) = p̄+
1
τI

∫ t

0
e(t)dt, (2.51)

where τI is defined as Integral Time. The integral controller takes action over the integral of the
error over time. This takes rid of the offset seen in the proportional control, but this controller
may take longer to act. Therefore, Integral Control is rarely ever implemented by itself. It
is common though to use proportional and integral control together, defined as PI controller
(Proportional-Integral):

p(t) = p̄+Kc

(
e(t)+

1
τI

∫ t

0
e(t)dt

)
, (2.52)

which transfer function model is

P′(s)
E(s) = Kc

(
1+ 1

τIs

)
= Kc

(
τIs+1

τIs

)
.

(2.53)

When an step error e(t) takes place, PI controller takes an instant action in t = 0 due to
the proportional action, followed by a ramp due to the integral action. This behavior is illustrated
in Figure 9.
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Figure 9 – PI controller behavior when a step error takes place.

Source: SEBORG et al. (2011).

2.3.2.3 Derivative Control (D)

Derivative control action is

p(t) = p̄+ τD
de(t)

dt
, (2.54)

where τD is the derivative time. This controller antecipates the error behavior by reading its
derivative. It can be seen in the previous equation though that it only takes action when the
derivative is not 0, even if the error itself is not 0. Therefore, derivative control never takes place
by itself and is always implemented together with a P or PI controller. A PD controller’s transfer
function is as follows:

P′(s)
E(s)

= Kc(1+ τDs). (2.55)

When a system shows noisy readings, the derivative control tends to desestabilize since
it will try to read a constantly changing derivative. In practice, an ideal PD controller is not
feasible, so an approximation is done to Equation 2.55,

P′(s)
E(s)

= Kc

(
1+

τDs
ατDs+1

)
, (2.56)

where the α constant ranges between 0.05 and 0.2. The equation denominator acts as a derivative
filter that reduces the sensibility to noisy readings (SEBORG et al., 2011).

2.3.2.4 PID Controller

The PID Controller is the combination of all the previous controllers. It is a largely
spread control strategy and up to 97% of all industrial processes uses some type of PID controller
(SEBORG et al., 2011; NUNES et al., 2010). Among these types there are the Parallel and Series
PID Controller.
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Parallel PID Controller

A parallel PID controller is shown in Figure 10 and its transfer function without a
derivative filter is

P′(s)
E(s)

= Kc

[
1+

1
τIs

+ τDs
]

. (2.57)

Figure 10 – Parallel PID Controller.

Source: SEBORG et al. (2011).

Series PID Controller

A series PID controller is shown in Figure 11 and its transfer function with a derivative
filter is

P′(s)
E(s)

= Kc

(
τIs+1

τI

)(
τDs+1

ατDs+1

)
. (2.58)

Figure 11 – Series PID Controller

Source: SEBORG et al. (2011).

2.3.3 Dynamic Response Characteristics of Processes

Given a transfer function as shown in Equation 2.59, the denominator of this equation
influences the behavior of the process (SEBORG et al., 2011).

Y (s)
X(s)

:= G(s) =
∑

m
i=0 bisi

∑
n
i=0 aisi

=
bmsm +bm−1sm−1 + · · ·+b0

ansn +an−1sn−1 + · · ·+a0
.

(2.59)
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where ai,bi ∈ℜ, i = 0,1, ...,m, ...,n.

The previous equation can be written in terms of numerator and denominator roots,
defined as zeros (zi) and poles (pi), respectively:

Y (s)
X(s)

=
bm

an

(s− z1)(s− z2) · · ·(s− zm)

(s− p1)(s− p2) · · ·(s− pn)
(2.60)

For a physical system to be feasible, there must be more poles than zeros in its transfer
function, that is, m≤ n (SEBORG et al., 2011). This is the reason why the ideal PD controller is
not feasible in Section 2.3.2.3.

Assuming no reocurring poles and an input step variable X(s) = 1/s, Equation 2.60 can
be expanded in partial fractions:

Y (s) =
A0

s
+

A1

s− p1
+

A2

s− p2
+ · · ·+ An

s− pn
. (2.61)

Applying the inverse Laplace transform, it is possible to see that the behavior of y(t) is

y(t) = A0 +A1ep1t +A2ep2t + · · ·+Anepnt . (2.62)

For any pi > 0, Equation 2.62 will increase indefinitely, thus becoming unstable. On the
contrary, if all pi are negative, the system will converge (SEBORG et al., 2011). Poles and zeroes
can be plotted in a complex plane and a qualitative analysis can be done. In Figure 12, three
arbitrary poles were plotted on a complex plane, each one represented by an x.

Figure 12 – Poles in a complex plane.
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Source: author, 2017.

Poles on the left-half plane (negative real part) are stable. The more negative the real
part, the faster the pole will act. This is due to epit reducing its absolute value quickly if pi is a
large negative number.
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Imaginary numbers, as represented by the conjugate pair in Figure 12, will induce
oscillations in the system because they result in trigonometric functions in Equation 2.62
(SEBORG et al., 2011).

2.3.3.1 Routh Stability Criterion

As stated before, a dynamic system can only be stable if all of its poles are located on the
left-half complex plane. In 1905, Routh developed a method to verify if a polynomial has any
root with a positive real part. This method is called the Routh Stability Criterion. This method
can only be used in polynomials in s (SEBORG et al., 2011).

Take the roots of the Equation 2.59 denominator,

ansn +an−1sn−1 + · · ·+a1s+a0 = 0. (2.63)

It is assumed that an is positive. This identity is called the transfer function Characteristic
Equation. A necessary but not sufficient condition to stability is that all coefficients must be
positives and non-zero. If this is not true, at least one root will have a positive real part. If true,
the Routh Matrix can be written as shown in Figure 13.

Figure 13 – Routh Matrix.

Source: SEBORG et al. (2011).

Routh Matrix contains n+1 rows and coefficients from Equation 2.63 are written in the
first two rows in the order shown in Figure 13. Coefficients bi, ci, ..., zi are calculated by

b1 =
an−1an−2−anan−3

an−1
(2.64)

b2 =
an−1an−4−anan−5

an−1
(2.65)

...

c1 =
b1an−3−an−1b2

b1
(2.66)

c2 =
b1an−5−an−1b3

b1
(2.67)
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...

which numerator is but the negative of the determinant of a 2×2 matrix while the denominator
is the first term of the previous row.

In the end, the matrix will be roughly triangular with a single term in the last row. Routh
Stability Criterion states: A necessary and sufficient condition for all roots of the characteristic

equation in Equation 2.63 to have negative real parts is that all of the elements in the left column

of the Routh array are positive (SEBORG et al., 2011).

Example 3

Take a feedback loop with a proportional controller Kc that is described by the following
transfer function:

Y (s) =
Kc(s+1)

10s3 +17s2 +8s+1+Kc
· 1

s
. (2.68)

To find a stable value of Kc, the Routh method is applied. The system characteristic equation is

10s3 +17s2 +8s+(1+Kc) = 0 (2.69)

in which case a0 = 1+Kc and therefore Kc >−1 since all coefficients must be positives right
away. Arranging Routh Matrix:

10 8
17 (1+Kc)

b1

Coefficient b1 is calculated by Equation 2.64:

b1 =
136−10(1+Kc)

10

= 12.6−Kc,
(2.70)

and there are no more coefficients because the characteristic equation is a third degree polynomial.
All coefficients in the first column must be positives, in which case

b1 > 0,
∴ Kc < 12.6.

(2.71)

Therefore, −1 < Kc < 12.6 in order for this system be stable.

2.3.4 Multiple-Input, Multiple-Output (MIMO) Systems

Up until now, only Single-Input Single-Outputs (SISO) or Single-Loop Systems were
presented. In practice, several processes involve more then one input and output. These complex
systems are labeled Multiple-Input Multiple-Output (MIMO) systems or Multi-Loop Systems.
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Figure 14 – Multi-loop system of a biphasic separator.

Source: SEBORG et al. (2011).

Biphasic separators are classic examples of MIMO, as shown in Figure 14.
The disturbance variable is its feed, which is a liquid and gas flow mixture. Controlled

variables are liquid level and gas pressure, and the manipulated variables are the liquid and gas
valves opening fractions.

MIMO systems are inherently more complex than SISO systems. In general, a change in
any of the input variables (setpoints) will affect all output variables. Taking a 2 inputs 2 outputs
example (2×2), a system of four transfer functions will arise when the dynamic model is derived,
shown in Equation 2.72 and Figure 15.

Y1(s)
U1(s)

= Gp11(s);
Y1(s)
U2(s)

= Gp12(s);
Y2(s)
U1(s)

= Gp21(s);
Y2(s)
U2(s)

= Gp22(s).

(2.72)

The system presented in Figure 15 hides a third loop involving all four transfer functions,
shown in Figure 16.

MIMO systems stability is similar to SISO systems. A 2× 2 MIMO system can be
represented by

Y1 = Γ11Ysp1 +Γ12Ysp2 (2.73)

Y2 = Γ21Ysp1 +Γ22Ysp2, (2.74)

where the transfer functions are

Γ11 =
Gc1Gp11 +Gc1Gc2(Gp11Gp22−Gp12Gp21)

∆(s)
(2.75)

Γ12 =
Gc2Gp12

∆(s)
(2.76)
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Figure 15 – 2×2 MIMO system.

Source: SEBORG et al. (2011).

Figure 16 – Hidden loop.

Source: SEBORG et al. (2011).

Γ21 =
Gc1Gp21

∆(s)
(2.77)

Γ22 =
Gc2Gp22 +Gc1Gc2(Gp11Gp22−Gp12Gp21)

∆(s)
(2.78)

and the characteristic polinomial is

∆(s) = (1+Gc1Gp11)(1+Gc2Gp22)−Gc1Gc2Gp12Gp21. (2.79)

Stability region is found applying Routh criterion to ∆(s) = 0, that is, the system’s
characteristic equation.
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2.4 COMPUTATIONAL TOOLS

2.5 MATLAB

This work uses MATLAB Optimization Toolbox (2009) to solve the optimization
problem. MATLAB (2009) is a mathematical simulation and data analysis software. It contains
two environments: a workspace and an editor (Figure 17).

Figure 17 – MATLAB’s (2009) environments. Left: workspace, Right: editor.

Fonte: Printscreen from MATLAB (2009).

Besides MATLAB (2009), this work uses SIMULINK, which is its dynamic systems
simulator package.

2.6 SIMULINK

SIMULINK accompanies MATLAB (2009) as a dynamic system simulator package with
a friendly UI, allowing to build block diagrams, simulate and analyze data (NUNES et al., 2010).
Typing simulink in MATLAB’s workspace opens the Library Browser window (Figure 18) with
several block options to create a block diagram. This library contains a Sources section, Sinks,
Continuous, Math Operations, and so on.

To start a block diagram, the user must click on the New Model button (white sheet) on
the upper left corner of the library window. Nunes et al. (2010) provide a step-by-step guide to
create and simulate a diagram:

1) drag the desired blocks to the simulation window;

2) connect the blocks the same way as the model (click the first block and then Control-click
the next one);

3) configure all blocks (double click);

4) configure the simulation (Simulation→ Configure Parameters, on the upper bar);

5) simulate;
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Figure 18 – SIMULINK Library Browser.

Source: Printscreen from SIMULINK.

6) analyze the outputs with the Sinks library.

Example

The block diagram from Figure 3 in Section 2.3.1 can be built in SIMULINK, setting the
transfer functions and gains arbitrarily, as shown in Figure 19.

Figure 19 – Diagram from Figure 3 in SIMULINK.

Source: Printscreen SIMULINK.



39

Setpoint is chosen to be 10, and the disturbance D was set as a step function with
magnitude 2 and initial time equals 3 seconds. Simulation time is set to 10 seconds. After
simulating, double clicking the Scope block allows visualizing the model response, shown in
Figure 20.

Figure 20 – Example response.

Source: Printscreen from SIMULINK.

2.7 PRIMARY PROCESSING

This section briefly explains natural petroleum occurance and how this influences the
processing plant project. Next, the separator tank is explained and slug flows will be studied.

2.7.1 Petroleum Occurrence

Petroleum is generated by decomposition of large quantities of organic material under
intense heat and pressure. This material is then accumulated in "source rocks" and underground
pressure and capillary distribution cause it to migrate until it finds an impermeable rock layer.
The organic matter is then stored in a porous and permeable rock called "reservoir rock" (SILVA
et al., 2007).

Frequently, underground fluids are arranged as shown in Figure 21 due to gravity
segregation and phase imiscibillity. Therefore, not only petroleum is produced but also gas,
water and solids (SILVA et al., 2007). None of these phases is isolated from each other. Gas is
present in oil as bubbles, water vapor is carried by gas or oil-water emulsion is formed. Even
free water contains solids, dissolved gas and carried oil (SILVA et al., 2007). When this mixture
arrives at the platform, separation is required.

Different phases are used for different ends and they may introduce hazards to the general
process. Oil is destined to refinaries, water is recycled to secondary recovery or discarded, gas
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Figure 21 – Underground fluids.

Source: adapted from SILVA et al. (2007).

may be used in turbines (NUNES et al., 2010). Some hazards include little to no economic
value in water, that also carries salts (chlorides, sodium carbonates and sulfates, calcium, barium,
magensium, etc), resulting in corrosion and inorganic inlay in equipment and lines (SILVA
et al., 2007). Also, water presence may induce gas hydrates formation, which are crystalline
structures that occur when light fractions of oil gas meet low temperatures and high pressures.
Therefore, water and gas coexistence may block flow lines partially or completely (SILVA et
al., 2007). Aiming at separating this mixture, a series of equipment defined Primary Processing
Plant performs several levels of liquid-liquid and gas-liquid separation.

2.7.2 Processing Plant

Primary processing happens both in onshore and offshore structures and its main goals
are to (SILVA et al., 2007):

1) separate gas/oil/water;

2) make sure oil and gas meet the requirements before being sent to refineries and natural-gas
processing plants, respectively;

3) treat water before disposing or re-injecting it.

A processing plant complexity is defined by a reservoir technical and economic feasibility
study. Therefore, a plant may or may not include only gas/oil/water separation, emulsion
stabilization, gas compression and conditioning, oily water treatment, and water injection (SILVA
et al., 2007).

Silva et al. (2007) shows a simplified scheme of a primary processing of fluids all the
way from the underground reservoir to export and discard (Figure 22). The author also presents
a couple possible plant arrangements as shown in Figure 23.

This study focuses in biphasic separator tanks, being the other equipment out of scope.



41

Figure 22 – Simplified primary processing plant.

Source: adapted from SILVA et al. (2007).

Figure 23 – Different plant arrangements

Source: adapted from SILVA et al. (2007).

2.7.3 Separator Tank

The separator tank is the first equipment in the primary processing plant, and the one that
will receive the reservoir fluid mixture. It acts mainly by gravitational segregation, separating
fluids by their density. Gas separates to the higher part of the tank and the liquids accumulate
in the bottom part (SILVA et al., 2007). An example of a horizontal biphasic separator tank is
shown in Figure 24.
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Figure 24 – Horizontal biphasic separator tank.

Source: adapted from SILVA et al. (2007).

The Primary Separation Section has a deflector ou difusing device that changes the fluid
velocity abruptaly or makes it rotate, which will separate the components due to change in
momentum. Liquid will accumulate in the Liquid Accumulation Section, where residual gas will
still separate (SILVA et al., 2007).

Decantation occurs in the Seconday Separation Section, where larger liquid drops will
fall from the gas. The gas will then pass through an Aglutination Section with mist extractor to
retain remaining fluid in the gas phase (SILVA et al., 2007).

Separator tanks may be horizontal (Figure 24) or vertical (Figure 25). Horizontal
separators have a better separation efficiency due to a larger interfacial area between gas and
liquid and therefore are more common in higher Gas-Oil-Ratio (GOR) reservoirs. They are
less efficient in getting rid of solids and in damping slug flow as demonstrated by Kindermann
(2017).

Figure 25 – Vertical triphasic separator tank.

Source: adapted from SILVA et al. (2007).
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2.7.4 Slug Flow

A slug is characterized by a liquid accumulation in a multiphasic flow and irregular gas
and liquid flow and impulse variations through flowline sections (GODHAVN et al., 2004). Bai
and Bai (2016) say that slug occurrance is the most important factor in guaranteeing of flow
since pressure variations can be significative. This phenomenon floods and damages equipment.
Therefore, equipment project should take this into account.

Bai and Bai (2016) classifies three types of slug flows: hydrodynamic slug, terrain-
induced slug and operational-induced slug.

2.7.4.1 Hydrodynamic Slug

Occurs due to gas/liquid interfacial instability induced by flow conditions. When these
conditions are met, the interface rises until the tubing ceiling, called Kelvin-Helmholtz wave.
This structure is pushed by the gas phase as a slug due to a turbulent region formed behind it.
This phenomenon is exemplified in Figure 26.

Figure 26 – Hydrodynamic slug.

Source: adapted from BAI; BAI (2016).

2.7.4.2 Terrain-Induced Slug

Variations in underwater terrain may create geometries that induce slugs. An example is
shown in Figure 27. First, liquid is accumulated in the tubing base. The fluid blocks the gas flow
and pressure starts to build up. When the pressure reaches a critial value, the gas phase pushes
the liquid phase violently as a slug.
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Figure 27 – Terrain-induced slug

Source: adapted from BAI; BAI (2016).

2.7.4.3 Operational-Induces Slug

Occurs when changing operational conditions from steady state to transient. For instance,
when doing PIG cleaning operations (BAI; BAI, 2016).

2.7.5 Slug Control

Previous researchers have studied ways to control slug flows. Godhavn et al. (2004)
studied the effects of manipulating the choke valve when slugging exists in the pipeline with
PI controllers arrangements which parameters are function of the slug density and volumetric
flow. The authors’ experiments presented an efficient control and managed to keep the controlled
variables in the desired setpoints.

Stasiak et al. (2012) proposed a discrete PI controller on the choke valve in order to
suppress oscillatory flow in risers using as parameters the oscillation frequency and sampling
time. This method was simulated in the software OLGA and achieved the desired system
stabilization.

Campos et al. (2015) developed a slug controller that acts with three modules: a
Diagnostic Module that detect severe slugs, a Protection Module that prevents propagation
of slug to topside equipment, and a Control Module that minimizes or eliminate the slugs
keeping the choke valve at the desired position. An advanced controller is used in the project the
method is applied to three offshore units. Major economic enhancements were reached by the
implementation of this controller in the offshore units.

The aforementioned works control the intermittent flow by manipulating the choke valve.
This work avoids manipulating the choke valve in order prevent eventual problems in other wells
that may share the same subsea manifold.
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2.8 OPTIMIZING FUNCTIONS

2.8.1 Conventional Methods

Conventional optimization methods are based in anaylizing analytically functions that
describe a problem to find its maxima or minima. The next subsections explore one dimension
derivative analysis, multidimensional derivative analysis and Lagrange multipliers.

2.8.1.1 One dimensional derivative

Stewart (2006) defines the absolute maximum of a function if there is a point c where
f (c)≥ f (x) for all given x in the function domain D. Similarly, an absolute minimum occurs
when f (c)≤ f (x) for every x in D. If instead of the domain D only the vicinities of c are analyzed,
the previous statement defines local maximum and local minimum. Examples of maxima and
minima are represented in Figure 28.

Figure 28 – Maxima and minima of an interval

Source: STEWART (2006).

From Figure 28, it is possible to see that maxima and minima appear when

a) the derivative is zero (points b, d and e);

b) the derivative doesn’t exist (point c); or

c) the point is in the limit of the interval (point a).

If a point meets any of the previous requirements, it is labeled as a critical number.
Therefore, Stewart (2006) suggests the following steps when looking for maxima and

minima in an interval [a,b]:

1) find the critical numbers of f between [a,b] and evaluate them;

2) evaluate the extremes of the interval;

3) the higher value is the absolute maximum and the lower value will be the absolute minimum
of the interval.
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2.8.2 Multi-dimensional derivative

Similarly to the previous subsection, Stewart (2007) defines a local maximum if f (a,b)≥
f (x,y) when (x,y) is next to (a,b) and a local minimum if f (a,b)≤ f (x,y) in the same condition.
If this concept is extended to the whole domain of f , then the previous statement defines absolute
maximum and minimum, respectively. Examples of local maxima and minima for a 3D function
are shown in Figure 29.

Figure 29 – Maxima and minima for a 3D function.

Source: adapted from STEWART (2007).

Stewart (2007) shows that if f (a,b) is a local maximum or minimum and is derivatives
exist, then (∂ f/∂x)(a,b) = (∂ f/∂y)(a,b) and they are zero. Geometrically, this means that the
tangent plan in this point is horizontal, as is possible to see intuitively from Figure 29. The author
also provides a method to confirm if a critical number is a maximum or minimum based on the
calculation of D(a,b):

D(a,b),

{
∂ 2 f
∂x2

∂ 2 f
∂y2 −

[
∂ 2 f

∂x∂y

]2
}

(a,b)

. (2.80)

a) if D > 0 and (∂ 2 f/∂x2)(a,b) > 0, then f (a,b) is a local minimum;

b) if D > 0 and (∂ 2 f/∂x2)(a,b) < 0, then f (a,b) is a local maximum;

c) if D < 0, then f (a,b) is neither a maximum or minimum.

Finding the absolute maximum and minimum within an interval is similar to the one-
dimensional case. Critical numbers are evaluated and compared to each other and to the extreme
values in the interval.

2.8.3 Lagrange Multipliers

Lagrange Multipliers method consists in finding maxima and minima of f (x,y) with
a constraint g(x,y) = k (also applies for more dimensions). Geometrically, this means finding
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a value c where the contour line f (x,y) = c meets g(x,y) = k. In this point, vectors normal to
(x0,y0) in both curves should be the same. This can be written mathematically as ∇ f (x0,y0) =

λ∇g(x0,y0) for a given λ (STEWART, 2007).

Example

Finding the maximum volume a cardboard box made from a 12m2 sheet can have,
with no lid. The box volume is V (x,y,z) = xyz and the constraint is g(x,y,z) = 2xz+2yz+ xy,
g(x,y,z) = 12, which is the sheet’s area. The box is shown in Figure 30.

Figure 30 – Box without a lid made from a 12m2 cardboard sheet cutout.

12 m²
x
y

z

Equating ∇V = λ∇g:
yz = λ (2z+ y) (2.81)

xz = λ (2z+ x) (2.82)

xy = λ (2x+2y) (2.83)

2xz+2yz+ xy = 12 (2.84)

This system is solved by multiplying Equations 2.81, 2.82, and 2.83 by x, y, and z,
respectively. Equating the resulting 2.81 and 2.82 gives x = y, and 2.82 and 2.83 gives y = 2z.
Substituting x = 2z and y = 2z in Equation 2.84 gives z = 1 and therefore x = 2 and y = 2.

2.8.4 Metaheuristic Methods

Metaheuristic Methods, from heuristicus which means "to find" or "to discover" and meta

which means "higher" or "beyond" (YANG, 2010), are often bio-inspired algorithms developed
to solve complex and highly non-linear engineering problems. They are enhanced Heuristic
methods, which are stochastic optimization approaches by trial and error. Metaheuristics add
more randomization to the search and focus on intensification (exploitation) and diversification
(exploration), combined with the selection of the best solutions in each iteration. A good
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combination of these components usually ensures that the global optimality is achievable (YANG,
2010).

Some examples of Metaheuristic Methods are Ant Colony Optimization, Evolutionary
Computation, Simulated Annealing, Particle Swarm Optimization, etc (BIANCHI et al., 2009).
This work explores the Genetic Algorithm, which is a branch of evolutionary algorithms.

2.8.4.1 Genetic algorithm

Genetic Algorithms are inspired by natural selection, evolution, and molecular genetics.
It is based on the four main pillars of evolution: population maintenance, diversity, natural
selection and genetic heritage (FLOREANO; MATTIUSSI, 2008).

The algorithm initializes a population with several individuals, each one of them being
a different attempt to solve a specific problem with a specific fenotype and a genotype. The
fenotype is the evaluation of the problem itself, and the genotype is a genetic representation
that will be inherited by future iterations (called generations), usually in a binary fashion. Links
between genotype and fenotype can have several layers of complexity, from a direct link to
sophisticated models. The genetic algorithm basically works in two steps: fenotype ranking and
reproduction (FLOREANO; MATTIUSSI, 2008).

This method can be described as a simple iterative process with (1) an initialization step
with a population of different individuals, (2) objective function evaluation for each individual,
(3) individuals with better fenotypes are selected whilst the worst ones go extinct, (4) surviving
individuals reproduce proportionally to their score, (5) individuals share information (crossover)
and random mutations may occur in random individuals, generating a new population of different
individuals, (6) repeats from step 2. Floreano and Mattiussi (2008) ilustrate this simplified
scheme in Figure 31.

When construction a genetic model, the main topics to take into account are:

1) choosing a genetic representation for the individuals;

2) how to initialize the first population;

3) define the objective funtion to be minimized;

4) define the selection operator;

5) define the crossover operator;

6) define the mutation operator;

7) plan a data analysis procedure.

Creating a genetic model from scratch is out of the scope of this work, but Floreano and
Mattiussi (2008) explore these steps in detail. This work uses the genetic algorithm function
"ga" already available in (MATLAB, 2009).
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Figure 31 – Simple genetic algorithm.

Source: FLOREANO; MATTIUSSI (2008).
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3 METHODOLOGY

3.1 DYNAMIC MODEL

In this section, the biphasic separator tank is modeled step-by-step as presented by Nunes
et al. (2010).

3.1.1 Valves

Valves are used to control process variables and should be automatically and remotely
operated. Their action is either pneumatic, piston, hydraulic or electrohydraulic.

Valves are classified as rotative and linear. Rotative valves have an obturator that rotates,
changing the flow. They are commonly used in dirty fluids. Linear valves obturator translates
instead of rotate, controlling the flow by sealing its passage.

3.1.1.1 Flow through the valve

Assuming a tank in Figure 1 (presented below again), take two points: one upstream (1)
and the other downstream (2) a valve that produces the flow q. Using Bernoulli’s equation, it is
true that

v2
1

2
+gh1 +

P1

ρ
=

v2
2

2
+gh2 +

P2

ρ
, (3.1)

Source: SEBORG et al. (2011).

where v is the fluid velocity in the specific point, h its height, P its pressure, ρ its density, and
g the gravity constant. Since both points have the same height, these terms cancel out. The
difference between their pressures is defined as ∆P, and the upstream point is assumed to have
no velocity, that is, v1 = 0. Therefore,

v2
2 =

2∆P
ρ

, (3.2)
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which can be written as

v2
2 ∝ ∆P. (3.3)

Since velocity itself is proportional to volumetric flow,

q2
∝ ∆P, (3.4)

which is, in fact

F , q = cv f (xv)
√

∆P/ρ f , (3.5)

where cv is the valve flow coefficient in GPM/
√

psi, f (xv) is the dimensionless flow characteristic
curve, xv is the valve opening fraction, ∆P is the pressure drop throughout the valve in psi, and
ρ f is the relative fluid density (fluid density divided by water density).

From Nunes et al. (2010), gas flow through the valve is

F = cv f (xv)
√

P1∆P/(ρ f Tf ), (3.6)

where Tf is the gas temperature and P1 is the upstream valve pressure, that is, the pressure inside
the separator tank.

The valve characteristic flow curve f (xv) is a function of its components. Nunes et al.
(2010) present the following models:
Square Root

f (xv) =
√

xv; (3.7)

Linear
f (xv) = xv; (3.8)

Percentage
f (xv) = R(xv−1); (3.9)

Hyperbolic
f (xv) = [R− (R−1)xv]

−1; (3.10)

Fast action
f (xv) = exp(xv), (3.11)

where R is the valve rangeability, that is, the relationship between the maximum and minimum
flow it allows. In this work, the linear characteristic flow curve is used.

Poligon Válvulas Industriais (2014) suggests an ideal opening fraction operation ranging
from 30% to 80%, where flow behavior is nearly linear and optimal for process control and
stability.
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3.1.2 Tank

For a horizontal cylindrical tank with length C and diamater D (Figure 32), the
relationship of its fluid volume V and fluid level h is derived analyzing the triangle formed
between the fluid level and the tank center.

Figure 32 – Cylindrical tank model

Source: NUNES et al. (2010).

The circle section area is defined by

Asection =
θD2

4
, (3.12)

and the triangle area is

Atriangle =

(
D
2
−h
)

D
2

sinθ . (3.13)

From Figure 32, it is possible to see that

D
2

cosθ =
D
2
−h, (3.14)

which can be rearranged to

θ = arccos
(

D−2h
D

)
. (3.15)

Also, applying the Pithagorean theorem, sinθ is calculated by(
D
2

)2

=

(
D
2
−h
)2

+

(
D
2

sinθ

)2

, (3.16)
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sinθ =
2
√
(D−h)h

D
(3.17)

Finally, applying Equations 3.15 and 3.17 in Equations 3.12 and 3.13, respectively, and
subtracting them provides

A = arccos
(D−2h

D

) D2

4 −
(D−2h

2

) D
2

(
2
√

(D−h)h
D

)

= D2

4

[
arccos

(D−2h
D

)
−
(

2
√

(D−h)h
D

)(D−2h
D

)]
.

(3.18)

To calculate the volume, Equation 3.18 is multiplied by the length C,

V =
CD2

4

[
arccos

(
D−2h

D

)
−

(
2

√
(D−h)h

D

)(
D−2h

D

)]
, (3.19)

and its derivative in respect to time is

dV
dt

= 2C
√
(D−h)h

dh
dt

. (3.20)

Liquid and gas phases are modeled by conservation of mass, as follows.

3.1.2.1 Liquid Phase

Conservation of mass starts with the concept of Equation 2.18,

dML(t)
dt

= [Lin(t)−Lout(t)]ρL, (3.21)

where ML(t) is the mass of liquid inside the tank, Lin(t) is the inlet liquid volumetric flow over
time, Lout(t) is the outlet liquid volumetric flow over tive through the valve, and ρL is the liquid’s
density, assumed to be constant. The left hand side of Equation 3.21 is the derivative of fluid
volume in respect to time multiplied by its density, which from Equation 3.20 becomes

dhL(t)
dt

=
Lin(t)−Lout(t)

2C
√

[D−hL(t)]hL(t)
. (3.22)

Labeling the right hand side of Equation 3.22 as f , the model is linearized as

dh′L(t)
dt

=
∂ f

∂Lin

∣∣∣∣
SS

L′in +
∂ f

∂Lout

∣∣∣∣
SS

L′out +
∂ f
∂hL

∣∣∣∣
SS

h′L. (3.23)

Since Lout(t) is the liquid flow through the valve, it is then described by Equation 3.5, and
Equation 3.23 is rewritten as

dh′L(t)
dt

=
∂ f

∂Lin

∣∣∣∣
SS

L′in +
∂ f

∂Lout

∣∣∣∣
SS

(
∂Lout

∂xL

∣∣∣∣
SS

x′L +
∂Lout

∂P

∣∣∣∣
SS

P′+
∂Lout

∂hL

∣∣∣∣
SS

h′L

)
+

∂ f
∂hL

∣∣∣∣
SS

h′L.

(3.24)
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Applying Lalace Transform in both sides and solving for H ′(s) results in three transfer
functions:

G1 :=
H ′(s)
L′in(s)

=
K1

τLs+1
;

G2 :=
H ′(s)
X ′L(s)

=
K2

τLs+1
;

G3 :=
H ′(s)
P′(s)

=
K3

τLs+1
,

(3.25)

where the aforementioned constants are

τL =−
(

d f
dhL

+
d f

dLout

dLout

dhL

)−1

SS
; K1 = τL

d f
dLin

∣∣∣∣
SS

;

K2 = τL

(
d f

dLout

dLout

dxL

)
SS

; K3 = τL

(
d f

dLout

dLout

dP

)
SS
.

(3.26)

3.1.2.2 Gas Phase

Similarly to the liquid phase, conservation of mass to the gas phase starts as

dMG(t)
dt

= [Gin(t)−Gout(t)]ρG(t), (3.27)

where MG(t) is the mass of gas inside the tank, Gin(t) is the inlet gas volumetric flow, Gout(t) is
the outlet gas volumetric flow, and ρG(t) is the gas density.

Assuming ideal gas behavior, the left hand side of Equation 3.27 can be rewritten as

dMG(t)
dt

=
MM
RGT

[
VG(t)

dP(t)
dt

+P(t)
dVG(t)

dt

]
, (3.28)

being MM the gas molar mass, T the gas temperature, RG is the universal gas constant, and
P(t) the gas pressure inside the tank. Since the tank volume is constant, dVG(t)/dt =−[Lin(t)−
Lout(t)]. Equating 3.27 and 3.28 results in

dP(t)
dt

=
P(t)[Gin(t)−Gout(t)+Lin(t)−Lout(t)]

V −VL(t)
. (3.29)

Labeling the right hand side of Equation 3.29 as g and linearizing it provides

dP′(t)
dt

=
∂g
∂P

∣∣∣∣
SS

P′+
∂g

∂Gin

∣∣∣∣
SS

G′in +
∂g

∂Gout

∣∣∣∣
SS

G′out +
∂g

∂Lin

∣∣∣∣
SS

L′in +
∂g

∂Lout

∣∣∣∣
SS

L′out +
∂g
∂VL

∣∣∣∣
SS

V ′L.

(3.30)
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Again, Lout(t) is described by Equation 3.5, Gout(t) by Equation 3.6 and VL by Equation 3.19.
Equation 3.30 becomes

dP′(t)
dt

=
∂g
∂P

∣∣∣∣
SS

P′+
∂g

∂Gin

∣∣∣∣
SS

G′in +
∂g

∂Gout

∣∣∣∣
SS

(
∂Gout

∂xG

∣∣∣∣
SS

x′G +
∂Gout

∂P

∣∣∣∣
SS

P′+
∂Gout

∂T

∣∣∣∣
SS

T ′
)
+

∂g
∂Lin

∣∣∣∣
SS

L′in +
∂g

∂Lout

∣∣∣∣
SS

(
∂Lout

∂xL

∣∣∣∣
SS

x′L +
∂Lout

∂P

∣∣∣∣
SS

P′+
∂Lout

∂hL

∣∣∣∣
SS

h′L

)
+

(
∂g
∂VL

∂VL

∂hL

)
SS

h′L.

(3.31)
Applying Laplace Transform and solving for P′(s) yields six more transfer functions:

G4 :=
P′(s)
L′in(s)

=
K4

τGs+1
; G7 :=

P′(s)
H ′L(s)

=
K7

τGs+1
;

G5 :=
P′(s)
G′in(s)

=
K5

τGs+1
; G8 :=

P′(s)
X ′G(s)

=
K8

τGs+1
;

G6 :=
P′(s)
X ′L(s)

=
K6

τGs+1
; G9 :=

P′(s)
T ′(s)

=
K9

τGs+1
,

(3.32)

and the constants are

τG =−
(

dg
dP

+
dg

dLout

dLout

dP
+

dg
dGout

dGout

dP

)−1

SS
;

K4 = τG
dg

dLin

∣∣∣∣
SS

; K5 = τG
dg

dGin

∣∣∣∣
SS

;

K6 = τG

(
dg

dLout

dLout

dxL

)
SS

; K7 = τG

(
dg

dLout

dLout

dhL
+

dg
dVL

dVL

dhL

)
SS

;

K8 = τG

(
dg

dGout

dGout

dxG

)
SS

; K9 = τG

(
dg

dGout

dGout

dT

)
SS
.

(3.33)

3.1.3 Model Diagram

From Equations 3.25 and 3.32, liquid level and gas pressure behavior in Laplace domain
can be written as

H ′L(s) = G1L′in(s)+G2X ′L(s)+G3P′(s);

P′(s) = G4L′in(s)+G5G′in(s)+G6X ′L(s)+G7H ′L(s)+G8X ′G(s)+G9T ′(s).

(3.34)
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Since particular variables can be set constant while studying other variables (Section 2.2.2),
the disturbance variables L′in(s) and G′in(s) are set to zero. Also, Nunes et al. (2010) assume
isothermal behavior, resulting in T ′(s) also zero:

H ′L(s) = G2X ′L(s)+G3P′(s);

P′(s) = G6X ′L(s)+G7H ′L(s)+G8X ′G(s).

(3.35)

Equating liquid level and gas pressure from 3.35 results in

H ′L(s) =
[

G2 +G3G6

1−G3G7

]
X ′L(s)+

[
G3G8

1−G3G7

]
X ′G(s),

P′(s) =
[

G6 +G2G7

1−G3G7

]
X ′L(s)+

[
G8

1−G3G7

]
X ′G(s),

(3.36)

which can be further simplified to

H ′L(s) = Gp11X ′L(s)+Gp12X ′G(s),

P′(s) = Gp21X ′L(s)+Gp22X ′G(s).

(3.37)

These transfer functions are then transcribed as a block diagram in the same fashion as
Figure 15

The setpoints for liquid level and gas pressure are located in the left-hand side of Figure
33 (which are zero since disturbance variables are being used). Saturation blocks for the valves
were implemented to assure their opening fractions will not exceed the realm of physical
possibilites. Controller blocks are regular parallel PID controllers, described as

Gc = Kc

[
1+

1
τIs

+ τDs
]
. (2.57)

Next there are the four transfer functions from Equations 3.37 and the closed loops. There are
four output variables in this diagram, which are X ′L(s) and X ′G(s) roughly in the center, and H ′(s)

and P′(s) to the right.

3.2 OPTIMIZATION

3.2.1 Fitness Function, Parameters and Constraints

Fitness function

The GA works to minimize the maximum deviation ratio of liquid level, gas pressure,
valves opening fraction and outlet liquid flow, that is, the greater of them all. This function is
represented by Equation 3.38.

fitness = max
(∣∣∣∣h′(t)h̄L

∣∣∣∣ , ∣∣∣∣P′(t)P̄

∣∣∣∣ , ∣∣∣∣x′L(t)x̄L

∣∣∣∣ , ∣∣∣∣x′G(t)x̄G

∣∣∣∣ , ∣∣∣∣L′out(t)
L̄out

∣∣∣∣) , (3.38)
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Figure 33 – Model block diagram
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Source: adapted from KINDERMANN (2017).

where a bar over a variable indicates steady state value (see Table 2).

Parameters and constraints

The optimization aims at minimizing the fitness function by finding optimal PID
parameters to Gc1 and Gc2 (see Figure 33). Equation 2.57 can be rewritten as

Gc = Kp +
I
s
+ τD

N
1+N 1

s

, (3.39)

for both liquid and gas valve controllers. N is equivalent to the derivative filter and its default
value is 100. All parameters are constrained to the interval [-10,10].

3.2.2 Genetic algorithm parameters

This work uses the "ga" genetic algorithm function available in MATLAB (2009). This
function receives several parameters, for instance functions to generate the initial population,
mutation functions, crossover functions, and much more. Most of them are kept default, changing
only the following inputs:
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Table 1 – GA parameters
Parameter Input
Population (Individuals) 50
Generations 30
Mutation Function @mutationadaptfeasible
Plot Function @gaplotbestf

Population is the number of solutions the algorithm generates in each iteration.
Generations is the number of iterations the algorithm will simulate. The Mutation Function
dictates how mutation occurs. In this case, @mutationadaptfeasible is used to keep mutations
within the bounded interval. The plot function determines what will be plotted. In this work,
@gaplotbestf plots the minimum and average function values for each generation.

3.3 INITIALIZATION

Steady state values are presented in Table 2 according to Kindermann (2017), Nunes et
al. (2010) and tanks catalogues. Length C and diameter D values were calculated by Kindermann
(2017) when optimizing a biphasic separator tank geometry to level and pressure control purposes.
The author optimized the ratio C/D, bounded by [2,15] with a Particle Swarm Optimization
(PSO) algorithm, resulting C/D = 2.0258. Applying this ratio to a volume of V = 19.8m3 results
in C = 4.7m and D = 2.3m.

Table 2 – Steady state values
Variable name Symbol Value Unit
Liquid valve downstream pressure P1 1.5 bar
Gas valve downstream pressure P2 6 bar
Liquid valve flow constant CV L 1025 GPM/

√
psi

Gas valve flow constant CV G 120 GPM/
√

psi
Liquid density ρL 850 kg/m3

Water density ρH2O,15.5oC 999.19 kg/m3

Tank volume V 19.8 m3

Tank length C 4.7 m
Tank diameter D 2.3 m
Gravity g 9.81 m/s2

Gas molar mass MMG 0.021 kg/mol
Air molar mass MMair 0.02897 kg/mol
Temperature T 303.15 K
Inlet liquid flow L̄in 0.08 m3/s
Outlet liquid flow L̄out 0.08 m3/s
Inlet gas flow Ḡin 0.16 m3/s
Outlet gas flow Ḡout 0.16 m3/s
Tank pressure P̄ 8 bar
Liquid Level h̄L 1.1 m
Liquid valve opening fraction x̄L 0.5 -
Gas valve opening fraction x̄G 0.5 -
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Disturbance variables L′in(t) and G′in(t) are the ones used by Kindermann (2017),
described by

L′in(t) =−0.03+0.05sin
(

2πt
1320

)
,

G′in(t) =−0.0673+0.0928sin
(

2πt
1320

)
.

(3.40)

These equations are simple slug flow simulations taken from real data, transformed into
percentual variation and applied to the flow values from Table 2. These disturbances are
multiplied by their respective transfer functions in Equation 3.34 and then added to the sum
points in Figure 33. Simulation time is set to 30000 seconds (500 minutes).
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4 RESULTS AND DISCUSSION

In this section, the optimization results are presented with a briefly explanation and then
compared to a previous experiment performed by Kindermann (2017) over the same physical
model.

The GA optimization converged to the PID values and maximum percent deviations
shown in Table 3.

Table 3 – Simulation results
Liquid Gas

Kp1 = −1.7658 Kp2 = −0.0999
I1 = −5.0552 I2 = −0.4839
τD1 = 0.2224 τD2 = 2.5630

Maximum Deviations
Outlet liquid flow = 375.8310 %
Valve opening fraction = 51.9985 %
Pressure = 8.5134 %
Level = 0.4322 %

Best and mean fitness values for every generation are shown in Figure 34. The code is
written in a way that if the simulation can not converge due to any of the PID values, the fitness
is set to infinity for natural selection purposes. From Figure 34 it is possible to see that at least
one individual from each generation causes simulation divergence, hence all mean values being
off chart (Inf). Outlet liquid flow, valves opening fraction, liquid level and gas pressure behavior
over time for the optimized solution are shown in Figure 35 and Figure 36. Level and pressure
deviation values in Table 3 correspond to peaks in the very beginning of the simulated time, but
the oscillations actually provide even smaller values.

Figure 34 – Fitness evolution over the generations.
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Figure 35 – (a) Outlet liquid flow deviation, (b) Valves opening fraction.
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Figure 36 – (a) Level deviation, (b) Pressure deviation.
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Outlet liquid flow amplitude in Figure 35 is unacceptably high, suggesting this may not
be an optimal method to control slug flows. The outlet flow curve can be described by

Lout = 0.2705+0.1073sin
(

2π

1320
t
)
. (4.1)

When compared to Equation 3.40, it is possible to see a roughly 100% amplification in its
amplitude while keeping the same frequency.
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Valve opening fractions in Figure 35 are generally good despite the liquid valve exceeding
5% from the lower limit suggested by Poligon Válvulas Industriais (2014). The oscillation
amplitude is within acceptable limits. It is clear from Figure 36 that this solution is highly
efficient in controlling liquid level and gas pressure since they have barely changed at all. An
odd behavior occurs right in the beginning of the simulated time with higher amplitude but it is
still within safe limits.

A previous study performed by Kindermann (2017) optimized the same system with
two proportional controllers and a Particle Swarm Optimization (PSO) meta-heuristic algorithm,
arbitrarily labeled as PSO-P arrangement. These results are compared with this work in the next
figures and table.

Figure 37 – Outlet liquid flow deviation. (a) PSO-P, (b) GA-PID.
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Figure 38 – Valves opening fractions. (a) PSO-P, (b) GA-PID.
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Source: adapted from Kindermann, 2017
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Figure 39 – Level deviation. (a) PSO-P, (b) GA-PID.
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Figure 40 – Pressure deviation. (a) PSO-P, (b) GA-PID.
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Source: adapted from Kindermann, 2017
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Table 4 – PSO-P vs GA-PID
Maximum Deviations PSO-P GA-PID
Outlet 375.44% 375.83%
Valves opening fraction 40.00% 52.00%
Liquid level 18.61% 0.43%
Gas pressure 19.52% 8.51%

From this comparison, it is possible to see that the GA-PID arrangement performs better
in controlling liquid level and gas pressure compared to the PSO-P experiment. Outlet liquid
flow is kept the same in both studies. PSO-P had a better control over the valves opening fraction
amplitudes keeping them within the optimal range provided by Poligon Válvulas Industriais
(2014).

Difference in control performance may be due to the different metaheuristic approach
chosen and/or the change from a Proportional to a PID controller, the latter being more likely to
be true. Since the GA does not have a defined path to follow in the sense that it is not derivative
based, there is no absolute guarantee that a global solution has been obtained (ARORA, 2004).
When the fitness function does not improve any further, it is hard to tell if it has reached the
optimal result or if it is stuck in a local optimum. In the latter case, the algorithm depends
on random mutations to find new solutions and this may take several generations to happen
(FLOREANO; MATTIUSSI, 2008). On the other hand, there is evidence that PSO performs better
then other optimization techniques when optimizing real functions (FLOREANO; MATTIUSSI,
2008). Therefore, the difference in results is probably due to the PID controller performance.
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The simulation is run a couple more times. First, the controller is kept off until 250
minutes. The graphs of Figures 41 and 42 show how differently the system responds to the slug
flow before and after the controllers are turned on.

Figure 41 – Before and after turning the controller on: (a) Liquid level, (b) Gas pressure.
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Figure 42 – Before and after turning the controller on: (a) Valves, (b) Outlet flow.
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Next, the system is in its steady state conditions and there is a step change in the setpoints
from Gin = 0.16 m3/s and Lin = 0.08 m3/s to Gin = 0.28 m3/s and Lin = 0.14 m3/s in minute
250. Figures 43 and 44 show how the system behaves to these changes.
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Figure 43 – Step on steady state conditions: (a) Liquid level, (b) Gas pressure.
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Figure 44 – Step on steady state conditions: (a) Valves, (b) Outlet flow.
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5 CONCLUSION

Two PID controllers are optimized via a Genetic Algorithm meta-heuristic approach.
The goal is to minimize variations in liquid level, gas pressure, valve opening fraction and outlet
liquid flow in a horizontal biphasic separator tank. The algorithm excelled in controlling liquid
level and gas pressure in few iterations, keeping them close to the set point with almost no
disturbance at all. Valves opening fractions presented good operation range, with a maximum
amplitude of around 30%. Outlet liquid flow control had the worst performance, with percentual
variations ranging from roughly 100% to 375%.

Even though the liquid valve opening fraction reached a minimum of 25%, that is,
exceeding the ideal range presented by Poligon Válvulas Industriais (2014) in 5%, its operation
range is still acceptable. The operational range from Poligon Válvulas Industriais (2014) has a
50% amplitude, where the maximum amplitude reached by the optimization is 30%.

Outlet liquid flow variation is explained by liquid level and gas pressure stability. In
order to keep them close to the set point, the valves should be opening and closing accordingly
to the inlet flow, thus mimicking the intermittent behavior. The optimization is not able to damp
this response, probably because the feedback loop is minimizing liquid level and gas pressure
and not the outlet flow. This would also explain why these variables were kept roughly constant.
Since the control loops are around level and pressure, tendency is that they will converge to the
set point, faster or slower. Controlling outlet liquid flow via GA can not "fight" liquid level and
gas pressure control via PID since this is a "first instance error minimizer".

When compared to a previous study from Kindermann (2017), the GA-PID arrangement
performs better then the PSO-P in controlling liquid level and gas pressure, while outlet liquid
flow and valves opening fractions are roughly the same. This is probably due to the change from
a proportional controller to a PID, since the PSO algorithm is likely to perform better than the
GA in finding the global optimum (ARORA, 2004; FLOREANO; MATTIUSSI, 2008).

The calculated parameters can control the system well as it can be seen from the
experiments when the controller is turned on after 250 minutes of slug flow without the control,
and when there is a step change to the system setpoints.

Future works may cover the effect of a PID loop over liquid and gas outlet flows instead
of liquid level and gas pressure to minimize outlet flow variation, three-phase gravity separation
tank simulation, series of separator tanks with pressure steps between them, a more robust slug
flow simulation instead of trigonometric functions, well-separator coupling and reservoir-well-
separator coupling.
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ANNEX A – EXAMPLES

Example 1

The Laplace Transform of f (t) = eat is

L {eat}=
∫

∞

0 e−steatdt

=
∫

∞

0 e−(s−a)tdt

= 1
s−a , s > a.

(A.1)

Example 2

Let f (t) be a function which derivative is f ′(t). The Laplace Transform of the derivative
is

L { f ′(t)}=
∫

∞

0
e−st f ′(t)dt (A.2)

This integral is solved by parts, being dv = f ′(t)dt and u = e−st , resulting in v = f (t)

and du =−se−stdt: ∫
udv = vu−

∫
vdu

∫
∞

0
e−st f ′(t)dt = [e−st f (t)]∞0 + s

∫
∞

0
e−st f (t)dt. (A.3)

Applying the limits in the first term on the right hand side yields − f (0). Paying attention
to the second term, it is possible to see that it is but the Laplace Transform definition itself from
Equation 2.7, multiplied by s. Therefore, the Laplace Transform of the derivative of a function is:

L { f ′(t)}= sL { f (t)}− f (0). (A.4)

The Laplace Transform of the second derivative of a function, f ′′(t):

L { f ′′(t)}=
∫

∞

0
e−st f ′′(t)dt.

Solving this integral by parts in such a way that dv = f ′′(t)dt and u = e−st , resulting
v = f ′(t) and du =−se−stdt:∫

∞

0
e−st f ′′(t)dt = [e−st f ′(t)]∞0 + s

∫
∞

0
e−st f (t)′dt.

L { f ′′(t)}= sL { f ′(t)}− f ′(0).

Substituting this result in Equation A.4 yields

L { f ′′(t)}= s2L { f (t)}− s f (0)− f ′(0). (A.5)

In fact this pattern repeats itself for any derivative of f (t), allowing us to write

L { f (n)(t)}= snL { f (t)}− sn−1 f (0)−·· ·− s f (n−2)(0)− f (n−1)(0). (A.6)
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Example 3

Let S(t) be a step function,

S(t) =

0, t < t0

1, t ≥ t0.
(A.7)

In order to apply the Laplace Transform in this function, it must be divided in two intervals: from
0 to t0 and from t0 to ∞,

L {S(t)}=
∫ t0

0
e−stS(t < t0)dt +

∫
∞

t0
e−stS(t ≥ t0)dt. (A.8)

Since S(t < t0) = 0 by definition, it is only needed to solve the second integral, where
S(t ≥ t0) = 1,

L {S(t)}=
∫

∞

t0
e−stdt =

e−st0

s
. (A.9)

Example 4

The tank presented in Figure 1 is described by Equation 2.3,

A
dh
dt

= qi−
1
Rv

h. (2.3)

Suppose the tank is initially empty and there is no flow occuring, h(0) = 0 and qi(0) = 0,
when a flow Q starts to fill the tank. This means qi(t) is a step function S(t) with t0 = 0, multiplied
by Q. Applying the Laplace Transform:

L

{
A

dh
dt

}
= L

{
QS(t)− 1

Rv
h
}

.

Due to the linearity property of the operation, the previous expression can be written as

AL

{
dh
dt

}
= QL {S(t)}− 1

Rv
L {h}.

From Table B.1, formulas 2 and 13 are applied to the previous equation, being f (t) = h(t)

and F(s) = H(s),

A[sH(s)−h(0)] = Q
1
s
− 1

Rv
H(s).

Since h(0) = 0, it is possible to solve this equation for H(s) as

H(s) = QRv
1

s(ARvs+1)
. (A.10)

It is possible now to apply the Inverse Laplace Transform to find h(t). From Table B.1,
int can be seen that H(s) equals the second column of formula 7, multiplied by QRv and being
τ = ARv,

h(t) = QRv(1− e−t/ARv). (A.11)

This result can be verified by being differentiated in respect to time and multiplied by A,
which should be equal to qi−h/Rv, as shown by Equation 2.3.



73

Exemple 5

For θ close to 0, the function sen θ can be approximated by

sen θ =
∞

∑
n=0

f (n)(0)
n!

θ
n. (A.12)

Also, derivatives of sen θ are cyclical after the fourth differentiation:

dsen θ

dθ
= cos θ ;

d2sen θ

dθ 2 = dcos θ

dθ
=−sen θ ;

d3sen θ

dθ 3 = d(−sen θ)
dθ

=−cos θ ;
d4sen θ

dθ 4 = d(−cos θ)
dθ

= sen θ .

Knowing that sen 0 = 0 and cos 0 = 1, the first terms of A.12 can be calculated as

sen θ =
sen 0

0!
+

cos 0
1!

θ − sen 0
2!

θ
2− cos 0

3!
θ

3 +
sen 0

4!
θ

4 +
cos 0

5!
θ

5 + · · ·

sen θ = θ − θ 3

3!
+

θ 5

5!
− θ 7

7!
+ · · ·

sen θ =
∞

∑
n=1

(−1)(n−1) θ (2n−1)

(2n−1)!
. (A.13)

This summation will approximate the function by an n-th degree polynomial.
Approximating sen (0.1) by a Maclaurin Series truncated in the second term yields

sen (0.1) = 0.099833416... (Real Value)

sen (0.1)≈ 0.1− 0.13

3!
= 0.099833333... (Approximated Value)

The divergence occurs in the seventh decimal place with a percentual error of 8.34×
10−5%.
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ANNEX B – LAPLACE TRANSFORMS

Table B.1 – Laplace Transforms
f (t) L { f (t)}= F(s)

1. δ (t) (unit impulse) 1

2. S(t) (unit step, t0 = 0) 1
s

3. t (ramp) 1
s2

4. 1
τ

e−t/τ 1
τs+1

5. 1
τ1−τ2

(e−t/τ1− e−t/τ2)
1

(τ1s+1)(τ2s+1)

6. 1
τ1

τ1−τ3
τ1−τ2

e−t/τ1+
1
τ2

τ2−τ3
τ2−τ1

e−t/τ2
τ3s+1

(τ1s+1)(τ2s+1)

7. 1− e−t/τ 1
s(τs+1)

8. sen ωt ω

s2+ω2

9. cos ωt s
s2+ω2

10. sen (ωt +φ)
ω cos φ+s sen φ

s2+ω2

11. e−btsen ωt ω

(s+b)2+ω2

12. e−btcos ωt s+b
(s+b)2+ω2

13. f (n)(t) snF(s)− sn−1 f (0)−·· ·− s f (n−2)(0)− f (n−1)(0)

14. f (t− t0)S(t− t0) e−t0sF(s)
Source: adapted from SEBORG et al. (2011).
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